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Abstract

We introduce gaps that are edges or external pointers in AVL trees such that the height difference between the subtrees rooted
at their two endpoints is equal to 2. Using gaps we prove the Basic-Theorem that illustrates how the size of an AVL tree (and its
subtrees) can be represented by a series of powers of 2 of the heights of the gaps, this theorem is the first such simple formula to
characterize the number of nodes in an AVL tree. Then, we study the extreme case of AVL trees, the perfectly unbalanced AVL
trees, by introducing Fibonacci-isomorphic trees that are isomorphic to Fibonacci trees of the same height and showing that they
have the maximum number of gaps in AVL trees. Note that two ordered trees (such as AVL trees) are isomorphic iff there exists
a one-to-one correspondence between their nodes that preserves not only adjacency relations in the trees, but also the roots. In the
rest of the paper, we study combinatorial properties of Fibonacci-isomorphic trees.
c⃝ 2018 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

AVL trees [2], presented in almost all books of algorithms and data structures as the perfect dictionary, are well
investigated in different fields. An AVL tree (“Adelson-Velskii and Landis’ tree”, named after the inventors) is a
self-balancing binary search tree, it was the first such data structure to be invented. In an AVL tree, the heights of the
two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing operation
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is done to restore this property. The rebalancing operations of AVL trees are extremely elegant and powerful [3,4].
Since the invention of AVL trees in 1962, a wide variety of balanced binary search trees have been proposed, such
as red–black [5] or 2–3 trees [6] weight-balanced trees [7] just to cite the most popular ones, having remarkable
properties, but none of them reaching the appeal of the original ones.

The first key contribution of this paper is the Basic-Theorem that illustrates how the size of an AVL tree (and its
subtrees) can be represented by a series of powers of 2 of the heights of the gaps. Gaps are special edges or special
external pointers in AVL trees such that the height difference between the subtrees rooted at the two endpoints of
each gap is equal to 2. Basic-Theorem characterizes the size of any AVL tree with a very simple and interesting
formula. Such a general formula, valid for the size of all AVL trees, was not known before. The Basic-Theorem and
its corollaries seem powerful: for example, we can correlate the heights of the nodes with the heights of the gaps, or
we can represent subtree sizes of a given AVL tree with summation of powers of 2 of the heights of the gaps, etc.

The second key contribution of this paper is studying the worst-case AVL trees that are the most unbalanced AVL
trees and they have the maximum possible number of gaps with many appealing properties. To study these trees, we
define the class of Fibonacci-isomorphic trees as the set of all ordered trees that are isomorphic to a Fibonacci tree,
and we show that they represent the most unbalanced trees in the family of AVL trees. Fibonacci trees are AVL trees
that in every branch, the height of the left subtree is greater than the height of the right one [8]. Isomorphism on
ordered trees is a bijection between their node sets such that it preserves not only adjacency relations, but also the
roots of the trees (for more detailed definitions, see Section 4). A preliminary version of this paper appeared in the
proceeding of International Conference on Current Trends in Graph Theory and Computation (CTGTC 2016) (Amani,
2017) [1].
Paper organization. The paper is organized as follows. In Section 2 we define gap terminology in AVL trees. Basic-
Theorem and its corollaries will be presented in Section 3, and in Section 4, we study combinatorial properties of
Fibonacci-isomorphic trees.

2. Gap terminology

Let T be an AVL tree of size n and v be a given node, in this paper, we use the following notations.

• |T | and V (T ) denote the size of tree T and its set of nodes, respectively.
• Tv denotes the subtree rooted in v and key(v) denotes its key.
• p(v) and child(v) denote parent and child of v, respectively.
• vl and vr denote the left and the right children of v, respectively. Similarly, Tl and Tr denote the left and the

right subtrees of T , respectively.
• h(v) denotes the height of Tv that is the number of nodes on the longest simple downward path from the v to a

leaf, the height of an empty tree is defined 0 [9].
• lev(v) denotes the number of the nodes in the path from v to the root.

Definition 1 ([9]). The balance factor of v (also denoted by b(v)) is the difference in the heights of its two subtrees
(h(vr ) − h(vl)). The balance factor of nodes of an AVL tree may take one of the values −1, 0, +1 (by definition). A
node is balanced (or unbalanced) if its balance factor is 0 (or ±1).

Fig. 1 illustrates the balance factors in a given AVL tree, in this figure, black nodes are balanced while the blue
nodes are unbalanced.

Definition 2. For any pair of nodes v and w that v = p(w), the edge between v and w is called gap iff the height
difference between v and w is equal to 2. For a node v with only one child, the external pointer pointing to the null
child is also considered a gap (since the height of v is 2 while the height of its null child is 0).

Fig. 2 illustrates gaps in a given AVL tree, which are shown by red lines, note that two of these gaps are external
pointers pointing to “null children”.

Definition 3. If node v is the parent of node w and there is a gap g between v and w, we say that v has a gap child g,
and v and w are the parent and the child of g, denoted by p(g) and child(g), respectively. We also define the height
of g, denoted by h(g), equal to the height of its child (i.e., h(g) = h(child(g))). We also use G AP(T ) to denote the
set of all the gaps in an AVL tree T .
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Fig. 1. Balance factor of nodes in a given AVL tree. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. An example of gaps in a given AVL tree. Gaps are shown by red lines. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fact 1. For any given node v in an AVL tree T :

• There is at most one gap child for v between v and vl or v and vr .
• Leaves have no gap children.

3. General properties of gaps

In this section, we present Basic-Theorem that expresses the size of a given AVL tree T of height H in terms of
the powers of 2 of the heights of the gaps.

Theorem 1 (The Basic-Theorem).

|T | = n = 2H
− 1 −

∑
g∈G AP(T )

2h(g).

Proof. By induction on H . For H = 0 (empty tree) and H = 1 (single-node tree), the theorem trivially holds. For
the inductive step on H ≥ 2, we assume that the theorem holds for any AVL tree of height less than H , then we use
this assumption to prove the statement for height H . We consider two cases for T .

First, suppose that the heights of Tl and Tr are equal to H − 1. Then, G AP(T ) = G AP(Tl) ∪ G AP(Tr ) as the two
edges between the root of T and the roots of Tl and Tr are not gaps, and the theorem easily follows using the induction
hypothesis,

|T | = |Tl | + |Tr | + 1

= 2H−1
− 1 −

∑
g∈G AP(Tl )

2h(g)
+ 2H−1

− 1 −

∑
g∈G AP(Tr )

2h(g)
+ 1

= 2H
− 1 −

∑
g∈G AP(T )

2h(g) .
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Now suppose that two subtrees have different heights H − 1 and H − 2, respectively. Then the set of the gaps of T
contains all gaps in Tl and Tr , plus the new gap g′ given by the edge between the root of T and the root of the subtree
of height H − 2 (i.e., G AP(T ) = G AP(Tl) ∪ G AP(Tr ) ∪ {g′

}). Therefore, using the induction hypothesis and the
fact that h(g′) = H − 2, we have:

|T | = |Tl | + |Tr | + 1 = 2H−1
+ 2H−2

− 1 −

∑
g∈G AP(Tl )

2h(g)
−

∑
g∈G AP(Tr )

2h(g)

= 2H
− 2H−2

− 1 −

∑
g∈G AP(Tl )

2h(g)
−

∑
g∈G AP(Tr )

2h(g)

= 2H
− 1 − 2h(g′)

−

∑
g∈G AP(Tl )

2h(g)
−

∑
g∈G AP(Tr )

2h(g)

= 2H
− 1 −

∑
g∈G AP(T )

2h(g) .

Thereby, the proof is complete. □

To show how powerful this theorem is, the following corollary describes the precise relation between the size of
the entire tree (n), the heights of the nodes, the subtree sizes, and the heights of the gaps in a given AVL tree.

Corollary 1. For a gap g, let lev(g) be the number of the nodes above g in the path from g to the root (i.e., the
number of node-ancestors of g), note that the level of a gap is equal to the level of its parent node, then:∑

u∈V (T )

(2h(u)
− |Tu |) −

∑
g∈G AP(T )

lev(g)2h(g)
= n.

Proof. By Theorem 1 (Basic-Theorem) we know that for any node u, 2h(u)
−

∑
g∈G AP(Tu )2

h(g)
− |Tu | = 1. Therefore,

by summing up of this formula over all nodes we have:∑
u∈V (T )

1 = n =

∑
u∈V (T )

{2h(u)
− |Tu | −

∑
g∈G AP(Tu )

2h(g)
}.

On the other hand, for any gap g, for any ancestor u of g, g ∈ G AP(Tu) and vice versa. Therefore, there are exactly
lev(g) nodes u that g ∈ G AP(Tu). We claim that:∑

u∈V (T )

∑
g∈G AP(Tu )

2h(g)
=

∑
g∈G AP(T )

lev(g)2h(g).

Therefore,

n =

∑
u∈V (T )

(2h(u)
− |Tu |) −

∑
u∈V (T )

∑
g∈G AP(Tu )

2h(g),

n =

∑
u∈V (T )

(2h(u)
− |Tu |) −

∑
g∈G AP(T )

lev(g)2h(g). □

Corollary 2. The powers of 2 of the heights of the nodes and the gaps are related by the following upper bound.∑
u∈V (T )

(2h(u)) −

∑
g∈G AP(T )

lev(g)2h(g)
≤ n + nH = Θ(n log n).

Proof. Immediately by using Corollary 1 and the fact that
∑

u∈V (T )(|Tu |) is the same as the total internal path length
that is upper bounded by nH ≤ Θ(n log n). □

As we observed, Basic-Theorem is a very simple but interesting and unique formula that can be used in many
different combinatorial problems. The above corollaries were just some primary examples, more can be found based
on corresponding applications.
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Fig. 3. The list of all Fibonacci trees of height 1 to 8.

4. Fibonacci-isomorphic trees

In this section, we first review the definition of Fibonacci trees, then, we define a new class of trees called
Fibonacci-isomorphic trees showing that they represent the extreme case of perfectly unbalanced AVL trees and
they have the maximum possible number of gaps, and finally, we study their combinatorial properties.

Fibonacci trees. Fibonacci trees are AVL trees that in every branch, the height of the left subtree is bigger than the
height of the right one.1 A Fibonacci tree of height h has Fh leaves, where Fi shows the i th Fibonacci number
(i.e., F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2). Fibonacci tree can be also defined recursively as follows [8].

Definition 4. The Fibonacci tree of height h for h = 0 is an empty tree and for h = 1 is just a single node; If h ≥ 2,
the left subtree of the Fibonacci tree of height h is the Fibonacci tree of height h − 1 and the right subtree is the
Fibonacci tree of height h − 2.

We emphasis that for any given height h, there is a unique Fibonacci tree of height h. Fig. 3 illustrates Fibonacci
trees of height 1 to 8.

Isomorphism on ordered trees. Recall that two “graphs” are isomorphic if there exists a one-to-one correspondence
between their node sets that preserves adjacency relations in the graphs. For “ordered trees”, isomorphism also
preserves the roots (i.e., roots are mapped to each other) [11]. More precisely, if T and T ′ are two ordered trees
and V , E , r , V ′, E ′, r ′ denote the set of the nodes, the set of the edges, and the roots of T and T ′, respectively,
isomorphism of ordered trees T and T ′ is a bijection between their nodes f : V → V ′ such that:

f (r ) = r ′ and ∀u, v ∈ V : (u, v) ∈ E ⇔ ( f (u), f (v)) ∈ E ′.

In simple words, two ordered trees are isomorphic if one tree can be obtained from the other by performing any
number of flips while flip means swapping left and right children of a node. Fig. 4 shows two isomorphic ordered
trees.

1 We are familiar with the beauty of Fibonacci numbers (see [10]), in Fibonacci trees, by construction, a semi-Fibonacci pattern repeats in every
branch.



M. Amani / AKCE International Journal of Graphs and Combinatorics 15 (2018) 14–21 19

Fig. 4. A Fibonacci tree of height 5 in the left side and one of its isomorphisms in the right side.

Fibonacci-isomorphic trees. We define a Fibonacci-isomorphic tree as an ordered tree that is isomorphic to a
Fibonacci tree. Fig. 4 also shows two Fibonacci-isomorphic trees of height 5, the left one is a Fibonacci tree of
height 5 and the right one is one of its isomorphisms.

Corollary 3. A Fibonacci-isomorphic tree is an AVL tree that all internal nodes have exactly one “gap child” and
vice versa.

Fact 2. In a Fibonacci-isomorphic tree of height h,

1. its “internal nodes” form a Fibonacci-isomorphic tree of height h − 1,
2. the total number of its nodes is |T | =

∑n
i=1 Fi = Fh+2 − 1.

Proof. The first statement can be proved by a simple induction on h. The second statement can be proved by another
induction using the first statement. □

Lemma 1. The number of Fibonacci-isomorphic trees of height h is 2Fh+1−1.

Proof. For any internal node, by a flip we generate a new Fibonacci-isomorphic tree, on the other hand, by Fact 2, we
have Fh+1 − 1 “internal” nodes, therefore, the total number of Fibonacci-isomorphic trees of height h is 2Fh+1−1. □

4.1. Encoding and labeling

Based on what we mentioned earlier, the cardinality of the set of Fibonacci-isomorphic trees of height h is 2Fh+1−1.
In the following, we present an optimum encoding for these trees using only Fh+1 − 1 bits.

Encoding. Ignore all the leaves, for any internal node, label the node with its balance factor, then replace all −1 labels
with 0 and all +1 labels with 1, finally, by a preorder traversal of T , obtain the codeword.

Algorithm 1 Encoding Algorithm for Fibonacci-Isomorphic Trees:
1: Label each internal node with its balance factor.
2: Replace every label +1/ − 1 with 1/0, respectively.
3: Obtain the codeword by a preorder traversal.

Fig. 5 demonstrates encoding of a Fibonacci tree of height 5, in this picture, red lines represent gaps, black numbers
show the balance factors, and the codeword is 0 1 0 0 0 1 0.

The validity of this encoding is trivial (the validity of an encoding is the one-to-one correspondence between
the encoding and the tree) and since the encoding is optimum, it can be efficiently used for many combinatorial
applications such as generation, ranking, unranking, random generation, etc. For instance, in the following, we
demonstrate a generation algorithm of Fibonacci-isomorphic trees using this encoding.
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Fig. 5. Labeling a Fibonacci-isomorphic tree, in this picture, red lines show the gaps, black numbers show the balance factors, and the codeword
is 0 1 0 0 0 1 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. Generation of Fibonacci-Isomorphic trees

Many papers have been published earlier in the literature for generating different classes of trees. Just to name a
few, we can mention the generation of binary trees in [12–14], k-ary trees in [15–17], degree bounded ordered trees in
[18,19], and neuronal trees in [20–22]. Typically, trees are encoded as codewords over a given alphabet and then these
codewords are generated, e.g. in our Fibonacci-isomorphic trees the presented codeword uses an alphabet of size 2.

By choosing a suitable codeword to represent the trees, we can design efficient generation algorithms for the
codeword. Any generation algorithm imposes an ordering on the set of trees. Here, we define an ordering on these
trees with a given height h that is relevant to the numerical generation of these codewords from 0, 0, . . . , 0  

Fh+1−1 copies

(which is

the first codeword in lexicographical order) to 1, 1, . . . , 1  
Fh+1−1 copies

(which is the last codeword in lexicographical order).

Definition 5. Let T and T ′ be two Fibonacci-isomorphic trees, h(T ) shows the height of tree T , and Tl (Tr ) and T ′

l
(T ′

r ) denote the left (right) subtrees of T and T ′, respectively. If T = T ′, they have the same order, otherwise, we say
that T is less than T ′ in this ordering and we show it by T ≺ T ′, iff

• h(T ) < h(T ′) or
• h(T ) = h(T ′) and recursively Tl ≺ T ′

l or (Tl = T ′

l and Tr ≺ T ′
r ).

Theorem 2. Numerical generation of all 2Fh+1−1 codewords from 0, 0, . . . , 0  
Fh+1−1 copies

to 1, 1, . . . , 1  
Fh+1−1 copies

is equivalent to the

generation of their corresponding Fibonacci-isomorphic trees in the ordering given in Definition 5.

Proof. Immediate by construction. Note that, if after a sequence of the same elements in both codewords, there is a
0 in one codeword and a 1 in another codeword, it is equivalent to reaching to a subtree with its height less than the
others (as their parents had the same heights). □

5. Summary and remarks

In this paper, we introduced gaps in AVL trees. Using gaps, we proved the Basic-Theorem that illustrates how the
size of an AVL tree (and its subtrees) can be represented by a series of powers of 2 of the heights of the gaps. This
theorem is the first such simple formula to characterize the number of nodes in an AVL tree. Then, we introduced
Fibonacci-isomorphic trees showing that they are the extreme case of perfectly unbalanced AVL trees with maximum
possible number of gaps, finally, we studied the basic combinatorial properties of Fibonacci-isomorphic trees such as
enumeration, encoding, and generation.
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