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Abstract— A crane control system is presented where the
crane load can track a position trajectory with ultimately
bounded pendulum motions of the load. This is done with an
inner loop using a Lyapunov-based damping controller which is
designed to damp out the pendulum motions of the load, and an
outer loop where a nonlinear MPC (model predictive controller)
controls the position of the load. The Lyapunov-based damping
controller is designed to be exponentially stable, which means
that the pendulum motion will be ultimately bounded in the
presence of a bounded perturbation. Then this is achieved by
constraining the control action of the nonlinear MPC so that
the perturbations to the Lyapunov-based damping controller
are sufficiently bounded. The suspension point of the load,
which is the tip of the crane, can then be controlled to track
a time-varying desired trajectory in the plane with ultimately
bounded pendulum motions. The control system is validated in
simulations in a simulation study.

I. INTRODUCTION

Cranes are important in marine operations, where high pre-
cision in hoisting operations is required. Significant payload
oscillations may result from the motion of the crane and the
crane base, and this can cause safety risks and suspension
or delay of the operations. Automatic control of cranes and
crane loads has the potential of reducing risk and execution
time in marine operation. Control systems for crane has
therefore been widely studied in the research community,
and both open loop and closed loop control system strategies
have been developed. Early work on crane control is found
in [19] where optimal linear control is used in combination
with a state observer. Extensive reviews are found in [1] and
[17]. Sensor systems for the measurement of load motion as
discussed in [18] is an important research topic for cranes.
In this paper the focus will be on feedback control, and the
sensor problem will not be further discussed.

Open loop control in the form of input shaping has been
extensively studied for cranes [3], where the objective is to
generate trajectories that will not excite pendulum motion.
This was done by using the concept of flatness in [13], where
smooth trajectories were generated for feedback control were
generated, and where flatness lead to a simple model struc-
ture that could be controlled with pole placement. Moreover,
acceleration inputs from the controller were converted to
velocity inputs so that the velocity loops of the actuators
could be used,. This was further developed in [18].

Nonlinear energy-based controllers of cart position and
payload swing were proposed in [7] for a 2 DOF crane using
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LaSalle’s invariance principle. In [4] the energy level was
controlled for a 2-DOF overhead crane system. In [30] a
nonlinear controller for payload position and oscillation in a
2-DOF gantry crane system was designed using a singular
perturbation design. A nonlinear controller for a 4-DOF over-
head crane and payload system is presented in [23]. In [29]
the authors proposed a Lyapunov-based nonlinear controller
with constrained trolley stroke and pendulum length, for
a 4-DOF cart and payload system. In [5], [26] and [27]
the authors proposed Lyapunov-based nonlinear controllers
using feedback linearization, for positioning and swing sup-
pression of the payload for a 3-DOF overhead crane. In
[6] the payload was modelled as a bifilar pendulum which
oscillated about the vertical axis, and a damping controller
was designed based on LaSalle’s invariance principle.

In [28] and [24] the authors applied MPC for controlling
gantry cranes and overhead cranes with a trolley moving in
one DOF. Another MPC-based scheme, which is referred
as a particle swarm optimizer, was presented in [22] for
a constrained control of underactuated payload. In [12]
MPC was used in the vertical plane in combination with
feedforward control for a crane with Maryland rigging to
suppress the pendulum motion. In [2] a MPC was used
for a mobile harbour crane to control the combined luffing
and slewing motion, where real time solution of the MPC
problem was achieved by linearizing the model about the
desired trajectory. This work was further developed in [16]
where flatness was used to simplify the dynamics, and by
including the linearized feedforward part and a stabilizing
feedback part.

In this paper we propose a Lyapunov-based controller
for damping the oscillations of the crane payload in an
inner loop, while the position of the crane tip is controlled
in an outer loop using a nonlinear MPC. The Lyapunov-
based controller is proved to be exponentially stable, and
therefore ultimately bounded in the presence of a bounded
perturbation. The bounded perturbations are determined by
a nonlinear MPC for controlling the crane tip position. The
crane tip can then be controlled to track a time-varying
desired trajectory in the plane with ultimately bounded
pendulum motions. The advantage of the method is that
a robust and simple damping controller is used, and the
resulting MPC problem is formulated without imposing state
constraints so that it can be computed in real time. Moreover,
the constraints of the MPC problem is on the perturbations
to the damping controller, which further simplifies the MPC,
and it can even be used for joy-stick input to commanded
motion. In this paper a constant rope length is used, and the



crane tip moves in the horizontal plane.
The rest of this work is organized as follows. In Section

II we present the spherical pendulum model. The Lyapunov-
based damping controller is presented in Section III. In Sec-
tion IV we present the nonlinear MPC. Some implementation
aspects are discussed i Section V. Finally, the simulation
results are presented in Section VI and the conclusions in
Section VII.

II. MODELING

A. Kinematics

The inertial frame n is defined with the z axis pointing ver-
tically downwards. The crane load is attached to a suspension
point in the xy plane of n with position rn0 = [x0, y0, 0]T in
the coordinates of frame n. The crane load is modelled as a
point mass m attached to the suspension point with a mass-
less wire of length L. Frame b is fixed in the point mass of
the load, and the motion of the load is modelled as a rotation
of frame b about the suspension point with rotation matrix
from n to b given by

Rn
b = Rx(φx)Ry(φy) =

 cy 0 sy
sxsy cx −sxcy
−cxsy sx cxcy

 (1)

where sα = sinα, cα = cosα, Rx(φx) is the rotation matrix
for a rotation φx about the x axis, and Ry(φy) describes the
rotation φy about the current y axis. This is illustrated in
Fig. 1. The position of the mass m in the coordinates of n is
then rn = rn0 +Rn

b r
b
r, where rbr = [0, 0, L]T is the position

of the point mass relative to the attachment point. It follows
that the velocity of the point mass is

vn =

 ẋ0 + Lcyφ̇y
ẏ0 − Lcxcyφ̇x + Lsxsyφ̇y
−Lsxcyφ̇x − Lcxsyφ̇y



Fig. 1: Spherical pendulum and suspension point system with
payload mass m and length of pendulum L

B. Equations of motion

The equations of motion for the load are found from
Lagrange’s equations of motion as in [1]. The kinetic energy
of the pendulum is

K =
1

2
mL2

(
φ̇2
xc

2
y + φ̇2

y

)
+

1

2
m
(
ẋ2

0 + ẏ2
0

)
+mLẋ0φ̇ycy −mLẏ0

(
φ̇xcxcy − φ̇ysxsy

)
(2)

and the potential energy is

U = mgL(1− cxcy) (3)

The equations of motion can then be found from Lagrange’s
equation of motion, which gives the dynamic model

φ̈xcy + ω2
0sx = 2φ̇xφ̇ysy + ÿ0cx/L (4)

φ̈y + ω2
0cxsy = −φ̇2

xsycy − (ẍ0cy + ÿ0sxsy)/L (5)

where ω2
0 = g/L and g is the acceleration of gravity. The

accelerations ẍ0 and ÿ0 of the suspension point are the
control inputs of the system. This may pose some challenges
in implementation as pointed out in [20]. This will be further
discussed in the implementation part of the paper.

III. CONTROLLER DESIGN

A. Energy based damping controller

As a first step in the controller development for the
pendulum a basic damping controller is proposed in this
section. This controller solves the regulation problem of
stabilizing the equilibrium point when the suspension point
rn0 is fixed. This damping controller will be the basis for
the development of a more advanced tracking controller
which will at the same time damp the pendulum motion and
track the desired position of the point mass. This tracking
controller will be presented in a later section. The basic
damping controller is derived under the assumption that the
acceleration (ẍ0, ÿ0) of the suspension point in the horizontal
plane can be used as control variables. The basic damping
controller is given as the feedback control laws

ÿ0 = −2ζω0Lφ̇x (6)

ẍ0 = 2ζω0Lφ̇y −
ÿ0sxsy
cy

(7)

where ζ is a control parameter. Insertion of the control laws
(6,7) into the equations of motion (4,5) gives

φ̈xcy + 2ζω0φ̇xcx + ω2
0sx = 2φ̇xφ̇ysy (8)

φ̈y + 2ζω0φ̇ycy + ω2
0cxsy = −φ̇2

xsycy (9)

It is noted that linearization about the equilibrium point
φx = φy = 0 and φ̇x = φ̇y = 0 gives

φ̈x + 2ζω0φ̇x + ω2
0φx = 0 (10)

φ̈y + 2ζω0φ̇y + ω2
0φy = 0 (11)

It is seen that the linearized system is two harmonic os-
cillators with undamped natural frequency ω0 and relative
damping ζ.

The stability of the nonlinear closed loop dynamics (8,9)
can be analyzed with the energy function

Vd =
1

2
mL2

(
φ̇2
xc

2
y + φ̇2

y

)
+mgL(1− cxcy) (12)

which is the kinetic plus potential energy of the pendulum
when the suspension point is stationary. The time derivative
along the trajectories of equations of motion (4,5) is

V̇d = mLφ̇xÿ0cycx −mLφ̇y (ẍ0cy + ÿ0sxsy) (13)



Insertion of the control laws (6,7) gives the time derivative
of Vd along the trajectories of the closed loop dynamics (8,9)
as

V̇d = −2ζω0mL
2
(
φ̇2
xcxcy + φ̇2

ycy

)
(14)

From LaSalle’s theorem it follows that the equilibrium point
φx = φy = 0 and φ̇x = φ̇y = 0 of the closed loop dynamics
(8,9) is asymptotically stable. It is noted that this result
is only valid for the regulation problem of stabilizing the
pendulum about the equilibrium point.

B. Lyapunov-Based Tracking Controller

The second step in the controller development is to design
an exponentially stable Lyapunov controller for the pendu-
lum motion in φx and φy . The accelerations are considered as
the control variables, and are written ẍ0 = ux and ÿ0 = uy .
Consider the feedback control laws

uy = −Lcy
cx

(kdφ̇x + kpφx)− 2Lsy
cx

φ̇xφ̇y + g
sxs

2
y

cx
(15)

ux =
L

cy
(kdφ̇y + kpφy)− Lsyφ̇2

x −
uysxsy
cy

(16)

which is a combination of PD control with feedback from
the angle and the rate of the angle, and cancellation terms.
The terms kp and kd are control gains. It is noted that
the cancellation terms are higher-order terms, which will be
small. Insertion of the control laws (15, 16) into the equation
of motion (4, 5) gives the closed loop dynamics

φ̈x + kdφ̇x + kpφx + ω2
0cysx = 0 (17)

φ̈y + kdφ̇y + kpφy + ω2
0cxsy = 0 (18)

where it is used that cysx = sx/cy − sxs2
y/cy .

C. Lyapunov function

Let the state vector be x = [φx, φ̇x, φy, φ̇y]T. We will use
the Lyapunov function

V (x) =
1

2
xTPx +mgL (1− cxcy)

where P is a real symmetric positive definite matrix given
by

P =


p11 p13 0 0
p13 p22 0 0
0 0 p11 p13

0 0 p13 p22

 (19)

where

p11 = (kp + ckd)p22, p13 = cp22, p22 = mL2 (20)

and c is a positive constant which satisfies c < kd. It is noted
that

p11 − p13kd − p22kp = 0 (21)

The nonzero p13 gives cross terms in the Lyapunov function
as introduced by [25]. From p11 > 0 and∣∣∣∣ p11 p13

p13 p22

∣∣∣∣ =
(
(kp + ckd)− c2

)
p2

22 > 0 (22)

it can be concluded that the matrix P is positive definite [9],
which implies that the eigenvalues of P are positive.

Consider the domain

D =
{
x | |φx| <

π

2
− δ and |φy| <

π

2
− δ
}

(23)

where 0 < δ < π/2. Since mgL (1− cxcy) ≥ 0 in the
domain D, it follows from (19) that

1

2
xTPx ≤ V (x) ∀x ∈ D (24)

It follows that

1

2
λmin(P )||x||22 ≤ V (x), ∀x ∈ D (25)

where λmin(P ) > 0 is the smallest eigenvalue of P .
From | sinα| ≤ |α| it follows that sin2(α/2) ≤ α2/4.
In combination with cosα = 1 − 2 sin2 (α/2), this gives
cosα ≥ 1− α2/2. Then it is straightforward to verify that

(1− cxcy) ≤ 1

2

(
φ2
x + φ2

y

)
, ∀x ∈ D (26)

From this, it follows that

V (x) ≤ 1

2
xTP̃ x (27)

where P̃ = P + mgL diag(1, 0, 1, 0). From (25) and (27),
it is seen that the Lyapunov function is upper and lower
bounded by

k1||x||22 ≤ V (x) ≤ k2||x||22, ∀x ∈ D (28)

where k1 = (1/2)λmin(P ) and k2 = (1/2)λmax(P̃ ). It
is concluded that the Lyapunov function V (x) in (28) is
positive definite and decrescent in the domain D. This is
illustrated in Fig. 2 with gains kp = 0.1 and kd = 2

√
kp.

Fig. 2: The Lyapunov function V (x) is lower bounded by
k1||x||22 and upper bounded by k2||x||22 for x ∈ D. Note
that the right window is a continuation of the left window,
but with different scale.



D. Derivative of Lyapunov function

The time derivative of V (x) along the solutions of the
closed loop dynamics (17, 18) is given by

V̇ (x) =
(
φ̇xφx + φ̇yφy

)
p11

− (p13φx + p22φ̇x)
(
kdφ̇x + kpφx + ω2

0sxcy

)
− (p13φy + p22φ̇y)

(
kdφ̇y + kpφy + ω2

0cxsy

)
+mgLφ̇ycxsy +mgLφ̇xsxcy

=
(
φ̇xφx + φ̇yφy

)
(p11 − p13kd − p22kp)

− p13kp(φ
2
x + φ2

y)− p22kd(φ̇
2
x + φ̇2

y)

− p13ω
2
0 (φxsxcy + φysycx)

+
(
φ̇xsxcy + φ̇ycxsy

) (
mgL− p22ω

2
0

)
(29)

Then, from (20) and (21) it follows that

V̇ (x) = −p13kp(φ
2
x + φ2

y)− p22kd(φ̇
2
x + φ̇2

y)

− p13ω
2
0 (φxsxcy + φysycx) (30)

It is straightforward to verify that φxsxcy + φycxsy ≥ 0 in
D. This gives

V̇ (x) ≤ −p13kp(φ
2
x + φ2

y)− p22kd(φ̇
2
x + φ̇2

y) (31)

and it follows that

V̇ (x) ≤ −k3||x||22 (32)

where k3 = min{p13kp, p22kd}. This is illustrated in Fig. 3
for kp = 0.1 and kd = 2

√
kp. Then, we can conclude that

the closed loop dynamics (17,18) are exponentially stable in
D.

Fig. 3: The derivative of the Lyapunov function V̇ (x) is
upper bounded by −k3||x||22 for all x ∈ D. Note that the
right window is a continuation of the left window, but with
different scale.

E. Non-vanishing Perturbation

In practice it will not be possible to assign input values to
the acceleration (ẍ0, ÿ0) of the suspension point. To account
for this, the acceleration of the suspension point is modelled
as

ẍ0 = ux + gx (33)
ÿ0 = uy + gy (34)

where (ux, uy) are the controls assigned to the accelerations
according to the control laws (15,16), and (gx, gy) are the
deviations in acceleration from the assigned input values. The
variables (gx, gy) are called non-vanishing perturbations as
described in [11]. The closed loop dynamics will then be

φ̈x + kdφ̇x + kpφx + ω2
0cysx −

cx
cyL

gy = 0 (35)

φ̈y + kdφ̇y + kpφy + ω2
0cxsy +

cy
L
gx +

sxsy
L

gy = 0 (36)

The time derivative of V (x) along the trajectories of (35,
36) will then satisfy

V̇ (x) ≤ −k3||x||22 +
cx
cyL

(p13φx + p22φ̇x)gy

− 1

L
(p13φy + p22φ̇y)(cygx + sxsygy)

≤ −k3||x||22 + αxgx + αygy (37)

where

αx = −cy
L

(p13φy + p22φ̇y) (38)

αy = −sxsy
L

(p13φy + p22φ̇y) +
cx
cyL

(p13φx + p22φ̇x)

(39)

It is assumed that the perturbations gx and gy in the com-
manded accelerations (33, 34) are uniformly bounded and
satisfy

|gx(t)| ≤ γ and |gy(t)| ≤ γ, ∀t ≥ 0 (40)

Then, the time derivative along the trajectories of (35,36)
will satisfy

V̇ (x) ≤ −k3||x||22 + γ (αx + αy) (41)

where αx and αy satisfy

αx ≤
cy
L

(p13|φy|+ p22|φ̇y|) ≤
1

L
(p13|φy|+ p22|φ̇y|) (42)

and

αy ≤
|sxsy|
L

(p13|φy|+ p22|φ̇y|) +
cx
Lcy

(p13|φx|+ p22|φ̇x|)

≤p13|φy|+ p22|φ̇y|
L

+
p13|φx|+ p22|φ̇x|

c1L
(43)

where c1 = cos (π/2− δ) ≤ cy,∀x ∈ D, and where it is
used that |cx| ≤ 1, |cy| ≤ 1 and |sxsy| ≤ 1. It follows that

αx + αy ≤
p13

c1L
|φx|+

p22

c1L
|φ̇x|+

2p13

L
|φy|+

2p22

L
|φ̇y|

≤ k4||x||2 (44)

where

k4 =
1

c1L

√
(4c21 + 1)(p2

13 + p2
22) (45)

Then, with 0 < θ < 1, the time derivative of V (x) along the
trajectories of (35, 36) will satisfy

V̇ (x) ≤ −k3||x||22 + k4γ||x||2
≤ − (1− θ) k3||x||22 − θk3||x||22 + k4γ||x||2

≤ − (1− θ) k3||x||22, ∀ ||x||2 ≥
γk4

θk3
(46)



This is illustrated in Fig. 4 with θ = 0.8 and gains kp = 10
and kd = 2

√
kp. The perturbations (gx, gy) applied to (35,

36) in this simulation, were high frequent rectangular pulse
trains with amplitude/constraint γ = 2 ms−2. In the upper
windows of Fig. 4, it is seen that ||x||2 ≥ γk4/ (θk3) is valid
in t ≤ T1. In the lower windows of Fig. 4, it is seen that
V̇ (x) ≤ − (1− θ) k3||x||22 is valid in t ≤ T1. It is also seen
that V̇ (x) ≤ −k3||x||22 + k4γ||x|2 for ∀ t. The solution of

Fig. 4: Illustration of the ultimate boundedness of the norm
of the state for a simple case study. Upper left and right: It is
seen that ||x||2 ≥ γk4/ (θk3) is valid in t ≤ T1. Lower left
and right: It is seen that V̇ (x) ≤ − (1− θ) k3||x||22 is valid
in t ≤ T1 and V̇ (x) ≤ −k3||x||22 + k4γ||x|2 for ∀ t. Note
that the upper right and lower right windows are continuation
of the upper left and lower left windows, but with different
scales.

the perturbed system (35, 36) satisfies

||x(t)||2 ≤ ke−ϕt||x(0)||2, ∀ t < T (47)

and

||x(t)||2 ≤ b, ∀ t ≥ T (48)

for some finite T , where

k =

√
k2

k1
, ϕ =

(1− θ)k3

2k2
, b =

k4

k3

√
k2

k1

γ

θ
(49)

IV. NONLINEAR MPC

The control laws (15, 16) are used to damp the pendulum
motion of the load mass using the acceleration (ẍ0, ÿ0) of
the suspension point. In this section the functionality of
the controller is extended so that also the position (x0, y0)
of the suspension point can be controlled in the horizontal
plane. The motivation for this is that if the position of the
suspension point can be controlled, and the pendulum motion
of the mass can be damped, then the position of the load mass
can be controlled. Using the control laws (15, 16) in an inner
loop, the position of the suspension point is controlled using
the perturbations gx and gy of the accelerations in (33, 34)

as control variables of the closed loop system (35, 36). The
dynamics of the system is then

ẍ0 = gx +
L(kdφ̇y + kpφy)− Lcysyφ̇2

x − uysxsy
cy

(50)

ÿ0 = gy −
Lcy(kdφ̇x + kpφx) + 2Lsyφ̇xφ̇y − gsxs2

y

cx
(51)

φ̈x = −kdφ̇x − kpφx − ω2
0cysx +

cx
cyL

gy (52)

φ̈y = −kdφ̇y − kpφy − ω2
0cxsy −

cy
L
gx −

sxsy
L

gy (53)

We introduce a state vector

z =
[
x0 ẋ0 y0 ẏ0 φx φ̇x φy φ̇y

]T
(54)

and the non-vanishing perturbations gx and gy as the ele-
ments of the control vector

w =
[
gx gy

]T
(55)

The state space model is written

ż(t) = f(z(t),w(t)), z(0) = z0 (56)

where the elements of f are found from (50–53). We
consider the stabilization problem of the system in (56)
subjected to input constraint

w(t) ∈ U, ∀t ≥ 0 (57)

where

U := {w | |gx| < γ and |gy| < γ} (58)

Based on the state z(t) sampled at time t, the NMPC predicts
the future dynamic behaviour of the system (56) over a
prediction horizon Tp and determines the control inputs w
such that a predetermined open-loop performance objective
functional is optimized. In order to incorporate a feedback
mechanism, the control input w will be valid only until the
next sample of z(t) becomes available, at which time a new
control is calculated. In order to distinguish clearly between
the real system (56) and the system model used to predict the
future within the controller, we denote the internal variables
in the controller by a bar (for example z̄, w̄). The required
format for the NMPC controller is a discrete-time model
[8], [10]. The discrete-time model of (56) used to predict
the future, is

z̄k+1 = fk(z̄k, w̄k), z̄0 = z(t), k = 0, ...,M − 1 (59)

where the time step is h = Tp/M with M prediction steps
and prediction horizon Tp. To achieve a better accuracy of the
discrete model [15], we use a repeated application of Euler’s
method sampled at a much higher rate ∆ = h/P , according
to Algorithm 1. Based on this dynamic system form, we
regard the following simplified NMPC optimization control
problem in discrete time

min
w̄k

J (z(t), w̄(·)) :=

M−1∑
k=0

(z̄k−z̄r)T
Q(z̄k−z̄r) (60)



Algorithm 1 z̄k+1 = fk(z̄k, w̄k)

1: ∆ = h/P
2: ẑ0 = z̄k
3: for i ∈ {0, ..., P − 1} do
4: ẑi+1 = ẑi + ∆f(ẑi, w̄k)
5: end for
6: z̄k+1 = ẑP

subjected to z̄0 = z(t)

z̄k+1 = fk(z̄k, w̄k), k = 0, ...,M−1

z̄r = zr(t)

w̄k ∈ U, k = 0, ...,M−1 (61)

Here,

zr =
[
xr ẋr yr ẏr 0 0 0 0

]T
(62)

is a pre-defined reference to the state z. The positive semidef-
inite matrix

Q = diag(Qx0
, Qẋ0

, Qy0 , Qẏ0 , 0, 0, 0, 0) (63)

defines the weights on the error between actual suspension
point position and velocity (x0, ẋ0, y0, ẏ0) and desired posi-
tion and velocity (xr, ẋr, yr, ẏr). The states {z̄1, ..., z̄M} are
the solutions of (59) driven by the control inputs w̄(·; z(t)) =
{w̄0, ..., w̄M−1} : [t, t+Tp]→ U with initial condition z(t).
The optimal control w̄∗(·; z(t)) is the control inputs that
minimize the cost function J (z(t), w̄(·)) in (60). This was
solved by use of the MATLAB function fmincon with SQP.
The optimal control w̄∗(·) is recalculated over a moving
finite horizon Tp, at every sampling instance τ . Its worth
noting that the reference z̄r is constant until next sample
t+ τ , as seen in (61).

V. IMPLEMENTATION ISSUES

It will not be possible to command the acceleration of the
suspension point directly in a crane control system. Instead,
it can be expected that the velocity can be used as an input
to the system. This will be the case if the crane has electrical
actuators with a velocity loop [18], and it will still be valid
if the crane has hydraulic actuators [14].

We therefore propose to integrate the acceleration com-
mand to get a velocity command that can be input to a
velocity loop in the crane controller. In the simulations this
was done by integrating the two acceleration commands
ux + gx and uy + gy to the velocity commands wx and wy ,
and then using wx and wy as inputs to the velocity loops,
which are modelled as velocity loops for electrical actuators
as in [18]. The model that was used is given by

ẇx = ux + gx, ẇy = uy + gy (64)

ẍ0 =
1

Tv
(wx − ẋ0) (65)

ÿ0 =
1

Tv
(wy − ẏ0) (66)

Then if the bandwidth 1/Tv of the velocity loop is faster
than the bandwidth of the damping controller, the resulting
velocities ẋ0 and ẏ0 will be close to the velocity commands
wx and wy , and it follows that the accelerations ẍ0 and ÿ0

will be sufficiently close to the commanded accelerations
ux + gx and uy + gy .

Another issue is the cancellation terms in the damping
controller (15, 16). These terms are small, and due to the
exponential stability, it can be expected that these terms can
be omitted in practical implementations.

VI. SIMULATION

A simulation study is done where the commanded path Λ
of the suspension point is close to a circle segment resulting
from a rotation about the vertical axis of the crane base,
where the radius of the circle is ρ = 20 m. The reference
input zr is a piece-wise linear approximation of the circular
arc. The path Λ and the reference input zr are shown in Fig. 5
and 6. The trajectory moves from an initial point (20 m, 0)
at time tst = 20 s to a final point (0, 20 m) at a time tft =
55 s. The trajectory has a maximum velocity |v̄| = 3.5γ and
max acceleration |ā| = γ. The trajectory is based on linear
interpolation with parabolic blends for a path with via-points
[21].

Fig. 5: The path Λ of the reference (xr, yr) for the suspen-
sion point (x0, y0)

Fig. 6: The reference input zr with position (xr, yr), velocity
(ẋr, ẏr) and acceleration (ẍr, ÿr) profiles.

Two different initial condition scenarios were considered
in the simulations. In the first scenario the pendulum ro-
tations were initiated at the origin (φx, φy) = (0, 0) and
(φ̇x, φ̇y) = (0, 0). In the second scenario the initial condi-
tions of the pendulum rotations were (φx, φy) = (15◦,−15◦)
and (φ̇x, φ̇y) = (0, 0). The simulations demonstrated that the
controllers gave the desired bounding of the pendulum rota-
tions and a successful tracking of the a desired suspension
point trajectory.



The simulations of the model (56) were performed with
length of payload L = 7 m, time step h = 0.1 s, elements
Qx0 = Qy0 = Qẋ0 = Qẏ0 = 1 of the weighting matrix Q,
bandwidth 1/Tv = 200 s−1, perturbations (gx, gy) bounded
by γ = 0.25 ms−2 and the gains for the control variables
(ux, uy) were kp = 2 and kd = 1. To achieve a fast controller
with ability to continuously sample a new desired reference
input zr, the prediction and sampling time were chosen as
Tp = 0.5 s and τ = 0.3 s.

A. Simulation with zero initial pendulum rotations

A simulation study was done with with zero initial pendu-
lum rotations (φx, φy) = (0, 0). The velocity (ẋ0, ẏ0) in (65,
66), is illustrated in Fig. 7. The velocity was zero until the
start time tst of the moving trajectory before it converged to
zero after a time t2.

Fig. 7: The velocity (ẋ0, ẏ0) in (65,66) generated from the
simulation study in chapter VI-A.

The actual (x0, y0) and desired (xr, yr) trajectory of the
suspension point are illustrated in Fig. 8. The x0 coordinate
deviated slightly from its reference in the time interval
tft < t < t2, while the y0 coordinate deviated slightly in
a time period after tst. The reason for the deviations was
the perturbation’s (gx, gy) input constraint in (58) which
limited the nonlinear MPC controller’s ability to follow rapid
changes in desired position (xy, yr) in these time intervals.

Fig. 8: The actual and desired suspension point trajectory
from the simulation study in chapter VI-A. The actual
suspension point (x0, y0) is represented as solid lines while
the desired trajectory (xr, yr) is represented as dashed lines.

The pendulum rotations (φx, φy) are illustrated in Fig. 9.
The pendulum rotations were zero until the start time tst
of the commanded motion, and it converged to zero after a
time t2. In the time interval tst < t < t2, the pendulum
angles were oscillating because the suspension point was
following a moving trajectory in this interval. However, the
pendulum rotations were oscillating within ±1◦ since the
perturbations (gx, gy) were bounded by γ. Its worth noting
that the pendulum rotations (φx, φy) were oscillating more
when the suspension point was deviating more from its

reference, due to a more active perturbation (gx, gy). At
the time t2, the suspension point reached the static desired
position, and the pendulum rotations converged to zero.

Fig. 9: The resulting pendulum rotations (φx, φy) from the
simulation study in chapter VI-A

B. Simulation with non-zero initial pendulum rotations

A simulation study was done with initial pendulum
rotations (φx, φy) = (15◦,−15◦). The velocity (ẋ0, ẏ0) in
(65, 66), is illustrated in Fig. 10. Compared to the velocity
in Section VI-A, the velocity in this case was oscillating in
the interval 0 < t < tst due to initial pendulum rotations. In
the time interval t > tst the velocities in both studies were
approximately the same.

Fig. 10: The velocity (ẋ0, ẏ0) in (65,66) generated from the
simulation study in chapter VI-B.

The actual (x0, y0) and desired (xr, yr) trajectory of the
suspension point are illustrated in Fig. 11. Compared to
the trajectory (x0, y0) in Section VI-A, the trajectory in
this case was deviating from the reference in the interval
0 < t < tst due to initial pendulum rotations which caused
the control variables (ux, uy) to be more dominating than
the perturbations (gx, gy). In the time interval t > tst the
trajectories in both studies were approximately the same.

Fig. 11: The actual and desired suspension point trajectory
from the simulation study in chapter VI-B. The actual
suspension point (x0, y0) is represented as solid lines while
the desired trajectory (xr, yr) is represented as dashed lines.

The pendulum rotations (φx, φy) are illustrated in Fig. 12.
The pendulum rotations were oscillating within ±1◦ after a
time t1. In the time interval t > tst the pendulum rotations



in both studies were approximately the same, and converged
to zero after a time t2.

Fig. 12: The resulting pendulum rotations (φx, φy) from the
simulation study in chapter VI-B

VII. CONCLUSIONS

A controller has been developed for the control of the
crane load position using a Lyapunov-based pendulum damp-
ing controller in an inner loop and a nonlinear MPC position
controller in an outer loop. The Lyapunov-based controller
was designed to be exponentially stable, so that the state
would be ultimately bounded in the presence of a bounded
perturbations. Then the position of the crane tip was con-
trolled in an outer loop using a nonlinear MPC where the
control variables were the perturbations to the damping con-
troller, which made it possible to limit the perturbations using
constraints in the MPC. The performance of the controller
was demonstrated in simulations, where the crane tip was
moved with a slewing motion of 90◦ with radius 20 m that
was executed in 35 s. The pendulum motions were bounded
within ±1◦ while the crane tip was following the trajectory.
The pendulum motions converged to zero when the crane tip
reached final desired reference.

ACKNOWLEDGMENT

The research presented in this paper was funded by the
Norwegian Research Council, SFI Offshore Mechatronics,
Project Number 237896.

REFERENCES

[1] E. M. Abdel-Rahman, A. H. Nayfeh, and Z. N. Masoud. Dynamics
and control of cranes: A review. Modal Analysis, 9(7):863–908, 2003.

[2] E. Arnold, O. Sawodny, J. Neupert, and K. Schneider. Anti-sway
system for boom cranes based on a model predictive control approach.
In IEEE International Conference on Mechatronics and Automation,
2005, volume 3, pages 1533–1538 Vol. 3, July 2005.

[3] D. Blackburn, J. Lawrence, J. Danielson, W. Singhose, T. Kamoi, and
A. Taura. Radial-motion assisted command shapers for nonlinear tower
crane rotational slewing. Control Engineering Practice, 18(5):523–
531, 2010.

[4] C. C. Chung and J. Hauser. Nonlinear control of a swinging pendulum.
Automatica, 31:851–862, 06 1995.

[5] D. Chwa. Nonlinear tracking control of 3-d overhead cranes against
the initial swing angle and the variation of payload weight. IEEE
Transactions on Control Systems Technology, 17(4):876–883, July
2009.

[6] A. Cibicik, T. A. Myhre, and O. Egeland. Modeling and control of a
bifilar crane payload. In 2018 Annual American Control Conference
(ACC), pages 1305–1312. IEEE, 2018.

[7] Y. Fang, E. Zergeroglu, W. E. Dixon, and D. M. Dawson. Nonlinear
coupling control laws for an overhead crane system. In Proceedings
of the 2001 IEEE International Conference on Control Applications
(CCA’01) (Cat. No.01CH37204), pages 639–644, Sept 2001.
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