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The magnetic permeability in Fresnel’s equation
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Magnetic permeabilities derived for infinite, periodic media are used in the Fresnel equation to
calculate the reflection from corresponding semi-infinite media. By comparison to finite-difference-
time-domain (FDTD) simulations, we find that the Fresnel equation gives accurate results for 2D
metamaterials which mimic natural magnetism, in a frequency range where the magnetic moment
density dominates the O(kz) part of the total Landau—Lifshitz permittivity. For a 1D layered
structure, or for large frequencies, the correspondence is poor. We also demonstrate that even if a
medium is described accurately by a local permittivity and permeability, the Fresnel equation is not

necessarily valid.

I. INTRODUCTION

When an electromagnetic wave is incident from vac-
uum to a plane boundary, the Fresnel equations can of-
ten be used to calculate the reflection and transmission
coefficients, provided the medium can be described by
a permittivity € and permeability p. Clever design of
composite media with structures much smaller than the
wavelength, so called metamaterials, has made it possi-
ble to tailor the effective parameters e and p to obtain
novel reflection and transmission properties. A nontriv-
ial permeability © may for instance be obtained through
metallic inclusions, where circulating currents may mimic
the magnetic moment in actual atoms. Recent progress
in nanostructuring techniques makes this possible even
at optical frequencies, where the magnetic response for
natural media is absent [1-6].

For most natural media the electric and magnetic
dipole approximations provide a sufficient description.
For metamaterials, however, it turns out that the electric
quadrupole moment [7], or even higher order multipoles
[8] may be significant. It can be shown that magnetism is
a second order spatially dispersive effect of the Landau—
Lifshitz total permittivity [9]. This is also the case for the
electric quadrupole density, and even parts of the electric
octupole and magnetic quadrupole density [8]. If we in-
clude induced magnetic moment in our medium model,
these other terms should also be taken into account.

The effective constitutive parameters of an infinite, pe-
riodic metamaterial are retrieved by inserting a source in
the medium, and calculating the resulting, microscopic
fields and currents [10-13]. This method is sometimes
called current driven homogenization. It is important
to note that the parameters are obtained for an infinite
structure, and it is not obvious how well they describe
the medium response when a boundary is present.

The derivation of Fresnel’s equations [9] requires the
medium to be characterized only by a set of local permit-
tivity and local permeability. In other words, these pa-
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rameters should not only be independent of the wavevec-
tor k, but they should also accurately model the entire
electromagnetic response of the medium. This means
that additional terms (such as higher order multipoles)
should not be necessary to represent the induced current
in the unit cells. The derivation of Fresnel’s equations
also requires the tangential components of the macro-
scopic electric and magnetic fields to be continuous.
Whether or not these fields are continuous will depend
on the particular definition of macroscopic fields in the
homogenization method. None of the conditions are nec-
essarily satisfied for a homogenized metamaterial.

Although there exist boundary conditions for certain
weakly spatially dispersive media [14-18], it is generally
unclear how the higher order multipoles affect the reflec-
tion coefficient of a semi-infinite metamaterial. Still it
is possible to calculate the reflection from a semi-infinite
metamaterial using only results calculated for an infinite
structure [19]. This is done by matching the Bloch modes
of the periodic metamaterial to the incident and reflected
plane waves (Sec. IIT). The Bloch modes are valid ar-
bitrarily close to the boundary. Thus, in this method
one may argue that there is no “transition layer” with
different constitutive behavior [20].

In this work we insert permittivities and permeabili-
ties obtained from infinite structures in the Fresnel equa-
tion, and see how well they predict the reflection from a
semi-infinite metamaterial. We compare the results with
the “exact” solution obtained from finite-difference-time-
domain (FDTD) simulations of the same structure. We
do this for three different periodic media: a 1D layered
dielectric structure, a 2D metal bar structure and a 2D
metallic split-ring medium. For comparison, we use four
different definitions of magnetic permeability [13]; the
conventional definition using the magnetic moment den-
sity [9, 11] ftmm, a definition based on a similar integral
(12, 21] fivy, a definition based on the O(k?) term of the
Landau-Lifshitz permittivity [9, 10, 13] p1, and a trivial
permeability uy = 1.

A similar analysis limited to a 1D layered structure
was done in Ref. [22]. An expression for the reflection
coefficient was derived using the transfer matrix method.
This exact solution was compared with the reflection co-
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efficient calculated using p) from current driven homog-
enization. The reflection coefficient was predicted accu-
rately only in the zero-frequency limit, where py = 1. In
the frequency range where the homogenization method
predicted a nontrivial magnetic response, the reflection
coefficient was not more accurate with current driven ho-
mogenization than by simply setting py = 1. This sug-
gests that the permeability obtained from current driven
homogenization is useless in predicting reflection from a
1D layered structure.

These 1D results are confirmed here. However, by
considering 2D metamaterials that mimic natural mag-
netism, we find that the permeabilities from current
driven homogenization predict the reflection fairly well,
in a frequency range where the permeabilities are nontriv-
ial. From the numerical results it is suggested that this
frequency range is where the three nontrivial permeabil-
ities coincide, i.e., where the magnetic moment density
dominates the O(k?) part of the Landau-Lifshitz total
permittivity (Sec. IV).

For higher frequencies, the reflection is not accurately
predicted by the parameters from current driven homog-
enization. Clearly, the reason can be nonlocal € and p,
and/or that they do not alone represent the total induced
current in the unit cells. However, we demonstrate that
even if the medium is described accurately by local € and
1, the reflection may not be predicted well by Fresnel’s
equation. This is due to the macroscopic fields being de-
fined as fundamental Floquet modes on each side of the
boundary, making the tangential electric and magnetic
fields discontinuous. The macroscopic fields could have
been defined differently, e.g. using test function averag-
ing [23-25]. This would make the fields continuous, at
the expense of introducing a “transition layer” close to
the boundary, with different constitutive relations.

II. INFINITE PERIODIC MEDIUM

Current driven homogenization [10-13] considers an
infinite periodic structure, which is excited by a source.
It is convenient to look at a single spatial Fourier com-
ponent of the source, Joxi(r) = Joe™ ™, where Jg is in-
dependent of r, and k is a fixed parameter, in general
unrelated to frequency w. The microscopic electric field
e(r) is found from the microscopic Maxwell equations.
In our case we use the finite-difference-frequency-domain
(FDFD) method [8, 26]. The microscopic, induced cur-
rent density is given by

J(r) = —iwegle(r) — 1e(r), (1)

where (r) is the microscopic (relative) permittivity in-
side the unit cell, and ¢q is the vacuum permittivity.

The spatial dependency e’®* of the source will cause
the microscopic field to be Bloch-periodic with Bloch-
vector equal to k:

e(r) = ug(r)e™r. (2)

Here ue(r) is a periodic function with the same peri-
odicity as the lattice. The other microscopic fields are
expressed similarly. Let V' be the unit cell containing the
origin. The macroscopic, electric field is defined as the
fundamental Floquet mode, expressed from the averaged
Bloch function [10]:

eik»r

E(r) = v /Ve(r)e*ik'”dz%r. (3)

The macroscopic magnetic field B(r) and the macro-
scopic induced current J(r) are defined similarly. For
simplicity of notation, we will suppress the r dependence
of these fields. Homogenizing the microscopic Maxwell
equations using (3), we obtain [10-13]

ik x £ = iwB, (4a)
ik X H = —iwD + T ext, (4b)
where
DZEog—F;J_Zl(.XMv (53)
—iw

and pg is the vacuum permeability. Here, M is in prin-
ciple arbitrary, as evident by substituting (5) into (4).

Below we will consider four possible definitions of M,
leading to four associated permeabilities [13]. Let the
medium be 2D, as in the z > 0 region of Fig. 1. As-
sume TM polarization with microscopic magnetic field in
the y-direction, and source and microscopic electric field
perpendicular to y. We consider media with a center of
symmetry, and let the origin be this center of symme-
try: e(r) = e(—r). This is done to ensure gyrotropic
effects are negligible, as we are interested in how the
magnetic response contribute to reflections from meta-
material boundaries.

1. Landau-Lifshitz (11) formulation [9]:
M =0. (6)
This means that the permeability is trivial:

sy =1, (7)

and

D' = o€ + L — cpe(w, K)E. (8)
—iw
Here €(w, k) is the Landau-Lifshitz (relative) per-
mittivity tensor, describing the entire electromag-
netic response of the infinite, periodic medium. We
can describe €(w, k) to second order in k:

€ij(w, k) = €5 + Birijkik, (9)

where summation over repeating indices is implied.
In general the tensor coefficients f3;1;; are allowed



to be dependent on k, to describe the remainder
of the Taylor expansion. However, for media and
frequency ranges with weak spatial dispersion, the
higher order terms are negligible, and B;1;; is con-
stant.

2. Magnetic moment (mm) formulation [9, 11]:

eik-r

mm __ . 3
M = Y /Vr x j(r)d°r. (10)

Assuming k = kz, and TM, we can define a mag-
netic permeability fimm in the y-direction by [13]

1 1
M =y kE, + —(1 — i) B 11
vk (=B (1)

Here vy, is a constant (constitutive parameter).
3. Vinogradov—Yaghjian (vy) formulation [12, 21]:

vy eik»r . Ciker 13
MY = G VrXJ(r)e d’r. (12)

The permeability gy is defined from MY in the
same way as fmm is defined from M™™.

4. Transversal-longitudinal formulation [9, 10, 13]:
Here the permeability is defined from the second
order O(k?) part of the Landau-Lifshitz permittiv-

ity (9),

_ krkikyk
[1 - ,u'tll} mn EmipEnjq %ﬂikl]" (13)

We are interested in the permeability for the y-
direction, with k = kz:

1- ual = ﬁwzzw' (14)
For all cases, a permittivity is defined by

€= lllg% €(w, k). (15)
We will mainly be interested in the permittivity for the
a-direction (€),., which will be denoted e.
In the special case where a medium is described accu-
rately by (only) a permittivity € and some permeability
w, we have

Dzeoeg,
H=py'p B

(16a)
(16b)
Comparing to (5) and eliminating M, we find J, which
can be substituted into (8) to find

2

e(w, k) = € — %k x[1-p ] xk. (17)

This is the Landau-Lifshitz permittivity corresponding
to € and . We note that the permeability pu can be seen

3

as a O(k?) effect of €(w,k). If € and p are independent
of k, and (17) is valid, the medium will be called local.

We have defined four permeabilities pun = 1, ftmm, fvy,
and gy, and one permittivity (15). The connection be-
tween the permeabilities, and properties in general, are
discussed in detail in Ref. [13], including causality, pas-
sivity, symmetry, asymptotic behavior, and origin depen-
dence. The analysis in Ref. [13] covers an infinite peri-
odic structure. We are now interested in the semi-infinite
case. Will the constitutive parameters above be useful to
calculate the reflection coefficient using the Fresnel equa-
tion?

III. SEMI-INFINITE MEDIUM

Consider a boundary surface between vaccuum and a
2D periodic metamaterial. The metamaterial consists of
square unit cells with lattice parameter a, and covers
the semi-infinite region z > 0, extending infinitely in the
z-direction. This medium is illuminated by a normally
incident TM-polarized plane wave, using a source located
somewhere to the left of the boundary. We are interested
in the reflected fields. For simplicity we still assume that
the unit cells consist of non-magnetic constituents, and
that the metamaterial has a center of symmetry when
viewed as an infinite periodic medium.

0000
OO0O
OO0
0000 =,
OO0O
OO0O
OO0O
OOOO

z=0

FIG. 1. A semi-infinite 2D periodic metamaterial covers the
region z > 0. For z < 0 there is vacuum. The structure is
illuminated by a TM plane wave source located somewhere to
the left of the boundary. The square unit cells of the meta-
material have lattice parameter a.

Considering a conventional, homogeneous medium
rather than the metamaterial, the reflection coefficient
would usually be given by the Fresnel equation for a TM-
polarized wave:

7€I€0—I€
_6/€0+/€'

™M (18)

Here r1y is defined as the ratio between the complex am-
plitudes of reflected and incident magnetic B-field at the



boundary. Moreover ko = w/c and k = |/ejw/c are the
wavenumbers in vacuum and in the medium, respectively,
where € and p are the electromagnetic parameters of the
medium. If the medium is anisotropic, (18) still applies
if the permittivity and permeability tensors are diagonal
in the coordinate system shown in Fig. 1. Then, in (18),
€ refers to the permittivity in the z-direction, and u to
the permeability in the y-direction.

The Fresnel equation is derived from Maxwell’s equa-
tions for local media. For (18) to predict the reflection
of the semi-infinite metamaterial accurately, we should
therefore require € and p to be independent of k, and
(17) to be valid. A necessary condition is that e(w,k)
is described accurately by a second order Taylor expan-
sion (9), with Bir; independent of k. We should also
require certain elements of 3;;; to vanish (or be small),
such that (9) can be written in the form (17). The per-
meability p,; will then describe the O(k?) part of €(w, k)
accurately [9, 10, 13].

For a semi-infinite periodic medium, such as that in
Fig. 1, we can calculate the reflection coefficient using a
mode matching technique (Appendix B), or with FDTD
(Sec. IV). The mode matching technique is particularly
simple in 1D when the metamaterial is homogeneous in
the z and y directions. Assuming there is a vacuum layer
immediately to the right of the boundary, as in Fig. 1
and our numerical examples, the reflection coefficient be-
comes (Appendix B):

ko — kg + Z-Z;(O)
M — a0 ui)Egi . (19)
ko + kB — 150

Here up(2) is the periodic Bloch function for the magnetic
b(z) field. For a layered structure the Bloch wavenumber
kp is given by the dispersion relation [22]

cos(kga) =cos [(n1dy + nads)wa/c| (20)
2
ny—n . .
— % sin (nldlwa/c) sin (ngdgwa/c),

where d; and ds are the layer thicknesses (dy + dy = a),
as seen in the upper part of Fig. 3. For our examples,
ny = 1 and ne = \/e.

The power reflection coefficient R = |rpy |2, with 7y
given by (19), is plotted in Fig. 2 for the upper metamate-
rial unit cell in Fig. 3. Note that the reflection coefficient
is calculated solely by quantities describing propagation
in an infinite periodic structure. As seen in the figure, the
reflection coefficient matches that from an independent
FDTD calculation.

The mode matching technique in 1D leads to a very
interesting result (Appendix B): If we use (3) to de-
fine the macroscopic fields for the incident, reflected
and transmitted wave separately (using the correspond-
ing wavevectors), the macroscopic fields are well defined
for all z # 0. For example, considering z > 0, the
z-dependence becomes exp(ikpz) everywhere. In other
words, there is no “transition layer” in the vicinity of
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FIG. 2. Power reflection R = |1ﬁTM|2 obtained from FDTD,
and from (19), where kg is obtained from (20), and wup(2)
is obtained from uy(z) = b(z)e”**B*. The microscopic field
b(z) can be obtained e.g. using a transfer matrix method,
or (as here) with FDFD. The unit cell was represented by a
grid of 200 x 1 and 5000 x 1 points in the FDTD and FDFD
calculations, respectively.

the interface with different behavior. This comes at a
price: The tangential macroscopic fields are not contin-
uous across the boundary. Thus the Maxwell boundary
conditions do not apply [see (B14)-(B15)], unless we de-
fine (somewhat artificial) macroscopic electric and mag-
netic surface currents.

In 2D a simple expression such as (19) cannot be found
for the reflection coefficient. This is because additional
Bloch modes will be excited at the boundary. For small
frequencies these modes have usually complex propaga-
tion constants, meaning that they are present close to the
boundary. To find the reflection coefficient, the full mode
matching matrix problem must be solved. Alternatively,
one can use a numerical method such as FDTD.

IV. COMPARISON OF REFLECTION
COEFFICIENTS FROM FDTD AND FRESNEL’S
EQUATION

We will now consider how accurate the permittivity
and permeabilities from current-driven homogenization
(Sec. II) predict the reflection of the semi-infinite peri-
odic structure (Sec. IIT). The reflection coefficient (18)
is calculated using the permittivity (15) paired with the
four different permeabilities (1, fmm, fvy, and pg1). The
results are compared with FDTD simulations of the same
semi-infinite structure. We used the free open source
software Meep for FDTD simulations. We do this for the
three materials with unit cells shown in Fig. 3.

According to an earlier investigation of the current
driven homogenization method for a 1D layered struc-
ture [22], the permeability uy does not lead to a more
accurate reflection coefficient than that resulting from a
trivial gy = 1. We verify this conclusion in Subsec. IV A.



di/2 di/2

0.25a 0.25a

FIG. 3. Different unit cells for the simulations: Layered struc-
ture (upper); two bars (middle); split-ring resonator (lower).

However, in Subsecs. IV B and IV C we demonstrate that
this is not the case for the 2D metal two-bar and split-
ring structures, which more closely mimic the magnetism
of natural media.

In the FDFD calculations a quadratic grid of 600 x 600
points was used to represent the unit cells of all three
examples. Grids of 200x 1 and 150 x 150 points were used
to represent the unit cells in the FDTD simulations for
the 1D and 2D examples, respectively. In all simulations
we have used a unit cell size a = 1 um. We note that
the resonance of the split-ring structure is very sensitive
to the resolution and the numerical representation of the
gap. A large resolution was therefore necessary to obtain
a convergent result in Figs. 8-9.

A. Layered structure

The unit cell for the layered structure is shown in the
upper part of Fig. 3. The layers are dielectric with € = 16.
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FIG. 4. Power reflection R = |rrum|? for the layered dielec-
tric structure obtained from FDTD, and from (18) using the
different permeabilities.
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FIG. 5. The four u’s of the layered structure. We plot only
the real parts, as the imaginary parts are negligible for all
four p’s.

The power reflection coefficients R = |rrum|? obtained
from FDTD and the Fresnel equation (18) using the four
different permeabilities are shown in Fig. 4. The fig-
ure shows that the Fresnel and FDTD reflection curves
match well only for very small frequencies (wa/c < 0.2).
As shown in Fig. 5 the four permeabilities all agree on an
approximately non-magnetic response (1 = 1) in this fre-
quency region. This is in line with the previous analysis
[22] of a similar structure.

Local effective parameters are justified in Appendix A
to approximate the macroscopic behavior of the infinite
layered structure for wa/c < 0.6. None of the four Fres-
nel reflection coefficients do however predict the actual
(FDTD) reflection well in the region 0.3 < wa/c < 0.6.
This suggests that the conventional Maxwell boundary
conditions do not apply, for the macroscopic fields de-
fined as the fundamental Floquet modes. This peculiar-
ity is further discussed in Sec. V.
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FIG. 6. Power reflection for the silver two-bar medium ob-
tained from FDTD, and from (18) using the different u’s.

B. Silver two-bars

The unit cell for the silver two-bar structure is shown
in the middle of Fig. 3. The silver in this and the next
example is described by a Drude—Lorentz model for Ag
with parameters from Ref. [27]

It is seen from Fig. 6 that (18) with the permeabilities
Hels fmm and piyy predicts the actual reflection well for
the frequency range wa/c < 0.4. As shown in Fig. 7 these
three permeabilities coincide, and describe the medium
as diamagnetic in this frequency region. The trivial p =
1 does however give poor results in the region. For the
silver two-bar medium, the permeability obtained from
current driven homogenization thus contribute to predict
the reflection accurately, in a frequency region with a
significant magnetic response.

C. Silver split-ring

The unit cell for the silver split-ring structure is shown
in the lower part of Fig. 3. It is seen from Fig. 8 that the
Fresnel coefficient with the permeabilities py & fimm ~
vy predicts the FDTD coefficient quite well for frequen-
cies wa/c S 1.1. As seen in Fig. 9 all four permeabilities
are close to 1 for wa/c < 0.5. However, even in this fre-
quency range the diamagnetic response causes the actual
reflection to deviate from the prediction by the trivial
wy = 1. For 0.6 < wa/c < 1 the three nontrivial perme-
abilities suggest a strong magnetic response (resonance),
and the prediction based on the trivial yj; thus becomes
very poor.

V. DISCUSSION AND CONCLUSION

The standard derivation of the Fresnel reflection coef-
ficient (18) is based on the continuity of the tangential
components of the macroscopic € and H fields, together
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FIG. 7. The four u’s of the two-bar metamaterial; real parts
(upper plot) and imaginary parts (lower plot). The bars are
made from silver, and a = 1 pm.

with the assumption of a local medium. For sufficiently
high frequencies the locality condition (17) is not fulfilled,
and there is no reason to expect that (18) will predict the
reflection from the periodic structure.

Nevertheless, for the 2D examples in Subsecs. IV IV B-
IV C, the Fresnel reflection coefficient (18), calculated
with the permittivty (15) and any of the nontrivial per-
meabilities fmm, fivy, O f1, matches the FDTD result
fairly well in a frequency range with a nontrivial magnetic
response.

The examples in Sec. IV show that the Fresnel co-
efficient predicts the reflection well only in frequency
ranges where the three nontrivial permeabilities coincide.
This condition means, in somewhat loose terms, that the
magnetic moment density dominates the O(k?)-term of
€(w, k).

We have also seen that local constitutive parameters e
and p describing the Landau—Lifshitz permittivity e(w, k)
well is not a sufficient condition for the standard Fresnel
equation (18) to be valid. This is particularly clear from
the 1D example where the Fresnel reflectivity did not
match the exact result, except for very small frequencies
where the magnetic response is absent. This mismatch
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FIG. 8. Power reflection for the silver split-ring medium ob-
tained from FDTD, and from (18) using the four different

ws.

happened even in a frequency range where the medium
was verified to be local.

Thus, although a medium is local, (18) is sometimes
not able to predict the actual reflection from the meta-
material. This means that continuity of the tangential
component of £ and H at z = 0 must be violated. Alter-
natively, there is a “transition layer” close to the bound-
ary, where this discontinuity is smoothed out.

In the 1D case, we can define the macroscopic fields
as a superposition of the fundamental Floquet modes,
for z > 0 and z < 0 separately. Then, for z > 0, €
is given by (3), while for z < 0 we simply have £ = e.
Since the tangential component of e is always continuous
we will only get continuity of the tangential component
of £if £(z = 07) = e(z = 0), which there is no rea-
son should be the case in general. The discontinuity is
seen explicitly by (B14) and (B15) in Appendix B. For
normalized, incident electric field, the discontinuity of
the macroscopic electric field is given by the macroscopic
transmission coefficient times 1 —u,(0)/@.. Here u.(z) is
the Bloch function, and . its average over a unit cell.

We could have defined macroscopic fields differently,
e.g. using test function averaging [23-25]. This leads
to continuous fields; however at the expense of introduc-
ing a transition layer where the constitutive parameters
€ and p are not valid. Of course, such a definition will
not make the Fresnel equation more accurate. The mi-
croscopic fields are the same, and the amount of each
approximate-plane-waves far away from the boundary,
will not change.

The Maxwell boundary conditions for the macroscopic
fields can be restored by introducing macroscopic surface
currents:

£
[B(

(21a)
(21b)

0)
07)

z
z
Here IC, and KCp;, are macroscopic electric and magnetic
surface currents, respectively. These surface currents are
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FIG. 9. The four p’s of the silver split-ring metamaterial,
a =1 um. Real parts (upper plot) and imaginary parts (lower
plot).

somewhat artificial, since they do not correspond to any
physical, microscopic currents close to the boundary.

Appendix A: Locality and macroscopic wavenumber

Under source-free propagation inside an infinite peri-
odic structure the microscopic electric field of a mode can
be written in Bloch form as in (2), but where the Bloch
wave vector must satisfy a dispersion relation k = kp(w).
Here w is the angular frequency of the incoming wave,
and the dispersion relation k = kg (w) may be found by
insertion of the microscopic field (2) into the source-free
microscopic Maxwell’s equations. In the case of source-
free propagation, the spatial variation of the macroscopic
fields (3) is thus given by the Bloch wave vector kp(w)
rather than the forced k of the plane wave source in the
current driven homogenization method.

If the microscopic susceptibility e(r) — 1 and/or the
frequency w is large, the assumption of small ka is not
necessarily valid. Then the Landau-Lifshitz permittivity
€(w, k) will contain terms O(k*), and (17) is not satis-
fied. To verify whether the locality condition is fulfilled
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for k = kg (w) for the layered structure. We plot only the real
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FIG. 11. Comparison of the wavenumbers for the layered

structure. We plot only the real parts, as the imaginary parts
are negligible.

for the media and frequency ranges in Sec. IV, we plot
the left and right hand sides of the zz tensor element
of (17) as a function of w. In these plots we use all four
permeabilities, and set k = kp(w). As expected the right
hand side of (17) calculated using p) gives best match
with the left hand side, as this is the permeability which
includes as much as possible of the O(k?)-term of e(w, k).

We also check for which frequency ranges kp can be
approximated by k = ,/€fw/c. Here the permittivity
(15) is paired with the four permeabilities, respectively,
giving four different wavenumbers.

As seen in Fig. 10 the locality condition (17) with the
parameters € and py) is a good approximation for wa/c <
0.6. For larger frequencies the left and right hand sides
of (17) starts to deviate, which means the approximation
of weak spatial dispersion does not hold for such high
frequencies. Since this is a 1D structure, only a single
Bloch mode will be excited.

Note that exact values for the Bloch wavenumbers
kg may be obtained from (20). Since the value kp is

found by inverse cosine of (20) the branch for kg must
be chosen. We choose kg such that Imkg > 0 and
Rekp < m/a for all w > 0. No matter which branch
is chosen, (17) does however not give an accurate de-
scription for wa/c > 0.6. From Fig. 4 it is seen that
this is where the first Bragg resonance occurs. For such
high frequencies it is not possible to describe the periodic
structure in terms of effective parameters e and p [28].
From Fig. 11 it is seen that ,/ejiw/c using any of the
four p’s approximates the Bloch wavenumber kg well for
wa/c < 0.7. This means that the dispersion relation may
be approximated by k? = euw?/c? for these frequencies.

Appendix B: Mode matching

Consider a semi-infinite medium with 2D periodicity.
The boundary of the semi-infinite medium is z = 0, and
the medium is homogeneous along the y-direction. A
plane-wave source with magnetic field amplitude 1 and
transversal dependence exp(ik,x) is located somewhere
for z < 0. The magnetic field points in the y-direction
(TM polarization). If the periodic medium were infinite,
the solutions could have been written in Bloch form

W (2, 2) = bz, z)eihartikez, (B1)

with Bloch function u!(z,z). Here k, and k! satisfy a
dispersion relation w = w(k,, k'), which can be found by
substituting (B1) into the source-free Maxwell equations.
The superscript | indexes the branches of the dispersion
relation for the given w and k,. Although the medium
now is semi-infinite, we still look for a solution which is
a superposition of modes (B1). As long as we are able to
satisfy the boundary conditions at z = 0, this strategy
must be ok.

Let Kj be the reciprocal lattice vector component
along the z-direction. The magnetic field for z < 0 is
given by

b((E,Z) _ eikzm-l-ikz(km)z + Zpkei(kz-l-Kk);E—ikz(kz-i-Kk)z,

k
(B2)
where py, denote the reflection coefficients, and k, (k) =
(w?/c? — k2)1/2. For z > 0 we have

b(x,z) = Z mul(z, z)eik”“klzz, (B3)
]

where 7; are the transmission coefficients.

The Maxwell boundary conditions require b(z,z) to
be continuous (recall that the microscopic inclusions are
nonmagnetic):

etha® 4 Z pret et K)o — Z nul(z,0)e*=* (B4)
k 1

The periodic function uf) can be written as a Fourier series
along the z-direction:

up(w,2) = Y Bj(2)e ", (B5)
k



where Bl (z) are the Fourier coefficients. This gives

k I,k

—tkyx—iK,x

which after multiplication by e , and integra-

tion wrt. x, can be written

S0+ pn = »_BL(0). (B7)
l

Similarly, one can express the continuity of the tan-
gential electric field. The resulting system of two mode
matching equations can be solved for the reflection and
transmission coefficients. The resulting, microscopic field
is given by (B2) and (B3).

The longitudinal wavenumber k. (k,+ K}, ) is imaginary
for all k’s except k = 0. Also, it is reasonable to assume
that k. has a large imaginary part for all I’s except one,
say [ = 0. Thus, sufficiently far away from the boundary
we have

b(x e eikzm-l-ikz(km)z +p06ikmm_ikz(kw)z, 2 <0,
) 0
’ Toud (z, z)ekertikzz z > 0.
(B8)

We now specialize to 1D, where the structure and
source are homogeneous along the z-direction. This case
is both TE and TM simultaneously. Writing the elec-
tric field in Bloch form e(z) = u.(z)e’*2* for z > 0, the
boundary conditions for the microscopic fields become

(B9a)
(B9Db)

1+ Pe = Teue(o)a
iko (1 — pe) = Te [ZkBUe(O) + ’LL;(O)] )

where kg is the wavenumber in vacuum, kg is the Bloch
wavenumber in the structure, and p. and 7.u.(0) are
the reflection and transmission coefficients for the micro-
scopic electric field. The solutions for 7. and p. become

2k
Tee(0) = ———— s, (B10a)
Fo + b — 1555
ko — kg + iz/e(o)
pe = Tote(0) — 1 = . (B10b)

Fo + ks — i35

Similarly, we can find the reflection and transmission co-
efficients for the magnetic b field (in an obvious notation):

2k0€(0+)

myup(0) = AR (Blla)
Foe(0+) + ki — i 2
k08(0+) — kg + lzlb(o)
oy = myup(0) — 1 = 5. (B11b)
koe(0F) + kg — i3k g

Here £(0T) is the microscopic permittivity immediately
to the right of the boundary (2 = 0%). Note that we
must have p, = —pe.

In light of (3) we identify the macroscopic fields

e(z), for 2 <0,
E(2) = ) B12
(2) {TeﬁeeZsz, for z > 0, ( )
b(z) for 2 <0
B(z) = T -7 B13
(2) {Tbube”@Bz, for z > 0, ( )

where the bar denotes averaging over a unit cell. This
means that p. and p, will remain reflection coefficients
for the macroscopic fields, while the transmission coef-
ficients will be different. Surprisingly, this leads to a
discontinuity for the macroscopic electric field:

E(O)=E(07) = Teiie — (14 pe) = 71— ue(0)] - (B14)
Similarly, we find

B(0")=B(07) = nyip— (1+pp) = 7 {@b—ub(o)}. (B15)
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