
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-019-09442-y

Computing the Interleaving Distance is NP-Hard

Håvard Bakke Bjerkevik1 ·Magnus Bakke Botnan2 ·Michael Kerber3

Received: 22 November 2018 / Revised: 8 August 2019 / Accepted: 10 September 2019
© The Author(s) 2019

Abstract
We show that computing the interleaving distance between two multi-graded per-
sistence modules is NP-hard. More precisely, we show that deciding whether two
modules are 1-interleaved is NP-complete, already for bigraded, interval decompos-
able modules. Our proof is based on previous work showing that a constrained matrix
invertibility problem can be reduced to the interleaving distance computation of a
special type of persistence modules. We show that this matrix invertibility problem is
NP-complete. We also give a slight improvement in the above reduction, showing that
also the approximation of the interleaving distance is NP-hard for any approximation
factor smaller than 3. Additionally, we obtain corresponding hardness results for the
case that the modules are indecomposable, and in the setting of one-sided stability.
Furthermore, we show that checking for injections (resp. surjections) between per-
sistence modules is NP-hard. In conjunction with earlier results from computational
algebra this gives a complete characterization of the computational complexity of one-
sided stability. Lastly, we show that it is in general NP-hard to approximate distances
induced by noise systems within a factor of 2.

Keywords NP-hardness · Persistent homology · Interleavings · Matrix completion
problems

Mathematics Subject Classification 15A83 · 55U99

Communicated by Herbert Edelsbrunner.

B Magnus Bakke Botnan
m.b.botnan@vu.nl

Håvard Bakke Bjerkevik
havard.bjerkevik@ntnu.no

Michael Kerber
kerber@tugraz.at

1 Institutt for matematiske fag, NTNU, 7491 Trondheim, Norway

2 Department of Mathematics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam,
The Netherlands

3 Institut für Geometrie, TU Graz, 8010 Graz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-019-09442-y&domain=pdf

Foundations of Computational Mathematics

1 Introduction

1.1 Motivation and Problem Statement

A persistence module M over R
d is a collection of vector spaces {Mp}p∈Rd and linear

maps Mp→q : Mp → Mq whenever p ≤ q, with the property that Mp→p is the
identity map and the linear maps are composable in the obvious way. For d = 1, we
will talk about single-parameter persistence, and for d ≥ 2, we will use the term
multi-parameter persistence.

Persistence, particularly in its single-parameter version, has recently gained a lot
of attention in applied fields, because one of its instantiations is persistent homology,
which studies the evolution of homology groups when varying a real scale parameter.
The observation that topological features in real data sets carry important information
to analyze and reason about the contained data has given rise to the term topological
data analysis (TDA) for this research field, with various connections to application
areas, e.g., [2,9,16–18].

A recurring task in TDA is the comparison of two persistence modules. The natural
notion in terms of algebra is by interleavings of two persistence modules: given two
persistence modules M and N as above and some ε > 0, an ε-interleaving is the
assignment of maps φp : Mp → Np+ε and ψp : Np → Mp+ε which commute with
each other and the internal maps of M and N . The interleaving distance is then just
the infimum over all ε for which an interleaving exists.

A desirable property for any distance on persistence modules is stability, meaning
informally that a small change in the input data set should only lead to a small distor-
tion of the distance. At the same time, we aim for a sensitivemeasure, meaning that the
distance between modules should be generally as large as possible without violating
stability. As an extreme example, the distance measure that assigns 0 to all pairs of
modules is maximally stable, but also maximally insensitive. Lesnick [14] proved that
among all stable distances for single- or multi-parameter persistence, the interleaving
distance is the most sensitive one over prime fields. This makes the interleaving dis-
tance an interesting measure to be used in applications and raises the question of how
costly it is to compute the distance [14, Sec. 1.3 and 7]. Of course, for the sake of
computation, a suitable finiteness condition must be imposed on the modules to ensure
that they can be represented in finite form; we postpone the discussion to Sect. 3, and
simply call such modules of finite type.

The complexity of computing the interleaving distance is well understood for the
single-parameter case. The isometry theorem [8,14] states the equivalence of the
interleaving distance and the bottleneck distance, which is defined in terms of the per-
sistence diagrams of the persistence modules and can be reduced to the computation
of a min cost bottleneck matching in a complete bipartite graph [11]. That matching,
in turn, can be computed in O(n1.5 log n) time, and efficient implementations have
been developed recently [13].

The described strategy, however, fails in the multi-parameter case, simply because
the twodistances donotmatch formore thanoneparameter: even if themulti-parameter
persistence module admits a decomposition into intervals (which are “nice” indecom-

123

Foundations of Computational Mathematics

posable elements, see Sect. 3), it has been proved that the interleaving distance and the
multi-parameter extension of the bottleneck distance are arbitrarily far from each other
[5, Example 9.1]. Another example where the interleaving and bottleneck distances
differ is given in [3, Example 4.2]; moreover, in this example the pair of persistence
modules has the property that potential interleavings can be written on a particular
matrix form, later formalized by the introduction ofCI problems in [4]. A consequence
is that the strategy of computing interleaving distance by computing the bottleneck
distance fails also in this special case.

1.2 Our Contributions

We show that, for d = 2, the computation of the interleaving distance of two per-
sistence modules of finite type is NP-hard, even if the modules are assumed to be
decomposable into intervals. In [4], it is proved that the problem is CI-hard, where CI
is a combinatorial problem related to the invertibility of a matrix with a prescribed set
of zero elements. This is done by associating a pair of modules to each CI problem
such that the modules are 1-interleaved if and only if the CI problem has a solution.
We “finish” this proof by showing that CI is NP-complete, hence proving the main
result. The hardness result on CI is independent of all topological concepts required
for the rest of the paper and potentially of independent interest in other algorithmic
areas.

Moreover, we slightly improve the reduction from [4] that asserts the CI-hardness
of the interleaving distance, showing that also obtaining a (3 − ε)-approximation
of the interleaving distance is NP-hard to obtain for every ε > 0. This result fol-
lows from the fact that our improved construction takes an instance of a CI problem
and returns a pair of persistence modules which are 1-interleaved if the instance
has a solution and are 3-interleaved if no solution exists. We mention that for
rectangle decomposable modules in d = 2, a subclass of interval decomposable
modules, it is known that the bottleneck distance 3-approximates the interleaving dis-
tance [3, Theorem 3.2], and can be computed in polynomial time. While this result
does not directly extend to all interval decomposable modules, it gives reason to
hope that a 3-approximation of the interleaving distance exists for a larger class of
modules.

We also extend our hardness result to related problems: we show that it is NP-
complete to compute the interleaving distance of two indecomposable persistence
modules (for d = 2). We obtain this result by “stitching” together the interval decom-
posables from our main result into two indecomposable modules without affecting
their interleaving distance. We remark that the restriction of computing the interleav-
ing distance of indecomposable interval modules has recently been shown to be in P
[10].

Bauer and Lesnick [1] showed that the existence of an interleaving pair, for modules
indexed over R, is equivalent to the existence of a single morphism with kernel and
cokernel of a corresponding “size”.While the equivalence does not hold in general, the
two concepts are still closely related for d > 1. Using this, we obtain as a corollary to

123

Foundations of Computational Mathematics

the aforementioned results that it is in general NP-complete to decide if there exists a
morphismwhose kernel and cokernel have size bounded by a given parameter.We also
show that it is NP-complete to decide if there exists a surjection (dually, an injection)
from one persistence module to another. Together with the result of [6], this gives a
complete characterization of the computational complexity of “one-sided stability”.
Furthermore, we remark that this gives an alternative proof of the fact that checking for
injections (resp. surjections) between modules over a finite-dimensional algebra (over
a finite field) is NP-hard. This was first shown in [12, Theorem 1.2] (for arbitrary
fields). The paper concludes with a result showing that it is in general NP-hard to
approximate distances induced by noise systems (as introduced by Scolamiero et al.
[19]) within a factor of 2.

1.3 Outline

We begin with the hardness proof for CI in Sect. 2. In Sect. 3, we discuss the
representation-theoretic concepts needed in the paper. In Sect. 4, we describe our
improved reduction scheme from interleaving distance to CI. In Sect. 5, we prove
the hardness for indecomposable modules. In Sect. 6, we prove our hardness result
for one-sided stability. A result closely related to one-sided stability can be found in
Sect. 7 where we discuss a particular distance induced by a noise system.We conclude
in Sect. 8.

2 The CI Problem

Throughout the paper,we setF to be anyfinite fieldwith a constant number of elements.
We write F

n×n for the set of n × n-matrices over F, and Pi j ∈ F for the entry of P
at the position at row i and column j . We write In for the n × n-unit matrix. The
constrained invertibility problem asks for a solution of the equation AB = In , when
certain entries of A and of B are constrained to be zero. Formally, using the notation
[n] := {1, . . . , n}, we define the language

CI := {(n, P, Q) | P ⊆ [n] × [n] ∧ Q ⊆ [n] × [n] ∧ ∃A, B ∈ F
n×n :

(∀(i, j) ∈ P : Ai, j = 0 ∧ ∀(i, j) ∈ Q : Bi, j = 0 ∧ AB = In
)}.

We can write CI-instances in a more visual form, for instance writing

⎛

⎝
∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0

⎞

⎠

⎛

⎝
∗ ∗ ∗
∗ ∗ 0
∗ 0 ∗

⎞

⎠ = I3

instead of (3, {(2, 2), (3, 3)}, {(2, 3), (3, 2)}). Indeed, the CI problem asks whether in
the above matrices, we can fill the ∗-entries with field elements to satisfy the equation.

123

Foundations of Computational Mathematics

In the above example, this is indeed possible, for instance by choosing

A =
⎛

⎝
1 1 1
1 0 1
1 1 0

⎞

⎠ B =
⎛

⎝
−1 1 1
1 −1 0
1 0 −1

⎞

⎠ .

We sometimes also call A and B a satisfying assignment. In contrast, the instance

⎛

⎝
0 ∗ 0
∗ ∗ ∗
∗ ∗ ∗

⎞

⎠

⎛

⎝
∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

⎞

⎠ = I3

has no solution, because the (1, 1) entry of the product on the left is always 0, no
matter what values are chosen. Note that the existence of a solution also depends on
the characteristic of the base field. For an example, see Chapter 4, page 13 in [4].

The CI problem is of interest to us, because we will see in Sect. 4 that CI reduces
to the problem of computing the interleaving distance, that is, a polynomial time
algorithm for computing the interleaving distance will allow us to decide whether a
triple (n, P, Q) is in C I , also in polynomial time. Although the definition of CI is
rather elementary and appears to be useful in different contexts, we are not aware of
any previous work studying this problem (apart from [4]).

It is clear that C I is in NP because a valid choice of the matrices A and B can be
checked in polynomial time. We want to show that C I is NP-hard as well. It will be
convenient to do so in two steps. First, we define a slightly more general problem,
called generalized constrained invertibility (GCI), and show that GCI reduces to CI.
Then, we proceed by showing that 3SAT reduces to GCI, proving the NP-hardness of
CI.

2.1 Generalized Constrained Invertibility

We generalize from the above problem in two ways: first, instead of square matrices,
we allow that A ∈ F

n×m and B ∈ F
m×n (where m is an additional input). Second,

instead of forcing AB = In , we only require that AB coincides with In in a fixed
subset of entries over [n] × [n]. Formally, we define

GC I := {(n,m, P, Q, R) | P ⊆ [n] × [m] ∧ Q ⊆ [m] × [n] ∧ R ⊆ [n]
× [n] ∧ ∃A ∈ F

n×m, B ∈ F
m×n :

(∀(i, j) ∈ P : Ai, j = 0 ∧ ∀(i, j) ∈ Q : Bi, j
= 0 ∧ ∀(i, j) ∈ R : (AB)i, j = (In)i, j

)}.

Again, we use the following notation

(∗ ∗ ∗
0 0 0

)
⎛

⎝
∗ 0
0 ∗
0 0

⎞

⎠ =
(
1 0
∗ ∗

)

123

Foundations of Computational Mathematics

for theGCI-instance (2, 3, {(2, 1), (2, 2), (2, 3)}, {(1, 2), (2, 1), (3, 1), (3, 2)}, {(1, 1),
(1, 2)}). This instance is indeed in GCI, as for instance,

(
1 0 0
0 0 0

)
⎛

⎝
1 0
0 1
0 0

⎞

⎠ =
(
1 0
0 0

)
.

GCI is indeed generalizing CI, as we can encode any CI-instance by setting m = n
and R = [n] × [n]. Hence, CI trivially reduces to GCI. We show, however, that also
the converse is true, meaning that the problems are computationally equivalent. We
will need the following lemma which follows from linear algebra:

Lemma 1 Let M ∈ F
n×m, N ∈ F

m×n with m > n such that MN = In. Then there
exist matrices M ′ ∈ F

(m−n)×m, N ′ ∈ F
m×(m−n) such that

[
M
M ′

] [
N N ′] = Im .

Proof Pick M ′′ ∈ F
(m−n)×m so that

[
M
M ′′

]
has full rank. This is possible, as the

row vectors of M are linearly independent, so we can pick the rows in M ′′ iteratively
such that they are linearly independent of each other and those in M . Let M ′ =
M ′′ − M ′′NM , which gives

M ′N = (M ′′ − M ′′NM)N = M ′′N − M ′′N In = 0(m−n)×n .

Since

[
M
M ′′

]
=

[
In 0n×(m−n)

M ′′N Im−n

] [
M
M ′

]
,

[
M
M ′

]
also has full rank, which means that it has an inverse. Let N ′ be the last m − n

columns of this inverse matrix. We get

[
M
M ′

] [
N N ′] =

[
In 0n×(m−n)

0(m−n)×n Im−n

]
= Im .

�

Lemma 2 GCI is polynomial time reducible to CI.

Proof Fix a GCI-instance (n,m, P, Q, R). We have to define a polynomial time algo-
rithm to compute a CI-instance (n′, P ′, Q′) such that

(n,m, P, Q, R) ∈ GC I ⇔ (n′, P ′, Q′) ∈ C I .

123

Foundations of Computational Mathematics

Write the GCI-instance as AB = C , where A and B are matrices with 0 and ∗
entries (of dimensions n ×m and m × n, respectively), and C is an n × n-matrix with
1 or ∗ entries on the diagonal, and 0 or ∗ entries away from the diagonal (as in the
example above).

Define the matrix I ∗
n as the matrix with 0 away from the diagonal and ∗ on the

diagonal. Moreover, let C̄ denote the matrixC with all 1-entries replaced by 0-entries.
Now, consider the GCI-instance

[
A I ∗

n

] [
B
C̄

]
= In (1)

which can be formallywritten as (n, n+m, P ′, Q′, [n]×[n]) for some choices P ′ ⊇ P ,
Q′ ⊇ Q.

We claim that the original instance is in GCI if and only if the extended instance
is in GCI. First, assume that AB = C has a solution (that is, an assignment of field
elements to ∗ entries that satisfies the equation). Then, we pick all diagonal entries in
I ∗
n as 1, so that the matrix becomes In . Also, we pick C̄ to be In − AB; this is indeed
possible, as an entry in C̄ is fixed only if the corresponding positions of In and AB
coincide. With these choices, we have that

[
A I ∗

n

]
[
B
C̄

]
= AB + In(In − AB) = In,

as required.
Conversely, if there is a solution for the extended instance, write X for the assign-

ment of I ∗
n and Y for the assignment of C̄ . Then AB + XY = In . Now fix any

index (i, j) ∈ R and consider the equation in that entry. By construction Yi, j = 0,
and multiplication by the diagonal matrix X does not change this property. It follows
that (AB)(i, j) = (In)i, j , which means that AB = C has a solution. Hence, the two
instances are indeed equivalent.

To finish the proof, we observe that (1) is in GCI if and only if

[
A I ∗

n
∗m×m ∗m×n

] [
B ∗m×m

C̄ ∗n×m

]
= In+m (2)

is in GCI, where ∗a×b is simply the a × b matrix only containing ∗ entries. Formally
written, this instance corresponds to (n + m, n + m, P ′, Q′, [n + m] × [n + m]). To
see the equivalence, if (1) is in GCI, Lemma 1 asserts that there are indeed choices for
the ∗-matrices to solve (2) as well. In the opposite direction, a satisfying assignment
of the involved matrices in (2) also yields a valid solution for (1) when restricted to
the upper n rows and left n columns, respectively.

Combining everything, we see that (n,m, P, Q, R) is in GCI if and only if (n +
m, n+m, P ′, Q′, [n+m]×[n+m]) is in GCI. The latter, however, is equivalent to the
CI-instance (n +m, P ′, Q′). The conversion can clearly be performed in polynomial
time, and the statement follows. �

123

Foundations of Computational Mathematics

2.2 Hardness of GCI

We describe now how an algorithm for how deciding GCI can be used to decide
satisfiability of 3SAT formulas. Let φ be a 3CNF formula with n variables and m
clauses. We construct a GCI-instance that is satisfiable if and only if φ is satisfiable.

In what follows, we will often label some ∗ entries in matrices with variables when
we want to talk about the possible assignments of the corresponding entries.

The first step is to build a “gadget” that allows us to encode the truth value of a
variable in the matrix. Consider the instance

(∗ 0 ∗
0 ∗ ∗

) ⎛

⎝
x 0
0 y
∗ ∗

⎞

⎠ = I2.

In any solution to this equation, not both x and y can be zero because otherwise, the
right matrix would have rank at most 1. Furthermore, when extending the instance by
one row/column

⎛

⎝
a b 0
∗ 0 ∗
0 ∗ ∗

⎞

⎠

⎛

⎝
0 x 0
0 0 y
0 ∗ ∗

⎞

⎠ =
⎛

⎝
∗ 0 0
0 1 0
0 0 1

⎞

⎠ ,

we see that both ax = 0 and by = 0 must hold, which is then only possible if at least
one entry a or b is equal to 0. In fact, there is a solution with a �= 0, and a solution
with b �= 0, for instance

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝
0 1 0
0 0 0
0 0 1

⎞

⎠ =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ .

The intuition is that for a variable xi appearing in φ, we interpret xi to be true if
a �= 0, and to be false if b �= 0. We build such a gadget for each variable. A crucial
observation is that we can do so with all variable entries placed in the same row. This
works essentially by concatenating the variable gadgets, in a block-like fashion. We
show the construction for three variables as an example.

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

a0 b0 0 a1 b1 0 a2 b2 0 ∗
∗ 0 ∗ 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 ∗ 0 ∗ 0
0 0 0 0 0 0 0 ∗ ∗ 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 ∗ 0 0 0 0 0
0 0 ∗ 0 0 0 0
0 ∗ ∗ 0 0 0 0
0 0 0 ∗ 0 0 0
0 0 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 0
0 0 0 0 0 ∗ 0
0 0 0 0 0 0 ∗
0 0 0 0 0 ∗ ∗
∗ 0 0 0 0 0 0

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

= I7

123

Foundations of Computational Mathematics

wherewe introduced an additional column at the end of the leftmatrix and an additional
row at the end of the second matrix. Firstly, this allows us to satisfy the entire I7 on
the right-hand side; moreover, it will be useful when extending the construction to
clauses. It is straightforward to generalize this construction to an arbitrary number of
variables. We arrive at the following intermediate result.

Lemma 3 For any n ≥ 1, there exists a GCI-instance A′B ′ = I2n+1 with A′ having
3n + 1 columns, such that in each solution for the problem, A′

1,3n+1 is not zero, and
for each k = 0, . . . , n − 1, the entries A′

1,3k+1 and A′
1,3k+2 are not both non-zero.

Moreover, for any choice of v1, . . . , vn ∈ {1, 2}, there exists a solution of the instance
in which A′

1,3k+vi
�= 0 for all k = 0, . . . , n − 1.

Next, we extend the instance from Lemma 3 with respect to the clauses. We refer
to the clauses as c1, . . . , cm . For each clause, we append one further row to A′, each
of them identical of the form

(
0 . . . 0 ∗)T

.

We also append one column to B ′ for each clause, each of length 3n + 1. For each
clause, the entry at row 3n + 1 is set to ∗. If a clause contains a literal of the form xi
(in positive form), we set the entry at row 3i + 1 to ∗. If it contains a literal ¬xi , we
set the entry at row 3i + 2 to ∗. In this way, at most 4 entries in the column are fixed
to ∗, and we fix all other entries to be 0. Continuing the above example, for the clause
x0 ∨ ¬x1 ∨ x2, we obtain a column of the form

(∗ 0 0 0 ∗ 0 ∗ 0 0 ∗)

Let A and B denote the matrices extended from A′ and B ′ with the above procedure.
We next define C as a square matrix of dimension 2n + 1 + m as follows: The upper
left (2n + 1) × (2n + 1) submatrix is set to I2n+1. The rest of the first row is set to 0,
and the rest of the diagonal is set to 1. All other entries are set to ∗. This concludes
the description of a GCI-instance AB = C out of a 3CNF formula φ. We exemplify
the construction for the formula (x0 ∨ x1 ∨ ¬x2) ∧ (¬x0 ∨ x1 ∨ x2), where the lines
mark the boundary of A′ and B ′, respectively.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0 b0 0 a1 b1 0 a2 b2 0 ∗
∗ 0 ∗ 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 ∗ 0 ∗ 0
0 0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗ 0 0 0 0 0 ∗ 0
0 0 ∗ 0 0 0 0 0 ∗
0 ∗ ∗ 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 ∗ ∗
0 0 0 0 ∗ 0 0 0 0
0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 ∗ 0 0 ∗
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗ ∗ 0 0
∗ 0 0 0 0 0 0 ∗ ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

123

Foundations of Computational Mathematics

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 ∗ ∗
0 0 1 0 0 0 0 ∗ ∗
0 0 0 1 0 0 0 ∗ ∗
0 0 0 0 1 0 0 ∗ ∗
0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Lemma 4 AB = C admits a solution if and only if φ is satisfiable.

Proof “⇒”: Let us assume that AB = C has a solution, which also implies a solution
A′B ′ = I2n+1 being a subproblem encoded in the instance. Fixing a solution, we
assign an assignment of the variables of φ as follows: If the entry A1,3i+1 is non-zero,
we set xi to true. If the entry A1,3i+2 is non-zero, we set xi to false. If neither is
non-zero, we set xi to false as well (the choice is irrelevant). Note that by Lemma 3,
not both A1,3i+1 and A1,3i+2 can be non-zero, so the assignment is well-defined.

First of all, let γ be the rightmost entry of the first row of A. Because the (1, 1)-entry
of C is set to 1, it follows that γ δ = 1, where δ is the lowest entry of the first column
of B. Hence, in the assumed solution, γ �= 0.

Now fix a clause c in φ and let v denote the column of B assigned to this clause,
with column index i . Recall that v consists of (up to) three ∗ entries chosen according
to the literals of c, and a ∗ entry at the lowest position. Let λ denote the value of that
lowest entry in the assumed solution of AB = C . We see that λ �= 0, with a similar
argument as for γ above, using the (i, i)-entry of C .

Now, the (1, i) entry of C is set to 0 by construction which yields a constraint of
the form

μ1v1 + μ2v2 + μ3v3 + γ λ
︸︷︷︸
�=0

= 0

where v1, v2, v3 are entries of v at the ∗ positions, and μ1, μ2, μ3 the corresponding
entries of the first row of A. We observe that at least one term μ jv j must be non-zero,
hence both entries are non-zero.

This implies that the chosen assignment satisfies the clause: if v j is at index 3k + 1
for some k, the clause contains the literal xk by construction and since μ j �= 0, our
assignment sets xk to true. The same argument applies to v j of the form 3k + 2. It
follows that the assignment satisfies all clauses and hence, φ is satisfiable.

“⇐”: We pick a satisfying assignment for φ and fill the first row of A as follows:
if xi is true, we set (A1,3i+1, A1,3i+2) to (1, 0) if xi is false, we set it as (0, 1). By
Lemma 3, there exists a solution for A′B ′ = I2n+1 with this initial values and we
choose such a solution, filling the upper (2n + 1) rows of A and the left (2n + 1)
columns of B. Note that similar as above, the value γ at A1,3n+1 must be non-zero
in such a solution. In the remaining m rows of A, by construction, we only need to

123

Foundations of Computational Mathematics

pick the rightmost entry, and we set it to γ in each of these rows. That determines all
entries of A.

To complete B ′ to B, we need to fix values in the columns of B associated to clauses.
In each such column, we pick the lowest entry to be 1

γ
, satisfying the constraints of C

along the diagonal. Fixing a column i of B, the (1, i)-constraint of C reads as

μ1v1 + μ2v2 + μ3v3 + γ
1

γ
︸︷︷︸
=1

= 0,

where v1, v2, v3 are the remaining non-zero entries in i-th column. Because we
encoded a satisfying assignment of φ in the first row of A, at least one μ j entry
is 1. We set the corresponding entry v j to −1, and the remaining vk’s to 0. In this way,
all constraints are satisfied, and the GCI-instance has a solution. �

Clearly, the GCI-instance of the preceding proof can be computed from φ in poly-
nomial time. It follows:

Theorem 1 CI is NP-complete.

Proof Lemma4 shows the reductionof 3SAT toGCI, proving thatGCI isNP-complete.
As shown in Lemma 2, GCI reduces to CI, proving the claim. �

3 Modules and Interleavings

In what follows, all vector spaces are understood to be F-vector spaces for the fixed
base field F. Also, for points p = (px , py), q = (qx , qy) in R

2, we write p ≤ q if
px ≤ qx and py ≤ qy .

3.1 PersistenceModules

A (two-parameter) persistence module M is a collection of F-vector spaces Vp,
indexed over p ∈ R

2 together with linear maps Mp→q whenever p ≤ q. These maps
must have the property that Mp→p is the identity map on Mp and Mq→r ◦ Mp→q =
Mp→r for p ≤ q ≤ r . Much more succinctly, a persistence module is a functor from
the poset category R

2 to the category of vector spaces. A morphism between M and
N is a collection of linear maps { f p : Mp → Np} such that Np→q ◦ f p = fq ◦Mp→q .
We say that f is an isomorphism if f p is an isomorphism for all p, and denote this by
M ∼= N . If we view persistence modules as functors, a morphism is simply a natural
transformation between the functors.

The simplest example is the 0-module where Mp is the trivial vector space for all
p ∈ R

2. For a more interesting example, define an interval in the poset (R2,≤) to be
a non-empty subset S ⊂ R

2 such that whenever a, c ∈ S and a ≤ b ≤ c, then b ∈ S,
and moreover, if a, c ∈ S, there exists a sequence of elements a = b1, . . . , b� = c of
elements in S such that bi ≤ bi+1 or bi+1 ≤ bi . We associate an interval module I S

123

Foundations of Computational Mathematics

Fig. 1 A staircase of size 3
(shaded area)

a1
a2

a3

to S as follows: for p ∈ S, we set I Sp := F, and I Sp := 0 otherwise. As map I Sp→q with
p ≤ q, we attach the identity map if p, q ∈ S, and the 0-map otherwise.

For a ∈ R
2, let 〈a〉 := {x ∈ R

2 | a ≤ x} be the infinite rectangle with a as
lower-left corner. Given k elements a1, . . . , ak ∈ R

2, the set

S :=
⋃

i=1,...,k

〈ai 〉

is called the staircase with elements a1, . . . , ak . We call k the size of the staircase.
See Fig. 1 for an illustration. It is easy to verify that S is an interval for k ≥ 1. Clearly,
if ai ≤ a j , we can remove a j without changing the staircase, so we assume that the
elements forming the staircase are pairwise incomparable. The staircase module is the
interval module associated to the staircase.

Given two persistence modules M and N , the direct sum M ⊕ N is the persistence
module where (M ⊕ N)p := Mp ⊕ Np, and the linear maps are defined compo-
nentwise in the obvious way. We call a persistence module M indecomposable, if
in any decomposition M = M1 ⊕ M2, M1 or M2 is the 0-module. For example, it
is not difficult to see that interval modules are indecomposable. We call M interval
decomposable if M admits a decomposition M ∼= M1 ⊕ . . .⊕ M� into (finitely many)
interval modules. The decomposition of any persistence module into interval modules
is unique up to rearrangement and isomorphism of the summands; see [5, Section
2.1] and the references therein. This implies that there is a well-defined multiset of
intervals B(M) given by the decomposition of M into interval modules. The multiset
B(M) is called the barcode of M . Not every module is interval decomposable; we
remark that already rather simple geometric constructions can give rise to complicated
indecomposable elements [7].

3.2 Interleavings

Let ε ∈ R. For a persistence module M , the ε-shift of M is the module Mε defined
by Mε

p = Mp+ε (where p + ε = (px + ε, py + ε)) and Mε
p→q = Mp+ε→q+ε . Note

that (Mε)δ = Mε+δ . As an example, staircase modules are closed under shift: the

123

Foundations of Computational Mathematics

ε-shift of the staircase module associated to
⋃〈ai 〉 is the staircase module associated

to
⋃〈ai −ε〉. We can also define shift on morphisms: for f : M → N , f ε : Mε → N ε

is given by f ε
p = f p+ε . For ε ≥ 0, there is an obvious morphism ShM (ε) : M → Mε

given by the internal morphisms of M , that is, we have ShM (ε)p = Mp→p+ε . In
practicewewill often suppress notation and simplywriteM → Mε for thismorphism.

With this in mind, we define an ε-interleaving between M and N for ε ≥ 0 as a pair
(f , g) of morphisms f : M → N ε and g : N → Mε such that gε ◦ f = ShM (2ε) and
f ε ◦ g = ShN (2ε). Concretely, an ε-interleaving between two persistence modules
M and N is a collection of maps

f p : Mp → Np+ε (3)

gp : Np → Mp+ε (4)

such that all diagrams that can be composed out of themaps f∗, g∗, and the linear maps
of M and N commute. Note that a 0-interleaving simply means that the persistence
modules are isomorphic. Also, an ε-interleaving induces a δ-interleaving for ε < δ

directly by a suitable composition with the linear maps of the modules.
We say that two modules are ε-interleaved if there exists an ε-interleaving between

them. We define the interleaving distance of two modules M and N as

dI (M, N) := inf{ε ≥ 0 | M and N are ε-interleaved}.

Note that dI defines an extended pseudometric on the space of persistence modules.
The distance between two modules might be infinite, and there are non-isomorphic
modules with distance 0. The triangle inequality follows from the simple observation
that an ε-interleaving between M1 and M2 and a δ-interleaving between M2 and M3
can be composed to an (ε + δ)-interleaving between M1 and M3.

3.3 Representation of PersistenceModules

For studying the computational complexity of the interleaving distance, we need to
specify a finite representation of persistence modules that allows us to pass such
modules as an input to an algorithm.

A graded matrix representation of a module M is a 3-tuple (G, R, A), where
G = {g1, . . . , gn} is a list of n points in R

2, R = {r1, . . . , rm} is a list of m points
in R

2, (with repetitions allowed), and A is an (m × n)-matrix over the base field
F. Equivalently, we can simply think of a matrix A where each row and column is
annotated with a grading in R

2.
The algebraic explanation for this representation is as follows: it is known that a

persistence module M over R
2 can be equivalently described as a graded R-module

over a suitably chosen ringR. Assuming that M is finitely presented, we can consider
the free resolution of M

Rm ∂T→ Rn → M → 0.

123

Foundations of Computational Mathematics

A graded matrix representation is simply a way to encode the map ∂ in this resolution.
Let us describe for concreteness how a representation (G, R, A) gives rise to a

persistence module. First, let F1, . . . , Fn be copies of F, and let ei be the 1-element
of Fi . For p ∈ R

2, we define Genp as the direct sum of all Fi such that gi ≤ p.
Moreover, every row of A gives rise to a linear combination of the entries e1, . . . , en .
Let ci denote the linear combination in row i . We define Relp to be the span of all
linear combinations ci for which ri ≤ p. Then, we set

Mp := Genp

Relp

which is a F-vector space. For p ≤ q, writing [x]p for an element of Mp with
x ∈ Genp, we define

Mp→q([x]p) := [x]q .

It is easy to check that that [x]q is well-defined (since Genp ⊆ Genq) and independent
of the chosen representative in Genp (since Relp ⊆ Relq). Moreover, it is straightfor-
ward to verify that these maps satisfy the properties of a persistence module.

In short, every persistencemodule that can be expressed by finitelymany generators
and relations can be brought into gradedmatrix representation. For instance, a staircase
module for a1, . . . , an of size n where the ai are ordered by increasing first coordinate
can be represented by a matrix with n columns graded by a1, . . . , an , and n − 1
rows, where every row corresponds to a pair (i, i + 1) with 1 ≤ i ≤ n − 1. In this
row, we encode the relation ei = ei+1 and grade it by pi j , which is the (unique)
minimal element q in R

2 such that ai ≤ q and ai+1 ≤ q. Hence, the graded matrix
representation of a staircase of size n has a size that is polynomial in n.

We also remark that a graded matrix representation is equivalent to free implicit
representations [15, Sec 5.1] for the special case of m0 = 0.

4 Hardness of Interleaving Distance

We consider the following computational problems:

1-Interleaving: Given two persistence modules M , N in graded matrix repre-
sentation, decide whether they are 1-interleaved.

c- Approx- Interleaving- Distance: Given two persistence modules M , N
in graded matrix representation, return a real number r such that

dI (M, N) ≤ r ≤ c · dI (M, N)

Obviously, the problem of computing dI (M, N) exactly is equivalent to the above
definition with c = 1.

The main result of this section is the following theorem:

123

Foundations of Computational Mathematics

Theorem 2 Given a CI-instance (n, P, Q), we can compute in polynomial time in n
a pair of persistence modules (M, N) in graded matrix representation such that

dI (M, N) =
{
1 if (n, P, Q) ∈ C I

3 if (n, P, Q) /∈ C I
.

Moreover, both M and N are direct sums of staircase modules and hence interval
decomposable.

We will postpone the proof of Theorem 2 to the end of the section and first discuss
its consequences.

Theorem 3 1-Interleaving is NP-complete.

Proof We first argue that 1-Interleaving is in NP. First, note that to specify a 1-
interleaving, it suffices to specify the maps at the points in S, where S is a finite
set whose size is polynomial in the size of the graded matrix representation. More
precisely, S contains the critical grades of the twomodules (that is, the grades specified
by G and R), as well as the least common successors of such elements. That ensures
that every vector space (in both modules) can be isomorphically pulled back to one
of the elements of S, and the interleaving map can be defined using this pull-back. It
is enough to consider the points in S to check whether this set of pointwise maps is a
valid morphism.

We can furthermore argue that verifying that a pair of such maps yields a 1-
interleaving can be checked in a polynomial number of steps. Again, this involves
mostly the maps specified above, as well as the corresponding maps shifted by (1, 1),
in order to check the compatibility of the two interleaving maps. We omit further
details of this step.

Finally, 1-Interleaving is NP-hard: Assuming a polynomial time algorithm A to
decide the problem, we can design a polynomial time algorithm for CI just by trans-
forming (n, P, Q) into a pair of modules (M, N) using the algorithm fromTheorem 2.
If A applied on (M, N) returns true, we return that (n, P, Q) is in CI. Otherwise,
we return that (n, P, Q) is not in CI. Correctness follows from Theorem 2, and the
algorithm runs in polynomial time, establishing a polynomial time reduction. By The-
orem 1, CI is NP-hard, hence, so is 1-Interleaving. �

Theorem 4 c-Approx- Interleaving- Distance is NP-hard for every c < 3 (i.e., a
polynomial time algorithm for the problem implies P=NP).

Proof Fixing c < 3, assuming a polynomial time algorithm A for c-Approx-
Interleaving- Distance yields a polynomial time algorithm for CI: Given the input
(n, P, Q), we transform it into (M, N)with Theorem 2. Then, we apply A on (M, N).
If the result is less than 3, we return that (n, P, Q) is in CI. Otherwise, we return that
(n, P, Q) is not in CI. Correctness follows from Theorem 2, noting that if (n, P, Q) is
in CI, algorithm A must return a number in the interval [1, c] and c < 3 is assumed. If
(n, P, Q) is not in CI, it returns a number≥ 3. Also, the algorithm runs in polynomial
time in n. Therefore, the existence of A yields a polynomial time algorithm for CI,
implying P=NP with Theorem 1. �

123

Foundations of Computational Mathematics

Since the modules in Theorem 2 are direct sums of staircases, both Theorem 3 and
Theorem 4 hold already for the restricted case that the modules are interval decom-
posable.

4.1 Interleavings of Staircases

The persistence modules constructed for the proof of Theorem 2 will be direct sums
of staircases. Before defining them, we establish some properties of the interleaving
map between staircases and their direct sums which reveal the connection to the CI
problems.

Recall from Sect. 3 that a morphism M → N can be described more concretely as
a collection of maps Mp → Np that are compatible with the linear maps in M and N ,
that Mε is defined by Mε

p = Mp+ε , and that an ε-interleaving is a pair of morphisms
φ : M → N ε , ψ : N → Mε satisfying certain conditions. For staircase modules, the
set of morphisms is quite limited.

For M and N staircase modules and λ ∈ F, we denote by 1 �→ λ the collection of
linear maps φp such that φp(1) = λ for all p such that Mp = F.

Lemma 5 Let M and N be staircase modules. Every morphism from M to N is of the
form 1 �→ λ for some λ ∈ F.

Proof Assume first that p ≤ q and Mp = F. Write λ := φp(1). Then, also Mq = F,
and φq(1) = λ as well, since the linear maps from p to q for M and N are injective
maps.

For incomparable p and q ∈ R
2, we consider the least common successor r of p

and q. Using the above property twice, we see at once that φp(1) = φr (1) = φq(1). �

We examine next which values of λ are possible for a concrete pair of staircases.

For a staircase S, let Sε denote the staircase where each point is shifted by (ε, ε). This
way, if M is the module associated to S, Mε is the module associated to Sε . As we
noted before, the shift of a staircase module is also a staircase module. Define the
directed shift distance from the staircase S to the staircase T as

ds(S, T) := min{ε ≥ 0 | S ⊆ T ε}.

One can show that the set on the right-hand side has a minimum value by using the
fact that a staircase is generated by a finite set of elements, so ds is in fact well-defined.
Clearly, ds(S, T) �= ds(T , S) in general. The following simple observation is crucial
for our arguments. Let M , N denote the staircase modules induced by S and T .

Lemma 6 If ε < ds(S, T), the onlymorphism from M to N ε is 1 �→ 0. If ε ≥ ds(S, T),
every choice of λ ∈ F yields a morphism 1 �→ λ from M to N ε .

Proof In the first case, by construction, there exists some p such that Mp = F, but
Np+ε = 0. Hence, 0 is the only choice for λ.

In the second case, Mp = F implies Np+ε = F as well. It is easy to check that any
choice of λ yields a compatible collection of maps, hence a morphism. �

123

Foundations of Computational Mathematics

In particular, there are morphisms M → N given by arbitrary elements of F if and
only if S ⊆ T . As a consequence, we can characterize morphisms of direct sums of
staircase modules.

Lemma 7 Let M = ⊕n
i=1Mi and N = ⊕n

j=1N j be direct sums of staircase modules.
Then a collection of maps φp : Mp → Np is a morphism if and only if the restriction
to Mi and N j is a morphism for any i, j ∈ {1, . . . , n}. Therefore, a morphism φ is
determined by an (n × n)-matrix with entries in F.

Proof Let p ≤ q, and consider the following diagram:

Mp Mq

Np Nq

φp

Mp→q

φq

Np→q

We have Mp = ⊕n
i=1(Mi)p and Nq = ⊕n

j=1(N j)q . Thus the diagram above com-
mutes if and only if for all i and j , the restrictions of the two compositions to (Mi)p
and (N j)q are the same, since a linear transformation is determined by what happens
on basis elements. This is again equivalent to the following diagram commuting for
all i and j , where (φ

j
i)p is the restriction of φp to Mi and N j :

(Mi)p (Mi)q

(N j)p (N j)q

(φ
j
i)p

(Mi)p→q

(φ
j
i)q

(N j)p→q

But the collection of φp forms a morphism if and only if the first diagram commutes
for all p ≤ q, and the restriction of φp to Mi and N j forms a morphism if and only
if the second diagram commutes for all p ≤ q. Thus we have proved the desired
equivalence. �

Observe that the matrix described in Lemma 6 is simply φp : ⊕n

i=1 (Mi)p →
⊕n

j=1(N j)p written as a matrix in the natural way for any p contained in the sup-
port of Mi for all i .

Lemma 8 Let M, N be direct sums of staircase modules as above and φ : M → N ε

and ψ : N → Mε be morphisms. Then φ and ψ form an ε-interleaving if and only if
their associated (n × n)-matrices are inverse to each other.

Proof The composition ψε ◦ φ : M → M2ε is represented by the matrix BA, as
one can see by restricting to a single point contained in all relevant staircases as in the
observation above. The morphism ShM (2ε) : M → M2ε is represented by the identity
matrix. By definition, (φ,ψ) is an interleaving if and only if these are equal and the
corresponding statement holds for φε ◦ ψ , so the statement follows. �

As a consequence, we obtain the following intermediate result.

123

Foundations of Computational Mathematics

Theorem 5 Let (n, P, Q) be a C I -instance and let S1, . . . , Sn, T1, . . . , Tn be stair-
cases such that

dS(Si , Tj) =
{
3 if (i, j) ∈ P

1 if (i, j) /∈ P
dS(Tj , Si) =

{
3 if (j, i) ∈ Q

1 if (j, i) /∈ Q

Write Mi , N j for the modules associated to Si , Tj , respectively, and M := ⊕Mi

and N := ⊕N j . Then

dI (M, N) =
{
1 if (n, P, Q) ∈ C I

3 if (n, P, Q) /∈ C I

Proof Assume first that (n, P, Q) ∈ C I . Let A, B be a solution. We show that A
and B define morphisms from M to N 1 and from N to M1. We restrict to the map
from M to N 1, as the other case is symmetric. By Lemma 7, it suffices to show
that the map from Mi to N 1

j is a morphism. This map is represented by the entry
Ai j . If (i, j) ∈ P , Ai j = 0 by assumption, and the 0-map is always a morphism. If
(i, j) /∈ P , dS(Si , Tj) = 1 by construction. Hence, by Lemma 6 any field element
yields a morphism. This shows that A and B define a pair of valid morphisms, and
by Lemma 8 this pair is an 1-interleaving, as AB = In . Also with Lemma 6, it can
easily be proved that the only morphism M → N ε with ε < 1 is the 0-map. Hence,
dI (M, N) = 1 in this case.

Now assume that (n, P, Q) /∈ C I . It is clear that M and N as constructed are
3-interleaved: the matrix In yields a valid morphism from M to N 3 and from N to
M3 with Lemma 6. Assume for a contradiction that there exists an ε-interleaving
between M and N represented by matrices A, B, with ε < 3. For (i, j) ∈ P , since
ds(Mi , N j) = 3 > ε, Lemma 6 implies that the entry Ai, j must be equal to 0.
Likewise, Bj,i = 0 whenever (j, i) ∈ Q. By Lemma 8, AB = In , and it follows that
A and B constitute a solution to the CI-instance (n, P, Q), a contradiction. �

4.2 Construction of the Staircases

To prove Theorem 2, it suffices to construct staircases S1, . . . , Sn , T1, . . . , Tn with the
properties from Theorem 5, in polynomial time.

To describe our construction, we consider to two “base staircases” which we depict
in Fig. 2. In what follows, a shift of a point a by (1, 1) means replacing a with
the point a − (1, 1). The base staircase S is formed by the points (−t, t) for t =
−4n2,−4n2 + 2, . . . , 4n2, but with the right side (i.e., the points with negative t)
shifted by (1, 1). Likewise, the base staircase T consists of the same points, but with
the left side shifted by (1, 1). We observe immediately that the staircase distance of
the two base staircases is equal to 1 in either direction. We call the points defining the
staircases corners from now on.

Now we associate to every entry in P a corner in the left side of S (that is, some
(−t, t) with t > 0). We also associate with the entry a corner in T , namely the shifted
point (−t − 1, t − 1). We do this in a way that between two associated corners of

123

Foundations of Computational Mathematics

(0, 0)

(−4n2, 4n2)

(−4n2 − 1, 4n2 − 1)

(4n2 − 1,−4n2 − 1)

(4n2,−4n2)

ST

Fig. 2 The base staircases S and T

S, there is at least one corner of the staircase that is not associated. Note that this
is always possible because |P| ≤ n2 and we have 2n2 corners on the left side. We
associate corners to entries of Q in the symmetric way, using the right side of the base
staircases.

We construct the staircases Si and Tj out of the base staircases S and T , only
shifting associated corners by (2, 2) or (−2,−2) according to P and Q. Specifically,
for the staircase Si , we start with S and for any entry (i, j) in P , we shift the associated
corner of S by (2, 2). For every entry (j, i) in Q, we shift the associated corner by
(−2,−2). The resulting (partially) shifted version of S defines Si .

Tj is defined symmetrically: for every (i, j) ∈ P , we shift the associated corner by
(−2,−2). For every (j, i) ∈ Q, we shift the associated corner by (2, 2).

We next analyze the staircase distance of Si and Tj . We observe that, because there
is an unassociated corner in-between any two associated corners, the ±(2, 2) shifts
of distinct corners do not interfere with each other. Hence, it suffices to consider the
distance of one associated corner of Si to Tj . Fix the corner cS of S associated to some
entry (k, �) ∈ P . Let cT denote the associated corner of T , that is, cT = cS − (1, 1).
See Fig. 3 (left) for an illustration. If k �= i and � �= j , neither cS nor cT gets shifted,
and since cT ≤ cS , the shift required from cT to reach cS is 0. If k = i and � �= j ,
then cS gets shifted by (2, 2), and the required shift is 1 (see second picture of Fig. 3).

123

Foundations of Computational Mathematics

S

T T

S S

T T

S

Fig. 3 Left: the associated corners cS (on staircase S) and cT (on staircase T) are marked by black circles.
The two neighboring corners on both staircases (marked with x) are not associated and hence not shifted in
the construction. Second and third picture: the cases (i, �) with � �= j and (k, j) with k �= i . In both cases,
the directed staircase distance is 1, as illustrated by the dashed line. Right: the case (i, j). In that case, a
shift of 3 is necessary to move the corner of T to S

If k �= i and � = j , cT gets shifted by (−2,−2), the required shift is also 1 (see 3rd
picture of Fig. 3). If k = i and � = j , both cS and cT get shifted, and the distance
of the shifted cT to reach cS increases to 3 (see 4th picture of Fig. 3). This argument
implies that the (directed) staircase distance from Si to Tj is 3 if (i, j) ∈ P , and
1 otherwise. A completely symmetric argument works for dS(Tj , Si), inspecting the
corners associated to Q.

Finally, it is clear that the size and construction time of each Si and each Tj is
polynomial in n. As remarked at the end of Sect. 3, the staircase module can be
brought in graded matrix representation in polynomial time in n, and the same holds
for the direct sum of these modules. This finishes the proof of Theorem 2.

With the construction ofM and N fromTheorem2 fresh inmind, we can explain the
obstacles to obtaining a constant bigger than 3. Exchanging 3 with another constant
in Theorem 5 is not a problem; the proof would be exactly the same. The trouble
is to construct Si and Tj satisfying the conditions in Theorem 5 if 3 is replaced by
some ε > 3. In that case, one would have to force dS(Si , Tj) ≥ ε for (i, j) ∈ P
and dS(Tj , Si) ≥ ε for (j, i) ∈ Q, while still keeping dS(Si , Tj) ≤ 1 for (i, j) /∈ P
and dS(Tj , Si) ≤ 1 for (j, i) /∈ Q. As we have shown, letting dS(Si , Tj) = 3 when
(i, j) ∈ P can be done. However, even if (i, j) ∈ P , there might be i ′, j ′ such that
(i, j ′), (i ′, j) /∈ P and (j ′, i ′) /∈ Q, implying

dS(Si , Tj ′) ≤ 1,

dS(Tj ′, Si ′) ≤ 1,

dS(Si ′ , Tj) ≤ 1.

which gives dS(Si , Tj) ≤ 3 < ε by the triangle inequality. This proves that one cannot
simply increase the constant in Theorem 5, change the construction of Si and Tj , and
get a better result. That is not to say that using CI problems to improve Theorem 4 is
necessarily hopeless, but it would not come as a surprise if a radically new approach
is needed, if the theorem can be improved at all.

This is related to questions of stability, more precisely of whether dB(B(M), B(N))

≤ 3dI (M, N) is true for staircase decomposable modules, where dB is the bottle-
neck distance. We have associated pairs of modules to CI problems in a way such

123

Foundations of Computational Mathematics

that interleavings correspond to solutions of the CI problems. Matchings between
the barcodes of the modules (which is what gives rise to the bottleneck distance)
correspond to solutions to the CI problems of a particular simple form, namely
with a single non-zero entry in each column and row of each matrix. Claiming that
dB(B(M), B(N)) ≤ 3dI (M, N) is then related to claiming that if a CI problem has a
solution, then a “weakening” of the CI problem has a solution of this simple form. We
will not go into details about this, other than to say that there are questions that can be
formulated purely in terms of CI problems whose answers could have very interesting
consequences for the study of interleavings, also beyond the work done in this paper.

5 Indecomposable Modules

Fix aCI problem (n, P, Q) as in the previous section and letM and N be the associated
persistencemodules.We shall now construct two indecomposable persistencemodules
M̂ and N̂ such that M̂ and N̂ are ε-interleaved if and only ifM and N are ε-interleaved.
In what follows we construct M̂ ; the construction of N̂ is completely analogous.

Recall that a staircase module can be described by a set of generators, or corners.
Let u = (x, x) be a point larger than all the corners defining the staircases making up
M and N . Observe the following: dim Mu = n, Mu→p is the identity morphism for
any p ≥ u.

Let si = x + 7 + i/(n + 1),1 for 0 ≤ i ≤ n + 1. Define M̂ at p ∈ R
2 as follows

M̂p =

⎧
⎪⎨

⎪⎩

0 if p ≥ (si , sn+1−i) for some 0 ≤ i ≤ n + 1,

F if p ∈ [si , si+1) × [sn−i , sn−i+1) for some 0 ≤ i ≤ n,

Mp otherwise.

Trivially, M̂p→q is the 0 morphism if M̂p = 0 or M̂q = 0. For p ≤ q such that Mp =
M̂p and Mq = M̂q , let M̂p→q = Mp→q , and for p, q ∈ [si , si+1) × [sn−i , sn−i+1)

let M̂p→q = 1F. It remains to consider the case that Mp = M̂p and q ∈ [si , si+1) ×
[sn−i , sn−i+1) for some i . Observe that all the internal morphisms are fully specified
once we define M̂u→q . Indeed, if p ≥ u, then M̂u→p is the identity, which forces
M̂p→q = M̂u→q . For any other p we can always choose an r ≥ p such that r ≥ u
and Mr = M̂r . The morphism M̂p→q is then given by M̂p→q = M̂r→q ◦ M̂p→r =
M̂u→q ◦ M̂p→r . We conclude by specifying the following morphism

M̂u→q =
{

πi (projection onto coordinate i) if 1 ≤ i ≤ n

π1 + π2 + . . . + πn if i = 0.

Observe that we have a morphism πM : M → M̂ given by

πM
p =

{
id if Mp = M̂p

M̂u→p otherwise

1 7 can be replaced with any δ > 6.

123

Foundations of Computational Mathematics

Lemma 9 The persistence module M̂ is indecomposable.

Proof We recall the following useful trick: if M is not indecomposable, say M ∼=
M ′ ⊕ M ′′, then the projections M → M ′ and M → M ′′ define morphisms which
are not given by multiplication with a scalar. Hence, it suffices to show that any
endomorphism φ : M̂ → M̂ is multiplication by a scalar. Furthermore, observe that
any endomorphism φ of M̂ is completely determined by φu . Let ei ∈ F

n denote the
vector (0, . . . , 0, 1, 0, . . . , 0) where the non-zero entry appears at the i-th index. For
0 ≤ i ≤ n, φ must be such that the following diagram commutes

M̂u = F
n

F = M̂(si ,sn−i)

M̂u = F
n

F = M̂(si ,sn−i)

φu φ(si ,sn−i)=λi

For 1 ≤ i ≤ n this yields that

πi (φu(e j)) =
{

λi ∈ F if i = j

0 if i �= j .
.

In particular, we see that φu(ei) = λi ei . For i = 0 we get

λ0ei = λ0 · (π1 + . . . + πn)(ei) = (π1 + . . . + πn)(λi ei) = λi ei .

We conclude that λi = λ0 and that φu = λ0 · id. �

Lemma 10 Fix 1 ≤ ε ≤ 3. M̂ and N̂ are ε-interleaved if and only if M and N are
ε-interleaved.

Proof Assume thatφ : M → N ε andψ : N → Mε form an ε-interleaving pair. Define
φ̂ : M̂ → N̂ ε and ψ̂ : N̂ → M̂ε by

φ̂p =
{

πN
p+ε ◦ φp if Mp = M̂p

0 otherwise.
, ψ̂p =

{
πM
p+ε ◦ ψp if Np = N̂p

0 otherwise.

We will show that these two morphisms constitute an ε-interleaving pair. Let p ∈ R
2

and consider the following two cases:

1. Assume that Np+ε = N̂p+ε . Under this assumption, we have that πN
p+ε = id, and

thus φp = φ̂p. Using that ψ and φ form an ε-interleaving pair, and that πM
p = id,

we get:

ψ̂p+ε ◦ φ̂p=πM
p+2ε ◦ ψp+ε ◦ φp=πM

p+2ε ◦ Mp→p+2ε=M̂p→p+2ε ◦ πM
p =M̂p→p+2ε .

123

Foundations of Computational Mathematics

Fig. 4 Left: M̂ coincides with M on the restriction to the shaded subset of R
2. Right: this shows the

modification done to M in order to obtain an indecomposable persistence module M̂ in the case n = 4

2. Assume that Np+ε �= N̂p+ε . Since ε ≥ 1, it follows by construction that M̂p+2ε =
0. Hence, the interleaving condition is trivially satisfied.

Symmetrically we get that φ̂p+ε ◦ φ̂p = N̂p→p+2ε . Hence, M̂ and N̂ are ε-interleaved.
Conversely, assume that φ̂ and ψ̂ define an interleaving pair between M̂ and N̂ .

Define φ : M → N ε and ψ : N → Mε by

φp =
{

φ̂u if p ≥ u

φ̂p otherwise
, ψp =

{
ψ̂u if p ≥ u

ψ̂p otherwise
.

By construction, M̂p = Mp and N̂p = Np for all p < u + (7, 7). This implies that
φ̂p = φ̂u and ψ̂p = ψ̂u for all p < u + (7− ε, 7− ε). Hence, for any p ≤ u we must
have that

ψp+ε ◦ φp = ψ̂p+ε ◦ φ̂p = M̂p→p+2ε = Mp→p+2ε .

Similarly we get that φp+ε ◦ ψp = Np→p+2ε for all such p. In particular, by consid-
ering the case p = u, we see that φu and ψu are mutually inverse matrices. It follows
readily that the interleaving condition is satisfied for all p � u. �

With the two previous results at hand, we can state the following corollary of
Theorem 4.

Corollary 1 1- interleaving isNP-complete andc-Approx- Interleaving- Distance
is NP-hard for c < 3, even if the input modules are restricted to indecomposable mod-
ules.

123

Foundations of Computational Mathematics

Proof We only prove hardness of 1- interleaving, the remaining statements follow
with the same methods. Given a CI-instance (n, P, Q), we use the construction from
Sect. 4 to construct two persistence modules M and N . Then we transform them
into the indecomposable modules M̂ and N̂ as above. Note that this transformation
can be performed in polynomial time in n by introducing up to n relations at the
lower-left corners of the (n+ 1) rectangles in Fig. 4. Hence, an algorithm to decide 1-
interleaving for the case of indecomposable modules would solve CI in polynomial
time. �

6 One-Sided Stability

The results of the previous sections also apply in the setting of one-sided stability.
Here we give a brief introduction to the topic; see [1] for a thorough introduction.

Let f : M → N be a morphism. The linear map Mp→q induces a linear map
ker(f p) → ker(fq) by restriction, and Np→q induces a linear map coker(f p) →
coker(fq) by taking a quotient, as one can readily verify. We say that f has ε-trivial
kernel if the map ker(f p) → ker(f p+ε) is the 0-map for all p ∈ R

2. Likewise, we say
that f has ε-trivial cokernel if coker(f p) → coker(f p+ε) is the 0-map for all p ∈ R

2.
If f has 0-trivial kernel (cokernel), then we say that f is injective (surjective). The
following lemma follows readily from the definition of an ε-interleaving.

Lemma 11 If f : M → N ε is an ε-interleaving morphism (i.e., it forms an ε-
interleaving with some g : N → Mε), then f has 2ε-trivial kernel and cokernel.

In fact, Bauer and Lesnick [1] show that in the case of persistence modules over
R, M and N are ε-interleaved if and only if there exists a morphism f : M → N ε

with 2ε-trivial kernel and cokernel. They also observe that this equivalence does not
generalize to two parameters. However, it is true (and the proof is very similar to the
one given below) that if there exists a morphism f : M → N ε with ε-trivial kernel and
cokernel, then M and N are ε-interleaved. Hence, there is a close connection between
interleavings and morphisms with kernels and cokernels of bounded size also in the
multi-parameter landscape.

Lemma 12 For any injective f : M → N ε with 2ε-trivial cokernel, there exists a
morphism g : N → Mε such that f and g constitute an ε-interleaving pair.

Proof We have the following commutative square for all p ∈ R
2:

Mp Mp+2ε

Np+ε Np+3ε

f p

Mp→p+2ε

f p+2ε

Np+ε→p+3ε

Let n ∈ Np+ε . Since f has 2ε-trivial cokernel and f is injective, there exists a unique
m ∈ Mp+2ε such that f p+2ε(m) = Np+ε→p+3ε(n). Define gp : Np+ε → Mp+2ε by
gp(n) = m. Doing this for all p ∈ R

2 defines a morphism g : N ε → M2ε and we
leave it to the reader to verify that f and g−ε define an ε-interleaving pair. �

123

Foundations of Computational Mathematics

For fixed parameters s, t ∈ [0,∞], we consider the following computational prob-
lem:

s-t-trivial- morphism: Given two persistence modules M , N in graded matrix
representation, decide whether there exists a morphism f : M → N with s-
trivial kernel and t-trivial cokernel.

Choosing s = t = 0 simply asks whether the modules are isomorphic, which can
be decided in polynomial time [6]. On the other extreme, s = t = ∞ imposes no
conditions on the morphism, which turns the decision problem to be trivially true,
using the 0-morphism. We show

Theorem 6 s-t-trivial- morphism isNP-complete for every (s, t)/∈{(0, 0), (∞,∞)}.
The case (s, t) is computationally equivalent to the case (cs, ct) with c > 0, since

we can scale all grades occurring in M and N by a factor of c. So, it suffices to
prove hardness of 2-t-trivial- morphism, s-2-trivial- morphism (we will see that
the choice of 2 will be convenient in the argument), ∞-0-trivial- morphism and
0-∞-trivial- morphism.

Note that for any choice of s and t , s-t-trivial- morphism is in NP. The argument
is similar to the first part of the proof of Theorem 3: a morphism can be specified
in polynomial size with respect to the module sizes, and we can check the triviality
conditions of the kernel and cokernel by considering ranks of matrices.

For the hardness, we first focus on the case (s, 2); hence, we want to decide the
existence of a morphism with s-trivial kernel and 2-trivial cokernel. The following
simple observation is the key insight of the proof.

Lemma 13 Let M, N be as in Theorem 2. Any morphism f : M → N 1 with 2-trivial
cokernel is injective.

Proof Recall that both M and N are direct sums of n staircase modules. Let p be any
point such that dim Mp = dim Np = n, and observe that Mp→q = idF, Np→q = idF
and f p = fq for all q ≥ p. In particular, if q = p + (2, 2), the induced map
coker(f p) → coker(fq) is the identity, and since f has a 2-trivial cokernel by assump-
tion, the map is also the 0-map. Hence coker(f p) is trivial, implying that the map f p
is surjective, and hence also injective, and the same holds for fq with q ≥ p.

Now consider fr for an arbitrary r ∈ R
2. Let q ≥ r be a point satisfying q ≥ p.

Since the internal morphisms of M are all injective and f p is injective, so is fr . �

In other words, for M and N 1 as above, the answer to s-2-trivial- morphism is

independent of s. Moreover, it follows:

Corollary 2 With M, N as above, there exists a morphism f : M → N 1 with 2-trivial
cokernel and s-trivial kernel if and only if M and N are 1-interleaved.

Proof If such a morphism exists, Lemma 13 guarantees that the morphism is in fact
injective with 2-trivial cokernel. Lemma 12 with ε = 1 guarantees that the modules
are 1-interleaved.

123

Foundations of Computational Mathematics

Vice versa, ifM and N are 1-interleaved, there is amorphism f with 2-trivial kernel
and cokernel by Lemma 11. Again using Lemma 13 guarantees that f is injective,
hence has a 0-trivial kernel. �

Corollary 3 s-2-trivial- morphism is NP-hard for all s ∈ [0,∞].

Proof Given a CI-instance, we transform it into modules M and N as in Sect. 4.
Assuming a polynomial time algorithm for s-2-trivial- morphism, we apply it on
(M, N 1). If the algorithm returns that a morphism exists, we know by Corollary 2
that M and N are 1-interleaved and therefore, the CI-instance has a solution. If no
morphism exists, M and N are not 1-interleaved and therefore, the CI-instance has no
solution. We can thus solve the CI problem in polynomial time. �

6.1 Dual Staircases

We will prove that 2-t-trivial- morphism is NP-hard by a reduction from s-2-
trivial- morphism. First we need some notation. For a staircase S, let S◦ denote
the interior of S, and for a staircase module Ml supported on a staircase S, we let M◦

l
denote the interval module supported on S◦. Observe that there is a canonical injection
M◦

l ↪→ M (given by m �→ m). It is also easy to see that ds(S, T) = ds(S◦, T ◦). Here
ds for interiors of staircases is defined in the obvious way. The reason why we look
at interiors is technical: We eventually end up with a dual module (M◦)∗, and taking
interiors makes sure the changes in this dual module happen at given points instead
of “immediately after” the points, which is needed for a graded matrix representation
of the module.

Lemma 14 Let M and N be staircase decomposablemodules. There exists an injection
f : M → N with ε-trivial cokernel if and only if there exists an injection f ◦ : M◦ →
N ◦ with ε-trivial cokernel.

Proof Let M = ⊕i Mi and N = ⊕ j N j . Observe that S ⊆ T if and only if S◦ ⊆ T ◦.
Therefore, any morphism M◦

i → N ◦
j extends to a morphism Mj → N j in the obvious

way. Conversely, any morphism M → N restricts to a morphism M◦ → N ◦. It is not
hard to see that extension and restriction are inverse functions. In particular, there is a
one-to-one correspondence between morphisms f : M → N and f ◦ : M◦ → N ◦.

Suppose f ◦ is injective. For any point p, there exists a δ > 0 such that Mp→p+δ

and Np→p+δ are isomorphisms, which also gives f ◦
p+δ = f p+δ . Since f ◦ is injective,

f ◦
p+δ = f p+δ is, and by using the isomorphisms, we get that f p is injective, too. Since

p was arbitrary, we conclude that f is injective. The converse can be proved by using
the dual fact that for any p, there exists a γ such that M◦

p−γ→p and N ◦
p−γ→p are

isomorphisms.
Suppose that coker f is not ε-trivial, so there is a p and an m ∈ Np such that

Np→p+ε(m) is not in the image of f p+ε . Similarly to how we picked δ above, we can
pick δ and γ with δ ≤ γ in a way that makes the following diagram commute, with

123

Foundations of Computational Mathematics

equalities and isomorphisms as shown.

M◦
p+δ M◦

p+ε+γ

Mp Mp+δ Mp+ε Mp+ε+γ

Np Np+δ Np+ε Np+ε+γ

N ◦
p+δ N ◦

p+ε+γ

= =

f p

∼=

f p+δ= f ◦
p+δ f p+ε

∼=

f p+ε+γ = f ◦
p+ε+γ

∼=

=

∼=

=

All the horizontal maps are internal morphisms. We know that Np→p+ε(m) ∈ Np+ε

is not in the image of f p+ε . Let m′ ∈ N ◦
p+ε+γ be the image of m along the maps in

the above diagram. Then m′ is in the image of N ◦
p+δ→p+ε+γ , but not in the image of

f ◦
p+ε+γ . Since (ε+γ)−δ ≥ ε, this shows that f ◦ is not ε-trivial. Again, the argument

can be dualized to show the converse. �

For an interval I ⊆ R

2, define the dual interval I ∗ as follows: (x, y) ∈ I ∗ if and
only if (−x,−y) ∈ I . And for an interval module Ml supported on I , let M∗

l denote
be the interval module supported on I ∗. If M = ⊕i Mi is a sum of interval modules
Mi , then M∗ = ⊕i (Mi)

∗. This is equivalent to considering M as a module indexed
by R

2 with the partial order reversed.
Let M◦ = ⊕i M◦

i and N ◦ = ⊕ j N ◦
j , where M◦

i and N ◦
j are interval modules sup-

ported on interiors of staircases, and let f ◦ : M◦ → N ◦. Observe that we can represent
f ◦ by a collection of matrices {Ap}p∈R2 , where Ap is the matrix representation of f ◦

p
with respect to the bases given by the non-trivial elements of {(M◦

i)p}i and {(N ◦
j)p} j .

Similarly, for any p ≤ q, we can represent the linear maps M◦
p→q and N ◦

p→q by
matrices with respect to the obvious bases.

Importantly, representing f ◦
p by matrices Ap as above, we get a dual morphism

(f ◦)∗ : N∗ → M∗ given by the matrices {(A−p)
T }p∈R2 . This induces a bijection

between the set of morphisms from M◦ to N ◦ and the set of morphisms from (N ◦)∗
to (M◦)∗.

Lemma 15 f ◦ is an injection with ε-trivial cokernel if and only if (f ◦)∗ is a surjection
with ε-trivial kernel.

Proof The first part is straightforward: the matrix Ap represents a surjective linear
map if and only if AT

p represents an injective linear map. Since (f ◦)∗p = f ◦−p, the
result follows readily.

For the second part, let p be any point in R
2, and let X be the matrix represen-

tation of the morphism N ◦
p→p+ε with respect to the basis given by the N ◦

j ’s. Then,

by construction, XT is a matrix representation for (N ◦)∗−p−ε→−p (with respect to
the dual bases). Using the elementary fact that col(X) ⊆ col(Ap+ε) if and only if
ker(AT

p+ε) ⊆ ker(XT), where col(X) denotes the column space of X , we conclude

123

Foundations of Computational Mathematics

g1

g2

g3

r1

r2

I

y = −x

r∗
1 = −g1

r∗
2 = −g2

r∗
3 = −g3

r∗
4 = −r1

r∗
5 = −r2

g∗
1 = (−∞,−∞)

r∗
6 = (−∞, (−g1)2)

r∗
7 = ((−g3)1,−∞)

(I◦)∗

Fig. 5 The staircase module kI supported on the interval I admits a graded matrix representation with G =
{g1, g2, g3} and R = {r1, r2}. The module (kI◦)∗ = k(I◦)∗ admits a (generalized) graded matrix represen-
tation with G∗ = {(−∞, −∞)} and R∗ = {−g1,−g2, −g3,−r1, −r2, (−∞, (−g1)2), ((−g3)1, −∞)}.
In the proof of Corollary 4, we may replace ∞ with z � 0 to obtain a proper graded matrix representation

that im(N ◦
p→p+ε) ⊆ im(f ◦

p+ε) if and only if ker((f ◦)∗−p−ε) ⊆ ker((N ◦)∗−p−ε→p).
As p was arbitrary, this concludes the proof. �

Corollary 4 2-t-trivial- morphism is NP-hard for all t ∈ [0,∞].
Proof This follows from the previous two lemmas and Corollary 3. There is however a
technical obstacle arising from the fact that (M◦)∗ and (N ◦)∗ have their generators at
grade (−∞,−∞). This problem is easy to solve, either by altering the graded matrix
representation to allow such a generator, or by placing all generators at a sufficiently
small value p ∈ R

2 that is smaller than all corners of the staircase, see Fig. 5 for an
illustration. Introducing such a minimal grade does not invalidate any of the given
arguments—we omit the technical details. �

6.2 Surjective Morphisms

After Corollaries 3 and 4, all we have left to prove Theorem 6 is the cases ∞-0-
trivial- morphism and 0-∞-trivial- morphism. Recall that these correspond to
asking for a surjection in the first case and an injection in the second.

Lemma 16 ∞-0-trivial- morphism and 0-∞-trivial- morphism are both NP-
hard.

123

Foundations of Computational Mathematics

Proof Wewill only prove the first case; the second follows by dualizing the arguments
in an appropriate way, for instance by using dual staircases as above.

Recall that we have assumed F to be finite. Let q denote the number of elements
in F, and assume that φ is a 3CNF formula with n variables {x1, . . . , xn} and m
clauses {c1, . . . , cm}. We shall construct modules M = A⊕ B⊕ (⊕n

i=1⊕q
r=1 M

r
i) and

N = N1 ⊕ N2, where Mr
i , A, B, N1 and N2 are staircase modules, in such a way that

there exists a surjection M → N if and only if φ is satisfiable. Importantly, we know
from Lemma 7 that any morphism between staircase decomposable modules can be
represented by a matrix with entries in F. We only stated the result in the case where
eachmodule is built from the same number of staircases, but the same argument shows
that a morphism M → N in this case is described by a 2 × (nq + 2)-matrix, which
we shall assume is ordered in the following way

A B M1
1 M2

1 · · · M1
2 · · · Mq

n()∗ ∗ ∗ ∗ · · · ∗ · · · ∗ N1
∗ ∗ ∗ ∗ · · · ∗ · · · ∗ N2

Furthermore, recall that any staircase module is defined by a set of generators, i.e.,
a set of incomparable points defining the “corners” of the staircase. It is not hard to
see that a morphism M → N is surjective if and only if it is surjective at the all the
corners points of N1 and N2.

Let

D = {A, B, N1, N2}
⋃

i,r

{Mr
i }

and let S ⊆ R
2 be a set of pairwise incomparable points. Any functionG : S → P(D),

where P(D) is the power set of D, specifies the modules in the decomposition of M
and N by enforcing that X ∈ D has a corner point at s ∈ S if and only if X ∈ G(s). In
what follows we shall define such a function G in four steps, and define the staircase
modules in D accordingly.

Let S = {a, b, gri , g
r ,s
i , hy,z,w

j } be a set of distinct incomparable points in R
2,

where i, j, r , s, y, z, w run through indices which will be defined as we define G. In
the initial step, we define G(a) = {A, N1} and G(b) = {B, N2}. The addition of these
corners enforce that the matrix (in the ordering given above) must be of the form

(
1 0 ∗ . . . ∗
0 1 ∗ . . . ∗

)
.

This can be seen as follows: since a and b are incomparable, and a ∈ A while a /∈ N2,
we must have that N2 � A. Lemma 6 allows us to conclude that the only morphism
from A → N2 is the trivial one. Similarly we see that the morphism B → N1 must be
the trivial one. Furthermore, since Ma = Aa and Na = (N2)a , surjectivity at a implies
that A → N1 must be non-zero, which gives the non-zero entry in the first column.
We can multiply any column in the matrix with a non-zero element without changing

123

Foundations of Computational Mathematics

the validity or surjectivity of the morphism, so we can assume that this element is 1.
Similarly we get a 1 in the second row of the second column.

We proceed our inductive step by defining G(gri) = {A, Mr
i , N1, N2} for all 1 ≤

i ≤ n and 1 ≤ r ≤ q. Restricting the matrix to the columns corresponding to A and
Mr

i we get

(
1 ∗
0 ∗

)
.

For the morphism to be surjective at the point gri , this matrix must be of full rank.
Therefore, we can write it as

(
1 dri
0 1

)
,

where we again have used the fact that we can scale columns by non-zero constants.
In other words, any surjection M → N must be of the form

(
1 0 d11 . . . dq1 d12 . . . dq2 . . . d1n . . . dqn
0 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1

)
.

Continuing, let G(gr ,si) = {Mr
i , M

s
i , N1, N2}, for all 1 ≤ i ≤ n and 1 ≤ r < s ≤ q.

Restricting the matrix to the columns corresponding to Mr
i and Ms

i yields the matrix

(
dri dsi
1 1

)
.

For thematrix to be surjective at gr ,si , also thismatrixmust be of full rank. In particular,
it must be the case that dri �= dsi , and therefore exactly one of d

1
i , . . . , dqi equals 0. We

will interpret d1i = 0 as choosing xi to be false, and d1i �= 0 as choosing xi to be true.
What remains is to encode the clauses of φ. For a clause c j , let xα j,1 , xα j,2 , xα j,3

be the variables such that either the variable itself or its negation occurs in c j , with
α j,1 < α j,2 < α j,3. For 1 ≤ i ≤ 3, let Xi

j = {1} if xα j,i occurs in c j ; if instead

its negation occurs, let Xi
j = {2, . . . , q}. For example, if c j = x1 ∨ ¬x2 ∨ ¬x4,

then α j,1 = 1, α j,2 = 2 and α j,3 = 4, and X1
j = {1}, X2

j = {2, . . . , q} and X3
j =

{2, . . . , q}. Define G(hy,z,w
j) = {B, Mr

α j,1
, Ms

α j,2
, Mt

α j,3
, N1, N2}, for all 1 ≤ j ≤ m

and y ∈ X1
j , z ∈ X2

j , w ∈ X3
j .

This time, the following submatrix must have rank 2 for all hy,z,w
j with j, y, z, w

as above.

(
0 dy

α j,1 dzα j,2
dw
α j,3

1 1 1 1

)
(5)

At this stage, we have concluded the construction of the modules and no further
restrictions will be imposed on the matrix. In particular, the above shows that there

123

Foundations of Computational Mathematics

exists a surjection M → N if and only if there is an assignment dri ∈ F such that the
following is satisfied:

– F = {d1i , . . . , dqi } for all 1 ≤ i ≤ n.
– The matrix of (5) has full rank for every hy,z,w

j .

We show that this is equivalent to φ being satisfiable.
“⇒”: Assume that φ is satisfiable and pick a satisfying assignment. If xi is set to

false, then define d1i = 0. If xi is set to true, then define d2i = 0. In both cases, we
assign the remaining variables values such that F = {d1i , . . . , dqi } for all 1 ≤ i ≤ n.
Consider the clause c j as above, and assume that xα j,l is assigned a truth value such
that the literal associated to xα j,l in c j evaluates to true. Then d

y
α j,l �= 0 for all y ∈ Xl

j ,

implying that the matrix of (5) has rank 2 for all hy,z,w
j .

“⇐”: Assume an assignment of the variables dri satisfying the two bullet points
above, and set xi to be false if d1i = 0, and true otherwise. Consider the clause
c j as above, and observe that there exists an index y ∈ Xl

j such that dy
α j,l = 0 if

and only if the literal in c j associated to xα j,l evaluates to false. In particular, c j
evaluates to true if and only if at least one of dy

α j,1 , d
z
α j,2

and dw
α j,3

is non-zero for every

(x, y, z) ∈ X1
j × X2

j × X3
j . This is equivalent to the matrix of (5) having full rank for

every hy,z,w
j .

In the end, we have a reduction from 3SAT to ∞-0-trivial- morphism. To com-
plete the proof, we must show that the instance of ∞-0-trivial- morphism can be
constructed in polynomial time in the input size of the instance of 3SAT. As we have
assumed q to be fixed and finite, it suffices to observe that M is defined by nq + 2
staircase modules, while N is a sum of 2 staircase modules, and that each of these
are generated by at most 2 + nq + n

(q
2

) + m(q − 1)3 generators. We remark that the
generators can be chosen along the antidiagonal x = −y in R

2. �

An interesting point is that the number of generators of the staircases in the proof
increases with the size of F. Hence, the proof strategy only applies in the setting of a
finite field (with a constant number of elements).

We conclude this section by remarking that 0-∞-trivial- morphism is equivalent
to the problem of deciding if a module M ′ is a submodule of another persistence
module M . Interestingly, it can be checked in polynomial time if M ′ is a summand of
M [6, Theorem 3.5].

7 A Distance Induced by a Noise System

As a last application of our methods, we show that a particular distance induced by a
noise system is NP-hard to approximate within a factor of 2.

A noise system, as introduced by Scolamiero et al. [19], induces a pseudometric
on (tame) persistence modules. In this section, we shall briefly consider one particular
noise system and we refer the reader to [19] for an in-depth treatment of the more
general theory.

123

Foundations of Computational Mathematics

We say that f : M → N is aμ-equivalence if f hasμ1-trivial kernel andμ2-trivial
cokernel, andμ1+μ2 ≤ μ. From this definition, we can define the following distance
between two persistence modules M and N

dnoise(M, N)

= inf{μ | ∃M f←− X
g−→ N , f an ε-equivalence, g a δ-equivalence and ε + δ ≤ μ}

The reader may verify that this distance coincides with the distance induced by the
noise system {Sε}where Sε consists of all persistencemodulesM with the property that
Mp→p+(ε,ε) is trivial for all p. In particular, dnoise is indeed an extended pseudometric
[19, Proposition 8.7].

Like for the interleaving distance, we can define the computational problem of
c-approximating d for a constant c ≥ 1.

c-Approx-dnoise: Given two persistence modules M , N in graded matrix repre-
sentation, return a real number r such that

dnoise(M, N) ≤ r ≤ c · dnoise(M, N)

Theorem 7 c-Approx-d is NP-hard for c < 2.

Proof Let (n, P, Q) be a CI-instance and construct M and N as in Theorem 2. We
will show the following implications:

dI (M, N) = 1 ⇒ dnoise(M, N 1) ≤ 2

dI (M, N) = 3 ⇒ dnoise(M, N 1) ≥ 4.

This allows us to conclude that an algorithm c-approximating dnoise(M, N) for c < 2
will return a number < 4 if dI (M, N) = 1 and a number ≥ 4 if dI (M, N) = 3. This
constitutes a polynomial time reduction from CI to 2-Approx-dnoise and the result
follows from Theorem 1.

First assume that dI (M, N) = 1. Let X = M with f : X → M the identity
morphism. Lemma 11 shows that the interleavingmorphism g : M → N 1 has 2-trivial
cokernel, and from Lemma 13 we know that it is injective. Hence g is a 2-equivalence
and thus dnoise(M, N 1) ≤ 2.

Now assume that dnoise(M, N 1) < 4. By definition this gives a diagram M
f←−

X
g−→ N 1 where f is an ε-equivalence, g is a δ-equivalence, and ε + δ < 4. We may

assume that both f and g are injective. To see this, consider x ∈ ker(f p). Because f
is an ε-equivalence, ker(f) is ε-trivial, so X p→p+(ε,ε)(x) = 0. This gives

0 = gp+(ε,ε) ◦ X p→p+(ε,ε)(x) = N 1
p→p+(ε,ε) ◦ gp(x).

Since N 1
p→p+(ε,ε) is injective, we conclude that gp(x) = 0. This shows that ker(f) ⊆

ker(g), and by symmetry, that ker(f) = ker(g). Replacing X with X̃ = X/ ker(f)

123

Foundations of Computational Mathematics

induces injective morphisms M
f̃←− X̃

g̃−→ N 1 with the properties that f̃ is an ε-
equivalence and that g̃ is a δ-equivalence. Hence f and g may be assumed to be
injective.Under this assumption,we get the following two inequalities fromLemma12

dI (M, X ε/2) ≤ ε/2

dI (N
1, X δ/2) ≤ δ/2.

Observe that dI (N 1, X δ/2) = dI (N 1−δ/2, X) = dI (N 1+(ε−δ)/2, X ε/2). Together with
the first inequality, this gives dI (M, N 1+(ε−δ)/2) ≤ (ε + δ)/2, and thus

dI (M, N) ≤ dI (M, N 1+(ε−δ)/2) + dI (N
1+(ε−δ)/2, N)

≤ (ε + δ)/2 + (1 + (ε − δ)/2) = 1 + ε.

To conclude the proof, wewill show that δ ≥ 2, as this implies 1+ε < 1+4−δ ≤ 3.
Assuming that n ≥ 1, let p be such that dim Np > 0 and dim Mp+(r ,r) = 0 for all
r < 1. Such a point exists for the following reason: let Mi be any indecomposable
summand of M and let N j be any indecomposable summand of N . Then Mi is a
staircase module for which the underlying staircase is obtained by moving certain
corners of the staircase S in Fig. 2. Likewise, the staircase supporting N j is obtained
by moving certain corners of T . However, by construction, and as shown in Fig. 3, a
number of corners are left unmoved. Hence, we may simply choose p to be any corner
point of T with negative 1st coordinate which is left unmoved in the construction of
N j .

Let q = p − (1, 1). Then dim N 1
q > 0 and dim Mq+(r ,r) = 0 for all r < 2. But

since f is an injection, the space Xq+(r ,r) must also be trivial for any r < 2. It follows
that δ ≥ 2. �

8 Conclusion

Using the link between persistence modules indexed over R
2 and CI problems intro-

duced in [4], we settle the computational complexity of a series of problems. Most
notably, we show that computing the interleaving distance is NP-hard, as is approx-
imating it to any constant factor < 3. Moreover, we investigated the problem of
deciding one-sided stability. Except for checking isomorphism, which is known to be
polynomial, we show that all non-trivial cases are NP-hard. This includes checking
whether a module is a submodule of another. Our assumption that we are working
over a finite field stays in the background for most of the paper, but we rely heavily on
this assumption for proving the submodule problem. Lastly, we showed that approx-
imating a distance d arising from a noise system up to a constant less than 2 is also
NP-hard.

Throughout, we use persistence modules decomposing into very simple modules
called staircase modules. These have the big advantage that the morphisms between
them have very simple descriptions in terms of matrices. While this simplification

123

Foundations of Computational Mathematics

might appear to throw the complexity out with the bathwater, our results clearly show
that this is not the case.

The question of whether c-Approx- Interleaving- Distance is NP-hard for
c ≥ 3 is still open, and it is not clear whether one can prove this with CI prob-
lems or not. Even if this should not be possible, we believe that a better understanding
of CI problems would lead to a better understanding of persistence modules and inter-
leavings.

Acknowledgements We thank the anonymous referees for valuable suggestions, including the connection
to noise systems discussed in Sect. 7. Magnus Bakke Botnan has been partially supported by the DFG
Collaborative Research Center SFB/TR 109 “Discretization in Geometry and Dynamics”. Michael Kerber
is supported by Austrian Science Fund (FWF) Grant Number P 29984-N35.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bauer, U., Lesnick, M.: Induced matchings of barcodes and the algebraic stability of persistence. In:
Proceedings of the thirtieth annual symposium on Computational geometry, p. 355. ACM (2014)

2. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain
artery trees. The annals of applied statistics 10 1, 198–218 (2016)

3. Bjerkevik, H.B.: Stability of higher-dimensional interval decomposable persistence modules. arXiv
preprint arXiv:1609.02086 (2016)

4. Bjerkevik, H.B., Botnan, M.B.: Computational complexity of the interleaving distance. In: 34th Inter-
national Symposium on Computational Geometry, SoCG 2018, pp. 13:1–13:15 (2018)

5. Botnan, M.B., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebraic & Geometric
Topology 18, 3133–3204 (2018)

6. Brooksbank, P.A., Luks, E.M.: Testing isomorphism of modules. Journal of Algebra 320(11), 4020–
4029 (2008)

7. Buchet, M., Escolar, E.G.: Realizations of indecomposable persistence modules of arbitrarily large
dimension. In: 34th International Symposium on Computational Geometry, SoCG 2018, pp. 15:1–
15:13 (2018)

8. Chazal, F., De Silva, V., Glisse, M., Oudot, S.: The structure and stability of persistence modules.
Springer, New York (2016)

9. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds.
J. ACM 60(6), 41:1–41:38 (2013)

10. Dey, T.K., Xin, C.: Computing bottleneck distance for 2-d interval decomposable modules. In: 34th
International Symposium on Computational Geometry, SoCG 2018, pp. 32:1–32:15 (2018)

11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Soci-
ety, Providence, RI, USA (2010)

12. Ivanyos, G., Karpinski, M., Saxena, N.: Deterministic polynomial time algorithms for matrix comple-
tion problems. SIAM journal on computing 39(8), 3736–3751 (2010)

13. Kerber, M., Nigmetov, A.: Geometry helps to compare persistence diagrams. ACM Journal of Exper-
imental Algorithmics 22 (2017)

14. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Foun-
dations of Computational Mathematics 15(3), 613–650 (2015)

15. Lesnick, M., Wright, M.: Interactive visualization of 2-d persistence modules. arXiv preprint
arXiv:1512.00180 (2015)

16. Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B., Wintraecken, M.:
The topology of the cosmic web in terms of persistent betti numbers. Monthly Notices of the Royal
Astronomical Society 465(4), 4281–4310 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1609.02086
http://arxiv.org/abs/1512.00180

Foundations of Computational Mathematics

17. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine
learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7–12, 2015, pp. 4741–4748 (2015)

18. Rybakken, E., Baas, N., Dunn, B.: Decoding of neural data using cohomological feature extraction.
Neural computation 31(1), 68–93 (2019)

19. Scolamiero, M., Chachólski, W., Lundman, A., Ramanujam, R., Öberg, S.: Multidimensional persis-
tence and noise. Foundations of Computational Mathematics 17(6), 1367–1406 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Computing the Interleaving Distance is NP-Hard
	Abstract
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Our Contributions
	1.3 Outline

	2 The CI Problem
	2.1 Generalized Constrained Invertibility
	2.2 Hardness of GCI

	3 Modules and Interleavings
	3.1 Persistence Modules
	3.2 Interleavings
	3.3 Representation of Persistence Modules

	4 Hardness of Interleaving Distance
	4.1 Interleavings of Staircases
	4.2 Construction of the Staircases

	5 Indecomposable Modules
	6 One-Sided Stability
	6.1 Dual Staircases
	6.2 Surjective Morphisms

	7 A Distance Induced by a Noise System
	8 Conclusion
	Acknowledgements
	References

