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Abstract

The purpose of this paper is to show that online process optimization can be

achieved using simple control structures without the need for solving numerical op-

timization problems online. In particular, we show that changes in active constraint

regions can be handled using simple logics such as selectors, without needing to identify

the exact location of the active constraint regions a-priori, nor using a detailed model

online. Good case studies are used to clearly demonstrate how optimal operation can

be achieved with changes in active constraint regions using simple feedback control

structures.

1. Introduction

The primary objective of online process optimization, also known as real-time optimization

(RTO), is to optimize the economic performance subject to satisfying constraints such as

product specifications and operational limits. Online process optimization is traditionally
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based on rigorous steady-state mathematical models of the process that are used in a nu-

merical optimization solver to compute the optimal inputs and setpoints.

However, the main challenge with this approach is the need for mathematical models.

Mathematical models are generally expensive to obtain and maintain. In addition, the

required computation may be difficult to implement and may not converge to the optimal

solution. Moreover, there is always plant-model mismatch due to lack of knowledge and/or

model simplification. This may lead to suboptimal operation. Addressing the plant-model

mismatch has been one of the main focus areas of RTO in the past four decades or so.

Online process measurements are used to cope with plant-model mismatch. The most

obvious and common approach in traditional RTO is to update the model using the so-called

two-step approach, where deviations between the model predictions and the measurements

are used in the first step to update the model parameters. In the second step, the up-

dated steady-state model is used to re-optimize the setpoints. However, updating the model

parameters may not be sufficient to alleviate the effects of model structural mismatch. For

example, Roberts and Williams 1 , Marchetti et al. 2 and several others show that it is difficult

to achieve the model-adequacy conditions3 using the two-step model adaptation approach.

Another major challenge with the traditional two-step approach is the steady-state wait

time. Since steady-state process models are used, it is necessary for the plant to settle to a

new steady-state operating point before updating the model parameters and estimating the

disturbances. Darby et al. 4 noted that this steady-state wait time is one of the fundamental

limitations of traditional RTO. For processes with long settling times, or with frequent

disturbances, the process is operated sub-optimally for long periods.

One obvious solution to the steady-state wait time is to use dynamic models for the op-

timization. However, dynamic RTO has numerical issues and is computationally intensive,

even with today’s computing power. Other approaches that make use of transient measure-

ments for steady-state optimization have also been recently proposed by Krishnamoorthy

et al. 5 and François and Bonvin 6 . For example, the hybrid RTO5 approach uses a dy-
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namic model and transient measurements for model adaptation and the corresponding static

model for optimization. However, all these approaches rely on solving online a numerical

optimization problem.

Optimization
layer (RTO)

Control layer

Process
y

y = CV

ysp = CV sp

u = MV

d

Figure 1: Typical hierarchical decomposition into optimization and control layer.

The RTO layer generally has as degrees of freedom, the setpoints for the controlled

variables (CV sp) which is given to the control layer as illustrated in Fig. 1. The control

layer has degrees of freedom u, which are the physical manipulated variables (MV), and

in addition to achieving feasible operation, its main objective is to keep the outputs y or

controlled variables (CV) at the optimal values computed by the RTO layer. The main

purpose of this paper is to study how we can eliminate the RTO layer, even for the case

when the set of constraints that are active changes with changing operating conditions. In

other words, the objective is to indirectly move the optimization into the control layer.

The idea of achieving optimal operation using feedback control structure dates back

to the 80’s, where Morari et al. 7 attempted to synthesize a feedback optimizing control

structure by translating the economic objectives into process control objectives. However,

this idea of “feedback optimizing control” from Morari et al. 7 received very little attention,

until Skogestad 8 presented the self-optimizing control structure, where the objective is to

find a simple feedback control strategy with near-optimal cost, subject to constraints using

feedback controllers. Here, Skogestad 8 advocates that, it is important to tightly control the

constraints that are at its limit at the optimum. In this case, there is no loss by keeping the
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constraint at its limit (active constraint control). Next, if there are remaining unconstrained

degrees of freedom, one should identify suitable controlled variables which translates to the

economic objectives. In other words, one should identify the so-called “self-optimizing”

control variables. The idea is that, controlling the self-optimizing variables at constant

setpoints give an acceptable loss compared to the true optimum, when disturbances occur.

Offline optimization is typically needed to find good self-optimizing variables. The ideal self-

optimizing variable is the gradient of the cost function, Ju, which should then be controlled

to a constant setpoint of zero,9 thereby satisfying the necessary conditions of optimality.

To summarize, if the optimization problem at hand is an unconstrained problem, then

to drive the process to its optimum, we need good models. However, if the problem is

constrained such that the optimal operation happens when the constraints are active, then

the simplest and most effective approach is to control the active constraints tightly using

feedback controllers (active constraint control), without using a model.

In many cases, the active constraint set changes as a function of disturbances. For

example, when a disturbance changes, some of the active constraints may no longer be

active and some other constraints may become active. A different active constraint set

requires reconfiguration of the control loops and also possible identify different self-optimizing

variables for the new operating conditions. This is schematically shown in Fig. 2, where

the cost function is shown for two different disturbance values d1 and d2. The infeasible

region is shown in gray shaded area. For disturbance d1, the optimum occurs when the

constraint (shown in red line) is active, whereas, when the disturbance changes to d2, the

constraint is no longer active and a new self-optimizing variable is required, since the problem

is an unconstrained optimization problem. This requires the need to change the controlled

variables. This paper focuses on the use of simple control structures to achieve optimal

operation, even in the case where the active constraint set changes. Using different example

cases, we will show that, often simple control logics are sufficient to handle changes in the

active constraint sets without needing to use a model online.
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Figure 2: Schematic representation showing the change in the active constraint set for two dif-
ferent disturbances, where for disturbance d1 the optimum occurs at the constraint, whereas,
for disturbance d2, the optimum is unconstrained.

When we have one manipulated variable (MV) controlling two controlled variable (CV),

i.e. CV-CV switching, then minimum/maximum selectors can be used. Alternatively, when

we have more than one candidate MV to control one controlled variable (CV), then split-

range logic can be used. Split range control may also be used when MV-CV pairings need to

be changed when a MV saturates. However, this paper focuses on CV-CV switching and the

reader is referred to Reyes-Lúa et al. 10 and Reyes-Lúa et al. 11 for more detailed description

on MV-MV switching.

The main contribution of this paper is to show that, for many simple processes, online

steady-state process optimization with changes in active CV constraint regions can indeed

be achieved by using simple feedback control structures, without having a separate online

optimization layer. Some well known case studies are presented that demonstrate the effec-

tiveness of the proposed control structures and how changes in the active constraint regions

can be handled using simple control logics such as selectors.
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2. Control structure design for online process optimiza-

tion

Consider a steady state optimization problem,

min
u

J(u,d)

s.t. (1)

g(u,d) ≤ 0

where u ∈ Rnu denotes the vector of manipulated variables (MV) and d ∈ Rnd denotes the

vector of disturbances, J : Rnu×Rnd → R is the scalar cost function and g : Rnu×Rnd → Rng

denotes the vector of constraints and let na ≤ ng denote the number of active constraints

gA(u,d) at the optimum for a given disturbance d. The Lagrangian of (1) is written as,

L(u,d) = J(u,d) + λTg(u,d) (2)

where λ ∈ Rng is the vector of Lagrangian multipliers for the constraints. The Karush-Kuhn-

Tucker (KKT) optimality conditions for (1) state that the necessary condition of optimality

is when,

∇uL(u,d) =∇uJ(u,d) + λT∇ug(u,d) = 0 (3a)

g(u,d) ≤0 (3b)

λTg(u,d) =0 (3c)

λ ≥0 (3d)

where (3b) is the primal feasibility, (3d) is the dual feasibility and (3c) is the complementary

slackness condition.
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Typically, the optimal solution for (1) is computed by solving the KKT conditions (3),

either analytically or using numerical methods. However, the objective in this section is to

show how to achieve optimal steady-state operation using simple feedback controllers without

having to explicitly solve the numerical optimization problem in (1). In other words, we aim

to translate the KKT conditions into control objectives and thereby move the optimization

layer into the control layer.

In order to achieve this, we need to identify the set of constraints that are active depending

on the disturbances d. By “active constraints”, we mean the set of constraints gA ⊂ g, which

optimally should be at the limiting value, i.e., gA(u,d) = 0. For each active constraint, we

need to find an associated controlled variable, usually simply the constraint itself, i.e. CV

= gA. In some cases, the constraint is on a manipulated variable (MV); in this case one can

simply select CV = MV, so actually no controller is needed to control an MV-constraint.

Disturbances may cause the active constraints to change, meaning that we get different

operating regions.

In order to design controllers that cover the relevant operating regions, the first question

one needs to answer is what are the potential combination of active constraints that may be

encountered during operation. For a process with ng constraints, we have a maximum of 2ng

possible combinations of operating regions.8 To be systematic, we can start our by writing

all the possible constraint combinations. But in practice there are often only a few of these

combinations that are applicable for a given set of disturbances. Often with good process

understanding and “engineering intuition”, one can tell a-priori which active constraint com-

binations that may be encountered. Hence we eliminate the constraint combinations that

are not feasible or not likely.

A more rigourous alternative is to identify using offline optimization, the possible ac-

tive constraint regions for known disturbances. Once the relevant combination of active

constraints are identified, control structures can be designed to handle the different combi-

nations of active constraints. Selecting the right controlled variable is therefore important
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to achieve optimal operation using simple feedback control structures.

2.1 Selection of controlled variables

Depending on the number of active constraints na, relative to the number of manipulated

variables (MV) nu, we have four different cases.

Case 1: Fully constrained case (na = nu) When the number of active constraints at

the optimum is equal to the number of MVs (i.e. na = nu), then the simplest and easiest

approach to achieve optimal operation is to select CV = gA and simply maintain the active

constraints at their limits using feedback control (active constraint control).8? Therefore,

in this case, we have nu feedback controllers that controls the nu = na active constraints

y = gA(u,d) = 0 as shown in Fig. 3a.
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Figure 3: Control structure design for (a) Fully constrained case (na = nu), (b) Fully uncon-
strained case (na = 0) and (c) Partially constrained case (0 < na < nu)

If a constraint is on the MV, then we do not need any controller at all for this constraint,

since the MV can simply be held constant at its limit. More generally, for other constraints,

we need to control an associated CV, e.g. CV = gA (active constraint control). Active

constraint control approach is an old idea and has been used in many examples.7,11–15 In

fact, the example used by Morari et al. 7 in one of the earliest works on feedback optimizing

control happened to result in an implementation with controlling the constraints at its limit.
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Note that in the case of fully constrained optimum, we can achieve optimal operation without

using a model for optimization, since the process constraints are usually measured and can

be maintained at its limit using feedback.

Case 2: Fully unconstrained case (na = 0) When there are no active constraints at

the optimum (i.e. na = 0), we have nu unconstrained MVs which can be used to drive the

process to its optimum. The optimization problem (1) reduces to

min
u

J(u,d) (4)

since gA = ø and the necessary condition of optimality (3) is given by,

∇uJ(u,d) = 0 (5)

Optimal operation can then be achieved by driving the steady-state gradient ∇uJ of the

cost J from the inputs u to a constant setpoint of zero by nu feedback controllers, thereby

fulfilling the necessary conditions of optimality. Therefore. we have nu feedback controllers,

each controlling the steady state gradient to a constant setpoint of 0, i.e. the controlled

variables (CV) y = ∇uJ are controlled to a constant setpoint of ysp = 0 as shown in Fig. 3b.

There are different ways that can be used to estimate the steady-state gradient ∇uJ .

One approach is to use a dynamic model of the process along with the measurements as

described by Krishnamoorthy et al. 16 . Alternatively, the plant gradients can be estimated

directly from the cost measurements (if available) as done in NCO-tracking control17 and

several variants of extremum seeking control.18–20 The reader is referred to Srinivasan et al. 21

for a comprehensive review of several gradient estimation techniques that can be employed.

Case 3: Partially constrained case (0 < na < nu) When the number of active con-

straints at the optimum is less than the number of MVs, we have a partially constrained
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case. In this case, we first use the na available MVs to control the active constraints. For

the remaining (nu − na) uncontrolled MVs, we ideally want to control the steady state cost

gradient Ju to a constant setpoint such that the KKT conditions in (3) are satisfied.

As mentioned in case 2, in the fully unconstrained case, the steady-state gradients are

controlled to a constant setpoint of zero in order to fulfill the necessary condition of optimal-

ity as shown in (1). However, in the partially constrained case, the steady-state gradients

∇uJ(u,d) may have to be controlled to a non-zero value in order to satisfy the KKT condi-

tions. To further explain this, the Lagrangian function (2) of the optimization problem for

this particular case reduces down to

L(u,d) = J(u,d) + gA(u,d)Tλ (6)

where, λ ∈ Rna represents the Lagrange multipliers of the na active constraints gA(u,d).

Note that the Lagrange multipliers corresponding to the active constraints gA(u,d) are non-

zero due to the complementary slackness condition (3c), i.e. λ > 0. The necessary condition

of optimality is then given by,

∇uL(u,d) = ∇uJ(u,d) +∇ugA(u,d)Tλ = 0 (7)

∇uJ(u,d) = −∇ugA(u,d)Tλ (8)

Therefore, the steady-state gradients must be controlled to a constant value equivalent

to −∇ugA(u,d)Tλ in order to fulfill the necessary conditions of optimality. However, the

expression in (8) cannot be used directly for feedback control, because it still contains the

Lagrange multiplier, which is an unknown variable. In order to achieve necessary condition

of optimality using feedback controllers, we eliminate the Lagrange multiplier by looking

into the nullspace N of the active constraint gradients ∇ugA(u,d).

A shown by Jäschke and Skogestad 22 , N is defined as the nullspace of ∇ugA(u,d) if

NT∇ugA(u,d) = 0. Since the number of active constraints na < nu, Linear inequality
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constraint qualification (LICQ) is satisfied and therefore, ∇ugA(u,d) has full row rank.

Consequently, the nullspace N is well defined. We then have the following theorem:

Theorem 1. Given a steady-state optimization problem (1) with nu manipulated variables u,

nd independent disturbances d and na active constraints gA(u,d). Let N ∈ Rnu×(nu−na) be the

nullspace of the active constraint gradients ∇ugA(u,d), such that NT∇ugA(u,d)T = 0. Then

the necessary conditions of optimality can be achieved by controlling the linear combination

of the gradients

c = NT∇uJ(u,d) (9)

to a constant setpoint of zero.

Proof. To eliminate the Lagrange multiplier, we pre-multiply (8) by NT to get

NT∇uJ(u,d) = −NT∇ugA(u,d)Tλ (10)

Since N is in the nullspace of ∇ugA(u,d), NT∇ugA(u,d)T = 0.

NT∇uJ(u,d) = −0λ (11)

By construction, c is a vector with (nu−na) elements. Hence, to achieve optimal operation,

we can then control the (nu − na) elements of the gradient combinations c to a constant

setpoint of zero using (nu − na) feedback controllers.

To summarize, in the case with 0 < na < nu, we use na MVs to control the active

constraints and for the remaining (nu−na) MVs, we control the linear gradient combination

c = NT∇uJ(u,d) to a constant setpoint of zero as shown in Fig. 3c. This is similar to null-

space method proposed by,23 but instead of choosing a linear combination of measurements

c = Hy, we choose a linear combination of the cost gradients as the self-optimizing variable.

Since this self-optimizing variable is computed based on gA(u,d) = 0, it is only valid in

this particular active constraint region. Therefore, the control loops tracking the gradient
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combinations c = NT∇uJ(u,d) using the unconstrained MVs are turned off in the regions

other than where it is designed for and the neighboring regions (A neighboring region is an

operating region where only one controlled variable (constraint) has changed). Therefore, it

is not necessary (and in fact it will be incorrect) to track the unconstrained CVs in all other

regions. It is only necessary (and correct) to track the variable c in the regions where they

are active and its neighboring regions.

Case 4: Over-constrained case (na > nu) If the number of active constraints becomes

larger than the number of MVs, then the problem becomes infeasible, since we do not

have sufficient MVs to control all the active constraints. In this case, the only possible

solution would be to give up controlling less important constraints. This is analogous to

using soft constraints on less important constraints to avoid infeasibility issues in numerical

optimization problems. In this case, a priority list can be used to determine the less important

constraints and only the first nu constraints are controlled at their limit using feedback

controllers. The remaining (na − nu) CV constraints are given up. The control structure in

this case would remain the same as shown in Fig. 3a. The reader is referred to Reyes-Lúa

et al. 10 for a typical priority list that is commonly used. Note that MV hard constraints,

for example due to physical limitations of the actuator cannot be given up and are therefore

typically high up in the priority list. Note that although this may not really be considered

a case since this case is infeasible, we have included this here for the sake of completion.

2.2 Use of logic to switch between active constraint regions

So far we considered the choice of controlled variables for the four different cases of active

constraints. In practice, the cases for active constraints change depending on the operating

point (disturbances). One way to handle this is to use simple controller logics.

Selectors are commonly used as logic elements when one MV u is used to control several

controlled variables (CV) y, i.e to handle CV-CV switching. In this approach, there is a
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controller for each CV and the MV-value is selected among the controller outputs using a

minimum or maximum selector, depending on the process gains.

Consider for example, two CVs yi and yj that needs to be controlled in two neighboring

active constraint regions i and j, respectively. Let Kpi and Kpj denote the steady state pro-

cess gain from the MV u to the CV yi and MV u to the CV yj, respectively . Then switching

between yi and yj can be achieved using a minimum selector if sgn(Kpi) = sgn(Kpj) = 1 or

a maximum selector if sgn(Kpi) = sgn(Kpj) = −1.

To illustrate this, consider two single loop controllers Ci and Cj with u controlling yi

and the same MV u controlling a different CV yj, respectively. Let Ki and Kj denote the

steady-state controller gain for the two single loop controllers Ci and Cj, respectively. The

controller tracking error in this case would then be ei = yspi − yi for Ci and ej = yspj − yj for

Cj. Consequently, the MV change computed by the two controllers are given by u = Kiei

and u = Kjej respectively.

If the process gain for both the loops are positive (i.e. sgn(Kpi) = sgn(Kpj) = 1),

then the controller gain for both loops must also be positive. During operation in region i

we want the controller tracking error in Ci to be ei = 0, and ej > 0. The control action

computed by Cj would then keep increasing due to the integral action. The correct selection

would then be the lesser of the two MV value computed by the two controllers. Similarly,

during operation in region j we want the controller tracking error in Cj to be ej = 0, and

ei > 0. The control action computed by Ci would then keep increasing due to the integral

action. The correct selection would again be lesser of the two MV values computed by

the two controllers. By the same logic, if the process gain for both the loops are negative

(i.e. sgn(Kpi) = sgn(Kpj) = −1), then we must select the maximum of the two MV value

computed by the controllers, using a maximum selector.

However, If the process gain for the two control loops using the same MV have opposite

signs, then the MV change computed by the two control loops would be in the opposite

directions. In this case, a minimum or maximum selector would not work and can even lead
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to unstable response. Therefore, it is important to note that one should never choose to

switch between two CV constraints using the same MV if the corresponding process gains

have opposite signs. More guidelines on the pairing of the MV and CV are given in the

discussions section.

For example, consider a flow line with a valve as the MV. Suppose we have two CVs,

namely, to control the flow at its maximum limit and the inlet pressure at its maximum

limit. In this case, the flow controller would want to open the valve, whereas the pressure

controller would want to close the valve (opposing process gain sign). If a minimum selector

is used, it will always choose the pressure controller over the flow controller and similarly,

if a max selector is used, the flow controller will always be used. However, if we want to

control the pressure at its minimum limit instead, and the flow at its maximum limit, the

process gains now have the same sign. Using a minimum selector, the valve will be opened

until either the minimum pressure limit is reached or the maximum pressure limit is reached,

providing the desired response.

2.3 MV-CV Pairing

When designing simple feedback controllers to achieve optimal operation, another important

question that arises is what MVs must be used to control the active constraints and/or the

gradient combinations. In other words how to pair the MV and CVs to achieve optimal op-

eration and enable switching between the active constraint regions. As for any decentralized

control structure design, useful tools such as the relative gain array (RGA) can be used to

decide on the CV-MV pairing. Once the different active constraint regions are identified,

the corresponding MV-CV pairing must be chosen to design the control loops such that the

necessary CVs in each operating regions is controlled by an MV. Hence the active constraint

regions play a very important role in choosing the MV-CV pairings. As a rule of thumb, in

each active constraint region, the MV-CV pairings must be chosen based on the following:

1. Pair-close rule - In order to avoid large time delays and sluggish control, it would also
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be wise to control a CV using an MV that is physically close to one another.

2. Non-negative RGA - CV-MV pairing must be chosen such that the steady-state RGA

of the resulting transfer matrix is non-negative and close to identity matrix at crossover

frequencies.24

3. One must also try to avoid pairing important CVs with MVs that quickly saturate,25

and instead pair such MVs with less important CVs that may be given up. Moreover,

if we want to switch between two active constraint regions, where the switching is

between a CV and MV constraint, then by following this rule, we do not need any

additional logics to switch between the CV and MV constraint. In this case, the MV

would saturate automatically by giving up on the CV that is no longer active in the

new operating region. If this rule is not followed, more logic blocks such as split-range

control would be required to re-pair the MV and CV to achieve the same objective,

making the control structure unnecessarily complicated.

4. Same process gain sign when using selectors - Another important consideration, when

choosing the CV-MV pairing is the different combination of the active constraints that

must be considered. Once the different possible active constraint regions are identified,

selector blocks can be used to switch between two or more CVs using the same MV.

When grouping the CVs together that needs to be controlled by the same MV, one

must not switch between different CVs using the same MV, whose process gain has

opposite signs, since the two control loops would be contradictory and working against

each other as explained in subsection 2.2.

Note that there may be several different possible MV-CV pairings to achieve the same

objectives and the pairing rules listed above can guide in selecting a good control structure

design that would help reduce the number of logic blocks required to reconfigure the control

loops.
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3. Example 1

To illustrate this, consider a simple toy example with nu = 1 degree of freedom. The

optimization problem is given by,

min
u

J = (u− d)2 (12)

s.t.

g1 : (4.8− 0.4d)u− 12 ≤ 0 (13)

g2 : 5u + d− 49 ≤ 0 (14)

For this problem, we have ng = 2 potential constraints and therefore we can have a

maximum of 2ng = 4 active constraint regions. These correspond to;

• Fully unconstrained (R-I)

• Only g1 active (R-II)

• Only g2 active(R-III)

• Both g1 and g2 active (infeasible)

Since we only have one MV, we can control at most one CV at any given time. Therefore,

the last combination with both constraints active is infeasible and we only need to design

controllers for regions R-I, R-II and R-III.

To understand better the optimal solution (and not because it is necessary for the sub-

sequent controller design), we show the optimal active constraint values for d ∈ [3, 4] and

d ∈ [7, 9] in Fig. 4, which was computed by solving the numerical optimization problem

offline. It can be seen that, for d ≤ 3.55 the problem is unconstrained (R-I) and for

3.55 < d < 8.3, constraint g1 is active (R-II). At d = 8.3 the optimal active constraint

switches from g1 to g2 (R-III).
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(a) (b)

Figure 4: Example 1 - Optimal constraint values as a function of disturbance. (a) d ∈ [3, 4]
(b) d ∈ [7, 9]

The unconstrained optimum for d ≤ 3.55 is achieved when the cost gradient Ju = 0,

which from (12) corresponds to u = d. We therefore propose a control structure with three

controllers; one to control the unconstrained optimum (u = d), and two other to control the

constraints g1 and g2, respectively. To switch between the three controllers, use a minimum

selector logic. The resulting control structure is shown in Fig. 5. The simulation results

using this control structure are shown in Fig. 6.

g
sp

1
= 0

g1

PID

g
sp

2
= 0

g2

PID

min

selector
Process

d

u

u = d

y1 = g1

y2 = g2

Figure 5: Example 1 - Block diagram of the control structure to handle changes in the active
constraint set.

When using selectors, it is important to note that there will be integral “windup” for the

manipulated variable computed by any deselcted/inactive controller.26 A simple remedy to

this problem is to use anti-windup logic or bumpless transfer logic27,28 to avoid any undesired

transients when switching between different controllers and controller modes.
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Figure 6: Example 1 - Simulation results showing the switching between the active constraint
regions using a minimum selector block.

4. Example 2

In this section, we consider optimal operation of a continuously stirred tank reactor (CSTR)

from Economou et al. 29 which has been widely studied in academic research.30–32 The CSTR

A *) B

CA;i CB;i

Ti

T CA

CB

F

Figure 7: Example 2 - Exothermic reactor process from Economou et al. 29

process has a heater to adjust the feed temperature u1 = Ti and also the feed rate can be

manipulated, u2 = F . There is a reversible exothermic reaction where component A is

converted into component B (see Fig. 7). The dynamic model of the CSTR is given by two
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mass balances and one energy balance,

dCA

dt
=

F

M
(CA,i − CA)− r (15a)

dCB

dt
=

F

M
(CB,i − CB) + r (15b)

dT

dt
=

F

M
(Ti − T ) +

−∆Hrx

ρcp
R (15c)

Where, the reaction rate is r = k1CA − k2CB with k1 = C1e
−E1
RT and k2 = C2e

−E2
RT . CA and

CB are concentrations of the two components in the reactor whereas CA,i and CB,i are in

the inflow. Ti is the inlet temperature, T is the reaction temperature and F is the feed rate.

The nominal values for the CSTR process are given in Table. 1.

Table 1: Nominal values for CSTR process

Description Value Unit

F ∗ Feed rate 1 molmin−1

C1 Constant 5000 s−1

C2 Constant 106 s−1

Cp Heat capacity 1000 cal kg−1K−1

E1 Activation energy 104 calmol−1

E2 Activation energy 15000 calmol−1

C∗
A,i Inlet A concentration 1 mol l−1

C∗
B,i Inlet B concentration 0 mol l−1

R Universal Gas Constant 1.987 calmol−1K−1

∆Hrx Heat of reaction -5000 calmol−1

ρ Density 1 kg l−1

For this CSTR process, the two degrees of freedom are u = [Ti F ]T and the objective

is to maximize a weighted sum of the throughput rate F and the product concentration CB

while penalizing utility costs associated with a high feed temperature Ti. This is subject to

maximum feed rate, maximum temperature and maximum impurity (CA) constraint. The
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optimization problem is formulated as,

min
Ti,F

− F − 2.009CB + (1.657× 10−3Ti)
2

s.t.

g1 : F/Fmax − 1 ≤ 0 (16)

g2 : T/Tmax − 1 ≤ 0

g3 : CA/C
max
A − 1 ≤ 0

The concentration of component A in the feed stream CA,i is a disturbance and varies

in the range from 0.7 to 1.1mol/l. For this system, we have ng = 3 constraints and 23 = 8

potential active constraint regions, namely,

• Fully unconstrained (never)

• only g1 active (R-I)

• only g2 active (never)

• only g3 active (never)

• g1 and g2 active (R-II)

• g2 and g3 active (R-III)

• g1 and g3 active (unlikely)

• g1, g2 and g3 active (infeasible)

Since we only have two MVs, we can have at most 2 constraints active at any time. Therefore

the potential constraint region 8 listed above is infeasible and can be eliminated. Also, from

the cost function in (16), the feed rate F will be maximized (i.e. g1 is active) as long as there

are any unconstrained degrees of freedom. This eliminates the fully unconstrained region,
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the region where only g2 is active and region where only g3 are active. Furthermore, based on

engineering insight and for the given range of disturbance and activation energy, the reactor

temperature constraint (g2) will become active before the impurity constraint (g3) becomes

active. This eliminates region 7 as unlikely and leaves us with active constraint regions

R-I, R-II and R-III. Solving the numerical optimization problem offline for the expected

disturbances confirms that we need to consider the three regions. This is illustrated in Fig. 8

which shows the three constraint variables as a function of CA,i.

Figure 8: Example 2 - Optimal constraint values as a function of the disturbance. The three
active constraint regions R-I, R-II and R-III are clearly marked.

In R-I, when CA,i < 0.85mol/l, only the feed rate constraint (g1) is active, leaving one

MV unconstrained. This belongs to the partially constrained case (case 3). Here, we can

use the feed rate u1 = F to maintain the throughput at its constraint value of Fmax and use

the inlet temperature u2 = Ti to control the gradient Ju = ∇Ti
J (the steady state gradient

from Ti to J) at a constant setpoint of zero.

This follows from (7) which gives,

∇Ti
L =∇Ti

J + λ∇Ti
(F − Fmax) = 0

⇒∇Ti
J + λ · 0 = 0 (17)

⇒∇Ti
J = 0

In this case, we estimate the steady-state gradient Ju = ∇Ti
J by linearizing a nonlinear
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dynamic model around the current operating point, as proposed by Krishnamoorthy et al. 16 .

Note that any gradient estimation method may be used here to estimate the steady-state

cost gradient.21

In R-II, when 0.85 < CA,i < 1mol/l, there are two active constraints, namely, the feed

rate (g1) and the reactor temperature (g2). This is a fully constrained case (case 2) and we

use the feed rate F to maintain the throughput at Fmax as in region R-I, and use the inlet

temperature Ti to maintain the reactor temperature at its maximum limit.

In R-III, when CA,i > 1mol/l, we also have a fully constrained case with the reactor

temperature constraint (g2) and the product concentration constraint (g3) being active.

The feed rate is no longer at its maximum and is instead used to control the concentration

of component A in the outlet less than the maximum limit of 0.5mol/l in order to meet the

product requirement. As in region R-II, the inlet temperature is used to control the reactor

temperature at its maximum limit.

CC

C
sp
A = Cmax

A

FC

F sp

TC

T sp = Tmax

GC

0

rTi
J

T

F

CA

A *) B

CA;i CB;i

Ti

T

CB

F

min

selector

min

selector

Gradient

Estimator

CA

u2 = F

u1 = Ti

Figure 9: Example 2 - Proposed control structure design for optimal operation over Regions
R-I, R-II and R-III

To switch between the different active constraint regions, minimum selector blocks are

used. The control structure including the selectors to handle changes in the active constraint
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is shown in Fig. 9. The proposed control structure was tested in simulations with varying

values of the disturbance CA,i and the results are shown in Fig. 10. All the controllers are

PI controllers and are tuned using the SIMC tuning rules.33 The proportional gain KC and

integral gain KI are shown in Table. 2.

Table 2: Controller Tunings used for example 2 (Fig. 9)

TC GC CC FC

KC 0.0167 4167 3.3661 0
KI 0.0167 64.1149 0.2805 1

The simulation starts with CA,i = 0.75mol/l and we can see that the flow controller

(denoted FC in Fig.9) maintains the feed rate its setpoint of Fmax = 1mol/min and the

gradient controller (denoted by GC in Fig.9) drives the system to its optimum. At time

t = 20min, the feed concentration changes to CA,i = 0.9mol/l. In this case the temperature

controller (denoted by TC in Fig.9) takes over from the gradient controller and maintains

the reactor temperature at its setpoint of Tmax = 425K. Finally, at time t = 40min,

the feed concentration further increases to CA,i = 1.1mol/l. In order to meet the purity

requirement on the product, the concentration controller (denoted by CC in Fig.9) takes

over the feed rate control to maintain the concentration of component A at its maximum

limit of Cmax
A = 0.5mol/l by reducing the feed rate.

The true optimal steady-state solution computed by solving a steady-state numerical

optimization problem is used as a base case and is compared with the converged solution

in Table. 3. By comparing these simulation results with the true optimal solution, we find

as expected that the simple feedback control structure provides optimal operation without

needing to solve online numerical optimization problems. The simulation results also demon-

strate that simple logics are sufficient to handle changes in active constraint sets without

identifying the active constraint regions a-priori.

As mentioned earlier, the gradient controller (GC) that controls the steady-state gradient

must be inactive in region R-III, since it is not a neighbouring region to region R-I. Therefore,
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Figure 10: Example 2 - Simulation results using the proposed control structure (solid thick
lines). The thin dashed lines show the simulation results if the GC controller is incorrectly
activated in R-III as a motivating example.
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Table 3: Comparison of the true optimal steady-state solution and the converged solution.

CA,i = 0.75 CA,i = 0.9 CA,i = 1.1

True u1 = F 1.000 1.000 0.6408
optimum u2 = Ti 421.7 422.7 422.0

Converged u1 = F 1.000 1.000 0.6408
solution u2 = Ti 421.7 422.7 422.0

one should only to track the gradient in R-I and its neighbouring region R-II. One way to do

this is by turning off the GC controller when the concentration controller CC that controls

CA becomes active, indicating operation in region 3. Fig. 10 also shows as dashed lines,

the simulation results when the gradient controller GC incorrectly controls the gradient

from R-I also in R-III. This motivates the need for the switch in Fig. 9 which turns off the

gradient controller in region R-III, when the concentration CA becomes active. As shown

in the simulation results, if the gradient controlled is not turned off in region R-III, we get

non-optimal operation with T < Tmax (g2 not active as it should be).

Comment: Although the case with g1 and g3 active was not relevant for the considered

disturbance (and listed as unlikely), it may occur if, for example the activation energy also

changes. However, switching to a case where the constraints g1 and g3 are active will require

a re-pairing of MVs and CVs, since controllers CC and FC are the two controllers that need

to be used in this region and they now both use u2 = F . Additional logics such as split

range control logic would be needed to handle this.

5. Example 3

In this section, we consider the optimal operation of another CSTR, as studied by Srinivasan

et al. 34 and Chachuat et al. 35 . It consists of an isothermal CSTR with two exothermic
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reactions, namely,

A+B → C (18a)

2B → D (18b)

The desired product is C, while D is an undesired by-product. The CSTR has two feed

streams u1 = FA and u2 = FB with corresponding known inlet concentrations CAi
and CBi

respectively (see Fig. 11).

FA + FB

CBi
CAi

u1 = FA u2 = FB

V

A+B ! C

2B ! DQ

Figure 11: Example 3 - Isothermal CSTR34,35

We modify the steady-state model from Chachuat et al. 35 to get a dynamic model. As-

suming perfect temperature control (isothermal) and level control (constant V ), the dynamic

model of the process is given by the following material balances:

dnA

dt
= FACAi

− (FA + FB)CA − k1CACBV (19a)

dnB

dt
= FBCBi

− (FA + FB)CB − k1CACBV − 2k2C
2
BV (19b)

dnC

dt
= −(FA + FB)CC − k1CACBV (19c)

where nA, nB and nB are the number of moles of components A, B and C respectively.

CA = nA/V , CB = nB/V and CC = nC/V are the concentration of components A, B and C

in the product stream.
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The heat produced by the chemical reaction is given by,

Q = (−∆H1)k1CACBV + (−∆H2)k2C
2
BV (20)

where ∆H1 and ∆H2 denotes the enthalpy of the reactions 1 and 2, respectively. The

nominal model parameters are the same as the one used in Chachuat et al. 35 and are shown

in Table. 4.

Table 4: Nominal values for CSTR process from Case study 2.35

Description Value Unit

C∗
A,i Inlet A concentration 2 mol l−1

C∗
B,i Inlet B concentration 1.5 mol l−1

∆H1 Enthalpy of reaction 1 -7×104 J mol−1

∆H2 Enthalpy of reaction 2 -1×105 J mol−1

V Tank Volume 500 l
k1 Reaction rate 1 1.5 l mol−1h−1

k2 Reaction rate 2 0.014 l mol−1h−1

Fmax Maximum flow rate 22 l h−1

Qmax Maximum heat 1000 kJ/h

The objective is use feed streams u = [FA FB] to maximize the production of component

C, which is expressed as the amount of product C, given by the expression, (FA + FB)CC

multiplied by the yield factor (FA + FB)CC/FACAi
.35 In addition there are constraints on

the cooling Q and the total outflow (FA +FB). The optimization problem is then expressed

as,

min
FA,FB

J = −(FA + FB)2C2
C

FACAi

s.t (21)

g1 : Q/Qmax − 1 ≤ 0 (22)

g2 : (FA + FB)/Fmax − 1 ≤ 0

Since we have ng = 2 constraints, we have a maximum of 22 = 4 potential active con-
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straint regions, namely,

• Fully unconstrained (unlikely)

• Only g1 active (R-I)

• Only g2 active (R-III)

• Both g1 and g2 active (R-II)

The reaction rate d = k1 is a disturbance and varies in the range from 0.3 to 1.5l/mol h.

In this range, the active constraints at the optimum changes with k1.

Solving numerical optimization problem offline for the expected disturbances show that

we only need to consider three different combinations of active constraints; only g1 active (R-

I), both g1 and g2 active (R-II) and only g2 active (R-III). The active constraint regions as

a function of the k1 is shown in Fig. 12. It can be seen that there are three active constraint

regions, which are marked with R-I, R-II and R-III respectively.

Figure 12: Example 3 - Optimal values of the normalized constraint variables Q/Qmax (solid
blue lines) and (FA + FB)/Fmax (solid red lines) as a function of the reaction rate k1. The
three active constraint regions are clearly marked.

In region R-I, when k1 < 0.69, only the outlet flow constraint is active (g2). This belongs

to the partially constrained case (case 3), where we use feed stream u1 = FA to control the

feed flow (FA + FB) at its maximum limit. We need to u2 = FB to drive the system to

its optimum using a gradient controller. Following Theorem 1, expression (8) in this region
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looks like,

∇uL(u,d) = ∇uJ(u,d) +∇u(FA + FB − Fmax)Tλ = 0

⇒

 ∂J
∂FA

∂J
∂FB

 = −λ

1

1

 (23)

To eliminate the Lagrange multiplier, we pre-multiply (23) by the nullspace of the active

constraint gradients, which in this case is given by [1 1]T and the corresponding nullspace

N = [−0.7071 0.7071]. This gives the gradient combination

c1 =
∂J

∂FA

− ∂J

∂FB

= 0 (24)

Therefore, we use the second degree of freedom to maintain gradient combination c1 to a con-

stant setpoint of zero. In this simulation study, we estimate the steady state gradients ∇uJ

by linearizing a nonlinear dynamic model around the current operating point as described

in.16

In region R-II, when 0.69 < k < 0.82, both constraints g1 and g2 are active. This belongs

to the fully constrained case (case 2), where optimal operation can be achieved by simply

controlling the heat produced to its maximum limit using FB and the outlet flowrate at its

maximum limit using FA.

In region R-III, when k > 0.82, the outlet flowrate constraint is no longer active and

only the maximum cooling constraint is active (g1). This again corresponds the partially

constrained case. Following Theorem 1, expression (8) in this region looks like,

∇uL(u,d) = ∇uJ(u,d) +∇u(Q−Qmax)λ = 0

⇒

 ∂J
∂FA

∂J
∂FB

 = −λ

 ∂Q
∂FA

∂Q
∂FB

 (25)
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To eliminate the Lagrange multiplier, we pre-multiply (25) by the nullspace of the active

constraint gradients, which in this case is denoted by N = [n1 n2]. This gives the gradient

combination of

c3 = n1
∂J

∂FA

+ n2
∂J

∂FB

= 0 (26)

Therefore, we use the second degree of freedom u2 = FB to maintain gradient combination

c3 to a constant setpoint of zero.

FA + FB

CBi
CAi

u1 = FA u2 = FB

V

A+B ! C

2B ! D

QC

GC

Qsp = Qmax

0

Q

c1

min

select

FC

F sp = Fmax

0

c3

min

select

FA + FB

1

GC
3

Figure 13: Example 3 - Proposed control structure design for optimal operation over Regions
R-I, R-II and R-III

To switch between the different active constraint regions, minimum selector blocks, as

shown in Fig.13. The proposed control structure was tested in simulations with varying

values of k1 and shown in Fig. 14. All the controllers used in this simulation are PI controllers

and are tuned using SIMC tuning rules.33 The proportional gain KC and the integral gain

KI for the PI controllers are shown in Table. 5. As mentioned earlier, the GC1 controller

need not be tracked in R-III and similarly GC3 controller need not be tracked in R-I. In

other words, GC1 controller can be turned off when GC3 controller is active and vice versa.

The simulation starts in R-III with k1 = 1.5 l/mol h. In this case, the cooling is
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Figure 14: Example 3 - Simulation results using the proposed control structure.
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Table 5: Controller Tunings used in the controllers shown in Fig. 13

QC GC1 GC3 FC

KC 3.1807 2.1191 2.6647 0
KI 1.2723 0.0706 0.1665 1

maintained at its maximum limit using u1 = FA (QC in Fig.13) and the gradient combination

c3 is controlled using u2 = FB (GC3 in Fig.13). At time t = 20min, k1 is ramping down

to k1 = 0.75 l/mol h at time t = 40min, possibly caused by deactivation of the catalyst.

When this happens, the maximum limit on FA +FB is reached and the flow control FC takes

over from the GC3 controller. The cooling is still maintained at its maximum limit by the

QC controller. At time t = 60min, k1 further ramps down to k1 = 0.3 l/mol h at time

t = 80min. When this happens, the constraint on the cooling is no longer active and the

gradient controller GC1 takes over to maintain the gradient combination c1 at a constant

setpoint of 0.

Table 6: Comparison of the true optimal steady-state solution and the converged solution.

k1 = 1.1 k1 = 0.75 k1 = 0.3

True u1 = FA 7.615 8.171 8.211
optimum u2 = FB 13.05 13.83 13.79

Converged u1 = FA 7.615 8.171 8.211
solution u2 = FB 13.05 13.83 13.79

The true optimal steady-state solution computed by solving a steady-state numerical

optimization problem is used as a base case and is compared with the converged solution

in Table. 6. This simulation example shows that simple feedback control structures provide

optimal operation without needing to solve online numerical optimization problem. The

simulation results also demonstrate that simple logics are sufficient to handle changes in

active CV constraint regions. As mentioned earlier, the GC1 controller that controls the

unconstrained optimum in region R-I is turned off in region R-III and similarly, the GC3

controller that controls the unconstrained optimum in region R-III is turned off in region
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R-I.

Although the fully unconstrained case was not relevant active constraint region for the

considered disturbance, this can be easily included in the proposed control structure by

adding one more control loop for each MV that controls the steady state gradients ∇FA
J

and ∇FA
J using u1 = FA and u2 = FB to a constant setpoint of zero. The minimum selector

box implemented for each MV will then select the minimum of the three controller outputs

to be implemented on the process.

6. Conclusion

To conclude, using three different examples, we showed that optimal operation of processes

can be achieved using simple feedback control structures, without needing to solve computa-

tionally intensive optimization problems online. We formalized a framework for optimal con-

trol structure design for four different cases, namely, fully constrained, fully unconstrained,

partially constrained and over constrained cases. Further, we showed that simple controller

logics such as selectors can be used to handle changes in the active constraint regions. In all

the three different examples, it was shown that true optimal solution can be obtained using

simple feedback controllers despite changes in the active constraint regions.
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