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I. Introduction
The attitude of a body-fixed frame relative to the inertial

frame can be represented by a 4-parameter unit quaternion.
Attitude representations were surveyed in [1] and the unit
quaternion was identified as the recommended parame-
terization in simulations, as it is easy to normalize, it
has few parameters compared to the rotation matrix, and
it has a linear kinematic equation of motion. The unit
quaternion is commonly used in attitude estimation [2],
and is the preferred parameterization in spacecraft attitude
control as it has no singular configurations, as opposed to
three-parameter representations based on Euler angles and
Rodrigues parameters.

To achieve accurate integration of the attitude kine-
matics over long time intervals, the choice of integration
method is important. The unit quaternions form a Lie
group under quaternion multiplication and the Lie group
integrator of Crouch and Grossmann [3] was compared
against classical Runge-Kutta (RK) integration with nor-
malization in [4]. For large time steps it was found that the
Crouch-Grossmann (CG) method had clear advantages in
terms of accuracy and preservation of the quaternion norm
compared with the classical RK method.

The integration scheme of Runge-Kutta-Munthe-Kaas
(RKMK) [5] is another type of Lie group integrator that
performs the integration based on the differential kinematic
equation of the Lie algebra of the Lie group. One advantage
of this method is that standard Butcher coefficients [6] of
the classical RK methods can be directly applied, while
the CG method has additional constraints that have to be
accounted for when obtaining the Butcher coefficients.

In this note we formulate the RKMKmethod for quater-
nions and perform a comparison to the previously proposed
CG methods in a simulation study. In [4], the CG algo-
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rithm was applied for quaternions with a matrix Lie group
formulation, for both the quaternion kinematics and the
quaternion multiplication. This requires the computation
of the matrix exponential of 4 × 4 matrices instead of the
quaternion exponential. In the update, this also require
multiplication of 4 × 4 matrices, which requires 64 scalar
multiplications and 48 scalar additions, whereas the quater-
nion product requires 16 multiplications and 12 additions
[7]. Since computational cost plays an important role in
the choice of integrator, we formulate both the CG and
RKMK algorithms in terms of the quaternion product and
quaternion exponential to reduce the computational burden
of the algorithms. Furthermore, we provide operational
counts of the explicit CG and RKMK methods, both in
terms of quaternion operations and scalar operations, to
enable comparison of their computational cost.

The note is organized as follows: Section II provides the
necessary preliminaries, including a Lie group description
of quaternions and the quaternion kinematics. Section III in-
troduces the numerical integrationmethods, which includes
the Runge-Kutta method, the Crouch-Grossmann method,
and the Runge-Kutta-Munthe-Kaas method. Section IV
provides a quantitative description of the computational
cost of the techniques covered in Section III. Section V
describes the case study and presents the results. Section
VI concludes the note.

II. Preliminaries

A. The Lie group SU(2)
A quaternion q can be written as a sum of a scalar

η ∈ R and a three-dimensional vector σ ∈ R3. This is
written

q = η + σ ∈ H. (1)

where H is the set of quaternions [8]. The addition and
subtraction of two quaternions q1 = η1 + σ1 and q2 =
η2 + σ2 is component-wise and given by

q1 ± q2 = η1 ± η2 + σ1 ± σ2, (2)

while the quaternion product is given by

q1 ◦ q2 = η1η2 − σ1 · σ2 + η1σ2 + η2σ1 + σ1 × σ2.
(3)

A vector v ∈ R3 can be treated as a quaternion with zero
scalar part. The quaternion product is then

q ◦ v = −σ · v + ηv + σ × v. (4)

The norm of a quaternion is ‖q‖2 = η2 + σ · σ. The
conjugated quaternion is given as q∗ = η − σ, which
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gives q ◦ q∗ = ‖q‖2. The inverse quaternion q−1 satisfies
q ◦ q−1 = 1, and it follows that q−1 = q∗/(‖q‖2).

The special unitary group SU(2) is isomorphic to the
set of unit quaternions

q ∈ Hu = {q ∈ H : ‖q‖2 = 1} (5)

and forms a Lie group under quaternion multiplication. A
unit quaternion q ∈ Hu can be written in terms of an angle
θ and a unit vector k as

q = cos
θ

2
+ sin

θ

2
k ∈ Hu, (6)

where η = cos θ2 and σ = sin θ
2 k. The rotation matrix

R ∈ SO(3) describing the rotation by an angle θ about k
is given by R = I + sin θ k̂ + (1 − cos θ)k̂2, where â is the
skew-symmetric form of a vector a, so that âb = a × b.
Then it is straightforward to verify that

Ra = q ◦ a ◦ q∗, (7)

which means that the quaternion q ∈ Hu represents the
same rotation as the rotation matrix R ∈ SO(3).

The Lie algebra su(2) of SU(2) is isomorphic to R3

and the maps between su(2) and SU(2) are given by the
exponential and logarithmic maps [9]

q = expq
(
θ

2
k

)
,
θ

2
k = logq q. (8)

Using φ = θ/2 the quaternion exponential function is
defined by

expq (φk) = 1 + φk +
(φk)2

2!
+
(φk)3

3!
+ . . . , (9)

where (·)n denotes the quaternion product of order n. By
using k2 = k ◦ k = −k · k = −1 it can be seen that

expq (φk) =
(
1 − φ

2

2!
+
φ4

4!
. . .

)
+

(
φ − φ

3

3!
+
φ5

5!
. . .

)
k

= cos φ + sin φk .
(10)

If a logarithm u ∈ R3 is given, then the exponential can be
computed by

expq u = cos ‖u‖ + sinc‖u‖u, (11)

where sincx = sin x/x. The Taylor series expansion for
sincx around x = 0 is

sincx =
sin x

x
=

∞∑
n=0

(−1)n x2n

(2n + 1)! (12)

and shows that sincx is well defined and smooth for all x.
The logarithmic map of q = η + σ ∈ Hu is computed as

logq q =
arcsin ‖σ‖
‖σ‖ σ. (13)

This is a smooth mapping for all unit quaternions, since
‖σ‖ ∈ [0, 1] and arcsin x/x is well defined and smooth for
all x, which can be seen from the Taylor series expansion

arcsin x
x

= 1 +
x2

6
+

3x4

40
+

5x6

112
. . . . (14)

The kinematic differential equation for a unit quaternion
qIB ∈ Hu describing the orientation of the body frame B
relative to the inertial frame I is given by

ÛqIB =
1
2
ωI ◦ qIB =

1
2
qIB ◦ ωB . (15)

Here, ω ∈ R3 is the angular velocity given in the indicated
frame and can be treated as a quaternion where the scalar
component is zero. All algorithms considered in this
note assumes the angular velocity to be given in the body
frame and we will in the following discard the superscript
and subscripts. It is noted that by changing the order of
quaternion multiplication, the corresponding algorithms
with the angular velocity given in the inertial frame can be
obtained.

B. Inverse Right and Left Jacobian for Quaternions
Consider the kinematic differential equation of the unit

quaternion

Ûq = 1
2
q ◦ ω. (16)

The logarithm of the quaternion is u = logq q = θ
2 k. The

corresponding rotation matrix R ∈ SO(3) has the logarithm
v = θk , which satisfies the kinematic differential equation
[10]

Ûv = Ψ−1
R,r (v)ω, (17)

whereΨ−1
R,r (v) is the inverse right Jacobian of the logarithm

v. Since v = 2u the corresponding expression for the
quaternion logarithm is

Ûu = Ψ−1
q,r (u)ω, (18)

where Ψ−1
q,r (u) = 1

2Ψ
−1
R,r (2u) is the inverse right Jacobian

of the logarithm u. The inverse right Jacobian Ψ−1
R,r (v) has

the following closed form solution [10, 11]

Ψ−1
R,r (v) = I +

1
2
v̂ +

1 − ‖v ‖2 cot ‖v ‖2
‖v‖2

v̂2, (19)

where I denotes the identity matrix of appropriate dimen-
sions. It follows that the inverse right Jacobian Ψ−1

q,r (u) is
given as

Ψ−1
q,r (u) =

1
2

(
I + û +

1 − ‖u‖ cot ‖u‖
‖u‖2

û2
)
. (20)
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If the angular velocity is defined in the inertial frame, then
Ûu = Ψ−1

q,l(u)ω where Ψ−1
q,l(u) is the inverse left Jacobian

for u. The closed form of the inverse left Jacobian can be
obtained from the closed form of the inverse right Jacobian
by applying the property Ψ−1

q,l(u) = [Ψ
−1
q,r (u)]T [10], such

that

Ψ−1
q,l(u) =

1
2

(
I − û +

1 − ‖u‖ cot ‖u‖
‖u‖2

û2
)
. (21)

For details about the right and left Jacobians, see [10–12].

C. Introductory Example: Euler’s method
Suppose that the quaternion at time step tk is qk , and

that the angular velocity is ωk . Let the time step be h so
that the next time step is tk+1 = tk + h. Then the quaternion
at time tk+1 can be evaluated with Euler’s method for (16),
which gives the additive update

qk+1 = qk +
h
2
(qk ◦ ωk). (22)

This should be combined with a renormalization qk+1 :=
qk+1/‖qk+1‖ to ensure that the result is a unit quaternion.

A modification to Euler’s method is to use the multi-
plicative update

qk+1 = qk ◦ expq
(

hωk

2

)
. (23)

This ensures that result is a unit quaternion and it will
become apparent in Sect. III.C that this is equivalent to the
Crouch-Grossmann method of order 1.

A further development is to find the local change in
attitude described by the logarithm∆u and then perform the
multiplicative update according to the exponential mapping
of the change. Using Euler’s method on the dynamics of
the logarithm (18) gives the update equation

∆uk+1 = ∆uk + hΨ−1
q,r (∆uk)ωk . (24)

Since the change in attitude is considered, the term ∆uk

is by definition reset to 0 at each new time step. The
propagated logarithm is injected into the state as

qk+1 = qk ◦ expq (∆uk+1) . (25)

When (24) is used to update the change, then this corre-
sponds to the RKMK method of order 1, which is seen to
be equivalent to (22) since Ψ−1

q,r (∆uk = 0) = (1/2)I .

III. Numerical Integration Methods
In this sectionwe present Lie group integrationmethods

formulated in for quaternions to perform the integration of
the quaternion kinematic differential equation in (16). We
start by reviewing the classical Runge-Kutta (RK) methods,

which forms the basis for the Lie group method of Runge-
Kutta-Munthe-Kaas (RKMK). We also review the Lie
group approach of Crouch-Grossman (CG) formulated in
terms of the quaternion product.

A. The RK Algorithm
The RK method with s stages for the differential equa-

tion

Ûy = f (y, t) (26)

over a time step h from yk to yk+1, is given by

y(i) = yk +
∑s

j=1 ai, j k (j)

k (i) = h f (y(i), tk + cih),

 i = 1, . . . , s,

yk+1 = yk +
s∑
j=1

bj k
(i).

(27)

Each stage of the explicit RK method is related to a set of
parameters ai, j, bi and ci , which are arranged in a Butcher
table on the form given in Table 1. Note that the empty
positions are defined as zero.

Table 1 The explicit Butcher table

c1

c2 a2,1

c3 a3,1 a3,2
...

...
. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

When the quaternion kinematic differential equation
(16) is considered, an additional renormalization qk+1 :=
qk+1/| |qk+1 | | must be added to (27) to ensure that the result
is a unit quaternion. This approach was studied in [4] and
showed similar performance to the CG method when small
time steps were considered.

The Butcher tables for the 3-stage RK method of order
3 (RK3), the 4-stage RK method of order 4 (RK4) and the
6-stage RK method of order 5 (RK5) are given Table 2 [6].

B. The RKMK Algorithm on SU(2)
The RKMK algorithm [5] is based on the integration

of (18). This means that the method performs the integra-
tion on the Lie algebra of the Lie group being considered,
which in this case is su(2). We formulate the algorithm in
terms of quaternions, quaternion multiplication, quaternion
exponential and the inverse right Jacobian for the quater-
nion logarithm, which means that the angular velocity is
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Table 2 The Butcher tables for explicit Runge-Kutta
methods

(a) 3-stage RK3

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

(b) 4-stage RK4

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(c) 6-stage RK5

0
1
4

1
4

1
4

1
8

1
8

1
2 0 0 1

2
3
4

3
16 − 3

8
3
8

9
16

1 − 3
7

8
7

6
7 − 12

7
8
7

7
90 0 32

90
12
90

32
90

7
90

considered in the body frame. The Butcher parameters of
the RKMK method are obtained from the Butcher tables
for standard RK methods as given in Table 2. The RKMK
algorithm with s stages is given as

Θ(i) =
∑s

j=1 ai jF(j)

θ(i) = hω
(
qk ◦ expq

(
Θ(i)

)
, tk + cih

)
F(i) = Ψ−1

q,r (Θ(i))θ(i)


i = 1, . . . , s,

Θ =

s∑
j=1

bjF
(j)

qk+1 = qk ◦ expq (Θ) .
(28)

Note that for explicit methods, Θ(1) = 0 in the first itera-
tion. This implies that the Jacobian in the computation of
F(1) evaluates to 1/2I , resulting in F(1) = 1/2θ(1). Con-
sequently, the explicit RKMK with s stages requires the
computation of s−1 inverse right Jacobians. It also requires
s quaternion exponential operations and s quaternion mul-
tiplication operations when the angular velocity dynamics
depend on the orientation. This reduces to 1 quaternion
exponential operation and 1 quaternion multiplication oper-
ation when the angular velocity dynamics are independent
of the orientation. In terms of memory it can be seen that
only the F(i) vector needs to be stored from each stage,

resulting in 3s units of memory requirement. Counts of
quaternion and matrix operations for the 3-stage RKMK
method of order 3 (RKMK3), the 4-stage RKMK method
of order 4 (RKMK4) and the 6-stage RKMK method of
order 5 (RKMK5) are shown in Table 3.

C. The CG Algorithm
The integration method of Crouch and Grossman [3]

performs the update in each stage such that the intermediate
results are on the Lie group, as opposed to the RKMK
method where the intermediate results are in terms of
the logarithm. We state the algorithm in terms of the
quaternion product and quaternion exponential, where the
angular velocity is given in the body frame. The CG
algorithm with s stages for the differential equation in (15)
is given as

q(i) = qk ◦ expq
(
ai,i−1F

(i−1)
)

◦ . . . ◦ expq
(
ai,1F(1)

)
F(i) = h 1

2ω
(
q(i), tk + cih

)


i = 1, . . . , s,

qk+1 = qk ◦ expq
(
b1F

(1)
)
◦ . . . ◦ expq

(
bsF(s)

)
.

(29)
This approach preserves the Lie group conditions for

the quaternions. The Butcher coefficients and the order of
the methods are not trivial to obtain. Moreover, minimiza-
tion techniques must be applied to determine the Butcher
coefficients needed to use a higher order CG algorithm.
The CG algorithm of order 4 (CG4) requires s = 5 stages
and the Butcher table for this algorithm was determined
in [13] and is given in Table 4 together with the Butcher
table for the 3-stage CG algorithm of order 3 (CG3). For
the 9-stage CG algorithm of order 5 (CG5), the reader is
referred to [13] for a complete table of Butcher coefficients.

It can be seen from (29) that the number of quater-
nion exponential operations is

∑s
i=1 i, and the number of

quaternion multiplications is also
∑s

i=1 i. If the angular ve-
locity dynamics is independent of orientation, the number
of quaternion exponential and quaternion multiplication
operations reduces to s. Similar to the RKMK algorithm,
only the F(i) vectors needs to be stored for each stage,
resulting in 3s units of memory requirement. The counts
of quaternion and matrix operations for the explicit CG3,
CG4 and CG5 algorithms are shown in Table 3

IV. Computational Cost and Approximate
Solutions

To determine the computational cost of the considered
integrators we provide counts for the number of mathe-
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Table 3 Quaternion and matrix operations for integrator methods. (ω = ω(q, t) | ω = ω(t))

Stages expq(·) Hu ◦ Hu Ψ−1
q,r (·) R ± R R3 ± R3 R × R R × R3 R3×3 × R3

CG3 3 6 | 3 6 | 3 0 2 0 3 9 | 6 0
CG4 5 15 | 5 15 | 5 0 4 0 5 20 | 10 0
CG5 9 45 | 9 45 | 9 0 8 0 9 54 | 18 0

RKMK3 3 3 | 1 3 | 1 2 2 3 2 6 2
RKMK4 4 4 | 1 4 | 1 3 3 3 3 7 3
RKMK5 6 6 | 1 6 | 1 5 5 12 5 19 5

Table 4 Butcher tables for Crouch-Grossman methods

(a) 3-stage CG3

0
3
4

3
4

17
24

119
216

17
108

13
51 − 2

3
24
17

(b) 5-stage CG4

a21 = 0.8177227988124852 a31 = 0.3199876375476427
a32 = 0.0659864263556022, a41 = 0.9214417194464946
a42 = 0.4997857776773573 a43 = −1.0969984448371582
a51 = 0.3552358559023322 a52 = 0.2390958372307326
a53 = 1.3918565724203246 a54 = −1.1092979392113465
b1 = 0.1370831520630755 c1 = 0.0
b2 = −0.0183698531564020 c2 = 0.8177227988124852
b3 = 0.7397813985370780 c3 = 0.3859740639032449
b4 = −0.1907142565505889 c4 = 0.3242290522866937
b5 = 0.3322195591068374 c5 = 0.8768903263420429

matical operations needed in their implementation. This
gives a more deterministic measure than trying to time the
integrators in a computer program, as the run-time of the
integrators may vary depending on the implementation and
the system specifications. The operation counts for the ex-
ponential function and inverse right Jacobian are presented
in detail, and we show how the inverse right Jacobian can
be approximated by its Taylor series expansion to reduce
the number of operations. In the simulation section we will
also show that this approximation has minimal effect on
the resulting accuracy for the simulation case considered.

The mathematical operations are grouped into scalar
additions and subtractions (A), scalar multiplications (M),
scalar divisions (D), scalar square root operations (Sqrt)
and trigonometric function calls (F).

A. Operation counts for the quaternion exponential
The closed form solution is computed as given in (11).

The operation | |u | | =
√
uT u is precomputed and requires

1 square root, 3 multiplications, 2 additions and 1 unit of
memory for temporary storage. The result q = cos | |u | | +
sinc(| |u | |)u requires 2 function calls and 3 multiplications.
The total cost for the quaternion exponential is thus 2 F, 1
Sqrt, 6 M and 2 A.

B. Operation counts for the inverse Right Jacobian
The inverse right Jacobian given in (20) can be approx-

imated about the origin by using the following 3rd order
Taylor expansion

Ψ−1
q,r (u) =

1
2

(
I + û +

(
1
3
+
| |u | |2
45

)
û2 + O(|| · | |3)

)
.

(30)

A similar approximation is found in [14], but for Ψ−1
R,r

as a solution to the Bortz equation for small rotations
[15]. This expression eliminates the need of a function
call, i.e. the trigonometric cotangent function, as well
as a square-root operation if the higher order terms are
neglected. By comparing the approximation in (30) with
the closed form in (20) it can be seen that they only
differ in the expression for the scalar that is multiplied
with the squared skew-symmetric matrix. By defining
γ1 = (1−||u | | cot | |u | |)/| |u | |2 and γ2 = 1/3+ | |u | |2/45 the
approximation error between the exact and approximated
inverse right Jacobian can be analyzed. The approximation
error of γ2 is plotted in Fig. 1 for an increasing value of
| |u | |.

To determine the operation counts for the two versions
of the inverse right Jacobian, we start by evaluating the
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expression
1
2

(
I + û + γi û

2
)
. (31)

We find that û requires no computation, the squared skew
symmetric matrix û2 requires 6 unique multiplications,
3 unique additions and 6 units of memory for temporary
storage. The term γi û

2 then requires 6 multiplications.
Finally, we find that the computation of (31) requires 9
additions and 3 multiplications, resulting in a total cost of
of 15 M and 12 A, plus the computational cost of γ1 and
γ2.

First, we evaluate the computation of γ1. Computing
and storing | |u | |2 = uT u requires 3 multiplications, 2
additions, and 1 unit of memory. The computation of
| |u | | =

√
| |u | |2 requires 1 square-root operation and 1 unit

of memory. The term 1−||u | | cot (| |u | |) requires 1 function
call, 1 addition, 1 multiplication and 1 unit of memory.
Finally, γ1 = (1 − ||u | | cot (| |u | |))/| |u | |2, which requires
1 division. This leave the total computational cost of γ1
as 1 F, 1 Sqrt, 1 D, 4 M and 3 A. For the evaluation of
γ2, we use that | |u | |2 require 3 multiplications, 2 additions,
and 1 unit of memory. Then, γ2 = 1/3 + | |u | |2/45 which
require 1 multiplication and 1 addition, leaving the total
computational cost of γ2 as 4 M and 3 A. The operation
counts for (20) and (30) are summarized in Table 5 for ease
of comparison.

Table 5 Operation counts for the exact and the ap-
proximate inverse right Jacobian.

Method F Sqrt D M A
Closed form (γ1) 1 1 1 19 15

Taylor 3rd order (γ2) 0 0 0 19 15

0 /4 /2
10

-15

10
-10

10
-5

10
0

Fig. 1 Logarithmic plot of the error between the exact
and approximated inverse right Jacobian.

C. Total operation counts
In addition to quaternion exponential, quaternion mul-

tiplication (16 M and 12 A) and right inverse Jacobians,
the RKMK and CG methods require scalar additions (1
A), vector additions (3 A), scalar multiplications (1 M),
scalar-vector multiplications (3M) and matrix-vector multi-
plications (9Mand 6A). The number of these operations for
each of the considered methods are listed in Table 3. Note
that we have taken into account the Butcher coefficients
when these operations are counted, i.e. multiplication with
0 and ±1 are not counted. Moreover, the time step h is con-
sidered to be multiplied with the factor 1

2 from the inverse
right Jacobian in (28), such that a scalar multiplication is
counted instead of a scalar-vector multiplication.

Since we now have determined the operation counts for
each of the operations listed in Table 3 we can determine
the total computational cost of each of the methods. Table 6
shows the computational cost when the angular velocity is
a function of orientation while Table 7 shows the compu-
tational cost when the angular velocity is independent of
orientation. The values enclosed by parenthesis denotes the
computational cost when the approximation of the inverse
right Jacobian is considered.

When the angular velocity is a function of orientation it
can be seen that the RKMK methods require less function
calls, square roots and multiplications than the CGmethods
of equivalent order. Interestingly, the RKMK method of
order 5 requires fewer function calls, square roots and
multiplications than the CG method of order 4. Since
divisions and additions are cheaper to compute than square
roots and trigonometric function calls, it can be argued that
RKMK5 is less computational costly than CG4.

When the angular velocity is independent of orientation
RKMK3 requires fewer function calls than CG3 and the
same amount of square root operations, while CG3 requires
fewer divisions, multiplications and additions. For RKMK4
andCG4 it can be seen that RKMK4 requires fewer function
calls, square roots and fewer multiplications than CG4 and
it can be argued that the total computational cost of RKMK4
is lower than for CG4. The RKMK5 method requires 3
less trigonometric function calls than CG4, however, the
amount of multiplications and additions is significantly
higher for RKMK5.

V. Simulations and Results
In order to verify the RKMK methods and compare the

results with the CG methods, we use the same simulation
example as in [4], using the following dynamic system

Ûq = 1
2
q ◦ ω (32)

Ûω = −J−1ω̂Jω, (33)
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Table 6 Total computational cost for integrator meth-
ods for ω = ω(q, t).

F Sqrt D M A
CG3 12 6 0 162 86
CG4 30 15 0 395 214
CG5 90 45 0 1161 638

RKMK3 8 (6) 5 (3) 2 (0) 142 95
RKMK4 11 (8) 7 (4) 3 (0) 196 131
RKMK5 17 (12) 11 (6) 5 (0) 334 230

Table 7 Total computational cost for integrator meth-
ods for ω = ω(t).

F Sqrt D M A
CG3 6 3 0 87 44
CG4 10 5 0 145 74
CG5 18 9 0 261 134

RKMK3 4 (2) 3 (1) 2 (0) 98 67
RKMK4 5 (2) 4 (1) 3 (0) 130 89
RKMK5 7 (2) 6 (1) 5 (0) 224 160

with the inertial tensor and initial conditions

J = diag(Jt, Jt, Ja) = diag(200, 200, 100) (34)
q(t0) = [1 0 0 0]T (35)
ω(t0) = [0.05 0 0.01]T , (36)

where ω(t) = [ωx(t) ωy(t) ωz(t)]T . Conveniently, a
closed form solution for the angular velocity is given by

ω(t) =

ωx(t0) cos(ωnt) + ωx(t0) sin(ωnt)
ωy(t0) cos(ωnt) − ωx(t0) sin(ωnt)

ωz(t0)

 , (37)

where

ωn = ωz(t0)
Jt − Ja

Jt
. (38)

Because the angular velocity has a closed form solution,
the quaternion at time t is given by

q(t) = q(t0) ◦ y(t), (39)

where

y(t) = cosα cos β − hz(t0) sinα sin β

+


hx(t0) cosα sin β + hy(t0) sinα sin β
hy(t0) cosα sin β − hx(t0) sinα sin β

hz(t0) cosα sin β + sinα sin β


(40)

and

α =
ωnt
2

(41)

β =
ωit
2

(42)

h(t0) =
H(t0)
| |H(t0)| |

, (43)

where H(t0) = Jω(t0) and ωi = | |H(t0)| |/Jt .
In the simulations of the numericalmethods, the angular

velocity is integrated using the standard RK algorithm in
(27) with the same order and Butcher coefficients as in the
CG and RKMK algorithms. This is valid since the Butcher
coefficients of both the CG and the RKMK algorithms
give valid RK algorithms of the same order. This mixed
integration scheme is shown in detail in [4].

The error quaternion δq(tk) = δη(tk)+ δσ(tk) between
the closed form solution q(tk) and the integrator result
q̃(tk) at time tk = kh was calculated as

δq(tk) = q̃(tk) ◦ q(tk)∗. (44)

Similar to [4], the small angle approximation is used

2δσ ≈
[
δφ δϑ δϕ

]
, (45)

where the components are approximations of the roll, pitch
and yaw of a rotation. The error metric is the maximum
value of error in roll, pitch and yaw during a 4-hour
simulation.

A. Simulation with exact inverse right Jacobian
In this simulation, we employed the exact form of the

inverse right Jacobian, i.e. (20), for the RKMK methods.
The quaternion exponential was computed as stated in
(11) for all methods and the trigonometric functions were
computed using built-in MatLab functions. The errors for
the integrators are plotted in Fig. 2 for varying time steps.

It can be seen from Fig. 2 that the errors for RKMK3
and CG3 are overlapping for roll and yaw, while CG3
performs slightly better in pitch. However, it must be
acknowledged that the errors in pitch are approximately
2 orders of magnitude lower than the errors in roll and
yaw, thus the total error difference between RKMK3 and
CG3 is small. The same can be observed for RKMK4 and
CG4. RKMK5 have smaller error than CG5, which can
be explained by the accumulation of round-off errors for
CG5. This can become a significant source of error as CG5
has s = 9 stages and 54 Butcher coefficients, which are all
irrational values truncated to 16 digits [13].

It is also noted that for the smallest time steps con-
sidered, i.e. h = 0.01 s, the error for the higher order
methods increase compared to time step h = 0.1 s due to
the accumulation of machine and round-off errors. The
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Fig. 2 Maximum Euler angle simulation errors for different time steps.

accuracy for the 4th and 5th order methods converge for
smaller time steps, thus there is no advantage of using
higher order methods for small time steps. .

B. Simulation with approximated inverse right Jaco-
bian
We repeated the simulations in Sect. V.A using the 3rd

order Taylor approximation of the inverse right Jacobian, i.e.
(30), for the RKMK methods. The quaternion exponential
and the trigonometric function calls were computed in the
same manner as in Sect. V.A for all methods. Since the
increase in errors when using the approximated inverse
right Jacobian was small it was not possible to distinguish
the results from the plots in Fig. 2. Therefore, we have
listed the increase in logarithmic errors when using the
approximated inverse right Jacobian in Table 8. Note that
when the time step was smaller than h = 1 s no increase
in errors occurred. The table shows that the increase in

errors are larger when higher time steps are used. This can
be supported by the fact that the argument of the inverse
right Jacobian is larger for large time steps. The higher
order methods also suffer a larger increase in error than the
lower order methods, due to the already high precision of
the higher order methods.

C. Unit quaternion norm preserving properties
Both RKMK and CG are by definition norm preserving

numerical solvers due to the exponential updates. However,
due to machine precision and the accumulation of round
off errors the unit norm of the quaternions may not be
preserved. The norm error for the 4-hour simulations are
plotted in Fig. 3. In general it is expected that the RKMK
methods will have better norm preserving properties than
the CGmethod of equivalent order due to the lower number
of quaternion exponential function calls. We do however
observe two inconsistencies in the results. The first is seen
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Table 8 Increase in the logarithmic errors for the
RKMK methods when using approximated inverse
right Jacobian.

h = 10s h = 1s

RKMK3
log(δφ) 1.41 × 10−7 2.52 × 10−11

log(δϑ) 7.88 × 10−7 2.37 × 10−8

log(δϕ) 1.53 × 10−7 4.73 × 10−10

RKMK4
log(δφ) 3.54 × 10−6 4.71 × 10−7

log(δϑ) 4.99 × 10−6 3.91 × 10−7

log(δϕ) 3.58 × 10−7 2.04 × 10−6

RKMK5
log(δφ) 1.36 × 10−3 2.90 × 10−6

log(δϑ) 9.56 × 10−3 4.47 × 10−4

log(δϕ) 3.94 × 10−3 1.79 × 10−4

for the smallest time step considered in Fig. 3a, where the
CG3 method have a smaller norm error than RKMK3. The
second inconsistency is that the CG5 method has a similar
or smaller norm error than CG4 throughout the simulations.
However, the results shows that the RKMK methods have
similar or better norm preserving properties than the CG
methods of equivalent order, except for the case already
discussed.

VI. Conclusion
The Lie group integrators of Crouch–Grossman (CG)

and Runge–Kutta–Munthe-Kaas (RKMK) have been for-
mulated in this paper in terms of quaternion multiplication,
quaternion exponential, and the quaternion Jacobian, and
their application for the integration of the quaternion kine-
matics has been successfully demonstrated. The simulation
results showed that the accuracy level of CG methods can
be achieved at a decreased computational cost with RKMK
methods. Furthermore, operational counts have been pro-
vided for the methods considered to enable a quantitative
comparison of their computational cost. A third-order
approximation of the inverse right Jacobian has also been
provided, and it has been shown that the computational
cost of the RKMK method could be reduced with little loss
in accuracy.
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Fig. 3 Quaternion norm errors for the considered CG and RKMK methods over a 4-hour simulation.
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