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ABSTRACT
Understanding how we perceive visual quality is important in
a range of applications such as streaming or cross-media re-
production. Despite current perception models showing high
correlations with recorded mean opinion scores, the factors
influencing visual quality are still not fully understood, par-
ticularly when it comes to memory. We designed and carried
out a study to compare quality assessment for two different
levels of reliance on visual short-term memory. We found
that assessments based mostly on memory tend to be more
positive for compression, blur or gamut mapping distortions.
Our results further highlight the role of memory in subjective
quality assessment and visual masking.

Index Terms— Image Quality Assessment, Perception,
Visual Memory, Change Blindness.

1. INTRODUCTION

Subjective visual quality (SVQ) research is concerned with
how people see and interpret digital images. It is particularly
important in such fields as coding and cross-media reproduc-
tion. Although most people tend to agree on what defines bad
quality (e.g. strong blocking artifacts or large contrast reduc-
tions), we do not yet fully comprehend the most advanced
parts of our visual system and how they influence our judg-
ment of visual quality. Memory, attention or awareness [1]
are so idiosyncratic that their inner workings are difficult to
study. While state-of-the-art SVQ models often are visual
attention-aware, they rely for the most part on salience. How-
ever, salience accounts only for the tip of the iceberg when it
comes to attention. It is one thing to recognise what catches
our eyes almost unconsciously, but another to predict visual
search and inspection strategies for specific tasks [2]. Even
though SVQ models can reach linear correlations with mean
opinion scores higher than ρ = 0.95 [3, 4] on popular bench-
marks, there is still a lot to learn about how to properly design
these databases, i.e. the experiments they are based on and the
interpretation of their results [5]. There are indeed four main
questions in visual quality perception:

• What can we see? The human eyes filter out a great
deal of visual information due to spatial, spectral and

temporal bandwidth limitations. We refer to these ef-
fects as low-level, because they can prevent the con-
scious perception of visual artefacts, even when the ob-
server knows where they are.

• What do we expect to see? While the sensitivity of
our eyes is very limited spatially, they can be moved
around, guided by visual attention mechanisms. These
mechanisms work differently based on the task at hand
and they involve both bottom-up and top-down effects.
Without priming, they can be quite inefficient in the
sense that we can ”miss” important visual information
even at the centre of gaze [6]. We then refer to these
type of perceptual limitations as high-level, because
they can be overcome by priming.

• What do we think we see? Conscious perception of
visual information can be further distorted by expec-
tation and emotion. It has been demonstrated [7] that
observers can report perceiving differences between
two absolutely identical images, even on a display
calibrated for spatial homogeneity of brightness.

• What do we make of what we think we see? The final
step, which lies beyond the visual processing pathway,
is the making of a decision.

While the first question is well studied from the perspective
of early vision, only a few recent studies have tackled the lat-
ter three, like for instance Bosse et al.’s investigations of the
neural correlates of visual quality [8]. However, with the ad-
vent of online streaming and novel imaging technologies (3D,
multi-spectral, high dynamic range, light-field), as well as the
increasing availability of eye-tracking and brain monitoring
devices, a deep understanding of what constitutes visual qual-
ity is primordial.

Generally, the main challenge is predicting whether arte-
facts due to the reproduction process (coding, gamut map-
ping, noise, blur...) are perceptible to the extent that they
influence our overall judgment. One key paradigm that has
been exploited in this context is masking, which can be of
two kinds [9]: low-level masking prevents the perception of
differences between stimuli even though we know where they



Fig. 1. Peripheral vision in a pair comparison experiment for
a viewing distance of 50 cm (top: short distance between
stimuli, bottom: large distance). The red dot corresponds
to the fixation point in the left stimulus, whereas the green
dot corresponds to the same location in the other (unattended)
stimulus. Approximate boundaries between the near- mid and
far-peripheral regions of the visual field are marked with the
dashed circles (at 30◦ and 60◦). The de-saturation illustrates
the loss of perception in peripheral vision. In the case of
a small distance (23◦), the unattended dot lies within mid-
peripheral vision and even a part of the unattended image is
within near-peripheral vision. In the case of the large dis-
tance (34◦), the unattended dot lies within far-peripheral vi-
sion, where shape, texture and colour perception is the poor-
est.

are, while high-level masking prevents the perception of dif-
ferences until we know where they are. Here again, the latter
is far less understood, as state-of-the-art models of memory,
internal representations and visual search strategies have only
marginally been applied to SVQ so far.

Here, we look at a particular branch of SVQ: image fi-
delity, otherwise known as full-reference (FR-SVQ). In this
context, quality is measured by means of a comparison be-
tween two reproductions of the same image (typically, one
is a pristine version and the other is distorted). In practice,
this scenario can occur for instance in printing where soft and
hard copies are typically compared side-by-side, when trans-
ferring a picture taken with a smartphone to a computer, or
to analyse a network in term of how it changes the quality of
the input (e.g. for video streaming). A typical setup for FR-
SVQ user studies is pair comparison: the two stimuli are dis-
played simultaneously on a monitor and observers are asked
to rate the difference between them, in terms of quality. There

are several factors that can influence these ratings. While the
effect of most physical (viewing distance, ambient luminos-
ity, screen resolution, etc) and some psycho-physical (contrast
sensitivity, chromatic adaptation, etc) factors are well studied,
little is known about how the highest levels of visual process-
ing affect our perception of visual quality, and in particular
about encoding, storage and access in visual short-term mem-
ory. Proven limitations to our ability to compare complex
patterns (see literature on texture masking [10]) hint at the
influence of memory in FR-SVQ, though most recent works
have focused only on information encoding and processing in
areas V1, V2 and V4 of the visual cortex [11, 12].

In a recent study [13], we compared results obtained when
stimuli are shown side-by-side on the display (standard case)
to those obtained when they are shown one after the other, but
not at the same time. In the latter case, observers had to rely
exclusively on visual memory to compare the stimuli, which
resulted in significantly higher quality ratings overall. While
low-level effects such as luminance adaptation can also jus-
tify this result, we argue that it is mostly due to a conscious
decision to commit only some attributes/statistics of the scene
to short-term memory during the first display. If not primed,
this decision is likely to be sub-optimal, leading to the ob-
server missing important visual differences. Psychological
factors such as alertness or confidence (see Box 2 in [1] or
the work of Levin et al. on change blindness blindness [14])
are likely to contribute marginally to the difference in ratings,
though we do not discuss them here.

In this paper, we propose a different experimental design
to capture the effect of visual memory in FR-SVQ assess-
ment. Specifically, we look at the effect that the spatial dis-
tance between stimuli has on subjective ratings. Some of the
most widely used FR-SVQ databases such as CSIQ [10] or
TID2013 [15] are based on experiments where the spatial dis-
tance between stimuli was set in a somewhat ad hoc manner.
However, this distance (or gap) can influence how much of
one stimulus can be seen when looking at the other, as illus-
trated in Figure 1. For short gaps and relatively low-resolution
images, as it is the case for the aforementioned benchmarks,
fixating a region in one stimulus means that the correspond-
ing region in the other stimulus roughly lies in near-peripheral
vision (above 18◦ of the visual field). Even though visual
acuity and chromatic perception are already very poor and
decrease rapidly [16, 17], they get substantially worse in mid-
peripheral vision (above 30◦ of the visual field). Furthermore,
due to the distance between stimuli, our eyes need to travel
slightly longer, thereby imposing more constraint on mem-
ory as it must hold on to the internal representation longer.
Mirjalili et al. [18] investigated the effect of separation be-
tween colour patches on color difference perception. In their
experiment, the patches had no separation, 1 pixel, 2 pixels
and 140 pixels distance. They found that separation between
the patches has an impact on the colour difference. Some re-
sults [19] even suggest distinct peripheral sensitivities for the



Table 1. Control and test comparison between groups.
Group 1 Group 1

Set 1 short short

Set 2 long long

Set 3 short long

Set 4 long short

Control

Test

blue-yellow and red-green colour opponent channels of our
visual system. Freeman et al. [12] looked at the transforma-
tion between the primary visual cortex and the inferotempo-
ral cortex (ITC), where mid-level attributes such as faces are
encoded. The ITC is considered the last component of the
ventral stream [11], otherwise known as the ”What” pathway
(as opposed to the dorsal stream, i.e. the ”How/Where” path-
way). Their synthetic metamers, produced based on a bank
of oriented bandpass filters, reveal how surprisingly little we
perceive in peripheral vision. Therefore, setting up a large gap
between stimuli forces observers to rely even less on periph-
eral vision and more on memory in judging image fidelity.

2. USER STUDY

2.1. Participants

A total of 28 people with normal or corrected-to-normal vi-
sion participated in the study (12 in New Zealand, 16 in Nor-
way). Colour vision was tested for each participant with an
Ishihara test. Ages ranged between 25, 66% were male and
various cultural backgrounds were represented. No one was
given any indications as to the goals of the experiment prior
to it. A standard screening [20] revealed that all participants
were valid.

2.2. Stimuli

Stimuli were selected from the CID:IQ database [21] and
were displayed in pairs. Each pair was made of A) one of 22
different pristine images and B) one of six distorted versions
of the same image. The distortion types were JPEG2000,
Gaussian blur and SGCK gamut mapping. For each type, two
near-threshold levels were chosen 1, with higher distortion
level corresponding to the lowest quality. Original stimuli
were 800×800 pixels in size, but we re-formatted them to
730×730 in order to accommodate distances larger than 30◦

distance between them on a 1920 pixel-wide display.

2.3. Methodology

Participants were asked to ”evaluate the difference between
each pair of stimuli displayed on the screen, in terms of qual-
ity”. A standard [20] 5-level scale was provided (”Not per-
ceptible”, ”Perceptible, but not annoying”, ”Slightly annoy-
ing”, ”Annoying” and ”Very Annoying”). After entering their

1These levels respectively correspond to levels 1 and 2 in CID:IQ.

name and age, each participant was shown two examples of
image pairs to familiarise themselves with the task. Exam-
ples were the same for all participants and included one pair
with nearly no perceptible differences and one with, on the
contrary, large artefacts.

The experiment was then divided into two sessions: one
where the spatial distance between stimuli was set to d1 ≈
23◦ (centre-to-centre) of the viewing field and for the other,
it was set to d2 ≈ 34◦ (as seen in Figure 1). These val-
ues correspond respectively to a 20 and 400 pixel-wide gap
between the stimuli. Which session came first was chosen
randomly for each observer. Each session featured two sets
of five scenes from the remaining 20. Set 1 featured in the
”short-distance” session of all observers, while Set 2 featured
in all the ”long-distance” sessions. The remaining two sets
(3 and 4) were organised so that half of the participants were
displayed pairs with a gap of d1 and the other half at d2. This
strategy then allowed us to compare the results of the two
groups of observers in the case of an equal distance (control)
as a case of different distance (test). Our null hypothesis is
that results from the two groups of observers are not signifi-
cantly different for sets 1 and 2 (case of equal distances) but
are for sets 3 and 4, on account of the influence of the dis-
tance between stimuli. Figure 1 summarises the distribution.
An angle of 30◦ from the centre of gaze is more that sufficient
to induce severe impairment in texture and colour perception
[12]. This implies that a 34◦ gap between 730-pixel wide
stimuli may be enough to prevent the perception of e.g. com-
pression artefacts in one stimulus when looking at the other.
In view of this, we propose that an increased distance between
stimuli compels observers to rely more on their visual work-
ing memory and that any difference in judgment between the
two topologies (short and long gap) is more due to memory
limitations than to decreased peripheral acuity.

The study lasted about 24 minutes on average.

2.4. Apparatus and viewing conditions

We used Eizo ColorEdge displays (CG2420 in New Zealand
and CG246W in Norway), both 61cm/24.1” and calibrated
with an X-Rite Eye One spectrophotometer for a colour tem-
perature of 6500K, a gamma of 2.2 and a luminous intensity
of 80cd/m2. All stimuli were encoded in sRGB. Both ex-
periments were carried out in a dark room. The distance to
the screen was set to approximately 50cm (without chin rest).
Additionally, we measured eye movements for all observers
in New Zealand, with a Gazepoint GH3 HD at 60Hz.

3. RESULTS

3.1. Observer variability

Twenty percent of the stimuli in each session were repeated
once for control. We found that the average intra-observer
variability was 0.18 (i.e. about 3.6% of the assessment scale)



in both sessions (σ2 = 0.17, max = 0.58 in session 1 and
σ2 = 0.15, max = 0.58 in session 2).

Inter-observer variability (IOV) was measured as the stan-
dard deviation over each set of ratings of the same image pair
with the same gap between them. On average, we found no
significant difference in IOV between the two sessions: 0.82
(σ2 = 0.23) in session 1 and 0.80 (σ2 = 0.25) in session 2.
This amounts to about 16% of the assessment scale.

These measured variabilities are consistent with results
obtained in [22].

3.2. Comparison of ratings associated with different dis-
tances between stimuli.

Figure 2 shows the difference in average ratings in the case
where both groups were shown the stimuli at the same dis-
tance (left) and at a different one (right). It can be seen that
increasing the gap between stimuli tend to result in systemat-
ically higher quality scores (note: a high rating means a low
quality). A sign test, a signed rank test and a paired t-test,
each at the 95% confidence level, give that the same-distance
difference has a median value not significantly different from
0. In other words, the two groups agree in their ratings. The
same tests in the different-distance case (sets 3 and 4) re-
veals a significant shift of the median rating, thus indicating
a significant influence of inter-stimulus spatial distance. The
JPEG2000 and Gaussian blur distorted images seem to induce
the most consistent results across scenes and levels, while the
difference observed on gamut-mapped images is less obvious.
In fact, the signed rank test performed on each distortion type
individually reveals that only the former two are perceived
significantly differently based on inter-stimulus distance at
the 95% confidence level, but only at the 90% level for gamut
mapping distortions. This is consistent with previous obser-
vations that orientation changes are harder to perceive than
colour changes in the periphery [23].

Our results show that, by relying more on visual memory,
observers tend to find less perceptible differences between
stimuli, which affects their ratings. Further studies will need
to clarify whether this is a problem of encoding, access or
comparison and to determine the role of psychophysical ef-
fects like local adaptation (luminance-wise and chromatic),
confidence and alertness. For example, it may be that lumi-
nance adaptation at a fixated region reduces the probability
of detecting a reduction in contrast based on the remembered
region. That would be a case of low-level masking since lu-
minance adaptation is not modulated by attention at a given
fixation point. However, a probably more significant reason
for the different ratings is the access to a limited amount of
reference information from memory to compare the attended
region with. Under this view, full-reference SVQ is, in fact,
a case of reduced-reference SVQ. Finally, it is also likely
that reliance on memory renders people less confident in their
judgment and less likely to believe. Therefore, our results

Fig. 2. Left: Difference of average ratings between groups 2
and 1 for sets 1 and 2 (case of same gaps). Right: Difference
of average ratings between session 2 and session 1, for sets 3
and 4 (case of different gaps). Confidence intervals are given
at 95%.

further demonstrate the effect of high-level masking in image
fidelity assessment.

3.3. Analysis of the eye-tracking data

Given a fixation point in one stimulus, we estimated that the
probability of the next fixation being the same point in the
other stimulus was about 24.5% for session 1 and 29.2% for
session 2 on average over all observers, thus indicating that
the larger gap led to more back-and-forth eye movements.
These values were measured by first selecting only saccades
with length equal to the inter-stimulus distance (centre-to-
centre), with a margin of error at 5◦. Among these, saccades
with an absolute vertical coordinate larger than 5◦ were dis-
carded. This result clearly indicate that observers were overall
less confident in session 2, as they had to rely more on visual
memory.

4. CONCLUSIONS

In this paper, we looked at the influence of the spatial distance
between stimuli on subjective image fidelity assessment. We
found that increasing the centre-to-centre distance from mid-
peripheral to far-peripheral vision led to significantly differ-
ent quality ratings, with observers finding the difference be-
tween stimuli less annoying. Ratings for compressed and
blurred image reproductions are particularly affected by inter-
stimulus distance, which is in accordance with previous re-
sults suggesting that we are more sensitive to colour differ-
ences than shape or texture differences in peripheral vision.
It also suggests that low-level texture masking is memory-
dependent and that the bandwidth of the access to quality fea-
tures within visual short-term memory is significantly more
narrow than that within the ventral stream.
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