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a b s t r a c t 

In this paper, a Volume of Fluid (VOF) based approach to simulate the growth of 

a pre-existing bubble in a supersaturated solution is developed and implemented in 

OpenFOAM 

R ©. The model incorporates the Compressive Continuous Species Transfer ap- 

proach to describe the transport of dissolved gas and surface tension is treated using the 

Sharp Surface Force method. The driving force for bubble growth is defined using Fick’s 1 st 

law and a Sherwood number based correlation. The source terms for the governing equa- 

tions are implemented by extending the work by Hardt and Wondra, J. Comp. Phys. 227 

(2008) 5871–5895. The predictions of the proposed solver is compared against theoreti- 

cal models for bubble growth in supersaturated solutions. The effect of spurious currents, 

which are generated while modelling surface tension, on bubble growth is also investi- 

gated. The proposed approach is used to model the growth of a rising bubble in the su- 

persaturated solution. 

© 2020 The Author(s). Published by Elsevier Inc. 
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1. Introduction 

The growth of gas bubbles in supersaturated solutions occurs when the amount of dissolved gas ( C ) is higher than the

saturation concentration ( C sat ) in the liquid given by Henry’s law [1] . Some processes where this phenomena is relevant

are effervescence in beer [2] , champagne [3] and carbonated beverages [4] , decompression sickness [5] , and electrochemical

systems like electrolysis of water [6] and chloralkaline processes [7] . 

Bubble evolution in supersaturated solutions consists of nucleation of the bubble, which is an atomistic event, whereas

bubble dynamics and the associated convection are continuum scale events [8] . Different modes by which nucleation can

occur in a supersaturated solution has been proposed by Jones et al. [9] , Vachaparambil and Einarsrud [10] and the critical

radius ( R c ) required is 

R c = 

2 σ(
C 

C sat 
− 1 

)
P 

, (1) 

where C / C sat indicates the supersaturation ratio ( S ), σ is the surface tension and P is the operating pressure [11] . The current

paper delves into the continuum scale phenomena of bubble evolution in supersaturated systems, but not atomistic scale
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events. The works by [8,11–13] provides a brief overview of various aspects of research in atomistic scale events relevant in

bubble evolution. 

The literature that has investigated bubble growth in supersaturated solutions can be divided into theoretical, experi-

mental and numerical approaches. The two landmark theoretical papers are those by Epstein–Plesset [14] and Scriven [15] .

Epstein and Plesset [14] studied the evolution of the bubble radius at various supersaturation levels when the effect of con-

vection associated with the bubble growth is neglected. Scriven [15] considered the effect of this convection and obtained

an asymptotic expression for the evolution of bubble radius. To account for the growth of bubble from a pre-existing bubble,

Scriven’s asymptotic solution is extended in [16] . On the other hand, experimental studies has reported the bubble radius to

evolve as R = At x where A and x are growth and time coefficients, respectively [15,17–19] . A value of x approximately equal

to 0.5, derived by Scriven [15] , indicates that the rate determining step is the diffusion of dissolved gas across the interface

[17] . When rate determining step for bubble growth is the electrochemical reactions, x has been reported to be equal to 1/3

[18,19] . The effect of bubble growth on rise velocities of bubbles is studied in works like [20] . 

Computational Fluid Dynamics (CFD) is a widely used numerical approach to model continuum scale processes like bub-

ble evolution. The main multiphase approaches used in CFD are Euler–Euler (EE), Euler–Lagrange (EL) and Volume of Fluid

(VOF) methods. Although EE [21–26] and EL [8,25,27–31] approaches have been used to model gas evolution in supersatu-

rated systems, they rely on the so called closure laws to model the interaction between the phases [32] . Compared to EE

and EL approaches, the VOF method advects the volume fractions of the phases without using any approximation for the

shape of the interface [32] , which provides a versatile method to study the bubble evolution. In the work by Liu et al. [33] ,

evolution of a single hydrogen bubble from the electrode surface has been modelled using the VOF approach and validated

by comparison against evolution of bubble radius obtained from experiments. Other studies have used the VOF approach

to model large carbon dioxide bubbles but the smaller bubble (which are below the mesh resolution) are described using

a population balance model [34–36] and EL method [37,38] which are then validated using experimental data on electrical

potential and bubble thickness respectively. Interestingly, these previous works [33–38] are developed based on a commer-

cial solvers like FLUENT R ©. The VOF based approaches typically use a Sherwood number ( Sh ) based correlation to describe

the mass transfer across the interface [33–36] . Modelling mass transfer based on Sh can lead to erroneous results as these

correlations are dependent on both the bubble shape and local velocity field [39,40] . A more universal approach is to use

the Fick’s 1 st law of diffusive mass transfer instead [5,41,42] . 

Although considerable progress has been made in stimulating of bubble evolution driven by supersaturation, certain

aspects of the phenomena such as bubble dynamics, mass transfer and momentum exchange between the phases are usually

modelled rather than resolved to reduce the computational costs and are often suitable for very specific applications. To

the best knowledge of the authors, there is a lack of generic solvers that can model bubble dynamics in supersaturated

solutions and are validated using theoretical benchmarks. To further improve the computational approaches used, insights

from the simulating boiling can be relevant. A review of the various computational approaches used for simulating boiling

and condensation phenomena is available in [43] . One such approach, reported in the study by [44] , developed a VOF based

model for evaporation by using a continuum-field representation of source terms in FLUENT R © which was subsequently

implemented in OpenFOAM 

R © 1.5.x [45] as ‘evapVOFHardt’ [46,47] . Apart from evapVOFHardt, other approaches developed

using OpenFOAM 

R © to model phase change driven by temperature are [4 8 , 4 9] and ‘phaseChangeHeatFoam’ [50,51] . 

In this paper, we propose a VOF based solver to model the bubble evolution in a supersaturated solution. The proposed

solver is based on interFOAM (available in OpenFOAM 

R © 6 [52] ) and the mass transfer approach, developed for evaporation

by Hardt and Wondra [44] as well as Kunkelmann and co-workers [46,47] , is extended and implemented for the bubble

growth driven by supersaturation of dissolved gases. The driving force for the bubble growth is modelled using both the

Fick’s 1 st law and a correlation using Sh . The transport of the dissolved gas is modelled using a Compressive Continuous

Species Transfer (C-CST) model [53] and the surface tension force is modelled using the Sharp Surface Force approach [54] .

Following the derivation of the governing equations and its implementation in OpenFOAM 

R ©, the mass transfer model in

the proposed solver is validated against theoretical models like the approximate solution of Epstein–Plesset [14] , asymptotic

solution of Scriven [15] and the extended Scriven model [16] . Spurious currents, produced due to modelling surface tension,

and its effects on bubble growth are investigated. Finally, the proposed model is used to simulate the growth of a rising

bubble in a supersaturated solution. 

2. Governing equations and its implementation 

The VOF method uses a scalar function to represent the interface and individual phases as 

α1 ( � x , t) = 

{ 

0 (within Phase 2) 
0 < α1 < 1 (at the interface) 
1 (within Phase 1). 

(2)

In the proposed solver, α1 represents the volume fraction of Phase 1 (or liquid) and the volume fraction of Phase 2 (or

bubble) can be written as α2 = 1 − α1 . 

Fluid properties like density ( ρ) and viscosity ( μ) are determined using the volume fraction as a weighting function: 

χ = χ1 α1 + χ2 α2 where χ ∈ [ ρ, μ] . (3)
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The continuity equation for a growing bubble is written as 

∇ · � U = 

˙ m 

ρ
, (4) 

where ˙ m = ˙ m 1 α1 + ˙ m 2 α2 , with ˙ m 1 and ˙ m 2 representing source/sink terms for Phase 1 and Phase 2, are defined in Eq. (24) . 

The continuity equation ( Eq. (4) ) can be used to derive a corresponding equation to describe the volume fraction as

shown below 

∂(α1 + α2 ) 

∂t 
+ ∇ · ((α1 + α2 ) � U ) = 

˙ m 

ρ
(α1 + α2 ) . (5) 

Based on Eqs. (4) and (5) , the evolution of α1 can be computed as 

∂α1 

∂t 
+ ∇ · (α1 

�
 U ) = α1 ∇ · � U , (6) 

which is analogous to the volume fraction equation described in [46,47] . In order to render a sharp interface, the advection

term in Eq. (6) is modified to include a compressive flux as 

∂α1 

∂t 
+ ∇ · (α1 

�
 U ) + ∇ · (α1 (1 − α1 ) � U r ) = α1 ∇ · � U , (7) 

where � U r is compressive velocity defined in Eq. (8) . 

�
 U r = C α

∣∣∣∣ φ

| S f | 
∣∣∣∣ ∇α1 

|∇α1 | + δ
, (8) 

where φ, is volume flux that is computed based on velocity and S f is cell face area vector, C α and δ are velocity flux,

cell surface area, a user-defined compression factor and a small non-zero value which is calculated as 10 −8 / 

(∑ 

N V i 
N 

)
1 / 3 ,

respectively. C α controls the interface smearing and is typically set to a value between zero and four [55] . 

In order to efficiently compute the pressure boundary condition and density jump at the interface, the solver uses a

modified pressure ( p rgh ), defined as 

p rgh = p − ρ� g · � x , (9) 

which is explained in [56] . Due to the use of modified pressure, −∇p + ρ� g can be written as 

−∇ p + ρ� g = −∇ p rgh − �
 g · � x ∇ ρ. (10) 

The momentum equation, which is solved to obtain the velocity field in both the phases, is calculated as 

∂ρ �
 U 

∂t 
+ ∇ · (ρ �

 U 

�
 U ) = −∇ p + 

(
∇ · (μ∇ 

�
 U ) + ∇ 

�
 U · ∇ μ

)
+ ρ� g + 

�
 F ST , (11)

where last term represents the surface tension force which in this solver is computed based on the Sharp Surface Force

(SSF) model [54] . Substituting Eq. (10) in Eq. (11) gives the momentum equation as implemented in OpenFOAM 

R ©, 

∂ρ �
 U 

∂t 
+ ∇ · (ρ �

 U 

�
 U ) = −∇ p rgh + 

(
∇ · (μ∇ 

�
 U ) + ∇ 

�
 U · ∇ μ

)
− �

 g · � x ∇ ρ + 

�
 F ST . (12)

The SSF formulation used to describe the surface tension force can be defined as 

�
 F st = σκ f inal ∇αsh , (13) 

where κfinal is curvature of the interface obtained using a three step procedure described in [54] and αsh is a sharpened

volume fraction of liquid defined as 

αsh = 

1 

1 − C sh 

[
min 

(
max 

(
α1 , 

C sh 

2 

)
, 1 − C sh 

2 

)
− C sh 

2 

]
, (14) 

where C sh is a sharpening coefficient. If C sh = 0, αsh is equivalent to α1 whereas when C sh = 1 describes a very sharp inter-

face that is numerically unstable [54] . Based on preliminary simulations, SSF model is preferred over the commonly used

Continuum Surface Force model [57] because of its ability to reliably simulate a sub-millimeter bubble. 

As the bubble growth is driven by supersaturation, the dissolved gas concentration ( C i ) can be represented as 

C i = C − C sat . (15) 

Eq. (15) represents a concentration of dissolved gas that causes bubble growth when C i > 0 as it represents concentration

greater than C sat . Assuming that the interface of a bubble growing is saturated, the interface is represented by C i equal

to zero, based on Eq. (15) . The governing equation for the transport of C i is based on the Compressive Continous Species

Transfer (C-CST) model, proposed by Maes and Soulaine [53] , as 

∂C i 
∂t 

+ ∇ · ( � U C i ) = ∇ ·
(

ˆ D i ∇ C i − ˆ D i B C i ∇ α1 

)
− ∇ ·

(
B α1 α2 

�
 U r C i 

)
+ S i , (16)
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where B is equal to (1 − He i ) / (α1 + α2 He i ) , S i is the sink term for the dissolved gas in the liquid at the interface (de-

scribed in Eq. (25) ), � U r is the compressive velocity (defined in Eq. (8) ) and 

ˆ D i is the harmonic interpolation of the diffusion

coefficients [53] : 

ˆ D i = 

D i, 1 D i, 2 

D i, 2 α1 + D i, 1 α2 

, (17)

where D i ,1 is the diffusion coefficient of dissolved gas in Phase 1 and D i ,2 is the self-diffusion coefficient of the gas [58] . In

Eq. (16) , He i represents dimensionless Henry’s constant that accounts for the jump in Ci across the interface that is expressed

as C i, 2 = He i C i, 1 . In order to obtain the saturation condition of the interface when C i is defined based on Eq. (15) , He i should

be equal to zero. The concentration of the dissolved gas ( C i ) represents the α1 C i, 1 + α2 C i, 2 . 

The mass transfer across the interface is described using two approaches: Fick’s 1 st law and Sherwood number based

correlation. Fick’s 1 st law, which is applicable for any arbitrary flow scenario, is implemented as 

j = M i D i, 1 |∇C i | , (18)

where M i is the molar mass of the species i . The alternative method, which is typically implemented in practical applica-

tions, utilizes a Sherwood number correlation which can be written as 

j = M i k ( C − C sat ) = M i kC i , (19)

where k is the mean mass transfer coefficient defined as k = D i, 1 Sh/ 2 R, where the mean Sherwood number ( Sh ) is derived

from Fick’s 1 st law for the mass transfer at interface for a spherical bubble in creeping flow [39] as 

Sh = 

2 Rk 

D i, 1 

= 2 + 0 . 6515 

√ 

ReSc , where Re = 

U ∞ 

2 R 

ν1 

and Sc = 

ν1 

D i, 1 

. (20)

In Eq. (20) , U ∞ 

is calculated as (R − R n −1 ) / �t, where R − R n −1 is the difference between the radius of the bubble at the

current time step and the previous time step and �t is the time step used by the solver. Equivalently, the mean mass

transfer coefficient can be determined based on Eq. (20) as 

k = 

D i, 1 

2 R 

(
2 + 0 . 6515 

√ 

ReSc 

)
. (21)

The local mass transfer rate ( ψ 0 ) can be written based on j (defined in Eqs. (18) and (19) ) as 

ψ 0 = N jα1 |∇α1 | , (22)

where N is a normalization factor is defined in Eq. (26) . The term α1 is multiplied Eq. (22) to ensure that the mass flux that

drives the bubble growth is based only on the supersaturation of the liquid. 

In order to increase numerical stability, ψ 0 is smeared over a few computational cells by solving 

D �t ∇ 

2 ψ = ψ − ψ 0 , (23)

where ψ describes the smeared ψ 0 at every time step [44] . In Eq. (23) , D �t is a product of a diffusion constant and

parameter with dimension of time which controls the amount of smearing in Eq. (23) [44] . 

The source term of the continuity equation ( Eq. (4 )), ˙ m = ˙ m 1 α1 + ˙ m 2 α2 reduces to ˙ m = ˙ m 2 α2 because liquid is not con-

sumed when during bubble growth due to supersaturation. Based on the value of ψ , source term ˙ m (in Eq. (4 )) can be

calculated as 

˙ m = Aα2 ψ, (24)

where A is a normalization factor defined in Eq. (26) . The source term ˙ m , which is defined in Eq. (24) , is calculated in the

region where α1 < 0.001 by artificially moving them away from the interface based on volume fraction of the liquid (further

described in [44,47] ). 

The sink term in dissolved gas transport ( S i ), in Eq. (16) , which represents the dissolved gas lost into the bubble due to

mass transfer across the interface is calculated as 

S i = −Nα1 ( j|∇α1 | ) 
M i 

, (25)

where N is the normalization factor defined in Eq. (26) and α1 in Eq. (25) ensures that S i is non-zero only at the liquid side

of the interface. The normalization factors used in the solver can be defined as 

A = 

∫ 
 ψ 0 dV ∫ 

 α2 ψdV 

and N = 

∫ 
 |∇α1 | dV ∫ 

 α1 |∇α1 | dV 

, (26)

where  is the domain for the flow computation. 

The overall algorithm used to solve the governing equations ( Eqs. (4) , (7), (12), (16) and (23) ) is summarized in Fig. 1 .

The volume fraction equation ( Eq. (7) ) is solved the Multidimensional Universal Limiter with Explicit Solution (MULES)

method [57] . The Pressure Implicit with Splitting of Operator (PISO) algorithm is used to solve the momentum ( Eq. (12) )

and continuity ( Eq. (4) ) equations [56,57,59] . The PISO algorithm recasts the continuity equation into a pressure Poisson

equation (or ’pressure correction equation’) which is solved and then used to update the predicted velocity fields [56,57] . 
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Fig. 1. Schematic of the solution procedure implemented in the proposed solver. 

 

 

 

 

 

 

 

 

 

 

 

3. Computational setup 

The computational domain is a square of dimensions 3 cm × 3 cm with a pre-existing bubble of radius equal to 250 μm

located at the center of the geometry. The boundaries are set to zero gradient conditions for � U , ψ , C i and α1 while p rgh is

equal to 101,325 Pa. The phenomena modelled in this paper corresponds to a pre-existing bubble of radius equal to 250 μm

growing in a solution supersaturated by carbon dioxide. The saturation concentration of dissolved carbon dioxide in water

is calculated using Henry’s law at 25 ◦C and 101,325 Pa to be 33.44 mol/m 

3 [60] . The initial bulk concentration of carbon

dioxide in water is set to C i = 200 . 64 mol/m 

3 , corresponding to a supersaturation ratio (defined as C / C sat ) equal to seven.

To validate the mass transfer model implemented in the proposed solver, some of the simulations neglect the gravity and

surface tension. When gravity and surface tension are treated in selected simulations, � g is assigned as (0 −9.81 0) m/s 2 and

σ equal to 0.0468 N/m [31] , respectively. 

The settings used in the simulations are described in Table 1 and internal fields used for the simulations is tabulated

in Table 2 . Values for D �t and He i are set equal to 10 −6 m 

2 and 10 −4 respectively and the maximum Courant number

( Co max ) is set equal to 0.05. In simulations where surface tension is neglected, the maximum time step is allowed to adjust
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Table 1 

Fluid properties at 25 ◦C and 101325 Pa. 

Fluid properties Dimensions Liquid (Phase 1) Bubble (Phase 2) 

Density kg/m 

3 997.0751 [67] 1.81 [68] 

Kinematic viscosity m 

2 /s 8.92 ×10 −7 [67] 8.228 ×10 −6 [68] 

Diffusion coefficient m 

2 /s 1.94 ×10 −9 [69] 9.18 ×10 −6 [58] 

Table 2 

Initial internal field of parameters used for the simulations. 

Dimensions Liquid (Phase 1) Bubble (Phase 2) 

α1 – 1 0 (Pre-existing bubble, R 0 = 250 μm) 

C i mol/m 

3 200.64 0 

p rgh Pa 101,325 101,325 
�
 U m/s (0 0 0) (0 0 0) 

ψ kg/m 

3 s 0 0 

Table 3 

Discretisation schemes. 

Modelling term Keyword Scheme Remarks 

Time derivatives ddtSchemes Euler First order implicit method [70] 

Divergence 

term 

∇ · (ρ �
 U � U ) vanLeerV Modified vanLeer for vector fields [70] 

∇ · ( � U α1 ) , ∇ · ( � U C i ) vanLeer [71] 

∇ · ( � U r α1 (1 − α1 )) interfaceCompression Used in [50,57] 

∇ ·
(

ˆ D i B C i ∇α1 

)
vanLeer [53] 

∇ ·
(
B α1 α2 

�
 U r C i 

)
vanLeer [53] 

Gradient term gradSchemes Linear Operator with ∇ 

Laplacian term laplacianSchemes Linear corrected Operator with ∇ 

2 

Other 
snGradSchemes Corrected Surface normal gradients 

interpolationSchemes Linear Interpolates values 

Table 4 

Solvers used for the discretised equation. 

Equation Linear solver Smoother/preconditioner Tolerance 

Pressure correction equation PCG GAMG 10 −20 

Momentum equation ( Eq. (12) ) smoothSolver symGaussSeidel 10 −10 

Volume fraction equation ( Eq. (7) ) smoothSolver symGaussSeidel 10 −10 

Species transport equation ( Eq. (16) ) PBiCGStab Diagonal 10 −10 

Smearing of mass transfer rate ( Eq. (23) ) PBiCGStab Diagonal 10 −10 

 

 

 

 

 

 

 

 

 

 

 

 

automatically based on the Co max . When surface tension is considered, the time step constraint, which is required to prevent

the temporal growth of spurious currents, is calculated as 

�t ≤ 1 

2 

(
C 2 τμ + 

√ 

(C 2 τμ) 2 + 4 C 1 τ 2 
ρ

)
and �t ≤ max 

(
C 2 τμ, 10 C 1 τρ

)
, (27)

where τμ and τρ are time scales which are defined as μavg �x / σ and 

√ 

ρa v g (�x ) 3 /σ respectively, μavg and ρavg are defined

as the average dynamic viscosity and density between the phases whereas �x is the mesh resolution which is equal to

7.5 μm [57] . The values of C 1 and C 2 has been reported to be equal to 0.01 and 10, respectively [57] . For the M4 mesh used

in the simulations, the constraint on the time step is calculated, based on Eq. (27) , to be equal to 7.2 ×10 −7 s. A parametric

study to the investigate the effect of pre-existing bubble size, D �t and He i on the solution is discussed later in the paper. 

The governing equations ( Eqs. (4) , (7), (12), (16) and (23) ) are discretised using schemes as mentioned in Table 3 with

the relevant settings summarized in Tables 4 and 5 . The tolerence criteria while solving the pressure correction equation

is set to 10 −20 to reduce the force imbalance (between surface tension and pressure forces) which is generated due to the

iterative procedure used in the solution algorithm [57] . The maximum number of iterations while solving the governing

equations are set such that the tolerance criteria set in Table 4 is met at every time step. 

4. Convergence studies 

The convergence of the simulations is studied using the Fick’s 1 st law as the driving force (in Eq. (18) ) for bubble growth

and neglecting gravity. The surface tension is also neglected in these simulations as the spurious currents generated are
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Table 5 

Other parameters used in solving the discretised equations. 

Parameter Value Notes 

nAlphaCorr 2 Number of α1 correction; usually set equal to 1 or 2 for time-dependent flows [72] . 

nAlphaSubCycles 1 Represents the number of sub-cycles within α1 equation [70] . 

cAlpha ( C α ) 1 Used for interface compression in Eq. (8) . 

MULESCorr yes Switches on semi-implicit MULES [73] . 

nLimiterIter 3 Number of MULES iterations over the limiter [73] . 

momentumPredictor no Controls solving of the momentum predictor; typically set to ‘no’ for multiphase and low 

Reynolds number flows [70] . 

nOuterCorrectors 1 PISO algorithm is selected by setting this parameter equal to unity in PIMPLE algorithm [70] . 

nCorrectors 3 The number of times the PISO algorithm solves the pressure and momentum equation in each 

step; usually set to 2 or 3 [70] . 

nNonOrthogonalCorrectors 0 Used when meshes are non-orthogonal [70] . 

relaxationFactors 1 Specifies the under-relaxation factors; set equal to one for transient simulations [54] . 

C sh 0.3 Sharpening coefficient in Eq. (14) ; to model a reliable pre-existing bubble of radius 250 μm [74] . 

Table 6 

Mesh convergence studies. 

Mesh Total number of cells Mesh resolution ( �x ) 2 R 0 / �x a Radius normalized growth rate ( G ) b Relative error (%) c 

M0 1000,000 3.00 ×10 −5 m 16.67 8.2248 ×10 −10 –

M1 1999,396 2.12 ×10 −5 m 23.57 8.5821 ×10 −10 4.34 

M2 4000,000 1.50 ×10 −5 m 33.33 8.7887 ×10 −10 2.41 

M3 7997,584 1.06 ×10 −5 m 47.13 8.8682 ×10 −10 0.90 

M4 16,000,000 7.50 ×10 −6 m 66.67 8.9308 ×10 −10 0.71 

M5 31,990,336 5.30 ×10 −6 m 94.27 8.9513 ×10 −10 0.23 

a 2 R 0 / �x represents the number of cells that resolve the pre-existing bubble diameter. b Radius normalized growth rate (kg m 

−1 s −1 ) is calculated at t = 4.5s 

as ∫ ψ 0 dV / R . c Relative error is calculated as (G Mi +1 − G Mi ) × 100 / G Mi where i = 0 , 1 , 2 , 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dependent on the mesh resolution and a ’true’ mesh convergence is difficult to achieve especially for capillary dominant

flows [54,61,62] . The convergence is analyzed based on three criteria: independence of solution from the mesh, conservation

of phases and dissolved gas, effect of domain size of the solution, and monitoring supersaturation/pressure data away from

the bubble. 

The grid convergence is analyzed using six different hexahedral meshes, as shown in Table 6 , based on the radius nor-

malized growth rates at t = 4 . 5 s. The growth rates and bubble radii for various meshes, shown in Fig. 2 , at t = 4 . 5 s show

a relative deviation of nearly 2% between the M4 and M5 meshes. This discrepancy is due to the discontinuous initial con-

dition of C i (in Table 2 ) which leads to a larger initial growth rate, offsetting the bubble radius for further time steps, see

Fig. 2 (a). The radius normalized growth rate, equivalent to the mass flux in 2D, is not influenced by this offset. As the rela-

tive change of the radius normalized growth rate at t = 4 . 5 s between two finest meshes is lower than 0.25%, see Table 6 ,

M4 has been used for simulations in the paper. 

The imbalance in the phases, illustrated in Fig. 3 , is lower than 0.1% of the volume of the liquid initially in the system.

Calculated based on the amount of dissolved gas which is numerically in the bubble, the imbalance in the dissolved gas is

lower than 0.1% of initial amount of dissolved gas in the system as shown in in Fig. 4 . 

The region far stream from the bubble growth should have a constant concentration and pressure as it is not effect by

the bubble growth. Monitoring a point away from the interface shows that C i and p rgh remains equal to 200.64 mol/m 

3 and

101,325 Pa, respectively for the duration of the simulation. 

Using smaller domain for the simulations has been observed to affect the radially symmetric nature of the velocity field

as shown in Fig. 5 . In order reduce the effect of this error, the domain used in the simulations is nearly twelve times the

bubble diameter at t = 10s i.e. 3 cm × 3 cm, which has been showed in Fig. 5 (c). 

5. Validation 

In this section, the proposed solver is validated by comparing against two theoretical cases i.e. the approximate solution

of Epstein-Plesset [14] , the asymptotic solution of Scriven [15] and Extended Scriven [16] . It is worth pointing out that

surface tension is neglected in the simulations discussed in this section unless explicitly specified. The simulations used for

comparison can be divided based on the description of driving force that drives the mass transfer across the interface as 

• Constant driving force: The definition of j based on Sh correlation ( Eq. (19) ) is modified to account for driving force for

bubble growth that is dependent on the bulk concentration of the supersaturated solution ( C ∞ 

) which is expressed as 

j = M i k ( C ∞ 

− C sat ) . (28) 

• Local driving force: Eq. (19) provides a Sh correlation based definition of driving force that is dependent on the local

concentration of the dissolved gas around the interface. 
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Fig. 2. Effect of mesh on the temporal changes in bubble radius and growth rates. 

Fig. 3. Comparison of the bubble volume obtained from the solver and calculated based on the volume of liquid adjusted for the amount lost through the 

boundaries to calculate the imbalance of the phases in the system. 
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Fig. 4. The temporal variation in the imbalance of the dissolved gas during the simulation. 

Fig. 5. Comparison of the velocity field, at t = 10 s, analyzed through | � U | contours plotted at 1 ×10 −5 m/s ( ), 2 ×10 −5 m/s ( ), 3 ×10 −5 m/s ( •), 4 ×10 −5 m/s 

( ) and 5 ×10 −5 m/s( ) with different computational domains used for the simulations. 
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Fig. 6. Comparison of the temporal evolution of bubble radius predicted by the proposed solver, using the constant driving force and k as defined in 

Eq. (33) , with the approximate solution of Epstein–Plesset ( Eq. (32) ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Fick’s 1 st law: Described in Eq. (18) , Fick’s 1 st law, provides a generic driving force for the bubble growth that is applicable

for any flow scenario. 

5.1. When convection of species concentration is neglected 

The simulations consider a two dimensional growing bubble, a rate of bubble that is growing can be described as 

ρ2 

(
2 πR 

dR 

dt 

)
= 2 πR j, (29)

where R is the radius of the bubble and j is the constant driving force that causes the bubble growth (described in Eq. (28) ),

i.e. 

ρ2 

(
dR 

dt 

)
= M i k ( C ∞ 

− C sat ) , where k = 

D i, 1 

2 R 

(
2 + 0 . 6515 

√ 

ReSc 

)
. (30)

When the convection caused by bubble growth is neglected, i.e. Re = 0 , the above equation can be written as 

ρ2 

(
dR 

dt 

)
= M i k ( C ∞ 

− C sat ) , where k = 

D i, 1 

R 

. (31)

Integrating the above equation from R 0 at t = 0 s to R at t gives (
R 

R 0 

)
2 = 1 + 

2 M i D i, 1 ( C ∞ 

− C sat ) 

ρ2 R 

2 
0 

t. (32)

which is the ’approximate solution of Epstein–Plesset’ [14] when the effect of surface tension and convection is neglected.

Eq. (32) provides bubble growth when the bubble growth is driven by a the bulk concentration of the dissolved gas. 

As the effect of convection on the bubble growth is neglected in the theoretical benchmark, the solver is modified by

implementing the mass transfer coefficient as 

k = 

D i, 1 

R 

. (33)

Using the mass transfer across the interface that is governed by Eqs. (33) and (28) in the proposed solver provides a

prediction of bubble growth that is equivalent to the Epstein–Plesset solution as shown in Fig. 6 . The predictions from

the proposed solver marginally under-predicts the final radius of the bubble by less than 0.01%. The concentration of the

dissolved gas, interface and velocity distribution in the domain for bubble growth driven by a constant driving force (using

mass transfer coefficient described in Eq. (33) ) is illustrated in Fig. 7 . 

5.2. When convection of species concentration is considered 

The asymptotic solution of bubble growth in a supersaturated solution, proposed by Scriven [15] , when convection is

considered, is given by 

R Scri v en = 2 β
√ 

D i, 1 t (34)
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Fig. 7. Simulated concentration field and velocity at t = 10 s using a constant driving force with k defined in Eq. (33) . The interface is represented with a 

white contour corresponding to α1 = 0 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where β is the growth parameter, valid only for diffusion controlled growth of spherical bubble in an unbounded medium.

Based on the work by [16] , an ‘Extended Scriven model’ that modifies Eq. (34) to account for the growth from a pre-existing

bubble of radius R 0 can be described as 

R Scri v en −ext = 2 β

√ 

D i, 1 

(
t + 

R 

2 
0 

4 D i β2 

)
. (35) 

Previous works by Wang and others [4,9,19] , reported an analytical expression to determine β for a spherical bubble as 

β3 D = 

a + 

√ 

a 2 + 2 a 

2 

where a = 

M i ( C ∞ 

− C sat ) 

ρ2 

. (36) 

which has been shown to agree with the predictions by Scriven [15] . The formulations proposed in [4,9,15,19] to calculate

β is derived for a spherical bubbles which is different from the 2D bubbles simulated in the current paper. For direct

comparison to the simulations, β2 D , derived in Appendix A based on the work by Wang et al. [19] , can be calculated as 

β2 D = 

a + 

√ 

a 2 + 4 a 

2 

√ 

2 

, (37) 

where a is defined the same as Eq. (36) . For the phenomena modelled in this paper, β3 D and β2 D can be calculated, using

Eqs. (36) and (37) , are equal to 5.3346 and 4.0509, respectively. 

The velocity, concentration of dissolved gas and interface position is compared for Fick’s 1 st law ( Eq. (18) ) and local

driving force ( Eqs. (19) and (21) ) in Fig. 8 . The temporal evolution of bubble size from simulations are compared to the

Scriven’s asymptotic ( Eq. (34) ) and Extended Scriven ( Eq. (35) ) in Fig. 9 . As expected, the bubble growth predicted by

the Scriven’s asymptotic expression and Extended Scriven theories using β2 D provides a better representation than β3 D .

The driving force based on the Sh correlation under predicts the bubble radius by nearly a factor of 2 at t = 10 s while

Fick’s 1 st law provides a better agreement to the theoretical predictions using β2 D , with an error less than 2.5% at t = 10 s.

The discrepancy between the simulations can be explained using the growth rate in Fig. 10 , where the growth rate is nearly

6.5 times smaller for the Sh correlation. Although the growth rate predicted by the driving force described by Fick’s 1 st law

is initially different from the corresponding theory, it seems to asymptotically match the theoretical prediction. The initial

discrepancy between the two is due to the discontinuous nature of concentration while initializing, see Table 2 . 

5.3. Influence of surface tension 

Due to small length scales associated with bubble growth, surface tension dominates the flow physics. Modelling surface

tension has its own challenges, namely the generation of spurious currents around the interface [44,50,54,57] . Due to the

time step constraint, described in Eq. (27) , the simulations are run only until 2 ms. 

The spurious currents ( U sc ), calculated as max( | � U | ), are observed on both sides of the interface as illustrated in Fig. 11

and its temporal variation plotted in Fig. 12 (a). The convection that is generated by spurious currents seems to remove the

dissolved gas at the interface which results in the reduction of the growth rate (calculated as volume integral of ψ 0 in

the computational domain) observed in Fig. 12 (c). Due to the generation of large magnitude of spurious currents initially,

there is a substantially drop in the growth rate of the bubble in the first few time steps as seen in Fig. 12 (c). The average

growth rate of the bubble during 2 ms reduces by approximately 32% compared to when surface tension is not treated.

The reduction in the growth rate is also reflected in the temporal variation of bubble radius, as shown in Fig. 12 (b). At

t = 0 . 002 s, the bubble radius differs by nearly 0.15% from the bubble radius when surface tension is not treated. 
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Fig. 8. Simulated concentration field and velocity at t = 10 s using a local driving force and Fick’s 1 st law. The interface is represented with a white contour 

corresponding to α1 = 0 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Laplace pressure in the bubble obtained from the simulations ( �p c ) is calculated as 

�p c = 

∫ 
 α2 pdV ∫ 
 α2 dV 

− p 0 , (38)

where p 0 is the operating pressure is equal to 101,325 Pa. For the two-dimensional bubble, the Laplace pressure in the

bubble is calculated based on the Young-Laplace equation ( �p ∗c = σ/R ). The error associated with predicting the Laplace

pressure can be calculated based on (�p c − �p ∗c ) / �p ∗c and its temporal variation is plotted in Fig. 13 . Although there is

large initial discrepancy, the absolute error quickly reduces to values lower than 0.1, in Fig. 13 . 

6. Growth of a rising bubble in a supersaturated solution 

The computational domain for modelling the growth and rise of a two-dimensional bubble is 3 mm × 9 mm. The pre-

existing bubble of radius equal to 250 μm is initialized such that its center is at a distance of 1mm from the bottom

boundary and equidistant from the side boundaries. The dissolved carbon dioxide in the water is set at 200.64 mol/m 

3 .

Both gravity and surface tension are treated in this simulation. The four boundaries are described using a zero gradient

conditions for α1 , C i , � U and ψ whereas a Dirchlet condition (equal to 101,325 Pa) is used for p rgh . The mesh used in the

simulation has a grid resolution ( �x ) and R 0 / �x equal to 7.5 μm and 33.33, corresponding to the M4 mesh in Table 6 . The

simulation is terminated at 0.04s but the maximum time step, calculated based on Eq. (27) , and maximum Courant number

permitted are set to 7.2 ×10 −7 s and 0.05 respectively. The driving force for bubble growth is described using Fick’s 1 st law

as it provides a more realistic growth rate than Sh based correlation as shown in Fig. 9 . The imbalance in the phases and

dissolved gas in the simulation of the growth of the rising bubble is lower than 0.1% of the amount present initially in the

system. 

The changes in the bubble morphology along with its position in the computational domain as it evolves is illustrated

in Fig. 14 . The distribution of the dissolved gas around the bubble and velocity in the domain due to the rising bubble at

t = 0.04s is illustrated in Fig. 15 (a) and (b), respectively. As the growing bubble grows and rises, the dissolved gas at rear of

the rising bubble gets depleted before the mass transfer by convection and diffusion can replenish it. On the other hand,

the incoming supersaturated liquid always replenishes the depleted dissolved gas. This variation in the concentration of the
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Fig. 9. Comparison between the simulated bubble radii using different driving forces ( Sh based Local driving force and Fick’s 1 st law) and theoretical 

models ( Eqs. (34) and (35) ). 

Fig. 10. Comparison of the growth rate predicted by the proposed solver using different driving forces for mass transfer across the interface to the Extended 

Scriven model. The growth rate of the bubble from the simulations and theory are calculated as 
∫ 
 ψ 0 dV and Eq. (A.1) , respectively. 

 

 

 

 

 

 

 

 

dissolved gas around the interface leads to larger local mass transfer rate, calculated based on Eq. (22) , in front of the bubble

in comparison to its rear as shown in Fig. 15 (c). 

In order to understand the effect of bubble growth on rising, its rise velocity is compared to a bubble that is just rising

without any growth. The rise velocity of the bubble is computed as the bubble volume averaged vertical component of the

velocity vector [54] . The bubble rising without any growth is implemented by setting the dissolved gas concentration to

zero in the simulation. Fig. 16 (a) shows that, for 0.04s simulated, there is no substantial change in the rise velocity due

to growth of the bubble by mass transfer across the interface. The corresponding growth of the rising bubble is illustrated

through the increase in area of the bubble with time in Fig. 16 (b). The insignificant change in the rise velocity indicates that

the change in buoyancy force experienced by the bubble does not change as a result of the growth, which agrees with a

previous experimental study [20] . 
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Fig. 11. U sc (m/s), at t = 2 ms, while modelling surface tension when the bubble growth is modelled based on the Fick’s 1 st law and α1 = 0 . 5 is represented 

by a white contour. 

Fig. 12. Effect of modelling surface tension on the bubble growth. 

 

 

 

 

7. Influence of user defined parameters 

In this section, the effect of user defined parameters, like He i , D �t and size of pre-existing bubble, are investigated using

the the setup described in the validation studies i.e. neglecting surface tension and gravity while using Fick’s 1 st law as

driving force for bubble growth. 

Smearing of ψ 0 to obtain ψ , using Eq. (23 ), relies on a user defined D �t and ideally the solution should be independent

of the effect of this parameter. As ψ is used to compute the source term required for bubble growth (i.e. ˙ m which is defined
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Fig. 13. Error in calculating the Laplace pressure in the growing bubble. 

Fig. 14. Growth of a bubble rising through a supersaturated solution. The interface is represented by α1 = 0 . 5 . 

 

 

 

 

 

 

 

 

in Eq. (24 ), the evolution of the bubble radius can be used to study the effect of D �t . The parameter, D �t , is set equal to

10 −6 m 

2 , 10 −7 m 

2 , 10 −8 m 

2 and 10 −9 m 

2 which corresponds to a length scale for smearing the ψ 0 equal to nearly 0.001 m,

0.0 0 032 m, 0.0 0 01 m and 0.0 0 0 03 m, respectively (calculated as 
√ 

D �t [44] ). The effect of D �t on the growth rate of

bubble is shown in Fig. 17 and the solution becomes nearly independent of D �t when using larger values (i.e. 10 −6 m 

2 and

10 −7 m 

2 ). 

The parameter He i , which is used to model concentration jump across the interface, should theoretically be set equal to

zero to model the transport of the dissolved gas and describe the interface as saturated. When He i is set equal to zero the

denominator in B (in Eq. (16 )) becomes infinity for α1 = 0 . Although He i cannot be set equal to zero, the saturated condition

of the interface can be reasonably reproduced by using a low enough value of He . So He is set to a non-zero number
i i 
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Fig. 15. Contours of velocity, concentration of dissolved gas and local mass transfer rate plotted at t = 0 . 04 s. The interface is represented with a white 

contour at α1 = 0 . 5 . 

Fig. 16. The effect of bubble growth as the bubble rises up in a supersaturated liquid. 

 

 

 

 

 

 

 

(i.e. 10 −4 , 10 −3 , 10 −2 , 10 −1 and one) and its influence on the concentration distribution of dissolved gas and associated

bubble growth is compared in Figs. 18 and 19 , respectively. When He i is equal to 10 −3 or 10 −4 , both bubble growth and

concentration of dissolved gas in bubble becomes nearly independent of He i which indicates that the saturation condition

of the interface has been nearly reproduced. It is also worth pointing out that setting He i to 10 −3 or 10 −4 , introduces some

temporal unboundedness in the beginning of the simulation in the value of C i . As the mass balance of the dissolved gas is

not affected due to this temporal unboundedness of C i , we consider effect of this error to be rather negligible. 

The effect of the size of pre-existing bubbles (radii equal to 250 μ m and 500 μm) on the bubble growth is investigated

in Fig. 20 . The computational domain and the mesh resolution used in these simulations has been changed to make the
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Fig. 17. Comparison of the evolution of bubble radius for various D �t . 

Fig. 18. The temporal variation of the concentration of dissolved gas numerically present in the bubble, due to the use of a non-zero He i . 

 

 

 

 

 

 

 

 

 

 

 

relative number of mesh elements equal in both simulations. The growth of the bubbles, in Fig. 20 , shows that smaller the

bubble higher the growth rate. 

Although size of the pre-existing bubble (250 μm) used in the simulations is much larger than the critical radius, cal-

culated using Eq. (1) , it is in the same order as the radii of the pre-existing bubbles used in the theoretical work like

[14] but larger than the cavity size reported in experiments, which is typically around 50–200μm [4] . These micrometer

sized bubble are very difficult to model due the presence of spurious currents that can sometimes be large enough enough

to render simulations inaccurate [63] . As lower limit to the size of the pre-existing bubble is dictated by the spurious cur-

rents, implementation of more advanced surface tension models are required to model micrometer size bubbles. It is also

worth pointing out that boiling studies performed using OpenFOAM 

R © [46,64] and condensation studies [50] typically use

pre-existing bubbles radius in the same range as the ones used in this paper but other solvers, which use more advanced

interface reconstruction algorithms, like Piecewise-Linear Interface Calculation (PLIC) scheme [44] , and/or surface tension ap-

proach, using height functions [65] , enables modelling even smaller pre-existing bubbles (in the order of few micrometers)

due to the lower spurious current [44,66] . 
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Fig. 19. Effect of He i on the growth of the bubble. 

Fig. 20. Comparison of the evolution of bubble radius based on the size of the pre-existing bubble when the effect of both gravity and surface tension are 

neglected. 

 

 

 

 

 

 

 

 

 

8. Conclusions 

In this paper, a new VOF based solver to model bubble evolution in supersaturated systems is implemented in Open-

FOAM 6. The proposed solved is created by adding dissolved gas transport equation (C-CST model [53] ), surface tension (SSF

[54] ) model, driving force for bubble growth (Fick’s 1 st law and a Sh based correlation) and the relevant source terms are

implemented, by extending the work of [44,46,47] , in interFOAM. 

The mass transfer models applied in the proposed solver are validated based on theoretical models like Epstein–Plesset

[14] which do not consider the effect of convection, and Scriven [15] as well as Extended Scriven [16] which accounts for

the effect of radial bubble growth. The proposed solver utilizing a driving force based on Eqs. (28) and (33) , matches well

with the approximate solution of Epstein–Plesset [14] as shown in Fig. 6 . A driving force based on Fick’s 1 st law provides a

better agreement to Scriven [15] and Extended Scriven [16] models than a Sh correlation as shown in Figs. 9 and 10 . The

modelling of the growth of the rising bubble using Fick’s 1 st law shows that the proposed solver, for the duration of 0.04 s,

predicted the negligible effect of the bubble growth on rise velocity. Further remarks about the proposed solver are: 
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• Spurious currents, generated while modelling surface tension, introduces numerical convection near the interface that 

reduces the growth rate of the bubble by advecting away the dissolved gas at the interface. 
• As expected, the solver is able to predict higher growth rate of smaller bubbles compared to larger bubbles and the

increase in local mass transfer rate at the front of the bubble than its rear when a bubble is rising. 
• The simulations also shows that the bubble growth is sensitive to the value of D �t but the solution becomes nearly

independent of the parameter at larger values. 
• The use of He i equal to 10 −4 in the C-CST has been shown to describe the transport of dissolved gas as well as the

saturation condition at the interface reasonably well. 
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Appendix A 

Based on the derivation of expression to determine β3 D , i.e. Eq. (36) which is described in [19] , we use the same approach

to obtain a formulation for β2 D that describes a 2D bubble growing in a supersaturated solution. The growth rate of the

bubble can be calculated as 

ρ2 2 πRh 

dR 

dt 
= M i (J 1 + J 2 ) , (A.1) 

where first term describes the rate of increase of the bubble volume, h describes a unit grid thickness which is set equal

to 10 −6 m which is used in the simulations, and J 1 + J 2 corresponds to the sum of mass transfer across the interface

( Eq. (A.3) ) and effect of convection generated by bubble growth ( Eq. (A.4b) ) [19] . The theortical distribution of dissolved

gas ( C ′ ), once concentration boundary layer is developed, can be expressed as a sigmoid function, based on simulations as

shown in Fig. 8 (c), like 

C ′ = 

2( C ∞ 

− C sat ) 

1 + e −m (r−R ) /R 
+ 2 C sat − C ∞ 

, (A.2) 

that satisfies the following boundary conditions 

r = R, C ′ = C sat , 

r −→ ∞ , C ′ −→ C ∞ 

, 

where m is a constant that is defined in Eq. (A.6) . The diffusive mass transfer across the interface can be described as 

J 1 = (2 πRh ) D i, 1 

∂ C ′ 
∂r 

∣∣∣
r= R 

= 2 πRhD i, 1 

m ( C ∞ 

− C sat ) 

2 R 

. (A.3) 

The effect of convection established by the increase in bubble radius on the growth rate is treated as 

J 2 = A 

√ 

D i, 1 

d A/d t 

A 

( C ∞ 

− C sat ) , (A.4a) 

where A is the interface surface area that is equal to 2 πRh which can be used to reduce the above equation as 

J 2 = 2 πRhD i, 1 ( C ∞ 

− C sat ) 

√ 

1 

RD i, 1 

dR 

dt 
. (A.4b) 

Substituting Eqs. (A.3) and (A.4b) in Eq. (A.1) gives 

dR 

dt 
= 

M i 

ρ2 

(
D i, 1 

m ( C ∞ 

− C sat ) 

2 R 

+ D i, 1 ( C ∞ 

− C sat ) 

√ 

1 

RD i, 1 

dR 

dt 

)
. (A.5) 

When J 2 is neglected, the above equation must reduce to Eq. (31) , which shows that 

m = 2 . (A.6) 

As bubble radius in 2D also evolve as described by Eqs. (34) and (35) , bubble radius evolution can be described as R =
2 β2 D 

√ 

D i, 1 t + B , where B = R 2 0 / ( 4 β
2 
2 D ) it can be substituted in the above equation to obtain 

β2 D D i, 1 √ 

D i, 1 t + B 

= 

M i 

ρ2 

D i, 1 ( C ∞ 

− C sat ) 

( 

1 

2 β2 D 

√ 

D i, 1 t + B 

+ 

√ 

1 

D i, 1 2 β2 D 

√ 

D i, 1 t + B 

β2 D D i, 1 √ 

D i, 1 t + B 

) 

, (A.7) 
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which can be further simplified to a quadratic equation for β2 D as 

2 

√ 

2 β2 
2 D − 2 aβ2 D −

√ 

2 a = 0 , (A.8)

where a is defined in Eq. (36) . Based on Eq. (A.8) , β2 D can be calculated as 

β2 D = 

a + 

√ 

a 2 + 4 a 

2 

√ 

2 

. (A.9)
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