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Abstract. Considering acoustic emission (AE) as a phenomenon reflecting the elastic energy dissipation 

process in deforming metals, a simple yet self-consistent model is proposed to account for the AE 

behaviour accompanying microstructure evolution during uniform plastic deformation of metals. The 

relationship between the AE power, mobile dislocation density and plastic flow characteristic parameters 

- the strain hardening rate and flow stress - is derived and experimentally verified for face centred cubic 

metals with different stacking fault energies (SFE). Despite its simplicity, the proposed purely 

phenomenological relation captures most of the salient features of the AE behaviour of early deformation 

stages in metals. 
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Plastic flow in a deforming crystal is a dissipative process driven by external stress as a function of time. 

Among the modern in-situ techniques, which can resolve the dynamics of physical processes underlying 

plastic deformation, acoustic emission (AE) has been widely recognized for its unprecedented sensitivity 

to elementary mechanisms of plasticity. Being of the order of a microsecond, the temporal resolution of 

the AE method is superior to many other known in-situ techniques. AE detects transient elastic waves 

generated by rapid energy release from localised sources within the material.  Various dislocation 

reactions including breaking away from pinning points, co-operative motion, annihilation and escaping to 

a free surface are among the detectable AE sources. Therefore, the potential of AE measurements as a 

deformation characterisation tool enjoys growing recognition nowadays [1-4]. 
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  There is a long history of works, getting back to 1960s, that documented the AE features observed 

during strain hardening in various pure single- and poly-crystalline metals and alloys with different crystal 

lattices, alloying and loading conditions, etc.: [5-8] for FCC, [9, 10] for BCC and [11, 12 ] for HCP metals 

(many more can be listed). The ubiquitous finding across virtually all experimental studies is that AE during 

uniaxial monotonic plastic deformation of metals and alloys peaks shortly after the onset of microscopic 

yielding as is exemplified in Fig.1. This usually occurs at strains much smaller than those corresponding to 

the conventional yield stress σ0.2 measured at 0.2% plastic strain.  It is surprising that after many years of 

intensive research, the consensus has not been agreed upon the nature of this most prominent finding. 

Despite an ample similarity between the AE behaviour observed in different materials, there is still no 

commonly accepted phenomenological model or even a satisfactory qualitative description of the AE peak 

at the onset of yielding. The same applies to the following AE decay during strain hardening.  

Gillis [13] noted that the elementary plastic power pldP equals the inner product of the flow stress and 

plastic strain rate tensors, i.e. moving to scalars in the isotropic case pldP dτ γ=  , and introducing the 

Orowan’s expression for the plastic strain rate 

 mb vγ ρ=   (1) 

where mρ is the density of mobile dislocations, b is the magnitude of their Burgers vector,  and v is their 

average velocity, he proposed that the plastic power generated by moving dislocations is proportional to 

the local stress and the dislocation flux. The greatest part of that power is dissipated as heat, while the 

rest can still be considered as a source for continuous acoustic emissions irradiated during plastic flow in 

metals. Despite the considerable differences in the approaches used in numerous early attempts to 

rationalise the AE behaviour in terms of the dislocation behaviour [14-18], many models converge in 

claiming that the AE energy emitted by moving dislocations is proportional to the density of mobile 

dislocations and their mean free path Λ  

 2
mE v ρ∆ Λ   (2) 

The additional factor, which arises in most formulations of AE-related parameters such as the amplitude, 

energy, power or rms voltage, is the mean velocity of dislocations v . Fundamentally, the last relation is 

similar in a sense to that predicted by Scruby et al. [19] from the elasto-dynamic mechanics employed to 

calculate the elastic displacements arising at the epicentric sensor location in response to force dipoles 

representing the motion of a dislocation loop in the slip plane. Thus, the majority of the dislocation-based 

AE models appeal to the dislocation density as a proportionality coefficient for the AE energy (power, 

count rate, etc.) measured. James and Carpenter [20], however, challenged this relation in view of a 

substantial amount of experimental data which does not support such a simple proportionality. For 
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example, using LiF single crystals James and Carpenter demonstrated that the AE count rate was not 

proportional to the total (or mobile) dislocation density, but rather it was related the rate of change of 

the mobile dislocation density, although no model has been proposed to account for that. 

Therefore, in spite of considerable efforts invested into understanding of the relation between 

the AE and plastic flow of materials, K. Ono [18] in his comprehensive review, has emphasized that the 

early models of dislocation-based AE sources, even if they were able to capture different specific features 

of the phenomenon qualitatively, were incomplete, and hard (or impossible) to compare with 

experiments. Carpenter and Heiple [21] at the same time emphasised that a serious drawback in the 

interpretation of a great deal of AE data was that AE is the microscopically sensitive phenomenon whereas 

the attempt to correlate it with the macroscopically measured loading diagrams, e.g. stress-strain curves, 

experienced substantial difficulties and inconsistencies. 

The development of the microstructurally-based model of the AE phenomenon would 

substantially enhance the predictive capacity of the rapidly evolving AE technology, which is widely used 

in modern materials science laboratories and/or in industrial non-destructive integrity testing systems. 

Hence, in the present brief communication, we revisit the “classic” topic with the aim of developing a self-

consistent experimentally-based phenomenological model describing the AE behaviour during plastic 

deformation of pure metals. 

In a purely phenomenological approach paved by Gillis [13] and Ono [18] (see also the references 

therein), consider a single straight dislocation, which moves with the free path under the influence of a 

Peach-Köhler force [22] defined per length of the dislocation segment L : PKF b
L

= τ . The free-flight 

dislocation velocity is given as v d dt= Λ ≡ Λ . The AE power caused by this elementary motion can be 

estimated as a fraction (small) of the total dissipated mechanical energy as: 

 AE PKp F v b
L L

= τ Λ
  (3) 

Considering further that the mean free path of mobile dislocations in pure metals is determined by the 

density of immobile (forest) dislocations fρ , i.e. 1 fΛ = ρ  [23], one obtains: 

 3 22
f

f

ρ
Λ = −

ρ



   (4) 

Combining it with the Taylor relation fGbτ = α ρ (here G  is the shear modulus and α is a numerical 

factor depending on the dislocation arrangement and the mode of deformation (typically of 0.1-0.4) [24-

26], and the friction stress is neglected), which is ubiquitously fulfilled for virtually all conceivable 
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dislocation-dislocation interaction mechanisms and which tacitly assumes that the main strengthening 

effect is caused by the dislocations stored in the lattice, one obtains  

 
fGb

τ
Λ = −

α ρ


  (5) 

Plugging the last relation into Eq.(3), we obtain the relationship for the elementary dissipated AE power: 

 2 2 2AE
pl

p Gb Gb Gb
L

τ σ θ
α = α = α ε

τ σ σ
 



   (6) 

with 
d
d

σ
θ =

ε
- the strain hardening rate. Pair of normal and shear stresses, σ  and τ , and strains ε and γ 

are linked through the Taylor orientation factor M : Mσ τ=  and / Mε γ= , respectively.  To account 

for all elementary motions of dislocations in the volume *V , the last expression is multiplied by the total 

length of mobile dislocations *
m mL V= ρ , and the recorded AE power is determined as: 

 * *AE AE
AE m m pl m

p pP L V V
L L

= = ρ ε θΛρ


  (7) 

Thus, when pl constε = , the proportionality is anticipated between AEP , θ  , Λ  and mρ , c.f. Eq.(2).  The 

linear relation between AEP  and plε  has long been recognised, c.f. [27, 28]. Equation (7) can be 

conveniently rewritten as 

 *~AE pl m AE m pl AE mP V K Kθ σ
ε θΛρ = ρ ε = ρ

σ σ


   (8) 

which predicts the proportionality between the experimentally measurable quantities – AEP and the /θ σ  

(or more generally /σ σ ) ratio derived from stress-strain data. Here the coefficient AEK  incorporates all 

constants and accounts for a fraction of the total plastic power released in the AE form. The greatest 

advantage of this expression is that it is physically transparent and easily verifiable. 

For the experimental validation, the I-shaped flat tensile specimens having the gauge length of 

15×7×2 mm3 were shaped by spark erosion from pure Ni, Al, Cu and Ag plates. The specimens were 

annealed in vacuum for 90min at different temperatures corresponding approximately to 0.85 mT⋅ , where 

mT is a melting temperature. As a result, coarse grain microstructures were produced with mean grain 

sizes ranging from 90 for Ag to 500µm for Ni, according to the electron back-scattered diffraction data 

[29], Table 1.  These metals having the significantly different SFEs ranging from about 300mJ/m2 for Ni to 

of 20mJ/m2 for Ag are representative of a wide range of FCC metals with distinctly different dislocation 

mobility. 
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Uniaxial tensile testing was performed at the nominal strain rate of 3 12 10 s− −×  using a screw-

driven testing machine with a clip-on extensometer. Considering that the elastic strain rate did not exceed 
5 15 10 s− −× , the assumption that the plastic strain rate is constant and is approximately equal to 3 12 10 s− −×  

is plausible. The AE signal was recorded by a wideband piezoelectric transducer NF AE-900S-WB mounted 

on the specimen surface. The AE signal amplified by 60dB in the frequency band from 100 to 900kHz was 

continuously recorded by a PCI-2 board (MISTRAS, USA) at the sampling frequency of 2MHz. The power 

spectral density (PSD) function ( )G f  was calculated using a periodogram technique with a 40kHz rectangular 

spectral smoothing window. The following two quantities were introduced to characterise the AE PSD: the 

power referred to 1Ohm nominal impedance, max

min

( )
f

AE f
P G f df= ∫ , and the median frequency mf   defined by 

the implicit equation
m

m0
( ) ( )

f

f
G f df G f df

∞
=∫ ∫ . Both AEP  and mf  were obtained from ( )G f  after 

subtraction of the PSD of the laboratory noise (see [30] for details). 

Results of mechanical testing paired with AE measurements are presented in Fig.1.  For all metals 

tested, the AE power exhibits the familiar behaviour with a pronounced sharp maximum at the onset of 

plastic yielding and a gradual decay afterwards. The AE power peaks when the most rapid hardening 

occurs. In this sense, it correlates with θ  as can be seen in Fig.1. The correlation between AEP   and θ  has 

been noticed in several reports [30-32] for Cu single crystals though it was confirmed only at the AE 

maximum. However, no apparent functional relationship has been found between AEP  and θ  from data 

shown in Fig.1. On the other hand, Fig.2a shows that, beyond the onset of yielding, the linear relationship 

does exist between AEP and the reduced strain hardening rate /θ σ  in excellent agreement with Eq.(8). 

This agreement tacitly assumes that the mobile dislocation density saturates after initial rapid 

accumulation, and ( )m constρ ε =  through the rest of the test. The strong assumption of the strain 

independent density of mobile dislocations is generally accepted to be valid [33, 34] outside the micro-

yielding stage (note that this was an essential assumption in the dislocation kinetic model developed by 

Bergström [23]). This can be argued from the common thermal activation analysis of the dislocation glide 

assuming the Arrhenius-type equation for the dislocation velocity and, therefore, for the plastic strain 

rate 

 
*

0
0 exp a

pl
B

G V
k T

τ
γ γ

 ∆ −
= − 

 
    (9) 

where Bk is the Boltzmann’s constant, T  is the absolute temperature, and the activation process is 

controlled by the free activation enthalpy ( )* *
0 aH G Vτ τ∆ = ∆ − ,  which is explicitly dependent on the 

thermal component of the flow stress *τ  acting on the glide dislocations during overcoming of short-

range obstacles; 0G∆  represents the stress independent activation energy, and aV  is known as the 
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activation volume. The scaling factor  0γ  [34, 35] is proportional to mρ  and the attempt frequency against 

the obstacle, which is a material’s constant of the order of the Debye frequency. Since 0γ  has not been 

found to be a function of strain or stress, it is commonly assumed to be independent of stress and 

temperature, and, therefore, so does the mobile dislocation density. This is further corroborated by a 

large body of experimental observations of the evolution of the AE power spectral density. Vinogradov et 

al. [1] have demonstrated that the AE PSD shifts to the high-frequency domain so that the spectral median 

frequency mf scales linearly with the flow stress σ  during uniform elongation. Considering the spectrum 

of the weakly correlated stationary random AE process [1], its median frequency was inversely related to 

the relaxation time in the dislocation ensemble, which was expressed by the / vΛ  ratio, and using 

the Orowan’s and Taylor’s relations, one obtained the simple phenomenological relation for mf   

 pl
m pl pl

m m m

v
f

b
γ τ σρ γ ε
ρ ρ ρ

= =
Λ



 

    (10) 

The experimentally observed proportionality between mf and σ  predicted by the last expression is 

illustrated by the mf vs σ plot in Fig.2b for all materials tested and in more details in Fig.3 for copper. 

We should notice that this proportionality holds only if mρ is constant.  At the early stage when mobile 

dislocations are generated, this proportionality breaks down, and the initial pronounced drop in mf  is 

obviously attributed to the rapid growth of mρ , generally leading to the AE peak which is observed nearly 

concomitantly with the mf  minimum, Fig.3. 

Finally, it is instructive to notice that Eq.(8) explicitly implies that AEP is a linear function of mρ

though the ( )AE mP ρ  functional dependence is admittedly more complex than it was predicted in earlier 

models, c.f. Eq.(2), since the other entering variables depend on mρ  too. Assuming that mρ is a constant 

fraction of the total dislocation density ρ , which scales with the mechanical stress according to the Taylor 

relation as 2
mρ σ , the elementary rearrangement of the last expression yields that 

~ ~AE m
dP
dt

σ ρ
ρ ≈ σσ

σ


  as it was heuristically suggested by James and Carpenter [20].  The assumption that  

mρ ≈ ρ  is, of course, crude, which can be argued more or less reasonably for the early stage of 

deformation of a well-annealed poly- or single-crystals only. However, in the forthcoming publication, we 

endeavour to demonstrate it rigorously that the proportionality ~AE
dP
dt
ρ

 holds for the AE peak indeed, 

but not elsewhere.  

Equation (8) allows for the additional independent verification of the model by using the stress-

rate controlled experiments at constσ = . This was done for Cu samples tested in tension on a servo-
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hydraulic Instron 8082 machine at 5 /MPa sσ = . Figure 4 shows that the AE power peaks at 6s due to 

the rapid increase of mρ  entering Eq.(8) (a) and, after that, the linear relation is confirmed between /σ σ

and AEP  (b) in excellent agreement with Eq.(8). 

 

In conclusion, considering AE as a phenomenon reflecting the elastic energy dissipation process 

occurring in deforming metals during dislocation-mediated plastic deformation, we demonstrate that the 

AE power scales with the dislocation density in a complex way determined by dislocation interactions 

during strain hardening. The relationship between the AE power and the strain hardening behaviour in 

the form AE m plP θ
ρ ε

σ



 was derived and experimentally verified for several FCC metals with different 

SFE. Despite its simplicity, this proposed phenomenological relation captures most of the salient features 

of the AE behaviour of pure metals, dilute solid solutions and alloys before strain localisation and/or 

plastic instability sets in. This will be further unfolded in the upcoming full-length publication where the 

effects of loading conditions and metallurgical factors will be incorporated explicitly in the proposed 

model framework within a time-proven dislocation kinetics approach. The important challenges, which 

have yet to be addressed in modelling include the effects of texture, impurities and plastic instabilities, 

which strongly affect the AE behaviour in structural materials [36-38]. With the appropriate calibration, 

this offers a robust and consistent interpretation of the AE data, equipping materials scientists with the 

new functionality of the modern AE technology, and enabling in-situ monitoring and the analysis of 

dislocation kinetics in materials.  
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Table 1. Properties of metals tested and experimental results. 

Properties 
Metal 

Ni Al Cu Ag 

Annealing temperature, K 1470 640 1070 1170 

Stacking Fault Energy, SFE γSFE, mJ/m2 [39-41] 300 170-250 40-70 18-25 

Mean grain size, d /µm 500 ± 300 200 ± 100 100 ± 35 90 ± 70 

Yield stress, σ0.2 / MPa 42.5 19.9 20.0 15.3 

Ultimate tensile strength, σUTS / MPa 340 43.2 213 137 

Elongation at break, εf 0.40 0.50 0.47 0.49 

Peak of the AE power, PAEmax, µV2/Ohm 30 43 82 126 
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Figure 1. Hardening curve (black), strain hardening coefficient (cian), and AE power (green) for different 

samples: (a) Ag; (b) Cu; (c) Al; (d) Ni  

 

 

Figure 2. Dependence of the AE power AEP on the reduced strain hardening rate θ σ  (a) and the AE 

median frequency mf  on the flow stress σ  (b) for all pure metals with different stacking fault energies. 

Straight lines are obtained by the least square linear curve fitting method.  
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Figure 3. Typical example showing the AE power PAE and median frequency fm as a function of the flow 

stress in a pure copper polycrystal.  Each open blue circle shows the result of fm calculation for a 4096 

points realisation of the continuously recorded AE signal.  The red solid line represents the result of 

Loess smoothing, while the straight black line is the result of linear curve fitting with the regression 

coefficient r2=0.998. 

 

 

 

Figure 4. The behaviour of the AE power ( )AEP t  as a function of deformation time in a pure copper 

plocrystal tested under constat stress-rate conditions constσ =  (a). (b) shows the linear relation 

between AEP  and /σ σ  for the decaying part of the ( )AEP t  curve (experimental points are taken to the 

right from the dashed line on (a)), as predicted by Eq.(8) 

 


