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Design for reusability of medical equipment for
optimal modularization using an endoscope as
case study
Celestine Aguwa1*, Leslie Monplaisir1, Ozgu Turgut2, Will Jordan3 and Egbe-Etu Etu1

Abstract: The reprocessing of reusable medical equipment (RME) is complex due to the
difficulty of eliminating infections. Healthcare providers have expressed dissatisfaction
with the difficulty faced in cleaning and disinfecting medical equipment after use.
Reprocessed RMEs include endoscopes, valves, adapters etc. This research aims to
increase the ease of reprocessing and decrease the risk of infection using a collaborative
modular architecture framework. The methodology is divided into four steps. First, we
identify and define the product’s functional and physical decompositions. Secondly,
based on stakeholders’ input, parameters such as design, human factors, and cost were
identified to be the main factors affecting the reprocessing of an endoscope. The para-
meters’ subsequent metrics are selected for performance requirements. Thirdly, surveys
are developed to collect data about the performance of different endoscope models.
Fourthly, we utilize a linearmulti-objective optimizationmodel which aims at generating
representative solutions on the true Pareto front of the problem that maximizes the
similarity among module members in terms of the factors. Finally, we combine the
module information with efficiency feedback to derive recommendations for the users.
A case study is presented using hospital data. The results indicate that there is a high risk
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of infection caused by human errors during reprocessing for endoscopes clustered in
Module 1 compared toModule 2 and 3. To ensure that the safety and quality of medical
care rendered to patients are not compromised, we recommend that healthcare provi-
ders utilize endoscopes in Modules 2 and 3 as they are safe and easy to reprocess.

Subjects: Industrial Design; Quality Control & Reliability; Manufacturing & Processing;
Production Systems & Automation

Keywords: Reusable medical equipment; patient care; analytic hierarchy process;
endoscope; clustering; multi-objective optimization; product modularization

1. Introduction
The endoscope is a complex but durable instrument and is safe for use in thousands of medical
imaging procedures. It consists of a flexible tube with a miniature camera inserted into the
digestive tract of a human body, as well as control knobs connected to cables that allow the tip
of the flexible tube to precisely maneuver for a video image (Figure 1). Also, in the tube are
channels that allow the device to sample tissue, stop bleeding, or remove polyps. In all areas of
medicine and surgery, sophisticated medical devices such as endoscopes are generally not dis-
carded after use in one patient but instead reused in subsequent patients. This practice is very
safe, provided that the equipment is cleaned thoroughly and disinfected. Endoscope reprocessing
has three main steps (Muscarella, 2006):

(1) Pre-processing: Cleaning the endoscope and its detachable components using a detergent
solution and brushes.

(2) High-level disinfection: Using a liquid chemical germicide (LCG) followed by thorough water
rinsing to remove residual LCG from the instrument. The US Food and Drug Administration
(FDA) has approved and authorized the use of this process.

(3) Post-processing: Proper handling and storage of the endoscope. This final step also includes
drying the endoscope and its internal channels after terminal water rinsing.

Figure 1. Olympus endoscope
(Source: Olympus—Evis exera
type 160 reprocessing manual,
p. 25).

Aguwa et al., Cogent Engineering (2019), 6: 1636516
https://doi.org/10.1080/23311916.2019.1636516

Page 2 of 22



Although the risk of endoscopy-related infection is statistically low, contaminated endoscopes are
most times the cause of healthcare-associated infection than any other medical device (Rutala &
Weber, 2010; Seoane-Vazquez & Rodrigues-Monguio, 2008). The completion of twelve steps recom-
mended by the Society of Gastroenterology Nurses and Associates (SGNA), Center for Disease Control
(CDC), and Multi-Society Guidelines defined the compliance with endoscope reprocessing guidelines
(Nelson et al., 2003). However, current endoscope reprocessing practice depends on vendor manuals
(Desilets et al., 2010) that detail more than thirty steps, which differs for each endoscope model.
A recent study (Ofstead, Wetzler, Snyder, & Horton, 2010) indicates that guideline adherence resulted
in 1.4% of endoscopes being reprocessed using manual cleaning methods. Also, failure to properly
reprocess a medical device can result in the transmission of infectious viruses, including Hepatitis B,
Hepatitis C, HIV, and other blood-borne pathogens (Authority, 2010; Nelson, 2002; Rutala & Weber,
2001). According to the ECRI Institute, inadequate reprocessing of endoscopic devices and surgical
instruments was one of the “Top 10 Health Technology Hazards” in 2013 (Institute, 2013).

The motivation of this research stems from the high contamination rates and cost of replacing
endoscopes due to poor reprocessing practices observed in hospitals which compromises the quality
ofmedical care rendered to patients. Studies have shown that in theUnited States, 15million procedures
involving flexible endoscopes are performed annually (Muscarella, 2006). Continued efforts are needed
to ensure that quality ismaintained during endoscope reprocessing to reduce the number of endoscopy-
related infections (Seoane-Vazquez, Rodriguez-Monguio, Visaria, & Carlson, 2007).

Modularization is used to organize products into modules, which is a critical concept in Design
for Reusability, as well as a precondition for an efficient product configuration process (Muscarella,
2006). The main idea behind this study is to apply modularization logic to simplify existing complex
reprocessing procedures. In doing so, we consider multiple aspects of endoscopes and reproces-
sing that are generally independent of each other. We propose a scheme that can be used to
group existing endoscope set of a hospital by exploring design, cost, and human factors that have
direct effects on reprocessing procedures. Then, we evaluate the resultant groups (modules)
separately, and standard procedures developed for each module of endoscopes.

The advantage of the current approach is twofold. First, since we supply a multi-objective
procedure while optimizing similarities among each module, the user does not have to worry
about selecting only one among equally important contributing factors, nor bother with deriving
constraint values for the remaining factors he wants to include in the set. Secondly, with the
application of multi-objective optimization methodology, the user comes up with multiple optima,
i.e., representative optimal solutions, that can be used to determine the final modularization. At
this stage, we propose an analytic hierarchy process (AHP) to reevaluate and reduce the repre-
sentative Pareto set into a single one that contains flexibility as well, especially while choosing the
assessment measures.

The rest of this article is organized as follows. In Section 2, we present the relevant existing
literature with different methodologies focused on reprocessing of medical devices. Section 3
describes the details of the methodology as well as the results obtained for the case study.
Specifically, we explain details about flexible endoscopes, performance measure identification,
data collection, representative multi-objective optimization algorithms, and mathematical models
before presenting our results and recommendations. We conclude with Section 4 and suggest
possible directions for future investigations into this topic.

2. Literature review
The research by Rutala and Weber (Rutala & Weber, 2004) is one of the first and broadest
endoscope reprocessing studies, which resulted in a list of forty-one cleaning rules. These rules,
based on a broad literature search, involved recommendations on every step of manual and
automated reprocessing. (Ofstead et al., 2010) analyzed the impacts of human factors and
automating endoscope reprocessing. As a result of the analysis, which consisted of interviews,
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surveys, and direct observations, the authors concluded that automation supported by enhanced
training would improve guideline adherence.

(Hildebrand et al., 2010) conducted a heuristic evaluation of the endoscope multiple product
designs with the reprocessing procedure. Multiple product design problems were found to disrupt
users’ capacities for memory, vision, and feedback. (Jolly et al., 2012) further validated these initial
findings in a usability study examining the challenges that novice technicians face in completing
the reprocessing procedure. This study also indicated that high memory demand, lack of visibility,
and poor feedback are the leading causes of error during reprocessing. Most of the literature
reviewed emphasizes that the reprocessing technician is the primary source of error (Authority,
2010). However, multiple studies underline the fact that, even if the technician follows the
instructions carefully, the endoscope may remain contaminated (Seoane-Vazquez et al., 2007).

The study completed by (Hildebrand et al., 2010) :explores in detail the human factors in
endoscope cleaning. The study emphasized the importance of human memory in the reprocessing
procedure, the design of the endoscope, and the technician’s lack of knowledge of proper repro-
cessing. Also, training, environment, visibility of parts, and feedback are other factors that con-
tribute to human errors. Particularly for gastrointestinal endoscopes, improvements in cleaning
devices and techniques are highly critical. (Petersen et al., 2011) developed a Multi-Society
Guideline for reprocessing flexible GI Endoscopes. (Forte & Shum, 2011) developed an automated
approach called EVOTECH® Endoscope Cleaner and Reprocessor (Institute, 2013), which was the
first system to receive United States Food and Drugs Administration (FDA) approval to eliminate
manual pre-cleaning of the endoscope before its automated high-level disinfection processing.

A reprocessing protocol has been developed by (Spaun et al., 2010), which utilizes scoring to
rank the available sterilization options. This protocol involves mechanical cleaning and high-level
disinfection per Multi-Society Guidelines, with subsequent terminal sterilization using a validated
peracetic acid protocol. The difference between sterilization and disinfection motivated this study.
(Suh, 1995) investigated the axiomatic approach to design in order to facilitate decisions made
during the design stage of product and process development and their effects on product quality
and process productivity. According to (Kuo, Huang, & Zhang, 2001), there are environmental
concerns that mandate review of disassembly and recycling factors during the design stages.
They also demonstrated that a design structure matrix (DSM) could be used to address the
interdependency (feedback and iteration) of complex product development processes.

Extensive research has been done to understand the human factors in endoscope cleaning and
the errors in the reprocessing of endoscopes. Several guidelines for endoscope reprocessing have
been developed. However, to address the issue of reducing the risk of infection in reusable medical
equipment (RME), a multi-objective approximation algorithm is preferable (Steuer & Choo, 1983;
Vazirani, 2013). The model studied is a multi-objective integer programming (MOIP) problem. For
this purpose, (Aguwa, Monplaisir, Sylajakumari, & Muni, 2010) used a goal programming method
for modularization in a different context. However, this procedure requires rerunning the entire
model by setting new goals at every iteration in order to generate alternative solutions on the
Pareto surface. The algorithm we have proposed (Özlen & Azizoğlu, 2009) can generate a whole
Pareto surface for MOIP problems. Our contribution to knowledge via this research is by utilizing
the algorithm to generate a representative set instead of using it to get the complete Pareto set
since the entire Pareto set is not necessary for the analysis. Hence, the total time requirement of
the proposed procedure is reduced significantly (Aguwa et al., 2010).

3. Methodology
Clustering based on similar properties andmass customization has several advantages, as in the case
of steam turbines resulting in shorter lead times and reducing production costs (Yang, Qi, & Lu et al.,
2007). For a typical architecture, it is important to partition the products into useful and practical
modules (Aguwa et al., 2010). Based on the reprocessing properties of endoscopes, we cluster it into
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several modules. The steps outlined in this study are generic and can be modified to any number of
endoscopes. Figure 2 shows the scheme which summarizes the steps used during the project.

3.1. Step 1: product description
In this step, the physical and functional decomposition of the products, process, or services is
performed. Since the physical and functional parameters are closely related to reprocessing
requirements, understanding the properties of an endoscope from both aspects is necessary in
order to build a reliable evaluation architecture. Table 1 shows the models currently in use in
a Veterans Affairs (VA) medical facility and the corresponding properties of the models.

3.2. Step 2: performance requirement

3.2.1. Identification of performance parameters and corresponding metrics
Three important parameters identified to evaluate the endoscope modules were developed with the
help of subject matter experts (SME): they are design, human factors, and cost. These were analyzed
and prioritized using analytic hierarchy process (AHP), which is a decision-making tool (Saaty, 2008).
The parameters are used as the three objectives of the multi-objective optimization algorithm. Using
these parameters as general procedures, we identify more detailed metrics which affects the repro-
cessing procedure of the devices. These metrics are used in order to make a more detailed compar-
ison among endoscope models. The identified parameters and metrics are summarized below:

Design: A product that fulfills its functions as intended has appropriate geometrical and material
properties in terms of reprocessing and has a high design efficiency. Based on this general
definition, the corresponding metrics used to evaluate the efficiency of the design are as follows:

(1) The depth of distal end insertion during the procedure (Insert): The longer the part is in
usage, the more effort and cleaning material used to clean the effective part.

(2) Length of flexible material at the distal end (Flex): The procedures to clean the flexible and
the rigid part of the endoscope are different.

(3) The number of parts (Parts): As the number of parts increases, the time and the effort
necessary to clean the device increases.

(4) The number of mounts (Mount): This property also changes the cleaning procedure of the device.

Step 1: Product Description
a. Physical decomposition
b. Functional decomposition

Step 2: Performance Requirement
a. Selection of performance parameters
b. Identification of key metrics
c. Pre-clustering of endoscopes

Step 3: Data Collection & Analysis
a. Developing the surveys to collect rating and efficiency 

information about groups
b. Evaluation of groups performance parameters
c. Computation of performance metrics

Step 4: Product Modularization using Multi-Objective Optimization 
(MO) Algorithm

a. Formulation of representative set generation algorithm
b. Solve for the optimization of all algorithms (single run) and filter the 

solutions
c. Obtain representative set of whole Pareto front
d. Select among the points of the representative set by ranking with AHP

Figure 2. Proposed methodol-
ogy flowchart.
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Human factors: Best fit among people, tools, and environment that enhances performance, user
satisfaction, and patients’ safety. According to this definition, the metrics used to evaluate the
efficiency of human factors are as follows:

(1) The number of steps in the standard operating procedure: As the number of steps in
a standard operating procedure increases, it becomes harder to memorize the details of
the procedure; also, this increases the time required for reprocessing.

(2) Visibility/reachability to the entire surface (Visible): As the visibility of the deep parts
increases, it becomes easier to detect particles to be removed. Also, if the reachability is
easy, the reprocessing becomes easy and safe.

Cost: The monetary expense involved in the reprocessing of the product; and the costs of infection
risk that may be caused by its reprocessing procedure. Based on this general definition, corre-
sponding metrics used to evaluate the efficiency of design are as follows:

(1) Cost of reprocessing (Cost): As the cost of material necessary to reprocess the device
increases, the cost efficiency decreases.

(2) Cost causing infection fromerrors in reprocessing (Infection Risk): As the risk due to reprocessing
increases, the cost efficiency of themodel decreases. Insertion point and the effective region of
themodels are used tomake comparisons amongmodelsmeasuring thismetric. Data from the
Joint Commission (Lagu, Goff, Hannon, Shatz, & Lindenauer, 2013) suggests that 36% of
accredited hospitals surveyed in 2011 were noncompliant with its standards to reduce the
risk of infection associated with medical equipment, devices, and supplies. At the minimum,
endoscope reprocessing problems can create anxiety amongst patients when notified of expo-
sure to a contaminated endoscope. At worst, they can lead to life-threatening infections. In
either case, such incidents can alter a facility’s reputation (Institute, 2013).

3.2.2. Pre-clustering of endoscopes
The necessity of reducing the number of comparisons completed by SMEs drives the effort to pre-
cluster endoscopes. As the number of comparisons increases, the attention and time requirement
to fulfill the input sample study increases; this may result in questionable outputs and may further
compromise the project. The clustering has to be carried out in such a manner that it would not
shield the essential distinctions between models; that is, the models in a pre-cluster should have
significant commonalities especially in terms of preprocessing. There are three different equipment
clusters used to clean the existing set of endoscopes (see Table 2). Table 3 presents the number of
equipment groups used for each endoscope models.

Additionally, functional types of the models should be the same since the output may be used to
eliminate some models from the current set of devices, which means that functional distinctions

Table 2. Pre-clusters names and their models

Code of Groups Functional Groups Models

SIG1 Sigmoidovideoscope CF 140S

SIG2 Sigmoidovideoscope CF Q160S

SM INT Small Intestinal Videoscope SIF Q140

COL1 Colonovideoscope CF 2T160L/I

COL2 Colonovideoscope CF Q180AL/I, CF Q180AL/I

DUOD Duodenovideoscope TJF 160F

GAST1 Gastrointestinal Scope GIF 160, 1TQ160, Q160, XP 160

GAST2 Gastrointestinal Scope GIF Q180
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must remain obvious while making comparisons. Based on this evaluation and the discussions, the
pre-clustering scheme used in this project has two levels: functional groups and equipment
clusters used during the reprocessing procedure. Figure 3 presents the resultant breakdown
scheme and the depiction of the general clustering idea. As a result of this pre-clustering, thirteen
models in use are grouped under eight clusters, and the SMEs performed 28 pairwise comparisons
(8C2), instead of making 78 (13C2) pairwise comparisons.

3.3. Step 3: data collection and analysis

3.3.1. Design review
As mentioned above, three different types of data collection techniques were designed to collect
the necessary inputs and opinions from SMEs. The techniques consist of:

(1) Veterans Affairs (VA) RME comparison study

(2) VA RME parameter rating

(3) Analytic Hierarchy Process (AHP)

VA RME comparison study: The information in this study is used as a direct input to the
optimization procedure in the next step. It contains the core information that shapes the outcome.
This survey includes the introduction, pairwise comparison explanation with a basic example,

Table 3. Reprocessing equipment groups

Endoscope Model 1 Endoscope Model 2 Endoscope Model 3

1. ENDOZIME SOLUTION 1. ENDOZIME SOLUTION 1. ENDOZIME SOLUTION

2. ENDOZIME SPONGE OR
4 X 4 SPONGE GAUZE

2. ENDOZIME SPONGE OR
4 X 4 SPONGE GAUZE

2. ENDOZIME SPONGE OR
4 X 4 SPONGE GAUZE

3. DISPOSABLE BRUSH KIT
BW-201T.B, MAJ-1339

3. DISPOSABLE BRUSH KIT
BW-201T.B, MAJ-1339

3. DISPOSABLE BRUSH KIT
BW-201T.B, MAJ-1339

4. REUSABLE BRUSHES
BW20T, MAJ-507

4. REUSABLE BRUSHES
BW20T, MAJ-507

4. REUSABLE BRUSHES
BW20T, MAJ-507

5. TRANSPORT CONTAINER 5. TRANSPORT CONTAINER 5. TRANSPORT CONTAINER

6. STERILE TOWEL 6. STERILE TOWEL 6. STERILE TOWEL

7. 70% ALCOHOL 7. 70% ALCOHOL 7. 70% ALCOHOL

8. 30 CC SYRINGE 8. 30 CC SYRINGE 8. 30 CC SYRINGE

9. LEAK TESTER 9. LEAK TESTER 9. LEAK TESTER

10. LEAK TESTER TUBE 10. LEAK TESTER TUBE 10. LEAK TESTER TUBE

11. CHANNEL PLUG MH-944 11. CHANNEL PLUG MH-944 11. CHANNEL PLUG MH-944

12. ENDO FLUSH MACHINE
EFP250

12. ENDO FLUSH MACHINE
EFP250

12. ENDO FLUSH MACHINE
EFP250

13. INJECTION TUBE MH-946 13. INJECTION TUBE MH-946 13. INJECTION TUBE MH-946

14. PORTABLE SUCTION MACHINE 14. PORTABLE SUCTION MACHINE 14. PORTABLE SUCTION PUMP

15. SUCTION CLEANING ADAPTER
MH-856

15. SUCTION CLEANING ADAPTER
MH-856

15. SUCTION CLEANING ADAPTER
MH-856

16. STERILE SUCTION TUBES 16. WASHING TUBE MH-974 16. WASHER TUBE MH-974

17. WASHING TUBE MH-974 17. STERILE SUCTION TUBES 17. STERILE SUCTION TUBES

18. AW CHANNEL CLEANING
ADAPTER MH-948

18. CHANNEL CONNECTION TUBE
MAJ-420

18. WATER-RESISTANT CAP,
MH-553

19. WATER-RESISTANT CAP,
MH-553

19. AW CHANNEL CLEANING
ADAPTER MH-948

20. WATER-RESISTANT CAP,
MH-553
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parameter and metric explanations, pre-clusters with their contents, and finally the comparison
table. This table contains pre-cluster pairs on the first column and metrics for each parameter on
the first row. Therefore, the comparison rating of each pairwise comparison in terms of the
corresponding metric is given on the intersection cell. The rating scale used in this study is 1 to
10, where 10 represents a complete similarity between the models of the compared clusters, while
1 represents a complete distinction between the models of the compared clusters.

VA RME Parameter Rating: The primary purpose of this parameter rating is to obtain the necessary
weights to make the final decision after generating the Pareto solutions. During the multi-objective
optimization, the resemblance within each module is maximized from the point of cost, design, and
human factors; the efficiency of these modules is ignored. The outputs of the multi-objective optimi-
zation phase are evaluated using the information obtained from this survey. Hence, the final decision
contains the information on efficiency from different aspects as well as the commonality of the items
within each module. This is constructed by rating the efficiency of pre-clusters according to design,
human factors, and cost. The first parts are similar to those in the comparison study, while the data
entry table is much simpler than in the previous study (Deb, Miettinen, & Sharma, 2009). On the first
column, the names of the pre-clusters exist, while three parameters appear on the first column.
Therefore, the corresponding efficiency rating for each pre-cluster is inputted on the intersection
cell. The rating scale used in this method has three levels: low, medium, and high.

Analytic Hierarchy Process: This process is used to rank the candidate solutions and understand
the importance of each parameter used in this project as input from the client. The criteria used to
evaluate each parameter, i.e., design, human factors, and cost, are patient satisfaction, quality,
and reprocessing specifications (see Figure 4).

The relative importance of each parameter is obtained, making pairwise comparisons between
parameters on a scale of 1 to 10.

3.3.2. Data collection methodology
Questionnaires and interviews were the methods adopted for data collection from two focus
groups (consisting of 15 personnel) formed with the help of the hospital department in charge
of the Endoscope equipment. Each group included a variety of SMEs from Sterile Processing Service
and the Biomedical Service, which completed the comparison study. After the group’s discussion,

Figure 3. Pre-cluster breakdown
and corresponding codes.
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a common idea was agreed as a result. Since AHP is a decision support tool, managerial insight is
necessary; therefore, this was completed after enlisting opinions of personnel who are in manage-
rial positions at the hospital. Similarly, the parameter rating was filled based on the opinion of
technicians who see the endoscope usage and reprocessing from a broader aspect.

3.4. Step 4: product modularization using multi-objective (mo) algorithm
This area of multiple criteria decision making involves optimizing the multiple objective functions of
design, human factors, and cost simultaneously. The focus is on finding optimal modules and
performing modular analysis with different design parameters. This section defines the MO algo-
rithm, reviews the mathematical model used, and the procedures for ranking and evaluating results.

3.4.1. Multi-objective optimization (MOP) algorithm
In multi-objective optimization, Pareto optimality is an important concept (Mattson, Mullur, & Messac,
2004). From thedefinition ofMOP, the result ofmulti-objective optimization is generally a set of solutions,
rather than a single solution, which is called the Pareto set. There aremethodologieswhich aim to obtain
a single solution from this set which may seem desirable from a practical standpoint since, in the end,
only a single solution can be applied. Although there are multiple criteria involved in optimization
procedures, amathematical program cannot account for all real-life parameters. Based on this observa-
tion, the algorithmused in this project aims to generate a representative set of thewhole Pareto set. The
current approach has two benefits; first, the user does not have to define right-hand-side values to
constrain objectives, which is the case in goal programming or constrained programming; second,
generating a representative set of Pareto solutions supplies more alternative solutions, which in turn
supplies flexibilitywhile identifying themost practicalmodular design. Figure 5 presents a general Pareto
set, and the representative solution points obtained in this set on a sample case with three objectives.

An AHP-based ranking procedure which can be used to rank the candidate, i.e., Pareto optimal
solutions, is also given. This step is proposed as an extension to deduce a single solution for the analysis.
At this point, it is worth emphasizing that the solutions obtained at the end of the MO procedure are
equally optimal and preferable. By changing the AHP factors used, we obtain a different rankingwith the
guarantee that a final solution is still optimal based on the main objectives of MO procedure. The
following section presents the details of the mathematical model and the steps for the algorithm.

3.4.2. Steps of the algorithm
Step 0: Best points for each of the objective k are found in the feasible region, k = 1,…, N, by optimizing
one objective at a time. These points called anchor points, zAk . Nadir point, z

N, is calculated by finding

Choose Parameters

Customer 
Satisfaction

Design

Quality Reprocessing 
Specification

Human factors Cost

Goal/Objective

Criteria

Alternatives

Figure 4. AHP architecture.
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the worst value of all objectives (Deb et al., 2009). Using the coordinates of these points on the
objective space-relevant search region in N-dimensional objective space is determined. Then, the
objective space is divided into equal regions on N-1 dimensions while leaving one dimension out at
a time (e.g., k = 1,.,t-1,t + 1 …, N; all but tth objective), to form the “grids”. The user determines the
number of grids (i.e., according to the approximate amount of solutions desired by the user, the
number of grids can be changed, following the simple rule that increasing the number of grids will lead
to more alternatives). Based on this observation, we deduce that, when the number of grids goes to
infinity, the algorithm is supposed to generate the whole Pareto front. If we decide to divide each axis
into i equal parts, we will obtain N⋅I N–1 grids in total. Set grid count: t = 0.

Step 1: Set t = t + 1. If t > N, stop; else gridcount = 1; set both the lower bound, lbk, and the upper

bound, ubkof the grid to its minimum value (i.e., anchor value, zAk ) on each objective k.

Step 2: Set gridcount = gridcount + 1; Calculate the boundaries of the new grid for each dimension

k = {1 … t-1,t + 1, …, N} as follows: lbkgridcount ¼ ubkgridcount�1 and ubkgridcount ¼ lbkgridcount þ
zNk�zAk

I .

Step 3: Within each grid, the tth objective is optimized. Using this resultant point and the farthest
coordinates of the grid, we determine two reference points, rk, in each grid.

(a) The weights, λk; are determined again based on the nadir point and the reference points.

(b) ρ is assigned a value ranging from 0<ρ � 1:

Step 4: Solve the scalarization model (Ehrgott, 2006) for each reference point on each grid.
Record the resultant point. If grid count is equal to lN−1, return to step 1; if not, return to step 2. See
Figure 6 for the flowchart of the steps utilized in the algorithm.

3.4.3. Mathematical model
Scalarization is a single objective related to a MO problem with additional variables or parameters.
It is usually solved repeatedly to find some subset of efficient solutions of the MO problem
(Ehrgott, 2006). Ehrgott (Ehrgott, 2006) discussed all relevant aspects of the main scalarization
techniques specifically for linear MO problems. The most general form of the achievement scalar-
ization function is:

minx2X maxk¼1...N λk ckx� rkð Þ þ ρ∑N
k¼1 ckx� rkð Þ; (1)

Where:

rk is the reference point for objective k, λ>0 is a vector of weights, and ρ is a nonnegative scalar < 1
which is the coefficient of “augmentation part”; X is the feasible solution set. In (Wierzbicki, Makowski,

Figure 5. General Pareto Set and
Solutions—The entire Pareto set
consists of multiple solutions.
Representative solutions gener-
ated by the algorithm are green
points in this set.
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& Wessels, 2000), this function has been called a “prototype” achievement scalarizing function. To
linearize the nonlinear expression in Equation (1), the first term in the summation is replacedwith the α
variable in the version below and added as an additional constraint to the formulation (i.e. Equation 3).

P1 :min α� ρ ∑3
k¼1 λk ckijXij � rk

on� �
"i;"j 2 1 . . .n (2)

s:t:

λk ckijXij � rk
on
� α "k 2 1;2;3f g (3)

∑n
j Xij ¼ 1 "i 2 1 . . .n (4)

Xij � Xii þ Xjj "i;"j 2 1 . . .n (5)

∑n
i Xij � M "j 2 1 . . .n (6)

Xij 2 0;1f g

Where:

c1ij is for design; c2ij is for human factors; and c3ij is for cost.

No

Yes

No

Y
es

Yes

No

STEP 0: Find best and 
worst values of each 

objective,  
set gridcount = t = 0 

STEP 4: Solve 
scalarization model 
on grid 

Searched 
each grid 
so far?

Found a 
Solution? 

STEP 3: Calculate 
reference points and 
weights 

STEP 2: Move to 
next grid; gridcount = 
gridcount + 1 

Optimize 
each 

objective, t? 

STEP 1: Move to 
next objective 
function, t = t+1

Terminate with 
solution set (N 
candidate solutions) 

Figure 6. Multi-objective opti-
mization algorithm flowchart.
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k: Indices for the objectives (k = 1: design, k = 2: quality, k = 3: cost)

N: Total number of objectives (3)

M: Lower bound for the number of modules (1–3)

i, j: Indices representing each endoscope pre-cluster

n: The total number of endoscope models included in the model

Xij: Binary decision variable; 1 if pre-cluster I and j are put into the same module; 0 otherwise. For

any Xij ¼ 1; based on the ordering preference of i and j in Equations 4 and 6, j indicates the pre-

cluster that represents the module under which the grouping occurs; i.e., Xij ¼ 1 ! Xjj ¼ 1.

α: Variable added to the model which holds the maximum distance from the reference point

rk; λk and ρ are the parameters that are determined by the algorithm

rk: The reference point is a point on the objective space determined by the algorithm before the
optimization starts

λk: Weights of the distance between the objective value of the current solution and the reference point

Ruiz, Luque, and Cabell (2009) studied the weighting schemes. This study utilized the GUESS
scheme, following the rule that the total weights of all objectives should be equal to 1.

λk ¼
1

∑N
k¼1

1
�zU
k
�rk

1
�zUk � rk

 !
(7)

Where �zUk ¼ zNk þ 0:0001 and zN denote the nadir point.

ρ: Coefficient which guarantees that not only the maximum distance but also all the distances in all
coordinates (objectives) are taken into consideration while performing the minimization. It is
a value 0 < ρ � 1.

α: Decision variable added in order to carry the value of the maximum distance of the solution to
the reference point, from all of the objectives’ perspectives

Equation (2): The objective function which minimizes the distance between reference point rk and
the solution point in terms of all criteria (design, quality, cost).

Equation (3): The term on the right-hand side controls the maximum distance between the
reference point rk and the solution point.

Equation (4): Guarantees that each model is placed only in one module.

Equation (5): Guarantees that if a model is selected in a module (Xij > 0), the variable of that
module should also be more than one.

Equation (6): A lower bound is set for the number of modules.

3.4.4. Ranking procedure
As explained above, weights for each parameter is obtained as the result of AHP procedure,
represented by wd;whm;wc. The inputs of the AHP procedure are evaluated using Expert Choice

Aguwa et al., Cogent Engineering (2019), 6: 1636516
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Software. As a result of the optimization algorithm, multiple candidate solutions were derived. We
represent the number of each candidate solution with i, i = 1, …, N. Then, each solution has
a design, human factor, and cost value: DSi, HFSi, CSi. These values represent the relative resem-
blance within each module scheme proposed by solution i for design, human factors, and cost,
respectively. Multiplying these values by each parameter’s weight obtained from the AHP proce-
dure, the overall resemblance achievement value obtained is:

WSEi ¼ wDDSi þwHMHFSi þwCCSi (8)

Note: This WSEi value can be used to rank the candidate solutions.

3.4.5. Evaluation of results
At this point, it is essential to highlight that the WSEi values represent the overall resemblance
score obtained by solution i. However, if we want to produce a more detailed solution on the
efficiencies of each module proposed by solution i, we need to know the efficiency of the models in
a module. In order to achieve this goal, the results of “parameter rating” are used. The results are
in verbal scale, however, and is easily converted into ordinal numbers. That is, using L = 1, M = 2,
and H = 3, the average design, human factors, and cost efficiency within a module are calculated.
For example, if a module in solution i have models whose design efficiency are all “H”, then the
average DEi will be 3 for this solution. Similarly, HFEi and CEi are computed, and evaluation of the
resultant modules can be made based on these values.

3.5. Results

3.5.1. Optimization results
As observed in the mathematical program, one of the constraints, Equation (6), restricts the
number of modules in the final solutions. By changing this constraint to two different values,
two different solution sets are obtained.

3.5.1.1. Results with 2-modules. The first candidate solution from the analysis yielded 27 results
and three optimal solutions. The solution sets optimizing eight pre-clusters are outlined in Table 4
(a–c). The shaded cells (along the diagonal) containing the number 1 along with the cells within
the same column containing the number 1 indicates pre-clusters that are in the same group. This
grouping is summarized on the right side of each table by Module 1 and Module 2.

3.5.1.2. Results with 3-modules. The second candidate solution from the analysis yielded 180
results and two optimal solutions. The solution sets optimizing eight pre-clusters are outlined in
Table 5(a,b). The shaded cells (along the diagonal) containing the number 1 along with the cells
within the same column containing the number 1 indicates pre-clusters in the same group. This
grouping is summarized on the right side of each table by Module 1, Module 2, and Module 3.

3.6. Ranking results

3.6.1. AHP results
The AHP results for cost, design, and human factors parameters (see Figure 7 and Table 6). The
objective values of each candidate solution i are called similarity achievements in design, human
factors, and cost, and represented by DSi, HFSi, and CSi. These values are multiplied by weights
0.484, 0.324, and 0.192, as explained in the methodology section. Each similarity achievement
value and the corresponding overall score for each candidate solution is in Table 7.

3.7. Recommendation
From Table 7, we observe that Three Module Solution Code 1 offers higher similarity values than
Solution Code 2 when multiplied with the weights of the parameters. The Design factors and the
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Cost factors of Three Module Solution Code 1 are higher than those of Three Module Solution Code
2. Evaluations based on efficiency tell us that Code 1 (44.59) has a higher similarity value than
Code 2 (43.97). We conclude that the Three Module Solution Code 1 is the best solution.

Also, we observe from our evaluation that the first module consists of Colonovideoscope and
Sigmoidovideoscope. From this observation, we recommend extra care and attention in reproces-
sing these models as they contain higher risks of contamination than the other groups. It is better
to minimize or eliminate the usage of these models to reduce the risk. It is more advisable to use
similar models with the same functionality in Modules 2 and Modules 3, to minimize further risks.
Additionally, the results can be used to develop standard reprocessing procedures for the models
within a group (see Table 8).

Figure 7. AHP results.

Table 6. AHP results & ranking

Alternative rankings with
structure

Result Rank

Cost 0.484 1

Design 0.324 2

Human factors 0.192 3

Overall Inconsistency = 0.02 ≤ 0.1.

Table 7. Candidate solutions

2 Module Solutions

Solution code DS HMS CS Similarity
1 53.01 54.02 47.5 50.54

2 50 54.35 48 49.87

3 49.34 56.35 47.5 49.8

3 Module Solutions

Solution code DS HMS CS Similarity

1 43.67 46.35 44.5 44.59

2 41.34 48.35 44 43.97
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4. Conclusion and future research directions
In this study, we presented a generic methodology to modularize endoscopes for reusability and
reduce the risk of infection due to poor cleaning and reprocessing. This methodology utilizes
simplification and generalizing cleaning steps for modules. It further involves data collection,
which includes product description, identification of key metrics, pre-clustering, and data analysis
steps. Based on formal communication and observation of the SMEs, parameters such as design,
human factors, and cost where identified to be the main factors affecting the reprocessing of an
endoscope. Since data collection and product description rely heavily on the feedback of SMEs,
three different surveys were developed to collect the necessary data. The first one compares RME
models in terms of similarity on these three main factors; the second collects the efficiency of each
RME model from the design, human factors, and cost perspective; and the last assesses the
relative importance among the three main factors. In the second phase, we propose a linear multi-
objective optimization model which aims at generating representative solutions on the true Pareto
front of the problem that maximizes the similarity among module members in terms of the three
main factors. We present the resultant set as the outcome of two and three-module runs. Then,
we showed how the relative importance feedback is used in the AHP procedure to make selections
between these Pareto optimal results. Finally, we combine the module information with efficiency
feedback to derive recommendations for the user based on the general efficiency levels of design,
human factors, and cost. We used data from the VA hospital in Michigan, USA to verify the
proposed methodology. The results show, the clustering of endoscope models into two and
three modules at different solution codes respectively. Based on this clustering, we are able to
identify the types of RMEs with high-risk infections due to human errors in reprocessing as seen in
Table 8. Furthermore, to ensure that the quality of medical care rendered to patients is not
compromise, we recommend that the hospital utilize endoscopes in modules two and three as
they are safe and easy to reprocess compared to similar models in module one.

Advantages of the proposed methodology are mainly related to flexibility, especially at the identi-
fication of key metrics, pre-clustering, and optimization steps. With slight modifications, users can
change the parameters to solve similar problems occurring in a different context. Future researchwork
will aim at analyzing the efficiency of the feedback and utilizing it in the optimization model as a new
objective; hence, a reduction in inefficient modules. Also, we consider evaluating the cleaning error
cost of the equipment and a comparison of the disposable equipment replacement of RMEs.
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