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ABSTRACT
OBJECTIVE
To evaluate the associations between adiposity 
measures (body mass index, waist circumference, 
and waist-to-height ratio) with decline in glomerular 
filtration rate (GFR) and with all cause mortality.
DESIGN
Individual participant data meta-analysis.
SETTING
Cohorts from 40 countries with data collected between 
1970 and 2017.
PARTICIPANTS
Adults in 39 general population cohorts 
(n=5 459 014), of which 21 (n=594 496) had data 
on waist circumference; six cohorts with high 
cardiovascular risk (n=84 417); and 18 cohorts with 
chronic kidney disease (n=91 607).
MAIN OUTCOME MEASURES
GFR decline (estimated GFR decline ≥40%, initiation of 
kidney replacement therapy or estimated GFR <10 mL/
min/1.73 m2) and all cause mortality.
RESULTS
Over a mean follow-up of eight years, 246 607 (5.6%) 
individuals in the general population cohorts had 
GFR decline (18 118 (0.4%) end stage kidney disease 
events) and 782 329 (14.7%) died. Adjusting for 
age, sex, race, and current smoking, the hazard 
ratios for GFR decline comparing body mass indices 

30, 35, and 40 with body mass index 25 were 1.18 
(95% confidence interval 1.09 to 1.27), 1.69 (1.51 
to 1.89), and 2.02 (1.80 to 2.27), respectively. 
Results were similar in all subgroups of estimated 
GFR. Associations weakened after adjustment for 
additional comorbidities, with respective hazard 
ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 
1.46 (1.28 to 1.67). The association between body 
mass index and death was J shaped, with the lowest 
risk at body mass index of 25. In the cohorts with 
high cardiovascular risk and chronic kidney disease 
(mean follow-up of six and four years, respectively), 
risk associations between higher body mass index 
and GFR decline were weaker than in the general 
population, and the association between body 
mass index and death was also J shaped, with the 
lowest risk between body mass index 25 and 30. In 
all cohort types, associations between higher waist 
circumference and higher waist-to-height ratio with 
GFR decline were similar to that of body mass index; 
however, increased risk of death was not associated 
with lower waist circumference or waist-to-height 
ratio, as was seen with body mass index.
CONCLUSIONS
Elevated body mass index, waist circumference, and 
waist-to-height ratio are independent risk factors for 
GFR decline and death in individuals who have normal 
or reduced levels of estimated GFR.

Introduction
The prevalence of obesity has risen over the past half 
century, accompanied by increases in the prevalence of 
hypertension and diabetes.1 2 Many posit that obesity 
also heightens the risk for chronic kidney disease 
(CKD) through adverse effects on blood pressure, 
insulin resistance, inflammation, and dyslipidaemia, 
or even directly by altering systemic and glomerular 
haemodynamics.3 CKD is a costly condition, both from 
the treatment of kidney related processes and from 
the high associated risks of cardiovascular disease 
and mortality.4 Thus, understanding the relation and 
mediators between obesity and kidney disease is 
critical to inform public health efforts.

Several population based studies have found 
obesity to be a risk factor for CKD and end stage 
kidney disease (ESKD), although risk estimates have 

WHAT IS ALREADY KNOWN ON THIS TOPIC
Several studies have reported an association between obesity and end stage 
kidney disease (ESKD), although the magnitude of the association has varied 
considerably between studies
Some cohort studies of chronic kidney disease (CKD) have suggested that obesity 
is associated with no increased risk, or paradoxically lower risk of death
Meta-analyses examining the relation between body mass index and CKD 
have been limited by lack of individual participant data and have not included 
measures of central adiposity such as waist circumference

WHAT THIS STUDY ADDS
Obesity is associated with increased risk of GFR decline and mortality in 
individuals with and without CKD
These findings suggest that worldwide increases in obesity prevalence could lead 
to future increases in CKD and ESKD prevalence
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varied considerably between studies.5-10 The disparate 
findings could relate to differences in population 
demographics, study era, length of follow-up, 
statistical adjustment for comorbid conditions, or the 
definition of ESKD. In addition, the relation between 
obesity and risk of death remains uncertain in patients 
with CKD,11-15 who face increased risk of malnutrition 
and muscle wasting, potentially limiting the use of 
body mass index to estimate risk. Other anthropometric 
measures, such as waist circumference or waist-to-
height ratio, could be better prognostic measures in 
select populations.11-13 16

We conducted a global, collaborative meta-analysis 
of more than five million individuals in 63 cohorts to 
determine the relation between measures of adiposity 
and the risk of GFR decline and death, and to explore 
consistency in associations across cohorts.

Methods
Study design and data sources
The Chronic Kidney Disease Prognosis Consortium 
(CKD-PC) was established initially in 2009 (after the 
conference on Kidney Disease: Improving Global 
Outcomes Controversies) to provide data to support 
the definition and staging of CKD. It now includes 
more than 70 cohorts spanning over 40 countries with 
data on estimated GFR (eGFR) and clinical outcomes.17 
Periodically, collaborators are invited to vote on topics 
for research in successive phases; the current work is 
part of the fourth such phase. We invited cohorts with 
follow-up data for ESKD, eGFR decline, and mortality 
to participate in this study. We categorised cohorts 
as general population, high cardiovascular risk (that 
is, participants with at least one cardiovascular risk 
factor), or CKD. Because selection into these three 
cohorts differed, we conducted separate meta-analyses 
for each.

A total of 39 general population, six high 
cardiovascular risk, and 18 CKD cohorts, collecting 
data between 1970 and 2017, agreed to participate 
and provided data for this study. We restricted analyses 
to participants aged 18 years and older, with data on 
eGFR, and body mass index. We excluded individuals 
with history of ESKD and those who were underweight 
(body mass index <18.5), because our objective was to 
study the association between overweight or obesity 
and GFR decline. For the GFR decline outcome, we 
excluded individuals without repeated measurements 
of serum creatinine. In the general population 
cohorts, waist circumference and waist-to-height 
ratio were available in 21 cohorts (n=594 496). Waist 
circumference and waist-to-height ratio were available 
in three high cardiovascular risk and six CKD cohorts. 
The Johns Hopkins Bloomberg School of Public Health 
institutional review board approved the study.

Exposures and other clinical variables
We measured body mass index by dividing weight by 
height squared (kg/m2), and waist-to-height ratio by 
dividing waist circumference by height (cm/cm). We 
used serum creatinine values to estimate GFR with the 

Chronic Kidney Disease Epidemiology Collaboration 
equation.18 Albuminuria was assessed as the urine 
albumin:creatinine ratio (ACR), but if not available, 
we substituted other measures (eAppendix 1). Age, 
sex, and race or ethnicity were self reported. Diabetes 
was defined by a fasting glucose concentration of 7.0 
mmol/L or more, non-fasting glucose concentration 
of 11.10 mmol/L or more, haemoglobin A1c level of 
6.5% or more, self reported diabetes, or use of glucose-
lowering drugs. We defined hypertension as systolic 
blood pressure of 140 mm Hg or more, diastolic 
blood pressure of 90 mm Hg or more, or use of 
antihypertensive drugs; or we based the definition on 
administrative data codes.19 History of cardiovascular 
disease was defined by history of myocardial 
infarction, coronary revascularisation, stroke, or heart 
failure.

Outcomes
The prespecified primary outcome was GFR decline, 
which included 40% eGFR decline, eGFR <10 mL/
min/1.73 m2, or ESKD (initiation of kidney replacement 
therapy), whichever occurred first. Prespecified 
secondary outcomes included ESKD alone and all 
cause mortality.

Statistical analysis
We used a two stage analytical approach, whereby 
each study was analysed separately, allowing for an 
examination of outliers and bias, and then meta-
analysed by random effects models. Most participating 
cohorts in the CKD-PC transferred individual level 
participant data to the data coordinating centre at 
Johns Hopkins University. Cohorts that could not 
transfer data owing to legal or other logistical reasons 
were sent standardised code. Summary statistics were 
then returned to the data coordinating center for 
examination and meta-analysis.

As an exposure, body mass index was modelled 
continuously by linear splines with knots at body mass 
indices of 20, 25, 30, and 35. Waist circumference and 
waist-to-height ratio were also modelled continuously 
by linear splines with knots corresponding to those for 
body mass index (eFigure 1). Because the thresholds 
of waist circumference used to assess health risks are 
different by sex,20 we used sex specific references.

Hazard ratios and 95% confidence intervals were 
obtained from Cox regression models adjusted for 
age, sex, current smoking, and black versus other 
races. We also prespecified tests for effect modification 
with body mass index in general population cohorts, 
including interaction terms for age (< or ≥65 years), 
sex, black race, baseline hypertension, diabetes, eGFR 
(<30, 30-59, 60-89, and ≥90 mL/min/1.73 m2), and 
albuminuria (ACR <30, 30-299, and ≥300 mg/g). We 
quantified heterogeneity in meta-analysis using the I2 
statistic, and conducted meta-regressions to examine 
whether length of follow-up time or calendar year of 
study explained heterogeneity. Because some studies 
have found that cardiometabolic risks associated with 
body mass index occur at lower values for Asians,21 we 
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Study Region No
Age 
(years)

No (%)
eGFR (mL/
min/1.73 m2)

Body 
mass 
index WC (cm) WHtRFemale Black Asian

Current 
smoking

General population cohorts
Aichi Japan 4802 49 (7) 958 (20) 0 4802 (100) 1386 (29) 100 (13) 23 (3)  — — 
ARIC US 15 488 55 (6) 8496 (55) 4082 (26) 32 (0) 3993 (26) 102 (16) 28 (5) 97 (14) 0.58 (0.08)
AusDiab Australia 10 957 52 (14) 5988 (55) 0 0 1689 (16) 86 (17) 27 (5) 91 (14) 0.54 (0.08)
Beaver Dam CKD US 4787 62 (11) 2667 (56) 1 (0) 12 (0) 939 (20) 79 (18) 28 (5)  — — 
Beijing China 1505 60 (10) 757 (50) 0 1505 (100) 351 (23) 83 (14) 25 (3) 87 (9) 0.53 (0.06)
ChinaNS China 44 514 48 (15) 25 329 (57) 0 44 514 (100) 10 613 (24) 101 (18) 24 (3) 81 (10) 0.51 (0.06)
CHS US 4574 75 (5) 2637 (58) 791 (17) 3 (0) 430 (10) 71 (17) 27 (5) 98 (13) 0.60 (0.08)
CIRCS Japan 11 425 54 (9) 6952 (61) 0 11 425 (100) 2958 (26) 89 (15) 24 (3)  — — 
COBRA Pakistan 1163 53 (11) 722 (62) 0 1163 (100) 381 (33) 97 (20) 27 (5) 93 (11) 0.59 (0.07)
ESTHER Germany 9746 62 (7) 5353 (55) 0 0 1518 (16) 87 (20) 28 (4)  — — 
Framingham US 2947 59 (10) 1566 (53) 0 0 443 (15) 88 (19) 28 (5) 98 (14) 0.58 (0.08)
Geisinger US 390 614 48 (18) 220 759 (57) 10128 (3) 2449 (1) 86 206 (22) 94 (22) 31 (8)  — — 
Gubbio Italy 1676 54 (6) 926 (55) 0 0 521 (31) 84 (12) 28 (4) 88 (11) 0.55 (0.06)
HUNT Norway 63 852 50 (17) 33 751 (53) 0 0 18 486 (29) 98 (19) 26 (4) 87 (12) 0.51 (0.07)
IPHS Japan 93 397 59 (10) 61 592 (66) 0 93 397 (100) 18 040 (19) 86 (14) 24 (3)  — — 
JHS US 3463 50 (12) 2129 (61) 3463 (100) 0 488 (14) 98 (21) 32 (7) 101 (17) 0.59 (0.10)
JMS Japan 4905 54 (11) 3119 (64) 0 4905 (100) 1073 (22) 98 (15) 23 (3)  — — 
KHS South Korea 350 556 46 (10) 130 437 (37) 0 350 556 (100) 86 600 (31) 86 (14) 24 (3) 81 (9) 0.49 (0.05)
Maccabi Israel 656 640 49 (16) 371 670 (57) 0 0 13 601 (2) 92 (22) 28 (5)  — — 
MESA US 6710 62 (10) 3538 (53) 1861 (28) 771 (11) 1002 (15) 83 (17) 28 (5) 98 (14) 0.59 (0.09)
MRC UK 11 965 81 (5) 7215 (60) 0 0 1333 (11) 57 (15) 26 (4) 91 (12) 0.57 (0.07)
Mt Sinai BioMe US 23 112 51 (15) 13 887 (60) 6096 (26) 557 (2) 3301 (15) 84 (26) 29 (7)  — — 
NHANES US 58 477 46 (20) 30 184 (52) 13 192 (23) 0 9775 (18) 98 (26) 28 (6)  — — 
NIPPON DATA80 Japan 8847 50 (13) 4942 (56) 0 8847 (100) 2842 (32) 83 (17) 23 (3)  — — 
NIPPON DATA90 Japan 7219 53 (14) 4194 (58) 0 7219 (100) 2040 (28) 94 (17) 23 (3)  — — 
Ohasama Japan 1595 64 (9) 953 (60) 0 1595 (100) 249 (16) 95 (12) 24 (3) 84 (9) 0.54 (0.06)
Okinawa 83 Japan 8927 51 (15) 5329 (60) 0 8927 (100) 0 (0) 75 (16) 24 (3)  — — 
Okinawa 93 Japan 89 368 55 (15) 51 048 (57) 0 89 368 (100)   77 (17) 24 (3)  — — 
PREVEND Netherlands 7865 50 (13) 3936 (50) 76 (1) 161 (2) 2646 (34) 96 (16) 26 (4) 89 (13) 0.51 (0.07)
Rancho Bernardo US 1735 71 (11) 1052 (61) 1 (0) 8 (0) 121 (7) 65 (15) 26 (4) 86 (14) 0.52 (0.07)
RCAV US 301 8133 60 (14) 185 581 (6) 516 450 (17) 0   84 (16) 29 (6)  — — 
REGARDS US 28 469 65 (9) 15 531 (55) 11 657 (41) 0 4044 (14) 85 (20) 29 (6) 96 (15) 0.57 (0.09)
RSIII Netherlands 3384 57 (7) 1911 (56) 50 (1) 0 907 (27) 86 (14) 28 (5) 94 (20) 0.55 (0.12)
SEED Singapore 6424 58 (10) 3108 (48) 0 6424 (100) 1805 (28) 86 (19) 25 (4)  — — 
Taiwan MJ Taiwan 473 863 42 (14) 238 300 (50) 0 473 863 (100) 90 306 (24) 88 (18) 24 (3) 76 (17) 0.46 (0.20)
Takahata Japan 2272 64 (10) 1268 (56) 0 2272 (100) 389 (17) 98 (12) 24 (3)  — — 
TLGS Iran 10 212 42 (15) 5718 (56) 0 0 1517 (15) 76 (15) 27 (5) 88 (12) 0.55 (0.08)
Tromso Norway 7762 60 (10) 4435 (57) 0 0 2527 (33) 93 (13) 26 (4) 90 (11) 0.54 (0.06)
ULSAM Sweden 1210 50 (1) 0 (0) 0 0 535 (44) 98 (10) 25 (3)  — — 
Subtotal  — 5 459 014 55 (14) 1 470 855 (27) 567 848 (10) 1 112 805 (20) 375 055 (7) 86 (17) 28 (5) 80 (14) 0.49 (0.14)
High cardiovascular risk cohorts
ADVANCE Multiple* 11 038 66 (6) 4687 (42) 37 (0) 4189 (38) 1660 (15) 78 (17) 28 (5) 99 (13) 0.60 (0.07)
KP Hawaii US 29 480 60 (14) 15 043 (51) 0 0   77 (24) 30 (7)  — — 
NZDCS New Zealand 27 725 61 (14) 13 601 (49) 70 (0) 1755 (6) 4064 (15) 76 (23) 31 (7)  — — 
Pima US 4015 33 (14) 2356 (59) 0 0 753 (28) 120 (19) 33 (8) 106 (17) 0.64 (0.11)
SMART Netherlands 10 485 57 (12) 3468 (33) 0 0 3040 (29) 78 (19) 27 (4) 95 (13) 0.54 (0.07)
ZODIAC Netherlands 1674 67 (12) 931 (56) 0 0 317 (19) 68 (17) 29 (5)  — — 
Subtotal —  84 417 60 (13) 40 086 (47) 107 (0) 5944 (7) 9834 (12) 79 (22) 30 (7) 98 (14) 0.58 (0.08)
CKD cohorts
AASK US 1087 55 (11) 422 (39) 1087 (100) 0 (0) 318 (29) 46 (15) 31 (7)  — — 
BC CKD Canada 7646 68 (13) 3409 (45) 45 (1) 1676 (22) 420 (12) 34 (16) 29 (6)  — — 
CanPREDDICT Canada 1643 68 (13) 597 (36) 27 (2) 34 (2)  — 26 (10) 30 (7)  — — 
CARE FOR HOMe Germany 462 65 (12) 188 (41) 2 (0) 0 47 (10) 48 (18) 30 (5) 104 (14) 0.62 (0.09)
CCF US 36 018 72 (12) 19 436 (54) 4291 (12) 150 (0) 2723 (8) 48 (12) 29 (6)  — — 
CKD-JAC Japan 2478 61 (11) 865 (35) 0 2478 (100) 357 (17) 37 (18) 24 (3) 85 (10) 0.53 (0.06)
CRIB UK 369 61 (14) 128 (35) 22 (6) 24 (7) 46 (12) 22 (11) 27 (5) 96 (14) 0.57 (0.08)
GCKD Germany 5050 61 (12) 2003 (40) 0 0 803 (16) 49 (18) 30 (6) 104 (16) 0.61 (0.09)
Gonryo Japan 3352 62 (15) 1574 (47) 0 3352 (100) —  75 (32) 24 (3)    
MASTERPLAN Netherlands 671 61 (12) 204 (30) 0 0 139 (21) 36 (15) 27 (4) 99 (13) 0.57 (0.08)
MDRD US 1771 51 (13) 693 (39) 224 (13) 0 210 (12) 41 (21) 27 (5)  — — 
MMKD Multiple† 198 47 (12) 67 (34) 0 0 42 (21) 47 (30) 25 (4)  — — 
Nefrona Spain 1751 60 (12) 655 (37) 4 (0) 3 (0) 344 (20) 32 (14) 29 (5) 99 (12) 0.61 (0.08)
NephroTest France 1891 59 (15) 610 (32) 244 (13) 0 262 (14) 44 (22) 27 (5)  — — 
PSP-CKD UK 20 429 74 (11) 12 217 (60) 207 (1) 228 (1) 1969 (15) 51 (13) 29 (6)  — — 

Table 1 | Baseline characteristics of participating study cohorts. Data are mean (standard deviation) or number (%) of individuals

Continued
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also meta-analysed cohorts from Asian and non-Asian 
countries separately.

We conducted several sensitivity analyses. To 
address the possibility of bias from reverse causation, 
or the possibility that non-obese participants had lost 
weight owing to a condition that also affected risk 
of eGFR decline, we conducted analyses excluding 
the first three years of follow-up.9 22 To assess the 
independent effect of body mass index over other 
known risk factors, we also adjusted for systolic blood 
pressure, baseline eGFR, total cholesterol, diabetes, 
and history of cardiovascular disease, which could be 
regarded as mediators in the causal pathway. Lastly, we 
accounted for competing risk of death using Fine and 
Gray models.23 We considered P<0.05 to be statistically 
significant for all analyses using Stata SE 14.2.

Patient and public involvement
No patients were involved in determining the research 
question, outcome measures, or study design. There 
are no plans to involve patients in the dissemination of 
research findings.

Results
Study characteristics
The study included 5 459 014 participants in 39 
general population cohorts, 84 417 participants in 
six high cardiovascular risk cohorts, and 91 607 
participants in 18 CKD cohorts (table 1; eTable 1). 
Overall, participants in higher categories of body 
mass index were more often of black race, more likely 
to have hypertension, diabetes, and albuminuria, 
and less likely to be current smokers (eTables 2-5). 
Cardiometabolic risk factors were more similar across 
body mass index categories in the high cardiovascular 
risk and CKD cohorts than general population cohorts. 
For instance, the difference in mean systolic blood 
pressure between individuals with body mass indices 
35 and 18-24.9 was at least 12 mm Hg in most general 
population cohorts, whereas the corresponding 
difference in most high cardiovascular risk and CKD 
cohorts was less than 6 mm Hg.

Number of events
In the 39 general population cohorts, mean follow-
up was eight years (range 6-35), with 246 607 (5.6%) 
GFR decline events, 18 118 ESKD events (0.4%), and 
782 329 (14.7%) deaths (eTable 1). In the six high 
cardiovascular risk cohorts, mean follow-up was six 
(2-12) years, with 3344 (6.0%) GFR decline events, 
1684 ESKD (2.0%) events, and 14 646 (17.3%) deaths. 
In the 18 CKD cohorts, mean follow-up was four (2-16) 
years, with 10 680 (13.6%) GFR decline events, 8942 
ESKD (9.8%) events, and 17 322 (18.9%) deaths.

Body mass index and risk of GFR decline in general 
population cohorts
Higher body mass index (>25) was associated with 
increased risk of GFR decline in general population 
cohorts (fig 1). Compared with a body mass index of 
25, hazard ratios for body mass indices 30, 35, and 40 
were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 
(1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively, 
after adjusting for age, sex, race, and smoking. Lower 
body mass index (<25) had no association with the risk 
of GFR decline; the hazard ratio for body mass index 
20 versus 25 was 0.92 (0.79 to 1.07). Figure 2 shows 
hazard ratios for GFR decline at body mass index value 
of 35 versus 25 for each general population cohort, 
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Fig 1 | Association between body mass index and risk of decline in glomerular filtration 
rate in general population cohorts, as shown by meta-analysed hazard ratios and 95% 
confidence intervals related to body mass index. Association is modelled by linear 
splines with knots at body mass indices 20, 25, 30, and 35. Circles indicate points with 
significant differences in risk from the reference point at body mass index 25

Study Region No
Age 
(years)

No (%)
eGFR (mL/
min/1.73 m2)

Body 
mass 
index WC (cm) WHtRFemale Black Asian

Current 
smoking

RENAAL Multiple‡ 1468 60 (7) 541 (37) 224 (15) 237 (16) 263 (18) 39 (12) 30 (6)  — — 
SRR-CKD Sweden 2463 68 (15) 800 (32) 0 0  — 24 (10) 28 (5)  — — 
Sunnybrook Canada 2860 63 (17) 1228 (43) 0 0 254 (9) 52 (30) 28 (6)  — — 
Subtotal —  91 607 69 (12) 45 637 (50) 6377 (7) 8182 (9) 8197 (9) 46 (16) 29 (6) 98 (14) 0.59 (0.08)
Total — 5 635 038 55 (14) 1 556 578 (28) 574 332 (10) 1 126 931 (20) 393 086 (7) 86 (18) 28 (5) 81 (14) 0.49 (0.14)
CKD=chronic kidney disease; eGFR=estimated glomerular filtration rate; WC=waist circumference; WHtR=waist-to-height ratio. Study acronyms/abbreviations are listed in eAppendix 2 in the 
supplementary materials.
* Participants are from Australia, Canada, China, Czech Republic, Estonia, France, Germany, Hungary, India, Ireland, Italy, Lithuania, Malaysia, Netherlands, New Zealand, Philippines, Poland, 
Russia, Slovakia, and United Kingdom.
† Participants are from Austria, Germany, and Italy.
‡ Participants are from Argentina, Austria, Brazil, Canada, Chile, China, Costa Rica, Czech Republic, Denmark, France, Germany, Hungary, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, New 
Zealand, Peru, Portugal, Russia, Singapore, Slovakia, Spain, UK, United States, and Venezuela.

Table 1 | Continued
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showing considerable heterogeneity, which was not 
explained by cohort follow-up time (P=0.43 from meta-
regression) or median cohort baseline year (P=0.72 
from meta-regression; eFigure 2).

Results were similar in sensitivity analyses 
excluding the first three years of follow-up, using 
ESKD as the sole outcome, and accounting for the 
competing risk of death (eFigures 3A-C). Additional 
adjustment for systolic blood pressure, eGFR, diabetes, 
total cholesterol, and history of cardiovascular disease 
attenuated the GFR decline risk associated with higher 
body mass index, compared with the main model 
(eFigure 3D). Compared with a body mass index of 
25, adjusted hazard ratios for body mass indices 30, 
35, and 40 were 1.03 (95% confidence interval 0.95 
to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67), 
respectively.

Subgroup analyses in general population cohorts
A higher body mass index was associated with an 
increased risk of GFR decline among all subgroups of 
eGFR, although risk tended to increase at body mass 
index of about 30 for eGFR lower than 30 mL/min/1.73 m2  
(fig 3). In models stratified by baseline eGFR, hazard 
ratios for body mass index 35 versus 25 for eGFR 
categories of 90 or more, 60-89, 30-59, and less 
than 30 mL/min/1.73 m2 were 1.71 (95% confidence 
interval 1.45 to 2.02), 1.88 (1.69 to 2.08), 1.78 (1.36 
to 2.34), and 1.88 (1.61 to 2.18), respectively (all P≥0.1 
for interaction). Body mass index less than 25 was 
associated with increased risk of GFR decline in the 
eGFR subgroups with less than 60 mL/min/1.73 m2,  
but not in those with higher eGFR levels.

The risk associations between body mass index 
and GFR decline were generally similar in subgroups, 
with some exceptions. Body mass index lower 
than 25 was associated with increased risk of GFR 
decline only for men, individuals with diabetes, and 
individuals with an ACR of at least 300 mg/g. The risk 
gradient of GFR decline associated with higher body 
mass index was steeper in Asian cohorts than in non-
Asian cohorts, and more shallow in individuals with 
hypertension, diabetes, or ACR of at least 300 mg/g 
than in individuals without those conditions (fig 3, 
eFigure 4).

Body mass index and risk of GFR decline in high 
cardiovascular risk cohorts
In cohorts with high cardiovascular risk cohorts, 
body mass index was not significantly associated 
with the risk of GFR decline (fig 4), although there 
was significant heterogeneity (fig 5). After excluding 
the first three years of follow-up, higher body mass 
index was associated with increased risk of GFR 
decline in the remaining 21 212 participants, with 
a hazard ratio for body mass index 35 versus 25 of 
1.46 (95% confidence interval 1.06 to 2.02; eFigure 
5A). Results using ESKD as the outcome, accounting 
for the competing risk of death and adjusting for 
potential mediators, were similar to those of the 
primary analysis (eFigures 5B-D).

Body mass index and risk of GFR decline in CKD 
cohorts
Cohorts with CKD had a J shaped association between 
body mass index and risk of GFR decline (fig 6), but 
there was significant heterogeneity in risk estimates (fig 
7). Compared with body mass index at 25, the hazard 
ratio of GFR decline risk for body mass indices 35 and 
20 were 1.17 (95% confidence interval 1.04 to 1.31) 
and 1.25 (1.07 to 1.46), respectively. After excluding 
the first three years of follow-up, the association 
between higher body mass index and risk of GFR 
decline was magnified among the 19 477 remaining 
participants (body mass index 35 v 25, hazard ratio 
1.75, 95% confidence interval 1.30 to 2.37), whereas 
the association between low body mass index and 
risk of GFR decline was no longer significant (body 
mass index 20 v 25, 0.88, 0.53 to 1.46; eFigure 6A). 
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Fig 2 | Association between body mass index and risk of decline in glomerular filtration 
rate in general population cohorts, as shown by hazard ratios in individual studies at 
body mass index 35 versus 25, sorted by average follow-up time (shortest to longest). 
Study acronyms/abbreviations are listed in eAppendix 2 in the supplementary 
materials
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In sensitivity analyses using ESKD as the outcome, 
findings were similar to the primary analysis (eFigure 
6B). Associations between higher body mass index and 
risk of GFR decline were attenuated after accounting 
for competing risk of death, or after adjusting for 

potential mediators (body mass index 35 v 25, 1.04, 
0.93 to 1.18; eFigures 6C-D).

Central adiposity measures and risk of GFR decline
In the general population cohorts, relations between 
waist circumference and waist-to-height ratio with GFR 
decline were close to being linear (fig 8). Compared 
with waist circumference 92 cm in men and 78 cm in 
women, hazard ratios of GFR decline risk were 1.50 
(95% confidence interval 1.27 to 1.76) and 0.86 (0.71 
to 1.03) for waist circumferences 112 cm/98 cm and 
82 cm/68 cm, respectively. Compared with waist-to-
height ratio 0.5, hazard ratios were 1.49 (1.25 to 1.78) 
and 0.44 was 0.97 (0.82 to 1.16) for waist-to-height 
ratios 0.62 and 0.44, respectively (fig 8).

In high cardiovascular risk cohorts, neither waist 
circumference or waist-to-height ratio was associated 
with GFR decline risk, similar to the associations 
observed with body mass index (eFigure 7A-B). In 
CKD cohorts, higher waist circumference and waist-
to-height ratio were weakly associated with increased 
risk of GFR decline (eFigure 7C-D). Compared with a 
waist circumference of 92 cm in men and 78 cm in 
women, the hazard ratio was 1.32 (95% confidence 
interval 0.96 to 1.83) for higher circumferences of 
112 cm and 98 cm, and 0.75 (0.49 to 1.15) for lower 
circumferences of 82 cm and 68 cm. Compared with a 
waist-to-height ratio of 0.5, the hazard ratio was 1.42 
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Fig 3 | Body mass index interactions with risk of decline in glomerular filtration rate in general population cohorts, by estimated GFR (eGFR) category, 
sex, diabetes status, and Asian ethnicity. Meta-analysed hazard ratios and 95% confidence intervals are related to body mass index, modelled by 
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Fig 4 | Association of body mass index with risk of decline in glomerular filtration rate 
in high cardiovascular risk cohorts, as shown by meta-analysed hazard ratios and 
95% confidence intervals related to body mass index, modelled by linear splines with 
knots at body mass indices 20, 25, 30, and 35. Circles indicate points with significant 
differences in risk from the reference point at body mass index 25
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(1.10 to 1.83) for a waist-to-height ratio of 0.62, and 
1.30 (0.84 to 2.0) for a waist-to-height ratio of 0.44.

Adiposity measures and risk of death by level of GFR
In general population cohorts, higher body mass 
index, waist circumference, and waist-to-height ratio 
were all associated with risk of death (eFigure 8). By 
contrast, only lower body mass index was associated 
with higher mortality. Associations between body 
mass index and death were qualitatively similar 
across eGFR groups in general population cohorts 
(eFigure 9). In models stratified by baseline eGFR, 
hazard ratios for body mass index 35 versus 25 were 
1.45 (95% confidence interval 1.21 to 1.74), 1.36 
(1.23 to 1.51), 1.31 (1.17 to 1.46), and 1.33 (1.21 to 
1.46) for eGFR subgroups of 90 or more, 60-89, 30-

59, and less than 30 mL/min/1.73 m2, respectively 
(all P values for interaction ≥0.05). The association 
between higher body mass index and risk of death 
was similar in sensitivity analyses excluding the 
first three years of follow-up, and when adjusted for 
potential mediators (body mass index 35 v 25; 1.21, 
1.10 to 1.34; eFigure 10).

In high cardiovascular risk cohorts, higher body 
mass index, waist circumference, and waist-to-height 
ratio were all associated with increased risk of death, 
although not significantly so for waist-to-height ratio 
(eFigure 11). Hazard ratios for body mass indices of 35 
and 20 versus 25 were 1.20 (95% confidence interval 
1.02 to 1.41) and 1.47 (1.23 to 1.78), respectively. 
Results were similar after excluding the first three years 
of follow-up, and slightly attenuated when adjusted for 
potential mediators (body mass index 35 v 25; 1.15, 
1.00 to 1.34; eFigure 12).

In CKD cohorts, higher body mass index and higher 
waist circumference were associated with mortality 
risk; waist-to-height ratio was not significantly 
associated with mortality risk, although only three 
of the six CKD cohorts were included in this analysis 
(eFigure 13). For body mass index, the risks of death 
associated with body mass indices of 35 and 20 versus 
25 were hazard ratios 1.17 (95% confidence interval 
1.01 to 1.37) and 1.49 (1.25 to 1.77), respectively. 
After excluding the first three years of follow-up, the 
association between higher body mass index and risk 
of death in CKD cohorts was stronger (body mass index 
35 v 25; hazard ratio 1.48, 1.31 to 1.68; eFigure 14A). 
The association between higher body mass index and 
risk of death in CKD cohorts was attenuated when 
adjusted for potential mediators (body mass index 35 v 
25; hazard ratio 1.01, 0.90 to 1.14; eFigure 14B).

Discussion
Principal findings
In this global meta-analysis of over five million adults, 
we found that body mass index over 25 was associated 
with increased risk of GFR decline during a mean 
follow-up of eight years. In the general population, 
body mass indices of 30, 35, and 40 were associated 
with 18%, 69%, and 102% increased risk of GFR 
decline, respectively, compared with body mass index 
25. The association between elevated body mass 
index and GFR decline risk was qualitatively similar in 
subgroups by age, sex, race, level of GFR, hypertension, 
and diabetes status, although the magnitude of risk 
was lower in individuals with diabetes and higher in 
Asian cohorts. Adjustment for potential mediators 
attenuated the association between body mass index 
and GFR decline, although body mass indices of 35 and 
40 remained associated with 28% and 46% increased 
risk of GFR decline, compared with body mass index 
25. Associations between body mass index and GFR 
decline were notably weaker in the high cardiovascular 
risk and CKD cohorts. Findings were largely consistent 
in analyses using waist circumference or waist-to-
height ratio.
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Fig 5 | Association of body mass index with risk of decline in glomerular filtration rate 
in high cardiovascular risk cohorts, as shown by hazard ratios in individual studies at 
body mass index 35 versus 25, sorted by average follow-up time (shortest to longest). 
Study acronyms/abbreviations are listed in eAppendix 2 in the supplementary 
materials
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Fig 6 | Association of body mass index with risk of decline in glomerular filtration rate 
in cohorts with chronic kidney disease, as shown by meta-analysed hazard ratios and 
95% confidence interval related to body mass index, modelled by linear splines with 
knots at body mass indices 20, 25, 30, and 35. Circles indicate points with significant 
differences in risk from the reference point at body mass index 25
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Strengths and limitations of study
Although our analysis is the largest study to our 
knowledge to examine the association between 
adiposity and kidney outcomes, some caution should 
be advised in interpreting our findings. We used 
only one baseline measurement of body mass index, 
and changes in weight due to disease that occurred 
before cohort entry could introduce bias, potentially 
weakening associations between higher body mass 
index and adverse outcomes (that is, reverse causality). 
This concept could explain the weaker association in 
high risk cohorts, or the difference may be due in part 
to collider bias. For example, if obesity increases the 
risk for cardiovascular disease, then other risk factors, 
some of which are unmeasured, can be expected to 
be greater in individuals with cardiovascular disease 
who are not obese.24 Alternatively, the weaker 
association in high risk cohorts could signify the 
lack of an independent effect of body mass index on 
kidney outcomes in high risk individuals. We were 
unable to fully adjust for risk factors such as glycated 
haemoglobin, diabetes duration, or drug treatments, 
which could contribute to the association between 
obesity and GFR decline. Other filtration markers such 
as cystatin C were not available to estimate GFR25; 

however, our results were consistent in analyses using 
ESKD alone as the outcome. We lacked uniform data 
on trends in blood pressure control, and thus could 
not examine whether heterogeneity was explained 
by differences in treatment intensity. Lastly, we were 
unable to investigate whether the obesity associated 
decline in GFR was due to obesity itself or its 
determinants (eg, diet, physical activity).

Comparison with other studies
The observed risk associations in our meta-analysis 
between elevated body mass index and GFR decline 
were weaker than what had been observed in two large 
cohorts with longer follow-up intervals.5 6 For example, 
in a study of 320 252 adults in an integrated health 
system with body mass index measured between 
1964-1985 and 15-35 years of follow-up, risk of ESKD 
was 2.6, 5.1, and 6.1-fold higher for body mass index 
ranges 30-34.9, 35-39.9, and 40 or more, respectively, 
compared with range 18.5-24.9.5 However, these 
two older studies could not be included in this meta-
analysis.5 6 Our findings accord with contemporary 
general population studies with shorter follow-up 
intervals.7-10 Neither follow-up time nor calendar year 
explained heterogeneity in the association between 
higher body mass index and GFR decline in our study, 
but we had relatively few cohorts with data from before 
the 1980s.

We speculate that differences in metabolic health 
profiles and management of obesity related conditions 
could explain heterogeneity in study findings.26 For 
example, while prevalence of obesity and diabetes 
increased in the United Kingdom from 2003 to 2009-10 
and in Norway from 1995-97 to 2006-08, prevalence 
of CKD in these countries decreased (UK) or remained 
stable (Norway).27 28 These discordant trends could be 
partly explained by simultaneous improvements in 
blood pressure control in both countries.

Our study confirms a possible advantage of using 
waist circumference over body mass index in assessing 
mortality risk in cohorts with CKD.12 29 30 Both 
elevated body mass index and waist circumference 
were associated with increased mortality risk, but 
no increased risk of death was observed at low 
waist circumference, unlike body mass index. Thus, 
assessment of central obesity should be considered 
in situations where mortality risk prognostication 
affects management decisions (eg, kidney transplant 
candidacy).31 Reverse causation might also partly 
explain null or paradoxical relations between elevated 
body mass index and risk of death reported in previous 
studies of CKD cohorts,11 14 because after excluding 
the first three years of follow-up in the meta-analysis 
of our CKD cohorts, higher body mass index was 
more strongly associated with death. Alternatively, 
obesity could confer short term protective effects in 
individuals at risk for malnutrition, such as those with 
advanced CKD or ESKD.30 While post hoc analyses of 
Look AHEAD (Action for Health in Diabetes) suggest a 
beneficial effect on preventing or slowing progression 
of CKD in individuals with diabetes, further research 
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Fig 7 | Association of body mass index with risk of decline in glomerular filtration rate in 
cohorts with chronic kidney disease, as shown by hazard ratios in individual studies at 
body mass index 35 v 25, sorted by average follow-up time (shortest to longest). Study 
acronyms/abbreviations are listed in eAppendix 2 in the supplementary materials
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is needed to determine the effects of weight loss in 
patients with CKD.32
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