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ABSTRACT

A plethora of image quality metrics have been proposed in the
literature. These metrics aims to estimate the perceptual im-
age quality automatically. One important key aspect that the
perceived quality is dependent on is the viewing distance from
the observer to the image. In this study, we propose to con-
sider this information by estimating the quality of a given im-
age without a reference image for different viewing distances.
For that, a Convolutional Neural Network (CNN) model was
used in this study. Relevant patches are first selected from the
image and they are then used as inputs to the CNN. The se-
lection is here based on saliency information. The used CNN
is composed of two outputs that correspond to the predicted
subjective scores for two viewing distances (50 cm and 100
cm). Our method was evaluated using the Colourlab Image
Database: Image Quality (CID:IQ) that provides subjective
scores at two different viewing distances. The obtained re-
sults show the efficiency of our method.

Index Terms— Image Quality, Convolutional Neural
Network, Patch Selection, Viewing distances

1. INTRODUCTION

Image quality assessment is important in a number of appli-
cations such as photography, color printing, etc. The interest
in image quality assessment has increase significantly in the
last decade. Subjective assessment is still considered to be the
”gold standard”, but objective assessment is becoming more
common. A number of objective assessment methods, com-
monly known as Image Quality Metrics (IQMs), have been
introduced in the literature [1]. These metrics have also been
extensively evaluated [2]. Depending on the availability of
the reference image, IQMs can be divided into full-reference,
reduced-reference, or no-reference. Full-reference requires
access to the complete reference, while reduced-reference re-
quired partial information of the images, and no-reference
does not require access to the reference image.

Traditionally IQMs only incorporated information on the
intensity of the distortion, such as peak-signal-to-noise-ratio

(PSNR) and Mean-Squared-Error (MSE). These have been
used in many applications with success, but they have been
shown not to correlate well with perceived image quality for
natural images [3]. In the last decade IQMs based on struc-
tural similarity [4] have been become popular, and shown in
many datasets to correlate better with perceived image quality
than PSNR [3]. Other IQMs based on modelling the low-level
vision have also been proposed, such the spatial CIELAB (S-
CIELAB) [5]. In recent years the use of deep learning has
attracted attention of many researchers [6, 7, 8, 9, 10, 11, 12].

One key aspect when observers are evaluating image
quality is the viewing distance from the observer to the im-
age [13]. This well-known issue has, however, been over-
looked in many of the existing IQMs, and perhaps especially
in those based on deep learning. Most existing datasets for
estimating the performance of IQMs have only been evalu-
ated by observers at a single viewing distance or the view-
ing distance has not been controlled. The Colourlab Image
Database: Image Quality (CID:IQ) [14] is one of the pub-
licly available datasets where observers have evaluated image
quality at different viewing distances.

In this work we use a Convolutional Neural Network
(CNN) to predict perceived image quality at different view-
ing distances. To our knowledge this is the first attempt where
the viewing distance is incorporated in a CNN-based IQM.

We first present relevant background, before we introduce
the proposed method. Then we present the experimental re-
sults, and at last we conclude.

2. BACKGROUND

A number of IQMs based on deep learning have been pro-
posed in the literature. Kang et al. [7] proposed a no-
reference metrics that calculated quality for patches in im-
ages using CNNs. Bianco et al.[6] proposed a no-reference
approach using CNNs, where quality scores are predicted for
sub-regions in the image and support vector regression is used
on the CNN features. Li et al. [8] extracted simple features
from the image using a Shearlet transform, and then treating
image quality as a classification problem using deep neural



networks. Chetouani et al. [15] also treated image quality as
a classifying problem using linear discriminant analysis. In
[16], Chetouani extended the previous work by using a CNN
model for degradation identification and quality prediction.
Li et al. [17] combined CNNs and Prewitt magnitude on a
segmented image to predict image quality. Kim et al. [9]
used local quality maps as intermediate targets for CNNs.
Lv et al. [10] used a multi-scale Difference of Gaussian to
generates features, which were processed using a deep neural
network in their no-reference IQM. Gao et al. [11] intro-
duced a full-reference IQM that used deep neural networks
to measure the local similarities between the features from
the distorted and reference image. Amirshahi et al. [12]
proposed a full-reference IQM based on self-similarity and
a CNN model. This approach was improved in [18] where
the feature maps were compared using traditional IQMs. In
this work, we propose to go further than existing CNN-based
IQMs by estimating image quality without reference for dif-
ferent viewing distances. To do so, a modified pre-trained
CNN model was used. Relevant patches were selected based
on saliency information.

3. PROPOSED METHOD

Fig. 1. Flowchart of the proposed method

We propose a CNN-based IQM that allows to predict the
quality of a given image for two viewing distances. Fig. 1
presents the general framework of our method. From a given
image, we select relevant patches of the image based on
saliency information. Then, a CNN model is used to predict
the subjective scores for the considering viewing distances.

A plethora of CNN models with different architectures
were proposed in the literature. In this work, the model de-
veloped by Oxford Visual Geometry Group (VGG) was used,
since it is widely used and provides good results in several ap-
plications [19]. More precisely, VGG16 was employed. The
latter is initially composed of 13 convolutional layers and 3
Fully Connected layers (FC). VGG16 was here modified to
match the size of our patches and to adapt the last layers to
our context. For that, the three FC layers were replaced by
two FC layers of size 128 and 2. The latter corresponds to the
number of considered viewing distances. The SoftMax layer
(classification task) was also substituted by a regression layer
to predict ”continuous values”. The Mean Square Error func-
tion was used as loss function. These modifications allows
us to adapt the model to our task and also considerably re-
duce the number of learnable parameters, since we have now

around 14 M of learnable parameters against 138 M initially.
It is worth noting that model pre-trained on ImageNet was
used by applying fine-tuning. Further, as our visual system is
sensitive to rotation [20], no data-augmentation was applied.

The final architecture of our model is presented by the Fig.
2. The input size was fixed to 32x32x3, since the dataset is
not big enough to use directly the whole image and different
studies highlighted this choice [7, 21].

During the training step, the learning rate and the mo-
mentum were fixed to 0.01 and 0.9, respectively. SGD was
used as optimization function. The number of epochs and the
batch size were set to 25 and 16, respectively. At the end
of each epoch, the training data were shuffled and the model
was saved. The model that provided the best performance was
then retained.

Instead of using all patches, a saliency-based patch se-
lection was applied. From the saliency map of a given image,
fixation points are determined using a scanpath predictor [22].
The latter aims to mimic the behavior of human visual system
when it faces a real image. The number of fixation points
can be modified and any saliency map can be used. In this
study, the Graph-Based Visual Saliency (GBVS) method [23]
was used and the number of fixation points was fixed to 100.
For more details about the patch selection, we refer the reader
to [24]. For each determined fixation point, a patch of size
32x32x3 was extracted. Similar to previous studies [7], the
overall quality scores for both viewing distances were calcu-
lated by averaging the predicted scores of each patch.

4. EXPERIMENTAL RESULTS

4.1. Dataset

As mentioned above, we propose a method that is able to es-
timate the quality of a given image for different viewing dis-
tances. CID:IQ (Colourlab Image Database: Image Quality)
[14] is one of the publicly available datasets that considers
this aspect. CID:IQ consists of 690 distorted images derived
from 23 pristine images. For each distorted image, subjective
scores were collected at two different distances (50cm and
100cm). Distorted images were obtained using six types of
degradation at five levels: JPEG2000 (JP2K), JPEG, Gaussian
Blur (GB), Poisson noise (PN), ∆E gamut mapping (DeltaE)
and SGCK gamut mapping (SGCK). A sample of distorted
images is presented in Fig 3. The subjective results for the
two viewing distances are varying, as an example the differ-
ent levels of JPEG2000 compression can be differentiated at
50 cm, but this is not the case at 100 cm.

4.2. Protocol and Evaluation criteria

The performance evaluation was done by computing the Pear-
son (PCC) and Spearman (SROCC) correlation coefficients.
These criteria are commonly used in this area and were here



Fig. 2. Architecture of the modified VGG16 model employed in this study

Fig. 3. Samples of the CID:IQ dataset

computed after a nonlinear mapping [25]. The correlation co-
efficients were computed between subjective scores for both
viewing distances and the corresponding predicted values. A
correlation equals to 1 means a perfect prediction, while a
correlation equals to 0 indicates no correlation.

To train our model, we split the dataset into training-
validation and test sets. The test set is formed by one ref-
erence image and its degraded versions, while the training-
validation set is composed of the rest. The latter was split
randomly without overlapping (80% for the training and 20%
for the validation). This procedure was repeated 23 times,
since the used dataset is composed of 23 original images.
This protocol ensures non-overlap or redundancy (in terms
of image content) between sets. The correlation coefficients
were computed by concatenating the predicted scores.

4.3. Performance Evaluation

The obtained results on the CID:IQ dataset are shown in Ta-
bles 1 and 2 for 50 cm and 100 cm, respectively. For both
viewing distances, results of our method were compared to
the state-of-the-art IQMs (PSNR, SSIM [4], VIF [26], FSIM
[27], GMSD [28]). In addition we compare against two no-
reference IQMs (BRISQUE [29] and DIVINE [30]). The lat-
ter were retrained on CID:IQ using the protocol described in
Section 4.2. In [2], an exhaustive evaluation was performed
using 60 full-reference metrics. Due to lack of space, we did

not incorporate all the results in this paper. The well-know
metric Visual Difference Predictor (VDP) [31], that exploits
the contrast sensitivity function that integrates the viewing
distance, was also compared to our method.

The proposed method outperformed all the compared
metrics by more than 20% for 50 cm and 11% for 100cm.
It is important to remind that the compared metrics are full-
reference IQMs and thus assume that the pristine image is
available. All the compared handcrafted metrics obtained low
PCC correlations, since the high PCC is equal to 0.713 for 50
cm and 0.773 for 100 cm. The best performances for 50 cm
and 100 cm were obtained VIF and FSIM, respectively. No-
reference IQMs failed to estimate quality for both viewing
distances.

Table 1. Pearson (PCC) and Spearman (SROCC) correlation
coefficients between the quality estimation and the subjective
scores for 50 cm viewing distance. Highest values in bold.

Metric PCC SROCC
PSNR 0.625 0.625
SSIM 0.707 0.761
VIF 0.713 0.711
FSIM 0.678 0.744
GMSD 0.709 0.743
VDP(50) 0.481 0.476
DIVINE 0.227 0.259
BRISQUE 0.499 0.520
Our Method 0.858 0.855

In Table 3 we show the correlations obtained for each dis-
tortion. As excepted, the performances vary according to the
distortion type. The best values were obtained for GB, SCGK
and DeltaE, while the worst ones were obtained for JP2K and
PN. For PN distortion, the results may be due to our visual
system because, depending on the viewing distance, the noise
is averaged and its perceptual quality seems high, more than
the other distortions. For JP2K, the observers are able to dif-



Table 2. Pearson (PCC) and Spearman (SROCC) correlation
coefficients between the quality estimation and the subjective
scores for 100 cm viewing distance. Highest values in bold.

Metric PCC SROCC
PSNR 0.676 0.670
SSIM 0.576 0.638
VIF 0.626 0.622
FSIM 0.773 0.816
GMSD 0.733 0.767
VDP(100) 0.376 0.397
DIVINE 0.225 0.247
BRISQUE 0.444 0.491
Our Method 0.858 0.826

ferentiate between the level of compression at 50 cm, but not
to the same degree at 100 cm, which is a challenge for IQMs.

Table 3. Pearson (PCC) and Spearman (SROCC) correlation
coefficients between the quality estimation of our method and
the subjective scores for each distortion.

PCC
Distortion type 50 cm 100 cm
JP2K 0.748 0.633
JPEG 0.822 0.822
PN 0.786 0.764
GB 0.886 0.905
SCGK 0.915 0.899
DeltaE 0.906 0.873

SROCC
Distortion type 50 cm 100 cm
JP2K 0.756 0.582
JPEG 0.800 0.795
PN 0.792 0.747
GB 0.886 0.879
SCGK 0.893 0.879
DeltaE 0.864 0.847

We also computed the correlation between subjective
scores of both viewing distances and we compared it to the
one obtained by our method (Table 4). We added the corre-
lation for traditional IQMs. The latter obtained a perfect cor-
relation (PCC=1 and SROCC=1), since this kind of metrics
provides same quality values whatever the viewing distance.
As expected, a high correlation exists between subjective
scores (MOS) for both viewing distances. Our method and
VDP obtained also a high correlation with no perfect corre-
lation, which indicates that those methods can well integrate
this information. However, VDP failed to predict the quality,

since it obtained very low correlations (see Tables 1 and 2).

Table 4. Correlations between scores from IQMs of both
viewing distances.

PCC SROCC
MOS 0.895 0.890
VDP 0.888 0.903
Other traditional metrics 1 1
Our method 0.945 0.935

5. CONCLUSION

In this paper, a new CNN-based blind image quality method
that predict subjective scores for two different viewing dis-
tances (50 cm and 100 cm) was introduced. To the best of our
knowledge, there is no CNN-based method that permits to
estimate the quality for different viewing distances. The ob-
tained results were compared to the state-of-the-art methods
and it showed its consistency with the subjective judgments.
According to the obtained correlations, this work opens inter-
esting perspectives as the performance are not very high (less
than 0.90) and can thus be improved.
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