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Abstract—Modern networks increasingly rely on Software-
defined Networking (SDN) and Network Function Virtualization
(NFV) to augment their flexibility in high load scenarios. To
further enhance the performance, a part of the functionality
is often offloaded to forwarding devices, which are used as
hardware accelerators and are configured by high level pro-
gramming languages such as P4. However, hardware vendors
use sophisticated technologies to implement these standards,
which need to be understood by the programmer to avoid
unintended behavior. In this demonstration we highlight the
severe consequences of only relying on the network programming
language when ignoring the device-specific limitations. We show
this by the example of a Denial of Service attack against a P4-
enabled SmartNIC. Finally, we discuss possible mitigations to this
attack and stress the importance of an overall understanding of
the entire system.

I. INTRODUCTION

Modern networks often rely on computation-intensive Net-
work Functions (NFs) during their daily operation, such as
Intrusion Detection Systems (IDS) and sateful packet filter
firewalls. At the same time, new concepts emerge, e.g. Software-
Defined Networking (SDN) [1], allowing to programm the
behavior of network devices via OpenFlow [2] and P4 [3].
As performance is a critical aspect to most networks, these
concepts are commonly used to offload some functionality to
hardware as shown in [4]. However, the underlying hardware
implementation adds a new layer of complexity to the network
which needs to be verified and understood.

As hardware vendors attempt to implement behavior from
high-level programming languages into their devices and
process packets at line-rate, they need to embed the re-
spective operations into their specific architecture and map
data to available resources. Therefore, they often rely on
sophisticated technologies to achieve gigabit performance.
Content-Addressable Memory (CAM) is typically used in the
Forwarding Information Base of regular Ethernet switches.
Ternary Content-Addressable Memory (TCAM) is an extension
typically applied in routers and OpenFlow-enabled switches
that allows the use of wildcard bits to retrieve information
based on only a part of its identifier. Caches are used to store
and quickly apply forwarding behavior for packets with specific
headers, e.g. in Multicore-Systems on a Chip (Multi-SoCs).
The capacities of these approaches, however, are always limited,
and the programmer should be aware of their implications.

These implications include vulnerabilities and performance
issues when exposed to specific traffic patterns. To guarantee

a secure operation of the network with good performance, the
utilized software and hardware has to be resilient and tested
against edge traffic patterns. An effort to identify workloads that
trigger slow execution paths for non-proprietary softwarized
NFs has recently been conducted in [5]. Yet, a related approach
for proprietary software and hardware NFs is still missing.

In the remainder of this work, we demonstrate such a mis-
match with severe implications for Multi-SoC based Netronome
Agilio CX SmartNICs [6], [7]. These devices offer flexible
programming via P4 and are already used by major companies
such as DELL and Intel for NF virtualization ready server
solutions [8], [9]. In addition, Microsoft Azure has built its
cloud network on host-based SDN technologies while using
FPGA-based SmartNICs as hardware accelerators [10]. In the
following, the limitations of the caching strategy of this 10 GbE
SmartNIC are demonstrated by performing a Denial of Service
(DoS) attack with a mere 100 Mbps data rate against a stateless
packet filter firewall implemented in P4. Afterwards, possible
countermeasures for this particular problem are proposed, and
the general implications of control- and data-plane mismatches
are summarized.

II. DEMONSTRATION

In this demonstration, a firewall offloading scenario is
investigated in which a 10 GbE SmartNIC is running a stateless
packet filter firewall programmed in P41. As shown in Figure 1,
a Spirent traffic generator is used as traffic source and sink.
Therefore, one port generates both the legitimate and attacking
traffic, while the other port operates as the receiving end of
a web server. The firewall forwards all packets to the Spirent
test center which belong to the web server, based on their
destination IP address, the layer 4 protocol, and the destination
port, while dropping all other packets. This is achieved by two
simple match-action entries, as shown in Table I. Note that the
presented vulnerability is not specific to this particular program
or configuration, as the caching behavior is currently a fixed,
built-in function of the device and not under the control of the
programmer.

In the first part of the demonstration, the general functionality
of the SmartNIC is verified. Therefore, Spirent generates 8 Gbps
TCP traffic mix whose destination IP and port match the
allowed configuration, as depicted in Table I. Thereby, no

1https://github.com/lsinfo3/2018-P4-Firewall
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Fig. 1: Experimental setup. The SmartNIC on the right runs
a P4-enabled stateless firewall, forwarding traffic back to the
Spirent test center.

TABLE I: Firewall ACL configuration.

Match Action Prio.

DstIp: <IP>, Prot: TCP, DstPort: 80 Allow 10
Any Deny 9

packet loss is observed, as the Netronome SmartNIC is able
to handle this homogeneous workload.

In the second part, the vulnerability that causes packet loss
is demonstrated. Thereby, the traffic generator starts by sending
the attacking 100 Mbps traffic mix only, and adds 4 Gbps of a
common web traffic pattern to the workload after 30 seconds.
The attacker’s stream generates packets with varying source IP
addresses and source TCP ports while keeping the destination
fixed, as required by Table I. Figure 2 displays the rate of sent
and received packets during each second of the evaluation.

Up to 18 seconds of the experiment’s duration, the received
data rate matches the sending rate, hence the device forwards
all incoming packets correctly. After 18 seconds, severe packet
loss is observed for the attacker’s traffic. At this point, all
two million available cache entries are occupied by previous
packets. This behavior persists after adding the legitimate
traffic to the workload at 30 seconds, effectively blocking most
communication traversing this SmartNIC, despite previously
proving that it can reliably handle twice the amount of
throughput. After 38 seconds, the malicious entries in the
cache expire and are replaced by legitimate addresses, and
most packets can be forwarded as intended. However, it should
be noted that this stems from the homogeneous traffic pattern,
consisting of a limited number of source IP addresses which
is rather unlikely for data centers and short-lived web flows.
Hence, a more realistic scenario is more likely to be affected
by packet drops, as the changing flows would even augment
the limitations of the underlying caching strategy.

Unfortunately, the algorithm for generating the key of each
cache entry cannot be adapted by the underlying P4 program
and always takes the bits into account which correspond to the
source IP and port of a regular TCP/IP packet.

III. DISCUSSION & CONCLUSION

The demonstration shows that it is easy to compromise
security applications deployed in SmartNICs by exploiting
their caching behavior, if their device-specific implementation
is not considered. Hence, not only the application itself but
also the underlying technology has to be taken into account
to guarantee a secure operation of productive networks. To
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Fig. 2: Sent and received frame counts during the experiment.

mitigate such DoS attacks, one possibility is to allow the
definition of header fields on which the cache is based. This
would allow to shift the caching process towards fields which
are unaccessible for an attacker.

For future work, it needs to be considered how a Secure
Development Life-cycle (SDL) for programmable networking
devices can be established. This includes the development
of new tools, which take the device-specific limitations into
account, as well as adaptations to integration tests and formal
verification procedures.

To conclude, these solutions introduce an additional layer
of complexity, as a deeper understanding of the underlying
technology and its traits is required. Therefore, the capabilities
of these devices should be stated clearly and kept in mind when
using a high level language to program their behavior. At last,
the implementation of the device should strive to follow the
specifications as closely as possible to minimize the overhead
introduced by this new layer of complexity.
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