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Abstract

The chapter reports mathematical aspects of the Narimanov-Moi-
seev multimodal modelling for the liquid sloshing in rigid circular coni-
cal tanks, which perform small-magnitude oscillatory motions with the
forcing frequency close to the lowest natural sloshing frequency. To de-
rive the corresponding nonlinear modal system (of ordinary differential
equations), we introduce an infinite set of the sloshing-related gener-
alised coordinates governing the free-surface elevation but the velocity
potential is posed as a Fourier series by the natural sloshing modes
where the time-depending coefficients are treated as the generalised
velocities. The employed approximate natural sloshing modes exactly
satisfy both the Laplace equation and the zero-Neumann boundary
condition on the wetted tank walls. The Lukovsky non-conformal map-
ping technique transforms the inner (conical) tank (physical) domain
to an artificial upright circular cylinder, for which the single-valued
representation of the free surface is possible. Occurrence of secondary
resonances for the V-shaped truncated conical tanks is evaluated. The
Narimanov-Moiseev modal equations allow for deriving an analytical
steady-state (periodic) solution, whose stability is studied. The latter
procedure is illustrated for the case of longitudinal harmonic excita-
tions. Standing (planar) waves and swirling as well as irregular sloshing
(chaos) are established in certain frequency ranges. The corresponding
amplitude response curves are drawn and extensively discussed.
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1 Introduction

Practical interest to sloshing in truncated circular conical tanks is, mainly,
associated with water towers (figure 1 a). Exposed to earthquake and wind
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loads, the towers may become most severe resonantly excited when the forc-
ing frequency is close to the lowest natural sloshing frequency. Large water
tonnage generates resonant hydrodynamic loads on tank wall and bottom,
which are of serious hazard. To predict these loads, compute associated
resulting (integral) force and moment, one must solve, analytically or nu-
merically, a rather complicated free-boundary (sloshing) problem.
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Figure 1: Pictures and drawings, which illustrate appropriate engineering
applications, geometric notations of the original free-boundary (sloshing)
problem, and ideas of the Lukovsky non-conformal mapping technique, re-
spectively. Panel (a) shows a mega-liter water tower container of the circular
conical shape. Panel (b) presents the geometric and physical nomenclature
for the original problem (section 2); here, the tank motion is described by the
six small-magnitude generalised coordinates ηi(t). Panels (c) and (d) spec-
ify the original (physical) and transformed meridional tank cross-sections of
the conical tank as they follow from the Lukovsky non-conformal mapping
technique [22, 30].

Proposed in the famous paper [11], the multimodal method became a
popular analytically approximate approach to examine the liquid slosh-
ing dynamics. The method reduces, in a rigorous mathematical way, the
original free-boundary problem to a system of nonlinear ordinary differen-
tial equations (multidimensional modal equations) governing the sloshing-
related generalised coordinates, which describe amplifications (perturba-
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tions) of the natural sloshing modes. Employing the nonlinear multimodal
equations facilitates both direct numerical simulations and analytical stud-
ies of the nonlinear liquid sloshing, provides a rather accurate description of
the free-surface elevation (wave patterns) and hydrodynamic loads (result-
ing forces and moments). Newbies and interested readers are referred to the
recent books [2, 25] and the papers [17, 19, 20, 26, 37, 32], in which history,
abilities and open problems of the multimodal method are discussed. These
works review all previously-derived nonlinear modal equations, which are
mostly obtained and studied for upright cylindrical tanks of the rectangular
and circular (annular) cross-sections when a single-valued (natural) repre-
sentation of the free surface is possible as well as exact analytical natural
sloshing modes exist.

Combining the nonlinear multimodal method with the non-conformal
mapping technique by Lukovsky [22, 30], or its modifications [14, 21, 24,
25], theoretically enables generalising the method for containers with non-
vertical walls. However, the nonlinear modal systems for containers with
non-vertical walls remain a rare exception in the literature. The latter fact
could be partly clarified by a sensitivity of the multimodal method to an
error in satisfying the volume (mass) conservation condition. The error is
zero for upright tanks when the aforementioned exact analytical natural
sloshing modes (solutions of the corresponding spectral boundary problem)
exist and, therefore, both the continuity (Laplace) equation and the bound-
ary conditions on the wetted tank surface are exactly and analytically ful-
filled. Because the spectral sloshing problem has no analytical solutions
for tank shapes with non-vertical walls, to guarantee the mass conserva-
tion, one should construct analytically approximate natural sloshing modes,
which are obligated to exactly satisfy the Laplace equation and the zero
Neumann condition on the wetted tank wall. This is a rather complicated
mathematical task. It is solved, to date with, only for non-truncated cir-
cular conical tanks [14], two-dimensional circular and spherical tanks [3, 4],
as well as, recently, for truncated circular conical tanks [15]. By employ-
ing the latter approximate natural sloshing modes from [15], we will report
applied mathematical procedures, derivations and keystone formulas, which
are attributed to the so-called Narimanov-Moiseev (weakly-nonlinear modal)
theory, by starting with the original differential/variational statement of
the nonlinear free-boundary (sloshing) problem. The Narimanov-Moiseev
modal theory effectively describes sloshing in tanks, which move almost pe-
riodically with the forcing frequency close to the lowest natural sloshing
frequency, when there are no secondary resonances. A difficulty is that
the nonlinear Narimanov-Moiseev modal systems should, for axisymmetric
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tanks, have an infinite number of degrees of freedom for the second- and
third-order generalised coordinates [31]. That is why, the mathematically-
complete (i.e., infinite-dimensional) Narimanov-Moiseev modal systems are
rare exceptions in the literature. Up to date with, those modal systems only
exit for upright annular [6, 36] and spherical [5] containers. All other existing
Narimanov-Moiseev’s modal systems include a few second- and third-order
sloshing-related generalised coordinates.

The primary goal of the present chapter is to describe, in some tech-
nical detail, mathematical aspects of the Narimanov-Moiseev asymptotic
multimodal method for the free-boundary problem of the liquid sloshing
dynamics in rigid circular (truncated) conical tanks, which perform small-
magnitude oscillatory motions with the forcing frequency close to the lowest
natural sloshing frequency. Being strictly limited in the journal length, the
traditionally-formatted research papers are, normally, not able to present all
derivation nuances and report specific but important formulas, especially,
when dealing with weakly-nonlinear (approximate) mathematical models,
which are the best represented by the Narimanov-Moiseev multimodal the-
ory. The book chapter format makes it possible to fill up the gaps. We
start with the needed mathematical background and some fundamentals
whose keystone is the Bateman-Luke variational formulation of the origi-
nal free-boundary problem and, thereafter, derive a generalisation of the
Miles-Lukovsky nonlinear modal system, which is fully equivalent to the
original mathematical problem. The latter system (of ordinary differential
equations) is well known for sloshing in rigid upright tanks. To account for
non-vertical walls and derive the corresponding generalised Miles-Lukovsky
system, one should postulate that instant (unknown) free-surface shapes can
be implicitly defined by introducing an infinite set of the sloshing-related
generalised coordinates while the velocity potential is, as usually, posed as a
Fourier-type solution by natural sloshing modes where the time-depending
coefficients play the role of the generalised velocities.

Because the multimodal method requires similar Fourier-type solution
for the free surface, but the non-vertical tank walls do not allow for the
single-valued (normal) representation of the free surface (which is neces-
sary condition), we utilise the so-called Lukovsky non-conformal mapping
technique. The non-conformal mapping transforms the inner (conical) tank
(physical) domain to an artificial upright circular cylinder, for which the
single-valued representation of the free surface becomes possible. The trans-
formation is applied, in parallel way, to the Bateman-Luke variational for-
mulation, the Miles-Lukosvky modal system, and, finally, to the spectral
boundary problem whose eigensolution corresponds to the natural sloshing
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modes.
Owing to requirements in the volume (mass) conservation, the multi-

modal method effectively describes nonlinear sloshing, if and only if, the
spectral boundary problem has analytically-approximate solutions, which
exactly satisfy both the Laplace equation and the zero-Neumann boundary
condition on the wetted tank walls, including in the ‘ullage’ domain over
the mean free surface; in other words, the eigenfunctions should be analyt-
ically continuable through the free surface. This kind of approximate nat-
ural sloshing modes was already constructed for the truncated conical tank
shapes. We shortly outline how to get these modes and, furthermore, adopt
them in derivations of the generalised Miles-Lukovsky modal equations and
their simplified forms. By mentioning the simplified forms, we mean weakly-
nonlinear modal systems, which may facilitate analytical studies of the res-
onant (nonlinear) sloshing. The weakly-nonlinear modal systems normally
possess either adaptive (account for the so-called secondary resonance in
the hydrodynamic system) or Narimanov-Moiseev-type (no secondary reso-
nances) form.

Occurrence of the secondary resonances for sloshing in the V-shaped
truncated conical tanks is estimated. Further, we derive a generic third-
order infinite-dimensional system of nonlinear ordinary differential equa-
tions, in which the unknowns, sloshing-related generalised coordinates hold
equal asymptotic order so that all cubic polynomial quantities in the weakly-
nonlinear modal system are asymptotically similar to the nondimensional
tank magnitude. On the next stage, the generic modal system reduces to
a more convenient (for mathematical studies) analytical form by using as-
sumptions of the Narimanov-Moiseev asymptotic theory.

The Narimanov-Moiseev (modal) system of ordinary differential equa-
tions also has infinite number of degrees of freedom but only for the second-
and third-order generalised coordinates. The two lowest-order generalised
coordinates are associated with the primary excited natural sloshing modes.
Due to this very special analytical structure, the Narimanov-Moiseev modal
equations allow for implementing diverse analytical approaches and, thereby,
getting analytical solutions whose analysis establishes important features of
transient and steady-state resonant waves. Ideas of those appropriate ap-
proaches are illustrated in the present work for the case of the longitudinal
harmonic tank excitation with the forcing frequency close to the lowest nat-
ural sloshing frequency. Primary focus is on on the steady-state sloshing
regimes.

In section 2, we write down both differential and variational formula-
tions of the free-boundary problem whose physical details can be found in
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the books [2, 24, 25]. The problem requires either initial or periodicity condi-
tions. Adopting different initial scenarios (conditions) implies modelling the
corresponding transient surface waves. The periodicity condition is used for
modelling the steady-state (periodic) sloshing regimes, which are expected
when the tank moves periodically.

Generally speaking, the nonlinear free-surface sloshing problem has no
unique periodic (steady-state) solution [2]. This yields the so-called classi-
fication problem, a twofold task, which consists of identifying all possible
steady-state (periodic) solutions and studying their stability as well as de-
scribing the corresponding amplitude (force, moment, etc.) response curves.
Because traditional CFD methods solve, normally, the Cauchy (initial) prob-
lem, they may fail for solving the classification problem. The multimodal
method reduces the original free-boundary problem to system(s) of nonlin-
ear ordinary equations. There exists a variety of analytical methods and
approaches, which can effectively solve the two-point (periodic) problem
for these differential equations, analyse the obtained solutions and, thereby,
classify the steady-state wave regimes.

Employing the Bateman-Luke variational formulation of the original
sloshing problem, we further derive a generalisation of the Miles-Lukovsky
nonlinear modal (ordinary differential) equations [24, 25], which couple the
sloshing-related generalised coordinates {βK(t)} (which describe the free-
surface shape) and the generalised velocities {FN (t)} (represent the veloc-
ity potential). The Miles-Lukovsky modal system is fully equivalent to the
original free-surface problem. Getting the modal system in its canonic form,
normally, requires the single-valued (normal) representation of the free sur-
face, x = f(y, z, t) (x is the vertical coordinate). The single-valued repre-
sentation is impossible for tanks with non-vertical walls. That is why, we
assume the implicitly-defined free surface, ζ(y, z, {βK(t)}) = 0. The gener-
alised velocities {FN (t)} appear as time-dependent coefficients in the Fourier
representation of the velocity potential. The Miles-Lukovsky modal system
consists of kinematic and dynamic sub-systems.

Section 3 reports analytical and technical details of a non-conformal
mapping technique, which was proposed by Lukovsky [22]. The technique
transforms the non-cylindrical physical (inner tank) domain to an auxiliary
cylindrical domain by using the curvilinear coordinates Ox1x2x3. The goal
consists of replacing the implicit free-surface representation ζ(y, z, {βK(t)}) =
0 in the physical space to the single-valued Fourier-type representation
ζ = x1 − β0(t) +

∑
βN (t)fN (x2, x3) in the transformed space ({fN} is the

Fourier basis, normally, the transformed natural sloshing modes). The non-
conformal mapping should be simultaneously applied to both the spectral
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boundary problem on the natural sloshing modes and the Miles-Lukovsky
modal equations. Following [15], we construct the analytically-approximate
natural sloshing modes (eigenfunctions of the transformed spectral boundary
problem) for the case of the circular truncated conical tank. Furthermore,
by adopting the single-valued representation of the free surface in the trans-
formed space, we rewrite the generalised Miles-Lukovsky equations in a more
convenient analytical form.

In section 4, we use the Miles-Lukovsky modal equations from section 3
for derivation of a generic weakly-nonlinear modal system, which exclusively
couples the sloshing-related generalised coordinates. The generalised veloc-
ities are found, in an explicit form, by resolving the kinematic subsystem of
the Miles-Lukovsky system; the result is substituted into the dynamic sub-
system. The derivation utilises ideas of the so-called third-order adaptive
multimodal modelling [7, 10], which suggests that the forcing magnitude
has the third asymptotic order in terms of the lowest-order sloshing-related
generalised coordinates. The generic weakly-nonlinear modal equations keep
only the cubic polynomial terms with respect to the generalised coordinates.

Details of the Narimanov-Moiseev multimodal asymptotic theory, as
these appear for axisymmetric tanks [31], are reported in section 5. The
Narimanov-Moiseev modal equations are derived for the circular conical
tank shape. The asymptotic theory assumes that there are no secondary
resonances and the forcing frequency is close to the lowest natural slosh-
ing frequency. The secondary resonance phenomenon for sloshing in conical
tanks was investigated in [28]. These results are shortly outlined in the
present chapter to detect the critical geometric pairs, the semi-apex angle
and the liquid depth (for truncated conical tanks), when the second- or
third-order generalised coordinates can be resonantly amplified to a lower
asymptotic order due to the secondary resonance phenomenon.

In section 5, we demonstrate how to construct an analytic asymptotic
periodic solution of the Narimanov-Moiseev system from the previous sec-
tion and study its stability. These periodic solutions implies the steady-
state resonant sloshing regimes. Finding all these regimes and drawing the
corresponding response curves (versus the forcing frequency) implies the so-
called classification problem [9]. The wave-amplitude response curves are
illustrated for the case of the lateral (horizontal) harmonic tank forcing that
is one of the classical benchmark sloshing problems.
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2 Statement

We consider a rigid truncated conical tank of the semi-apex angle θ0, which
performs a small-magnitude oscillatory motion with six degrees of freedom as
shown in figure 1 (b). These degrees of freedom are associated with transla-
tory tank motions (generalised coordinates η1, η2, and η3; vO = (η̇1, η̇2, η̇3))
and angular tank motions, which are defined by the instant angular velocity
ω(t) = (η̇4, η̇5, η̇6). The circular conical tank is partially filled by an ideal
incompressible liquid with irrotational flows.

The absolute fluid velocity field is considered in the tank-fixed coordinate
system Oxyz whose origin O is superposed with the artificial cone vertex so
that the Ox-axis coincides with the symmetry axis (figure 1,a). Whereas the
tank does not move, the gravity acceleration vector g has opposite direction
to Ox.

2.1 Free-boundary problem

After introducing the absolute velocity potential Φ(x, y, z, t) and function
ζ(x, y, z, t) implicitly determining the free surface Σ(t) : ζ(x, y, z, t) = 0, the
free-boundary problem on the liquid sloshing dynamics in a movable rigid
tank can be written down in the form (see, the physical derivation details
in [2, 24])

∇2Φ = 0, r ∈ Q(t), (1a)

∂Φ

∂ν
= vO · ν + ω · (r × ν), r ∈ S(t), (1b)

∂Φ

∂ν
= vO · ν + ω · (r × ν)− ∂ζ/∂t

|∇ζ|
, r ∈ Σ(t), (1c)

∂Φ

∂t
+ 1

2 |∇Φ|2 −∇Φ · (vO + ω × r) + U = 0, r ∈ Σ(t), (1d)∫
Q(t)

dQ = Vl = const, (1e)

where vO(t) is the velocity of the origin O, ω(t) is the instant angular
velocity vector of the Oxyz coordinate system, ν is the outer normal vector,
S(t) = S1(t) ∪ S2 is the wetted tank surface, r = (x, y, z) is the radius
vector, U = r ·g is the gravity potential (g is the gravity acceleration vector)
defined in the Oxyz-coordinate system. These notations are illustrated in
figure 1 (b). Equation (1e) implies the liquid volume (mass) conservation,
which can be treated as a necessary solvability condition of the Neumann
boundary problem (1a)-(1c).
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The pressure field p(x, y, z, t) can be determined by using the Bernoulli
equation rewritten in the non-inertial coordinate system Oxyz,

∂Φ

∂t
+ 1

2 |∇Φ|2 −∇Φ · (vO + ω × r) + U = −p− p0

ρ
(2)

where p0 is the ullage pressure and ρ is the liquid density.

2.2 Initial and periodicity conditions

The free-boundary problem (1) requires either initial conditions

ζ(x, y, z, t0) = ζ0(x, y, z),
∂ Φ

∂ ν

∣∣∣∣
Σ(t0)

= Φ0(x, y, z)|Σ(t0), (3)

which define the initial free-surface pattern Σ(t0) and the normal velocity
on Σ(t0) (ζ0(x, y, z) and Φ0(x, y, z)|Σ(t0) are the two given functions), or,
alternatively, the periodicity conditions

ζ(x, y, z, t+ T ) = ζ(x, y, z, t), Φ(x, y, z, t+ T ) = Φ(x, y, z, t), (4)

which could be used when the tank moves periodically with the forcing
period T .

Solutions of the time-periodic problem (1) + (4) imply the steady-state
surface waves. The latter problem has a non-unique solution for each fixed
T (see, details in chapters 8 and 9 of [2]). Full description of all theoretically
possible steady-state solutions and identification of their stability are often
called the classification.

2.3 Bateman-Luke variational formulation

Instead of dealing with the free-boundary problem (1), whose steady-state
resonant solutions are difficult to classify when using the Computational
Fluid Dynamics, we will employ the multimodal method, which reduces the
free-boundary problem (1) to a system of nonlinear ordinary differential
equations.

The derivation procedure utilises the Bateman–Luke variational formu-
lation whose equivalence to (1) is, for instance, proven in [2] (Sect. 2.5.3.2)
and Chapt. 2 by [29]. According to this variational formulation, the solu-
tion (the pair of independent unknowns Φ and ζ) of the sloshing problem (1)
coincides with extrema points of the action
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A(ζ,Φ) =

∫ t2

t1

(∫
Q(t)

(p− p0) dx dy dz

)
dt

= −
∫ t2

t1

[∫
Q(t)

(
∂Φ

∂t
+ 1

2 |∇Φ|2 −∇Φ · (vO + ω × r) + U

)
dx dy dz

]
dt

(5)

for arbitrary fixed t1 and t2 (t1 < t2) subject to variations satisfying

δΦ|t1,t2 = 0, δζ|t1,t2 = 0. (6)

Here, (p−p0) is the formal mathematical expression taken from the Bernoulli
equation (2).

2.4 Miles-Lukovsky modal equations

The Bateman-Luke variational formulation (5), (6) was used by many au-
thors to derive the so-called Miles-Lukovsky system of nonlinear ordinary
differential equations with respect to the sloshing-related generalised coordi-
nates {βN (t)} and velocities {FN (t)}. The system is fully equivalent to the
the original free-boundary problem (1) but its derivation requires a priori
satisfying a series of special conditions, which are listed in chapter 7 of [2].

In particular, the derivation normally assumes the single-valued (nor-
mal) representation of the free surface Σ(t): ζ = x− f(y, z, t) = 0, in which
a Fourier series for f(y, z, t) is employed with the time-dependent coeffi-
cients (generalised coordinates) {βN (t)}. For the non-vertical tank walls,
the single-valued representation is impossible. However, one can implicitly
introduce the generalised coordinates by postulating

ζ = ζ(x, y, z; {βN (t)}) (7)

subject to the volume conservation condition (1e), which is considered as a
holonomic constraint.

In parallel way, the multimodal method needs the Fourier-type represen-
tation of the velocity potential

Φ(x, y, z, t) = vO · r + ω ·Ω +

∞∑
N=1

FN (t)ϕN (x, y, z), (8)

where Ω(x, y, z; {βN (t)}) = (Ω1,Ω2,Ω3) are the Stokes-Joukowski poten-
tials, which parametrically depend on {βN (t)} as they are found from the
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Neumann boundary value problem in the time-varied liquid domain Q(t),

∇2Ωi = 0 in Q(t),

∂Ω1

∂ν
= yνz − zνy;

∂Ω2

∂ν
= zνx − xνz;

∂Ω3

∂ν
= xνy − yνx on Σ(t) ∪ S(t).

(9)

Here, ν∗ are the projections of the outer normal vector on the corresponding
coordinate axes.

The Fourier basis {ϕN} in (8) is normally associated with the natural
sloshing modes, eigenfunctions of the spectral boundary problem,

∇2ϕ = 0, r ∈ Q0,
∂ϕ

∂ν
= 0, r ∈ S0,

∂ϕ

∂ν
= κ̄ ϕ, r ∈ Σ0,

∫
Σ0

∂ϕ

∂ν
dS = 0,

(10)
defined in the hydrostatic (mean) liquid domain Q0, which is bounded by
the mean free surface Σ0 and the mean wetted tank surface S0.

According to the spectral theorems [12], the functional set {ϕN} con-
stitutes a harmonic (functions {ϕN} exactly satisfy the Laplace equation)
functional basis in Q0. The multimodal method requires that {ϕN} is de-
fined in any admissible instant liquid domain Q(t). In other words, the
eigensolution of (10) should be analytically continuable over the mean free
surface Σ0. Furthermore, the method says that the Fourier solution (8) must
exactly satisfy the volume (mass) conservation condition. The latter means
that the base functions {ϕN} exactly satisfy the zero-Neumann boundary
condition on the wetted tank surface for any instant time t.

Because ζ and Φ are independent variables in the Bateman-Luke formu-
lation, the generalised coordinates {βN (t)} and velocities {FN (t)} are also
independent time-depending functions and, due to (6), these must satisfy
the condition

δFN |t=t1,t2 = δβN |t=t1,t2 = 0.

Substituting (8) into (5) and varying {FN (t)} leads to the kinematic
modal equations

dAN
dt
≡
∑
K

∂AN
∂βK

β̇K =
∑
K

ANKFK for all N, (11)

which are mathematically equivalent to the Neumann boundary value prob-
lem (1a)-(1c). Derivation of (11) is algebraically similar to those reported
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in chapter 7 of [2] and we refer interested readers to this book for analytical
details.

Tedious derivations in [2] (pages 301-303) explain how varying the gen-
eralised coordinates {βN (t)} in the Bateman-Luke formulation leads to the
dynamic modal equations∑

K

∂AK
∂βN

ḞK +
1

2

∑
K,L

∂AKL
∂βN

FKFL + (ω × vO − g)· ∂l
∂βi
− 1

2
ω · ∂J

1

∂βi
· ω

+ ω̇ ·
(
∂lω
∂βi
− ∂lωt

∂β̇i

)
+ ω

(
∂lωt
∂βi
− d

dt

∂lωt

∂β̇i

)
= 0 for all N, (12)

which are mathematically equivalent to the dynamic boundary condition
(1d).

The modal equations (11), (12) govern to the generalised coordinates
and velocities so that

AN =

∫
Q(t)

ϕNdQ, ANK =

∫
Q(t)

(∇ϕN · ∇ϕK)dQ,

l1 =

∫
Q(t)

xdQ, l2 =

∫
Q(t)

ydQ, l3 =

∫
Q(t)

zdQ,

lkω = ρ

∫
Q(t)

ΩkdQ, lkωt = ρ

∫
Q(t)

∂Ωk

∂t
dQ,

J1
ij = ρ

∫
S(t)+Σ(t)

Ωi
∂Ωj

∂t
dQ; k = 1, 2, 3, J1

ij = J1
ji,

(13)

are, in fact, the implicitly-defined nonlinear functions of {βN (t)} (Q(t) is
determined by (7)).

3 Non-conformal mapping technique

To have the single-valued (normal) representation of the free surface, which
is impossible within the framework of the Cartesian parametrisation, we
follow the Lukovsky non-conformal mapping technique [14, 22, 30] and utilise
the curvilinear coordinate system Ox1x2x3,

x = x1, y = x1x2 cosx3, z = x1x2 sinx3, (14)

where x3 = η is, in fact, the angular coordinate.
The coordinate transformation (14) should be applied to both the spec-

tral boundary problem (10) and the Miles-Lukovsky modal system (11),
(12).
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3.1 Natural sloshing modes

The natural sloshing modes (eigenfunctions of (10)) are normally defined
only in the unperturbed domain Q0. However, to make integrals (13) cor-
rectly defined, these eigenfunctions (natural modes), exact or approximate,
must be analytically continuable over the mean free surface Σ0 from the
liquid into ullage domain. Another requirement is that {ϕN} should exactly
satisfy the Laplace equation and the zero-Neumann condition on the wetted
tank surface.

The curvilinear coordinate system Ox1x2x3 by (14) transforms the orig-
inal conical (physical) domain to an artificial circular cylindrical shape. Fig-
ure 1 (c,d) demonstrates the meridional cross-section of the original (mean)
liquid domain in the physical G and transformed G∗ planes. Considering
the eigensolution of (10) in the curvilinear coordinate system

ϕ(x1, x2, x3) = ψm(x1, x2)
sinmx3

cosmx3
, m = 0, 1, 2, . . . (15)

makes it possible to separate the spatial variables (x1, x2) and x3 so that it
yields the following m-family of spectral boundary problems

p
∂2ψm
∂x2

1

+ 2q
∂2ψm
∂x1∂x2

+ s
∂2ψm
∂x2

2

+ d
∂ψm
∂x2

−m2cψm = 0 in G∗, (16a)

s
∂ψm
∂ x2

+ q
∂ψm
∂ x1

= 0 on L∗1, (16b)

p
∂ψm
∂x1

+ q
∂ψm
∂x2

= κ̄mpψm on L∗0, (16c)

p
∂ψm
∂ x1

+ q
∂ψm
∂ x2

= 0 on L∗2, (16d)

|ψm(x1, 0)| <∞, m = 0, 1, 2, . . . , (16e)∫ x20

0
ψ0x2dx2 = 0, (16f)

where G∗ = {(x1, x2) : x0 ≤ x1 ≤ x10, 0 ≤ x2 ≤ x20}, p = x2
1x2, q = −x1x

2
2,

s = x2(x2
2 + 1), d = 1 + 2x2

2, c = 1/x2, and L∗0, L∗1 and L∗2 are defined in
figure 1 (c,d).

The natural sloshing frequencies are

σmn =
√
gκ̄mn =

√
gκmn
r0

, (17)
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where κmn = r0κ̄mn are the nondimensional eigenvalues.
By using the Trefftz method, [15] constructed an analytically approxi-

mate Treftz solution of (16), which exactly satisfies (16a), (16b), and (16d).
This solution takes the form

ψm = ψmn(x1, x2) =

q1∑
k=1

a
(m)
n,k w

(m)
k +

q2∑
l=1

ā
(m)
n,l w̄

(m)
l , (18)

where functions w
(m)
k (x1, x2) and w̄

(m)
k (x1, x2) are

w
(m)
k (x1, x2) = N

(m)
k xνmk1 T (m)

νmk
(x2),

w̄
(m)
k (x1, x2) = N̄

(m)
k x−1−νmk

1 T̄ (m)
νmk

(x2)
(19)

with T
(m)
νmk (x2) and T̄

(m)
νmk (x2) expressed via the associate Legendre polynomi-

als of the first kind, P
(m)
ν (µ) (see [23]), as follows,

T (m)
νmk

(x2) = (1 + x2
2)

νmk
2 P (m)

νmk

(
1√

1 + x2
2

)
,

T̄ (m)
νmk

(x2) = (1 + x2
2)
−1−νmk

2 P (m)
νmk

(
1√

1 + x2
2

)
.

The numbers νmk are roots of the equation ∂P
(m)
ν (cos θ)

/
∂θ
∣∣∣
θ=θ0

= 0 and

N
(m)
k and N̄

(m)
k are the normalizing multipliers introduced to satisfy the

condition
∣∣∣∣∣∣w(m)

k

∣∣∣∣∣∣2
L∗2∪L∗0

=
∣∣∣∣∣∣w̄(m)

k

∣∣∣∣∣∣2
L∗2∪L∗0

= 1, where ||·|| implies the mean

square-root norm on L∗2 ∪L∗0. The paper [15] reports the Trefftz variational

scheme, which makes it possible to find the coefficients a
(m)
n,k and ā

(m)
n,k in

(18).

3.2 Alternative form of the Miles-Lukovsky modal equations

We start with the implicitly-given free-surface representation (7) rewritten
in the x1x2x3-coordinates and, furthermore, assume, because the tank walls
become vertical in these coordinates (figure 1 c,d), that (7) may be written
down in the form

ζ = x1 − f(x2, x3, {βmi}) = 0,

where

15



f = f(x2, x3, {pmi}, {rmi}) = x10 +β0(t) +
∞∑
m=1

∞∑
i=1

rmi(t) sin(mx3)fmi(x2)

+
∞∑

M=0

∞∑
i=1

pMi(t) cos(Mx3)fMi(x2), (20)

and
fMi(x2) =

σMi

g
ψMi(x10, x2) (21)

defines the radial profiles of the natural sloshing modes but σMi are the
natural sloshing frequencies introduced in (17).

Specifically, the free-surface representation (20) contains the non-zero
generalised coordinate β0(t), which is yielded by the volume conservation
condition (1e) playing the role of the holonomic constraint. Resolving this
constraint makes the generalised coordinate β0(t) by a function of other
generalised coordinates, namely, one can write down

β0(t) = β0({pMi(t)}, {rmi(t)}). (22)

The latter function is derived in an explicit analytical form in Appendix A.1.

Along with the multimodal representation of the free surface (20), the
multimodal method also requires the Fourier–type (multimodal) represen-
tation of the velocity potential (8)

Φ(x1, x2, x3, t) = vO · r + ω ·Ω +
∞∑

M=0

∞∑
i=1

PMj(t) cos(Mx3)ψmj(x2, x3)

+
∞∑
m=1

∞∑
i=1

Rmj(t) sin(mx3)ψmj(x2, x3). (23)

The multimodal representations (20) and (23) are employed, instead of
(7) and (8), in the Miles-Lukosky modal equations (11), (12), where integrals
(13) are fully determined by the generalised coordinates pMi(t) and rmi(t),
in which capital indices should be replaced by the complex indices (Mi, cos)
and (mi, sin) so that, for instance, when N = (Mi, cos),

AN = A(Mi,cos)

=

π∫
−π

r0∫
0

f(x2,x3,{pMi},{rmi})∫
x0

x2
1x2ψMi(x1, x2) cos(Mx3)dx1dx2dx3. (24)
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The capital letter M implies changing index from zero to infinity (M =
0, 1, 2, . . .), and small m means m = 1, 2, . . ..

According to (20) and (23), the Miles-Lukovsky multimodal equations
(11), (12) can be rewritten in a more suitable form. The kinematic modal
equations (11) take then the form∑

Mn

∂ApAb
∂pMn

ṗMn +
∑
mn

∂ApAb
∂rmn

ṙmn =
∑
Mn

AppAb,MnPMn +
∑
mn

AprAb,mnRmn = 0,

∑
Mn

∂Arab
∂pMn

ṗMn +
∑
mn

∂Arab
∂rmn

ṙmn =
∑
Mn

AprMn,abPMn +
∑
mn

ArrAb,mnRmn = 0,

(25)

and the dynamic modal equations (12) are∑
Mn

∂ApMn

∂pAb
ṖMn +

∑
mn

∂Armn
∂pAb

Ṙmn +
1

2

∑
MnLk

∂AppMn,Lk

∂pAb
PMnPLk+

+
1

2

∑
mnlk

∂Arrmn,lk
∂pAb

RmnRlk +
∑
Mnlk

∂AprMn,lk

∂pAb
PMnRlk + gΛAApAb+

+(η̈2 − gη6 − Sbη̈6)ΛA1eb = 0,∑
Mn

∂ApMn

∂rab
ṖMn +

∑
mn

∂Armn
∂rab

Ṙmn +
1

2

∑
MnLk

∂AppMn,Lk

∂rab
PMnPLk+

+
1

2

∑
mnlk

∂Arrmn,lk
∂rab

RmnRlk +
∑
Mnlk

∂AprMn,lk

∂rab
PMnRlk + gΛaarab+

+(η̈3 − gη5 − Sbη̈5)Λa1eb = 0,

(26)

where eb = λ̂1b from (79)

ΛIJ =

{
2π, I = J = 0,

πδIJ , otherwise,
δIJ =

{
1, I = J,

0, I 6= J.
(27)

By using the free-surface representation (20) and accounting for (22),
one can derive explicit analytical expressions for (13). Components of the
vector AN =

{
{ApAb}, {A

r
ab}
}

come from

ApAb = ρ

∫ 2π

0

∫ x20

0
cosAx3Θ

0
Ab(x1, x2, pIj , rij)dx2dx3,

Arab = ρ

∫ 2π

0

∫ x20

0
sin ax3Θ

0
ab(x1, x2, pIj , rij)dx2dx3,

(28)
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where A = 0, 1, . . . and a, b = 1, 2, . . ., but components of the matrix ANK =
{{AppAb,Cd, A

pr
Ab,cd}, {A

pr
Ab,cd, A

rr
ab,cd}} are defined by

AppAb,Cd = ρ

∫ 2π

0

∫ x20

0

(
cosAx3 cosCx3Θ

1
AbCd(x1, x2, pIj , rij)+

+ sinAx3 sinCx3Θ
2
AbCd(x1, x2, pIj , rij)

)
dx2dx3,

Arrab,cd = ρ

∫ 2π

0

∫ x20

0

(
sin ax3 sin cx3Θ

1
abcd(x1, x2, pIj , rij)+

+ cos ax3 cos cx3Θ
2
abcd(x1, x2, pIj , rij)

)
dx2dx3,

AprAb,cd = ρ

∫ 2π

0

∫ x20

0

(
cosAx3 sin cx3Θ

1
Abcd(x1, x2, pIj , rij)−

− sinAx3 cos cx3Θ
2
Abcd(x1, x2, pIj , rij)

)
dx2dx3, (29)

where

Θ0
N (x1, x2, pIj , rij) =

∫ f∗+x10

0
x2

1ψN dx1,

Θ1
NK(x1, x2, pIj , rij) =

∫ f∗+x10

0

(
x2

1x2
∂ψN
∂x1

∂ψK
∂x1

+ x2

(
1 + x2

2

) ∂ψN
∂x2

∂ψK
∂x2

− x1x
2
2

(
∂ψN
∂x1

∂ψK
∂x2

+
∂ψN
∂x2

∂ψK
∂x1

))
dx1,

Θ2
NK(x1, x2, pIj , rij) =

∫ f∗+x10

0

1

x2

∂ψN
∂x3

∂ψK
∂x3

dx1. (30)

4 Generic weakly-nonlinear modal equations

The derived fully-nonlinear modal equations (25)–(30) are difficult to use
in analytical studies; these are also not efficient in numerical simulations.
Moreover, they involve the generalised velocities that is not typical for dy-
namic equations for oscillatory mechanical systems, which normally appear
as the second-order differential equations with respect to the generalised
coordinates.

Simplifying (25)–(30) to a weakly-nonlinear, adaptive form [7, 10] implies
postulating the asymptotic relations

pMi ∼ PMi ∼ rmi ∼ Rmi = O(ε), (31)

provided by
ηi(t) = O(ε3) (32)
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as well as neglecting all quantities in the modal equations, which have the
asymptotic order O(ε4). Furthermore, one should resolve the kinematic
equations (25) with respect to the generalised velocities and substitute the
result into the dynamic equations (26) where, again, the asymptotic terms
O(ε4) must be omitted. The derivation of the generic weakly-nonlinear equa-
tions is a rather complicated and tedious analytical procedure. Its details
are reported in Appendix A.

The procedure consists of several stages. At the first stage, we derive
a weakly-nonlinear form of (28) for both symmetric ApAb and antisymmet-
ric Arab components up to the third polynomial order with respect to the
sloshing-related generalised coordinates (Appendix A.2), and, in parallel
way, we derive analogous weakly-nonlinear expressions for AppAb, A

pr
Ab, A

rr
ab

keeping the second-order polynomial terms (Appendix A.3).
At the second stage, we asymptotically resolve (25) with respect to the

generalised velocities, whose weakly-nonlinear structure possesses the form

PCd = ZpCdṗCd +
∑

Mnlijk

Zprr,CdMi,nj,lkpMirnj ṙlk +
∑

MNLijk

Zppp,CdMi,Nj,LkpMipNj ṗLk

+
∑
MNij

Zpp,CdMi,NjpMiṗNj +
∑
mnij

Zrr,Cdmi,njrmiṙnj +
∑

mnLijk

Zrrp,Cdmi,nj,Lkrmirnj ṗLk,
(33a)

Rcd = Zrcdṙcd +
∑

MnLijk

Zprp,cdMi,nj,LkpMirnj ṗLk +
∑
mnlijk

Zrrr,cdmi,nj,lkrmirnj ṙlk

+
∑
Mnij

Zpr,cdMi,njpMiṙnj +
∑
mNij

Zrp,cdmi,NjrmiṗNj +
∑

MNlijk

Zppr,cdMi,Nj,lkpMipNj ṙlk.
(33b)

Explicit expressions for the Z-coefficients are given in Appendix A.4.
Elements of the vector l by (13) are presented in the curvilinear coordi-
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nate system and expressed as follows

l1 =
∑

MNLijk

lxpppMi,Nj,LkpMipNjpLk +
∑

Mnlijk

lxprrMi,nj,lkpMirnjrlk

+
∑
MNij

lxppMi,NjpMipNj +
∑
mnij

lxrrmi,njrmirnj + lx,

l2 =
∑
Mi

l̂ypMipMi +
∑
MNij

l̂yppMi,NjpMipNj +
∑
mnij

l̂yrrmi,njrmirnj

+
∑

MNLijk

l̂ypppMi,Nj,LkpMipNjpLk +
∑

Mnlijk

l̂yprrMi,nj,lkpMirnjrlk,

l3 =
∑
mi

l̂zpmirmi +
∑
Mnij

l̂zprMi,njpMirnj+

+
∑

MNlijk

l̂zpprMi,Nj,lkpMipNjrlk +
∑
mnlijk

l̂zrrrmi,nj,lkrmirnjrlk,

(34)

where the coefficients l̂rβMi, l̂rββMi,Nj , l̂rβββMi,Nj,Lk are defined in Appendix A.5.
Finally, at the final stage, we derive the following infinite-dimensional

modal equations

LpEh =
∑
Mi

δMEδihd
p,Eh
Mi p̈Mi +

∑
Mi

δMEδihg
p,Eh
Mi pMi +

∑
mnij

grr,Ehmi,njrmirnj

+
∑
MNij

gpp,EhMi,NjpMipNj +
∑
MNij

tpp,EhMi,Nj ṗMiṗNj +
∑

MNLijk

gppp,EhMi,Nj,LkpMipNjpLk

+
∑

Mnlijk

gprr,EhMi,nj,lkpMirnjrlk +
∑
MNij

dpp,EhMi,NjpMip̈Nj +
∑

Mnlijk

dprr,EhMi,nj,lkpMirnj r̈lk

+
∑
mnij

trr,Ehmi,nj ṙmiṙnj +
∑
mnij

drr,Ehmi,njrmir̈nj +
∑

MNLijk

tppp,EhMi,Nj,LkpMiṗNj ṗLk

+
∑

MNLijk

dppp,EhMi,Nj,LkpMipNj p̈Lk +
∑

Mnlijk

tprr,EhMi,nj,lkpMiṙnj ṙlk

+
∑

mNlijk

trpr,Ehmi,Nj,lkrmiṗNj ṙlk +
∑

mnLijk

drrp,Ehmi,nj,Lkrmirnj p̈Lk

= −(η̈2 − gη6 − Shη̈6)ΛE1eh, (35a)

Lreh =
∑
mi

δmeδihd
r,eh
mi r̈mi +

∑
mi

δmeδihg
r,eh
mi rmi +

∑
Mnij

gpr,ehMi,njpMirnj

+
∑

MNlijk

gppr,ehMi,Nj,lkpMipNjrlk +
∑
mnlijk

grrr,ehmi,nj,lkrmirnjrlk +
∑
Mnij

tpr,ehMi,nj ṗMiṙnj
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+
∑
Mnij

dpr,ehMi,njpMir̈nj +
∑

mNLijk

trpp,ehmi,Nj,LkrmiṗNj ṗLk +
∑

MnLijk

dprp,ehMi,nj,LkpMirnj p̈Lk

+
∑
mNij

drp,ehmi,Njrmip̈Nj +
∑

MNlijk

tppr,ehMi,Nj,lkpMiṗNj ṙlk +
∑

MNlijk

dppr,ehMi,Nj,lkpMipNj r̈lk

+
∑
mnlijk

trrr,ehmi,nj,lkrmiṙnj ṙlk +
∑
mnlijk

drrr,ehmi,nj,lkrmirnj r̈lk

= −(η̈3 − gη5 − Shη̈5)Λe1eh. (35b)

Computational formulas for the hydrodynamic coefficients d, g, and t are
presented in Appendix A.6. These are much more complicated than those
for upright rectangular [8, 11] and circular [13, 26] containers. Many of these
coefficients are zero or equal to each other (see, examples in Appendix A.7).
This fact was analytically established in [6, 26] for the vertical annular cylin-
drical tank, in [14] for the V-shape tank, as well as in [5] for the spherical
tank.

5 Narimanov-Moiseev multimodal theory

5.1 Modal equations

As we remarked in Introduction, one can simplify the generic weakly-non-
linear modal equations (35) by postulating specific asymptotic relationships
between the generalised coordinates pMi(t) and rmi(t), specifying among
them the first-, second- and third-order coordinates in terms of ε. For fi-
nite liquid depths, the most popular relationship follows from the Moiseev-
Narimanov theory [31, 34, 35], which effectively handles the resonant slosh-
ing in tanks exposed to the non-parametric harmonic excitations, i.e., when

η1(t) ≡ 0 (36)

with the forcing frequency close to the lowest natural sloshing frequency and
the secondary resonance in the hydromechanical system can be neglected
[11, 14, 16, 19, 31, 37].

For axisymmetric containers, in general, and circular conical tanks, in
particular, the Narimanov-Moiseev asymptotic relationships suggest that
the r0-scaled forcing magnitude is small, of the order ε3 � 1, but only the
two primary excited lowest natural sloshing modes, differing only by the π/2-
azimuthal drift, and associated with the r0-scaled generalised coordinates
p11 and r11 possess dominant character and have the asymptotic order O(ε).
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The trigonometric algebra by the angular coordinate leads to the fol-
lowing asymptotic relations for the r0-scaled generalised coordinates and
velocities [31, 26]

P11 ∼ R11 ∼ p11 ∼ r11 = O(ε),

P2n ∼ R2n ∼ P0n ∼ p2n ∼ r2n ∼ p0n = O(ε2),

P3n ∼ R3n ∼ P1(n+1) ∼ R1(n+1) ∼ p3n ∼ r3n

∼ p1(n+1) ∼ r1(n+1) = O(ε3), n ≥ 1,

(37)

but all other generalised coordinates and velocities are of the order o(ε3) and
can be neglected within the framework of the Narimanov-Moiseev theory.

Applying the asymptotic rules (37) to the generic modal equations (35)
and going through tedious and time-consuming derivations lead to the fol-
lowing infinite-dimensional Narimanov-Moiseev nonlinear modal equations

Lp0h = µ0h

(
p̈0h + σ2

0hp0h

)
+ d8,h

(
ṗ2

11 + ṙ2
11

)
+ d10,h (p11p̈11 + r11r̈11) + G0h

(
p2

11 + r2
11

)
= 0, (38a)

Lp2h = µ2h

(
p̈2h + σ2

2hp2h

)
+ d7,h

(
ṗ2

11 − ṙ2
11

)
+ d9,h (p11p̈11 − r11r̈11) + G4,h

(
p2

11 − r2
11

)
= 0, (38b)

Lr2h = µ2h

(
r̈2h + σ2

2hr2h

)
+ 2d7,h (ṗ11ṙ11)

+ d9,h (p11r̈11 + r11p̈11) + 2G4,hp11r11 = 0, (38c)

Lp11 = µ11

(
p̈11 + σ2

11p11

)
+ d1

(
p2

11p̈11 + p11r11r̈11 + p11ṗ
2
11 + p11ṙ

2
11

)
+ d2

(
r2

11p̈11 − p11r11r̈11 + 2r11ṗ11ṙ11 − 2p11ṙ
2
11

)
+ G1

(
p3

11 + p11r
2
11

)
+
∑
j=1

(
d j3 (p̈11p2j + r̈11r2j + ṗ11ṗ2j + ṙ11ṙ2j) + d j4 (p11p̈2j + r11r̈2j)

+ d j5 (p0j p̈11 + ṗ0j ṗ11) + d j6 (p̈0jp11) + Gj2 (p0jp11)

+Gj3 (p11p2j + r11r2j)
)

= −(η̈2 − gη6 − S1η̈6)κ11e1, (38d)

Lr11 = µ11

(
r̈11 + σ2

11r11

)
+ d1

(
p11r11p̈11 + r2

11r̈11 + r11ṗ
2
11 + r11ṙ

2
11

)
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+ d2

(
p2

11r̈11 − p11r11p̈11 + 2p11ṗ11ṙ11 − 2r11ṗ
2
11

)
+ G1

(
p2

11r11 + r3
11

)
+
∑
j=1

(
d j3 (p̈11r2i − r̈11p2j + ṗ11ṙ2j − ṙ11ṗ2j) + d j4 (p11r̈2j − r11p̈2j)

+ d j5 (p0j r̈11 + ṗ0j ṙ11) + d j6 (p̈0jr11) + Gj2 (p0jr11)

+Gj3 (p11r2j − r11p2j)
)

= −(η̈3 − gη5 − S1η̈5)κ11e1, (38e)

Lp3h = µ3h

(
p̈3h + σ2

3hp3h

)
+ d11,h

(
p2

11p̈11 − r2
11p̈11 − 2p11r11r̈11

)
d12,h

(
p11ṗ

2
11 − p11ṙ

2
11 − 2r11ṗ11ṙ11

)
+ G6,h

(
p3

11 − 3p11r
2
11

)
+
∑
j=1

(
d j13,h (p̈11p2j − r̈11r2j) + d j14,h (p11p̈2j − r11r̈2j)

+d j15,h (ṗ11ṗ2j − ṙ11ṙ2j) + Gj5,h (p11p2j − r11r2j)
)

= 0, (38f)

Lr3h = µ3h

(
r̈3h + σ2

3hr3h

)
+ d11,h

(
p2

11r̈11 − r2
11r̈11 + 2p11r11p̈11

)
d12,h

(
r11ṗ

2
11 − r11ṙ

2
11 + 2p11ṗ11ṙ11

)
+ G6,h

(
3p2

11r11 − r3
11

)
+
∑
j=1

(
d j13,h (p̈11r2j + r̈11p2j) + d j14,h (p11r̈2j + r11p̈2j)

+d j15,h (ṗ11ṙ2j + ṙ11ṗ2j) + Gj5,h (p11r2j + r11p2j)
)

= 0, (38g)

Lp1k = µ1k

(
p̈1k + σ2

1kp1k

)
+ d16,k

(
p2

11p̈11 + p11r11r̈11

)
+ d18,k

(
p11ṗ

2
11 + p11ṙ

2
11

)
+ d17,k

(
r2

11p̈11 − p11r11r̈11

)
+ d19,k

(
r11ṗ11ṙ11 − p11ṙ

2
11

)
+ G1k

(
p3

11 + p11r
2
11

)
+
∑
j=1

(
d j20,k (p̈11p2j + r̈11r2j) + d j22,k (ṗ11ṗ2i + ṙ11ṙ2j) + d j23,kp0j p̈11

+ d j21,k (p11p̈2j + r11r̈2j) + d j25,kṗ0j ṗ11 + d j24,kp̈0jp11

+Gj3,kp0jp11 + Gj2,k (p11p2j + r11r2j)
)

= −(η̈2 − gη6 − Skη̈6)κ1kek, (38h)

Lr1k = µ1k

(
r̈1k + σ2

1kr1k

)
+ d16,k

(
p11r11p̈11 + r2

11r̈11

)
+ d18,k

(
r11ṗ

2
11 + r11ṙ

2
11

)
+ d17,k

(
p2

11r̈11 − p11r11p̈11

)
+ d19,k

(
p11ṗ11ṙ11 − r11ṗ

2
11

)
+ G1k

(
p2

11r11 + r3
11

)
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+
∑
j=1

(
d j20,k (p̈11r2j − r̈11p2j) + d j22,k (ṗ11ṙ2j − ṙ11ṗ2j)

+ d j21,k (r11p̈2j − p11r̈2j) + d j25,kṗ0j ṙ11 + d j23,kp0j r̈11 + d j24,kp̈0jr11

+Gj3,kp0jr11 + Gj2,k (p11r2j − r11p2j)
)

= −(η̈3 − gη5 − Skη̈5)κ1kek, (38i)

where all the hydrodynamic coefficients are functions of the mean conical
liquid shape and they can be computed by using formulas in Appendix A.7.
If we keep only first seven harmonics (m = 0, 1, 2, 3, i, j, h = 1) in (38), the
system becomes identical to the seven-dimensional nonlinear modal system
in [27].
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Figure 2: The nondimensional (scaled by the radius r0) hydrodynamic coef-
ficients d ji,h, Gji,k of the Narimanov-Moiseev modal system (38) as functions
of θ0. The non-truncated V-shaped conical container.

Derivation and computation of the hydrodynamic coefficients require a
quality control including a comparison with the limiting cases. Such a lim-
iting case could be, for example, the vertical circular cylinder (θ0 → 0),
and the case r1 → 0, which corresponds to the non-truncated cone. For
the last limiting case, the hydrodynamic coefficients of (38) can be com-
pared with analogous coefficients in the five-dimensional modal system from
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Figure 3: The graphs of imn(θ0, r1), which illustrate occurrence of the
secondary resonance phenomena within the framework of the Narimanov-
Moiseev modal theory. The calculations are done for the semi-apex cone
angle θ0 = 30◦; r1 is the r0-normalised radius of the tank bottom (truncated
conical tank).

[14]. Calculations show that the hydrodynamic coefficients coincide with the
tabulated coefficients from the latter paper.

Figure 2 depicts normalised (nondimesnionalised) coefficients d ji,h, Gji,k
versus the semi-apex angle θ0 for the V-shaped (non-truncated) tanks. The
limiting case θ0 = 0 corresponds to the circular cylindrical tank with an
infinite liquid depth. We compared the computed values with those for the
circular tank in [27]; the limiting case is well fitted by our computations.
Note that there are the G-type coefficients in (38), which are an attribute of
non-vertical walls. The graphs in figure 2 show that the limiting numerical
values G are zeros when the semi-apex angle tends to zero.
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5.2 Secondary resonances

Applying the Narimanov-Moiseev multimodal theory implicitly assumes that
there are no secondary resonances in the hydromechanic system when the
forcing frequency σ is close to the lowest natural sloshing frequency σ11, i.e.

σ ≈ σ11.

The secondary resonance concept for sloshing in a circular conical tank
was described in [28]. The resonance may happen when 2σ is close to one
from the natural sloshing frequencies σ0i and σ2i, i > 1, or, alternatively,
when 3σ tends to one from the natural sloshing frequencies σ3i, i > 1 and
σ1i, i > 2. Necessary condition of the secondary resonance takes the form

σ0i ≈ σ, σ2i ≈ σ, σ3i ≈ σ, σ1(i+1) ≈ σ, i > 1, (39)

in a neighborhood of the primary resonance zone, i.e., provided by σ ≈ σ11.
To analyze the secondary resonance with the strict equalities in (39),

[28] studied imn (θ0, r1) as functions of the non-dimensional parameter r1

(r1 is the ratio of the bottom and free surface radii) with a fixed value of
the semi-apex angle

i0n(θ0, r1) =
σ0n

2σ11
=

1

2

√
κ0n

κ11
, i2n(θ0, r1) =

σ2n

2σ11
=

1

2

√
κ2n

κ11
, (40)

i3n(θ0, r1) =
σ3n

3σ11
=

1

2

√
κ3n

κ11
,

i1(n+1)(θ0, r1) =
σ1(n+1)

3σ11
=

1

3

√
κ3(n+1)

κ11
, n ≥ 1.

(41)

The functions imn = imn(θ0, r1) do not depend on the forcing frequency
σ and one can see that condition imn = 1, for certain indices m and n, is
equivalent to a strict equality in the corresponding m,n-equation of (39),
which should be simultaneously fulfilled. The case r1 = 0 corresponds to
the V-shaped conical tank but the limit r1 → 1 implies the shallow water
condition.

The calculations were done for the three semi-apex angles θ0 = 30◦,
45◦ and 60◦. The strict equality i01 = 1 occurs for r1 = 0.8926 implying
that the first axisymmetric mode is subject to the secondary resonance for
larger r1; the double harmonics 2σ can then be resonantly amplified. As for
the triple harmonics 3σ, the secondary resonance can occur for the modes
(1, 3), (1, 4), (3, 2) and (3, 3). So, for r1 = 0.651, the modes (3, 3) are subject
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to the secondary resonance but the modes (3, 2) are resonantly excited at
r1 = 0.835. Finally, the modes (1, 3) are exposed to the secondary resonance
at r1 = 0.8116 and the modes (1, 4) – at r1 = 0.5939. The secondary
resonances for the semi-apex angle θ0 = 30◦ are not possible for the non-
dimensional radius r1 . 0.5.

5.3 Steady-state (periodic) solutions and their stability

We consider the forced steady-state resonant liquid sloshing caused by the
lateral horizontal harmonic tank excitation

η2(t) = η02 cos(σt); ηi(t) = 0, i 6= 2. (42)

The task consists of finding all periodic solutions of the Narimanov-Moiseev
modal equations and analysing their stability. To find these solutions, we
pose r11(t) and p11(t) as the Fourier series with unknown coefficients

pMi(t) =

∞∑
k=1

(
BM(2k−1) cos kσt+BM(2k) sin kσt

)
,

rmi(t) =
∞∑
k=1

(
Am(2k−1) cos kσt+Am(2k) sin kσt

)
,

(43)

where, according to the Narimanov-Moiseev asymptotics, the lowest-order
asymptotic terms are

p11(t) = Bc cosσt+Bs sinσt+ o (ε) ,

r11(t) = Ac cosσt+As sinσt+ o (ε) .
(44)

Substituting (44) into the modal equations (38a)-(38c) and gathering the
second-harmonic quantities lead to the following solutions

p0h(t) =
(
A2
c +A2

s +B2
c +B2

s

)
o0h0 + 2 (AcAs +BcBs) o0h2 sin 2σt

+
(
A2
c −A2

s +B2
c −B2

s

)
o0h2 cos 2σt, (45a)

p2h(t) =
(
−A2

c −A2
s +B2

c +B2
s

)
o2h0 + 2 (BcBs −AcAs) o2h2 sin 2σt

+
(
−A2

c +A2
s +B2

c −B2
s

)
o2h2 cos 2σt, (45b)

r2h(t) = 2 (AcBc +AsBs) o2h0 + 2 (AsBc +AcBs) o2h2 sin 2σt
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+ 2 (AcBc −AsBs) o2h2 cos 2σt (45c)

for the second-order generalised coordinates, but inserting (45) and (44) into
(38f)-(38i) produces

p3h(t) =
((

3A2
c +A2

s −B2
c −B2

s

)
Bc + 2AcAsBs

)
o3h1 cosσt

+
((
A2
c + 3A2

s −B2
c −B2

s

)
Bs + 2AcAsBc

)
o3h1 sinσt

+
((

3A2
c − 3A2

s − 3B2
c +B2

s

)
Bs + 6AcAsBc

)
o3h3 sin 3σt

+
((

3A2
c − 3A2

s −B2
c + 3B2

s

)
Bc − 6AcAsBs

)
o3h3 cos 3σt, (46a)

r3h(t) =
((
A2
c +A2

s − 3B2
c −B2

s

)
Ac − 2AsBcBs

)
o3h1 cosσt

+
((
A2
c +A2

s −B2
c − 3B2

s

)
As − 2AcBcBs

)
o3h1 sinσt

+
((
A2
c − 3A2

s − 3B2
c + 3B2

s

)
Ac + 6AsBcBs

)
o3h3 cos 3σt

+
((

3A2
c −A2

s − 3B2
c + 3B2

s

)
As − 6AcBcBs

)
o3h3 sin 3σt, (46b)

p1k(t) =
( ((
−A2

c −B2
c −B2

s

)
o1k11 −A2

so1k12

)
Bc

+AcAsBso1k13

)
cosσt+

( ((
−A2

s −B2
c −B2

s

)
o1k11

−A2
co1k12

)
Bs +AcAsBco1k13

)
sinσt+

(
2AcAsBs

+
(
−A2

c +A2
s −B2

c + 3B2
s

)
Bc

)
o1k3 cos 3σt

+
(
− 2AcAsBc +

(
−A2

c +A2
s +B2

s − 3B2
c

)
Bs

)
o1k3 sin 3σt, (46c)

r1k(t) =
( ((
−A2

c −A2
s −B2

c

)
o1k11 −B2

so1k12

)
Ac

+AsBcBso1k13

)
cosσt+

(( (
−A2

c −A2
s −B2

s

)
o1k11

−B2
co1k12

)
As +AcBcBso1k13

)
sinσt+

(
2AsBcBs(

−A2
c + 3A2

s −B2
c +B2

s

)
Ac

)
o1k3 cos 3σt

+
(
− 2AsBcBs +

(
−3A2

c +A2
s −B2

c +B2
s

)
As

)
o1k3 sin 3σt. (46d)

Here the coefficients omhk are computed by the following formulas

o0h0 =
d10,h − d8,h

2σ̄2
0h

−
G0,h

2
, o0h2 =

d10,h + d8,h − G0,hσ̄
2
0h

2
(
σ̄2

0h − 4
) ,

o2h0 =
d9,h − d7,h

2σ̄2
2h

−
G4,h

2
, o2h2 =

d9,h + d7,h − G4,hσ̄
2
2h

2
(
σ̄2

2h − 4
) ,

(47a)
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o3h1 =
1

4
(
σ̄2

3h − 1
)(σ̄2

3h

(
3G6,h + 4S

G5,h
0 + 2S

G5,h
2

)
− 4S

d13,h
0 − 2S

d13,h
2

− 8S
d14,h
2 + 4S

d15,h
2 − 3d11,h + d12,h

)
,

o3h3 =
1

4
(
σ2

3h − 9
)(− d11,h − d12,h − 2S

d13,h
2 − 8S

d14,h
2 − 4S

d15,h
2

+ σ̄2
3h

(
G6,h + 2S

G5,h
2

))
(47b)

and the coefficients omk1i (o1k13 = o1k12 − o1k11) are determined by

o1k11 =
1

4(σ̄2
1k − 1)

(
− 4C

d23,k
0 − 2C

d23,k
2 − 8C

d24,k
2 + 4C

d25,k
2

− 4S
d20,k
0 − 2S

d20,k
2 − 8S

d21,k
2 + 4S

d22,k
2 − 4d19,k + 3d18,k − d16,k

+ σ̄2
1,k

[
3G1,k + 4C

G3,k
0 + 2C

G3,k
2 + 4S

G2,k
0 + 2S

G2,k
2

] )
,

o1k12 =
1

4(σ̄2
1k − 1)

(
− 4C

d23,k
0 2C

d23,k
2 + 8C

d24,k
2 − 4C

d25,k
2

+ σ̄2
1k

[
G1k + 4C

G3,k
0 − 2C

G3,k
2 − 4S

G2,k
0 + 6S

G2,k
2

]
+ 4S

d20,k
0

− 6S
d20,k
2 − 24S

d21,k
2 + 12S

d22,k
2 − 4d19,k + 3d18,k − d16,k

)
,

o1k3 =
1

4(σ̄2
1k − 9)

(
− d16,k − d18,k − 2C

d23,k
2 − 8C

d24,k
2 − 4C

d25,k
2

− 2S
d20,k
2 − 8S

d21,k
2 − 4S

d22,k
2 + σ̄2

1k

[
G1k + 2C

G3,k
2 + 2S

G2,k
2

] )
(47c)

so that

σ̄2
mi =

σ2
mi

σ2
, C

dk,h
i =

∑
j

d jk,ho0ji, S
dk,h
i =

∑
j

d jk,ho2ji,

S
Gk,h
i =

∑
j

Gjk,ho2ji, C
Gk,h
i =

∑
j

Gjk,ho0ji.
(48)

By substituting the expressions (44) and (45) into (38d) and (38e) and
using the Fredholm alternative∫ 2π

σ

0
L{p11,r11} cosσt dt = 0,

∫ 2π
σ

0
L{p11,r11} sinσt dt = 0, (49)

we arrive at the following four nonlinear algebraic equations with respect to
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the amplitude parameters As, Ac, Bs, Bc
Ac
((
σ̄2

11 − 1
)

+
(
A2
c +A2

s +B2
c

)
m1 +B2

sm2

)
+AsBcBsm3 = e1η2a,

As
((
σ̄2

11 − 1
)

+
(
A2
c +A2

s +B2
s

)
m1 +B2

cm2

)
+AcBcBsm3 = 0,

Bc
((
σ̄2

11 − 1
)

+
(
A2
c +B2

c +B2
s

)
m1 +A2

sm2

)
+AcAsBsm3 = 0,

Bs
((
σ̄2

11 − 1
)

+
(
A2
s +B2

c +B2
s

)
m1 +A2

cm2

)
+AcAsBcm3 = 0,

(50)

where coefficient mi m1,m2,m3 = (m1−m2) are computed by the formulas

m1 = σ̄2
11

[
3
4G1 + CG20 + 1

2C
G2
2 + SG30 + 1

2S
G3
2

]
− Cd50 + 1

2C
d5
2 − 2Cd62

− Sd30 + 1
2S

d3
2 + 2Sd42 − 1

2d1, (51a)

m2 = 1
2d1 − 2d2 − Cd50 − 1

2C
d5
2 + 2Cd62 + Sd30 + 3

2S
d3
2 − 6Sd42

+ σ̄2
11

[
1
4G1 + CG20 − 1

2C
G2
2 − S

G3
0 + 3

2S
G3
2

]
. (51b)

An analysis of the (secular) system (50) in [6] proved that As = Bc = 0
and, therefore, (50) reduces to the system of two algebraic equations{

Ac
(
(σ̄2

11 − 1) +A2
cm1 +B2

sm2

)
= e1η2a,

Bs
(
(σ̄2

11 − 1) +B2
sm1 +A2

cm2

)
= 0,

(52)

whose solutions depend on the coefficients mi, which are, in turn, functions
of r̄1, σ̄1(r̄1) and θ0 (mi = mi(σ̄1, r̄1, θ0)).

The secular system (52) has two types of analytical solutions. The first
type implies Bs = 0 and corresponds to the so-called planar steady-state
sloshing, but the second solution means Bs 6= 0; it determines swirling
(angularly propagating wave). The planar waves (Ac 6= 0, As = Bc = Bs =
0) correspond to the solution

r11(t) = Ac cosσt,

r1k(t) = −A3
c o1k11 cosσt−A3

c o1k3 cos 3σt,

p0h(t) = A2
c o0h0 +A2

c o0h2 cos 2σt,

p2h(t) = −A2
c o2h0 −A2

c o2h2 cos 2σt,

r3h(t) = A3
c o3h1 cosσt+A3

c o3h3 cos 3σt,

p11(t) = p1k(t) = p3h(t) = r2h(t) = 0,

(53)
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where Ac comes from the cubic equation

m1A
3
c + (σ̄2

11 − 1)Ac − e1η2a = 0. (54)

The swirling (Ac 6=0, Bs 6=0, Bc = As = 0) corresponds to

r11(t) = Ac cosσt, p11(t) = Bs sinσt, r2h(t) = 2AcBs o2h2 sin 2σt,

p2h(t) = −
(
A2
c −B2

s

)
o2h0 −

(
A2
c +B2

s

)
o2h2 cos 2σt,

p0h(t) =
(
A2
c +B2

s

)
o0h0 +

(
A2
c −B2

s

)
o0h2 cos 2σt,

r3h(t) =
((
A2
c −B2

s

)
Ac
)
o3h1 cosσt+

((
A2
c + 3B2

s

)
Ac
)
o3h3 cos 3σt,

p3h(t) =
((
A2
c −B2

s

)
Bs
)
o3h1 sinσt+

((
3A2

c +B2
s

)
Bs
)
o3h3 sin 3σt,

r1k(t) = −
(
A2
c o1k11 +B2

s o1k12

)
Ac cosσt−

(
A2
c −B2

s

)
Aco1k3 cos 3σt,

p1k(t) = −
(
A2
c o1k12 +B2

s o1k11

)
Bs sinσt−

(
A2
c −B2

s

)
Bso1k3 sin 3σt,

(55)

where Ac and Bs are roots of

Ac
(
σ̄2

11 − 1 +A2
cm1 +B2

sm3

)
= e1η2a, B2

sm1 +A2
cm3 = 1− σ̄2

11. (56)

To study the hydrodynamic stability of the constructed asymptotic pe-
riodic solutions, we use the multi-timing technique combined with the linear
Lyapunov method. Limitations of this approach was extensively discussed
in [2] (chapters 8 and 9). The stability analysis implies introducing the slow
time τ(t) = ε2σt/2 and considering the small (linear) perturbations of the
lowest-order generalised coordinates (44)

p11(t) = (Bc + β̃(τ)) cosσt+ (Bs + β(τ)) sinσt+O(ε),

r11(t) = (Ac + α(τ)) cosσt+ (As + α̃(τ)) sinσt+O(ε),
(57)

where Ac, Bs are known and come from the secular equations (56) but the
unknowns α, α̃, β, β̃ imply linear perturbations; they are functions of τ .

Inserting (57) into the Narimanov-Moiseev modal equations and linearis-
ing relative to α, α̃, β, β̃ leads to the linear system of ordinary differential
equations dc

/
dτ+Cc = 0, where c = (α, α̃, β, β̃)T and the matrixC consists

31



of the elements

c11 = −c22, c13 = −c32 = −c42,

c11 = −2m1AcAs −m3BcBs, c13 = −2m1AsBs −m3AcBc,

c14 = −2m1AsBc −m3AcBs, c23 = 2m2AcBs +m3AsBc,

c24 = 2m1AcBc +m3AsBs, c33 = 2m1BcBs +m3AcAs,

c12 = −(σ̄2
11 − 1)−m1(A2

c +B2
s + 3A2

s)−m2B
2
c ,

c21 = (σ̄2
11 − 1) +m1(A2

s +B2
c + 3A2

c) +m2B
2
s , c23 = −c41,

c34 = (σ̄2
11 − 1) +m1(A2

c +B2
s + 3B2

c ) +m2A
2
s, c24 = −c31,

c43 = −(σ̄2
11 − 1)−m1(A2

s +B2
c + 3B2

s )−m2A
2
c , c33 = −c44,

(58)

The instability occurs when at least one eigenvalue of the 4x4 matrix C
has a nonzero positive real part. Computations give the following charac-
teristic polynomials

λ4 + c1λ
2 + c0 = 0, (59)

where c0 is the determinant of matrix C, and c1 is a complicated function
of the elements of C As [5] shows, the stability requires

c0 > 0, c1 > 0, c2
1 − 4c0 > 0. (60)

5.4 Illustrative response curves

The amplitude response curves of the steady-state resonance sloshing regimes
can be best interpreted in terms of the two lowest-order wave amplitude pa-
rameters Ac and Bs (scaled by r0) versus the normalised forcing frequency
σ/σ11. Figure 4 exemplifies the amplitude response curves by using com-
putations done with the fixed mean liquid domain, which is defined by the
semi-apex angle θ0 = 30◦ and the ratio r1/r0 = 0.7427. The nondimensional
forcing amplitude is η2a = 0.00125.

The solid lines correspond to the stable steady-state sloshing but the
dashed ones imply the hydrodynamic instability. Panel (c) demonstrates the
three-dimensional response curves in the (σ/σ11, |Ac|, |Bs|)-space but other
panels (a) and (b) show projections of the branching on the (σ/σ11, |Ac|)
and (σ/σ11, |Bs|) planes. The planar steady-state waves of (53) are easily
distinguished in (c) as belonging to the (σ/σ11, |Ac|, |Bs|) plane. All the
three-dimensional curves (Bs 6= 0) correspond to swirling.

The branching contains three bifurcation points U , H and P whose posi-
tions determine the effective frequency ranges where stable planar, swirling
or irregular waves are theoretically expected. This fact is illustrated in (a).
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Figure 4: The amplitude response curves (σ/σ11, |Ac|, |Bs|) for the lateral
harmonic excitation of a circular truncated conical tank with the semi-apex
angle θ0 = 30◦ and the bottom radius r1/r0 = 0.7427. The nondimensional
forcing amplitude is η2a = 0.00125. The three-dimensional view in the panel
(c) and its projection on the (σ/σ11, |Ac|) (panel a) and (σ/σ11, |Bs|) (panel
c) planes. Planar (standing) waves (Bs = 0) and swirling are detected. The
solid lines imply the stability. All steady-state wave regimes are not stable
in the frequency range determined by the turning point U and the Hopf
bifurcation point H.

The forcing frequencies to the left of U lead to the planar steady-state wave.
In the frequency range between U and H, both planar and swirling waves
are unstable and one should expect irregular, chaotic wave patterns where
switches between planar and swirling occur on a long time scale (the range is
marked as irregular). In the frequency range between H and P , only stable
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swirling exists, but the forcing frequencies on the right of P may lead to
either planar or swirling steady-state waves depending on the initial tran-
sients.

Specifically, the planar wave response demonstrates the soft-spring be-
haviour but the response curves associated with swirling have the hard-
spring behaviour. This is similar to sloshing in a circular base tank with a
fairly deep liquid depth [25]. This kind of branching may change with vary-
ing the geometric parameters θ0 and r1/r0 as it happened for the annular
base containers [6], where two geometric parameters were the liquid depth
and the inner radius. A dedicated parameter study is required to identify
what kind of branching occurs for different values of θ0 and r1/r0. One
should remember that some values of these two parameters can lead to the
secondary resonance phenomenon when the Narimanov-Moiseev asymptotic
theory is not applicable and an adaptive multimodal theory is required [10].

6 Concluding remarks

The authors took an opportunity for reporting specific details of the Nari-
manov-Moiseev analysis of the nonlinear sloshing in containers with non-
vertical walls exemplifying the related formulas and derivation procedures
for the case of circular conical tanks. The Narimanov-Moiseev multimodal
theory is, perhaps, the only analytical approach to resonant and strongly
nonlinear sloshing in rigid tanks, which makes it possible to both conduct
analytical studies and perform simulations. Getting the Narimanov-Moiseev
modal equations is a complicated task consisting of several stages. Tedious
derivations with huge expressions are normally hidden from readers, these
simply cannot be fully presented by the regular journal format. The present
chapter is, most probably, the first publication where the interested readers
can find and investigate them.

The Narimanov-Moiseev multimodal theory is limited to the case of no
secondary resonances in the hydrodynamic system. As we showed for the
circular conical tanks, the resonances may happen for certain values of the
semi-apex angle θ0 and the lower-to-upper radius ratio r1/r0. Handling
these critical values needs an adaptive multimodal analysis.

Another problem is a lack of experimental studies devoted to the nonlin-
ear resonant sloshing in truncated conical tanks. Being interested in these
experiments to validate our theoretical results, we paid an attention to [1]
where appropriate experiments were mentioned in the context of the tuned
liquid dampers equipped with conical tanks. However, these experiments as
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well as the PhD thesis [33] basically deal with either linear sloshing or the
input geometric parameters imply the secondary resonance phenomenon.

A Details of derivation

A.1 Generalised coordinate β0(t)

The generalised coordinate β0(t) follows from the volume conservation con-
dition appearing in the sloshing problem as the geometric constraint

V0 =

∫ 2π

0

∫ x20

0
x2

(
x2

10f + x10f
2 +

1

3
f3

)
dx2dx3 = 0. (61)

Resolving this constraint makes this generalised coordinate β0(t) an explicitly-
given function of other generalised coordinates, pMi(t) and rmi(t). The
function can be found in an asymptotic sense keeping up to the O(ε3)-order
terms (here, all generalised coordinates have the first order of smallness)

β0 =
∑
Mi

βppMi,Mip
2
Mi +

∑
mi

βrrmi,mir
2
mi +

∑
MNLijk

βpppMi,Nj,LkpMipNjpLk

+
∑

Mnlijk

βprrMi,nj,lkpMirnjrlk, (62)

The β-coefficients in (62) are as follows

βppMi,Mi = −
ΛccMMλMi,Mi

πx10x2
20

, βrrmi,mi = −Λssmmλmi,mi
πx10x2

20

,

βpppMi,Nj,Lk = −
ΛcccMNLλMi,Nj,Lk

3πx2
10x

2
20

, βprrMi,nj,lk = −
ΛcssMnlλMi,nj,lk

πx2
10x

2
20

, (63)

where we introduced the tensor-type coefficient

Λ

N1︷︸︸︷
c...c

N2︷︸︸︷
s...s

i..j︸︷︷︸
N1

k...l︸︷︷︸
N2

=

∫ π

−π
cos (ix3)·. . .·cos (jx3)︸ ︷︷ ︸

N1

·sin (kx3)·. . .·sin (lx3)︸ ︷︷ ︸
N2

dx3 (64)

for the angular coordinate and the tensor-type coefficients are responsible
for the radial direction

λMi, . . . , Nj︸ ︷︷ ︸
N3

=

∫ x20

0
x2 fMi (x2) · . . . · fNj (x2)︸ ︷︷ ︸

N3

dx2. (65)
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A.2 Integrals ApMi and Armi defined by (28)

Expanding ApMi and Armi up to the third polynomial order in pMi and rmi
gives

ApAb = ApAb + Ap.pAb,Ab pAb +
∑
MNij

Ap.ppAb,Mi,NjpMipNj +
∑
mnij

Ap.rrAb,mi,njrmirnj

+
∑

MNLijk

Ap.pppAb,Mi,Nj,LkpMipNjpLk +
∑

Mnlijk

Ap.prrAb,Mi,nj,lkpMirnjrlk, (66a)

Arab = Ar.rab,ab rab +
∑
Mnij

Ar.prab,Mi,njpMirnj +
∑

MNlijk

Ar.pprab,Mi,Nj,lkpMipNjrlk

+
∑
mnlijk

Ar.rrrab,mi,nj,lkrmirnjrlk. (66b)

All generalised coordinates have the first order of smallness (pMi ∼ rmi ∼ ε).
The A-coefficients take the following form

ApAb = ΛcAÊAb,0, Ap.ppAb,Mi,Nj = ΛcccAMN Ê
Ab,2
Mi,Nj + δMNδijΛ

c
AÊAb,1β

pp
Mi,Nj ,

Ap.pAb,Ab = ΛccAAÊ
Ab,1
Ab , Ap.rrAb,mi,nj = ΛcssAmnÊ

Ab,2
mi,nj + δmnδijΛ

c
AÊAb,1βrrmi,nj ,

Ap.pppAb,Mi,Nj,Lk = ΛcAÊAb,1β
ppp
Mi,Nj,Lk + ΛccccAMNLÊ

Ab,3
Mi,Nj,Lk

+ 2δMAδibΛ
cc
AM Ê

Ab,2
Mi δNLδjkβ

pp
Nj,Lk,

Ap.prrAb,Mi,nj,lk = ΛcAÊAb,1β
prr
Mi,nj,lk + 3ΛccssAMnlÊ

Ab,3
Mi,nj,lk

+ 2δMAδibΛ
cc
AM Ê

Ab,2
Mi δnlδjkβ

rr
nj,lk,

(67a)

Ar.rab,ab = ΛssaaÊ
ab,1
ab , Ar.prab,Mi,nj = 2ΛcssMnaÊ

ab,2
Mi,nj ,

Ar.pprab,Mi,Nj,lk = 3ΛccssMNlaÊ
ab,3
Mi,Nj,lk + 2δalδbkΛ

ss
al Ê

ab,2
lk δMNδijβ

pp
Mi,Nj ,

Ar.rrrab,mi,nj,lk = ΛssssmnlaÊ
ab,3
mi,nj,lk + 2δalδbkΛ

ss
al Ê

ab,2
lk δmnδijβ

rr
mi,nj ,

(67b)

where

ÊAb,eMi, . . . , Nj︸ ︷︷ ︸
N3

=

∫ x20

0
x2B

Ab
e (x2) fMi (x2) · . . . · fNj (x2)︸ ︷︷ ︸

N3

dx2. (68)
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Partial derivatives of ApAb and Arab and AN (AN =
{
{ApAb}, {A

r
ab}
}

) by the
generalised coordinates pMi and rmi take the following form

∂ApAb
∂pEh

= VpAb,Eh +
∑
Mi

Vp.pAb,Eh,MipMi

+
∑
MNij

Vp.ppAb,Eh,Mi,NjpMipNj +
∑
mnij

Vp.rrAb,Eh,mi,njrmirnj ,

∂ApAb
∂reh

=
∑
mi

Vp.rAb,mi,ehrmi +
∑
Mnij

Vp.prAb,Mi,nj,ehpMirnj ,

∂Arab
∂pEh

=
∑
mi

Vr.rab,Eh,mirmi +
∑
Mnij

Vr.prab,Eh,Mi,njpMirnj ,

∂Arab
∂reh

= Vrab,eh +
∑
Mi

Vr.pab,Mi,ehpMi

+
∑
MNij

Vr.ppab,Mi,Nj,ehpMipNj +
∑
mnij

Vr.rrab,mi,nj,ehrmirnj ,

(69)

where V-coefficients are expressed in terms of (67) as follows

VpAb,Eh = Ap.pAb,Eh, Vp.pAb,Eh,Mi = 2Ap.ppAb,Eh,MipMi,

Vrab,eh = Ar.rab,eh, Vp.ppAb,Eh,Mi,Nj = Ap.pppAb,Eh,Mi,Nj + 2Ap.pppAb,Mi,Eh,Nj ,

Vp.rrAb,Eh,mi,nj = Ap.prrAb,Eh,mi,nj , Vp.prAb,Mi,nj,eh = 2Ap.prrAb,Mi,nj,ehpMirnj ,

Vp.rAb,mi,eh = 2Ap.rrAb,mi,eh, Vr.prab,Eh,Mi,Nj = 2Ar.pprab,Eh,Mi,njpMirnj , (70)

Vr.pab,Mi,eh = Ar.prab,Mi,eh, Vr.rrab,mi,nj,eh = 2Ar.rrrab,eh,mi,nj + Ar.rrrab,mi,nj,eh,

Vr.rab,Eh,mi = Ar.prab,Eh,mi, Vr.ppab,Mi,Nj,eh = Ar.pprab,Mi,Nj,eh.

A.3 Integrals ANK defined by (29)

By expanding elements of (29) (ANK =
{
{AppNK , A

pr
NK}, {A

pr
NK , A

rr
NK}

}
) to

the second polynomial order by the generalised coordinates pMi and rmi, we
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get the following expressions

AppAb,Cd = Bpp.0Ab,Cd +
∑
Mi

Bpp.pAb,Cd,MipMi

+
∑
MNij

Bpp.ppAb,Cd,Mi,NjpMipNj +
∑
mnij

Bpp.rrAb,Cd,mi,njrmirnj ,

Arrab,cd = Brr.0ab,cd +
∑
Mi

Brr.pab,cd,MipMi

+
∑
MNij

Brr.ppab,cd,Mi,NjpMipNj +
∑
mnij

Brr.rrab,cd,mi,njrmirnj ,

AprAb,cd =
∑
mi

Bpr.rAb,cd,mirmi +
∑
Mnij

Bpr.prAb,cd,Mi,njpMirnj .

(71)

The B-coefficients are as follows

Bpp.0Ab,Cd = ΛccAC ẼAb,Cd,0 + ΛssAC ĒAb,Cd,0,

Bpp.pAb,Cd,Mi = ΛcccACM Ẽ
Ab,Cd,1
Mi + ΛcssMAC Ē

Ab,Cd,1
Mi ,

Bpp.ppAb,Cd,Mi,Nj = ΛccccACMN Ẽ
Ab,Cd,2
Mi,Nj + ΛccssMNAC Ē

Ab,Cd,2
Mi,Nj

+
(

ΛccAC ẼAb,Cd,1 + ΛssAC ĒAb,Cd,1
)
δMNδijβ

pp
Mi,Nj ,

Bpp.rrAb,Cd,mi,nj = ΛccssA,C,m,nẼ
Ab,Cd,2
mi,nj + ΛssssA,C,m,nĒ

Ab,Cd,2
mi,nj

+
(

ΛccAC ẼAb,Cd,1 + ΛssAC ĒAb,Cd,1
)
δmnδijβ

rr
mi,nj ,

(72a)

Brr.0ab,cd = δacΛ
ss
acẼab,cd,0 + δacΛ

cc
acĒab,cd,0,

Brr.pab,cd,Mi = ΛcssMacẼ
ab,cd,1
Mi + ΛcccacM Ē

ab,cd,1
Mi ,

Brr.ppab,cd,Mi,Nj = ΛccssMNacẼ
ab,cd,2
Mi,Nj + ΛccccacMN Ē

ab,cd,2
Mi,Nj

+
(

ΛssacẼab,cd,1 + ΛccacĒab,cd,1
)
δm1δi1δMNδijβ

pp
Mi,Nj ,

Brr.rrab,cd,mi,nj = ΛssssmnacẼ
ab,cd,2
mi,nj + ΛccssacmnĒ

ab,cd,2
mi,nj

+
(

ΛssacẼab,cd,1 + ΛccacĒab,cd,1
)
δm1δi1δmnδijβ

rr
mi,nj ,

(72b)

Bpr.rAb,cd,mi = ΛcssAcmẼ
Ab,cd,1
mi − ΛcsscAmĒ

Ab,cd,1
mi ,

Bpr.prAb,cd,Mi,nj = 2
(

ΛccssAMcnẼ
Ab,cd,2
Mi,nj − ΛccsscMAnĒ

Ab,cd,2
Mi,nj

)
,

(72c)

where

ẼAb,Cd,eMi, . . . , Nj︸ ︷︷ ︸
N3

=

∫ x20

0
FAbCde (x2) fMi (x2) · . . . · fNj (x2)︸ ︷︷ ︸

N3

dx2, (73a)
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ĒAb,Cd,eMi, . . . , Nj︸ ︷︷ ︸
N3

= AC

∫ x20

0

1

x2
BAbCd
e (x2) fMi (x2) · . . . · fNj (x2)︸ ︷︷ ︸N3

dx2.

(73b)
The partial derivatives of AppMiNj , A

rr
minj and AprMinj by pMi, rmi are

∂AppAb,Cd
∂pEh

= Wpp.p
Ab,Cd,Eh +

∑
Mi

Wpp.pp
Ab,Cd,Eh,MipMi,

∂AppAb,Cd
∂reh

=
∑
mi

Wpp.rr
Ab,Cd,mi,ehrmi,

∂Arrab,cd
∂pEh

= Wrr.p
ab,cd,Eh +

∑
Mi

Wrr.pp
ab,cd,Eh,MipMi,

∂Arrab,cd
∂reh

=
∑
m,i

Wrr.rr
ab,cd,mi,ehrmi,

∂AprAb,cd
∂pEh

=
∑
mi

Wpr.pr
Ab,cd,Eh,mirmi,

∂AprAb,cd
∂reh

= Wpr.r
eh +

∑
Mi

Wpr.pr
Ab,cd,Mi,ehpMi,

(74)

where the W-coefficients are expressed in terms of the matrix ANK (72)

Wpp.p
Ab,Cd,Eh = Bpp.pAb,Cd,Eh,

Wpp.pp
Ab,Cd,Eh,Mi = 2Bpp.ppAb,Cd,Eh,Mi = 2Bpp.ppAb,Cd,Mi,Eh,

Wpp.rr
Ab,Cd,mi,eh = 2Bpp.rrAb,Cd,eh,mi = 2Bpp.rrAb,Cd,mi,eh,

Wrr.pp
ab,cd,Eh,Mi = 2Brr.ppab,cd,Eh,Mi = 2Brr.ppab,cd,Mi,Eh,

Wrr.rr
ab,cd,mi,eh = 2Brr.rrab,cd,eh,mi = 2Brr.rrab,cd,mi,eh,

Wrr.p
ab,cd,Eh = Brr.pab,cd,Eh, Wpr.pr

Ab,cd,Eh,mi = Bpr.prAb,cd,Eh,mi,

Wpr.r
Ab,cd,eh = Bpr.rAb,cd,eh, Wpr.pr

Ab,cd,Mi,eh = Bpr.prAb,cd,Mi,eh.

(75)

A.4 Generalised velocities PCd and Rcd

After substituting expressions for the generalised velocities (33) into the
kinematic equation (25), accounting for the derivatives (69) and (74) and
collecting similar terms, we derive the Z-coefficients as follows
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ZpAb =
VpAb,Ab
Bpp.0Ab,Ab

, Zpp,AbMi,Nj =
Vp.pAb,Nj,Mi − Bpp.pAb,Nj,MiZ

p
Nj

Bpp.0Ab,Ab

,

Zppp,AbMi,Nj,Lk =
Vp.ppAb,Lk,Mi,Nj − Bpp.ppAb,Lk,Mi,NjZ

p
Lk −

∑
Cd B

pp.p
Ab,Cd,MiZ

pp,Cd
Nj,Lk

Bpp.0Ab,Ab

,

Zrr,Abmi,nj =
Vp.rAb,mi,nj − Bpr.rAb,nj,miZ

r
nj

Bpp.0Ab,Ab

, Zprr,AbMi,nj,lk =

Vp.prAb,Mi,nj,lk − Bpr.prAb,lk,Mi,njZ
r
lk − Bpr.rAb,cd,njZ

pr,cd
Mi,lk −

∑
Cd B

pp.p
Ab,Cd,MiZ

rr,Cd
nj,lk

Bpp.0Ab,Ab

,

Zrrp,Abmi,nj,Lk =
Vp.rrAb,Lk,mi,nj − Bpp.rrAb,Lk,mi,njZ

p
Lk − Bpr.rAb,cd,njZ

rp,cd
mi,Lk

Bpp.0Ab,Ab

, (76a)

Zrab =
Vrab,ab
Brr.0ab,ab

, Zpr,abMi,nj =
Vr.pab,Mi,nj − Brr.pab,nj,MiZ

r
nj

Brr.0ab,ab

,

Zrp,abmi,Nj =
Vr.rab,Nj,mi − Bpr.rNj,ab,miZ

p
Nj

Brr.0ab,ab

,

Zppr,abMi,Nj,lk =
Vr.ppab,Mi,Nj,lk − Brr.ppab,lk,Mi,NjZ

r
lk −

∑
cd B

rr.p
ab,cd,MiZ

pr,cd
Nj,lk

Brr.0ab,ab

,

Zrrr,abmi,nj,lk =
Vr.rrab,mi,nj,lk − Brr.rrab,lk,mi,njZrlk −

∑
Cd B

pr.r
Cd,ab,njZ

rr,Cd
mi,lk

Brr.0ab,ab

,

Zprp,abMi,nj,Lk =

(
Vr.prab,Lk,Mi,nj − Bpr.prLk,ab,Mi,njZ

p
Lk −

∑
Cd

Bpr.rCd,ab,njZ
pp,Cd
Mi,Lk

−
∑
cd

Brr.pab,cd,MiZ
rp,cd
nj,Lk

)/
Brr.0ab,ab. (76b)
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A.5 Integrals li

Expressions for l (see, (13)) appearing in the dynamic equations (26) take
the form

l1 = ρ

∫ 2π

0

∫ x20

0

∫ f∗(x2,x3,t)+x10

0
x3

1x2dx1dx2dx3,

l2 = ρ

∫ 2π

0

∫ x20

0

∫ f∗(x2,x3,t)+x10

0
x3

1x
2
2 cos (x3) dx1dx2dx3,

l3 = ρ

∫ 2π

0

∫ x20

0

∫ f∗(x2,x3,t)+x10

0
x3

1x
2
2 sin (x3) dx1dx2dx3.

(77)

Coefficients l̂rβMi, l̂rββMi,Nj , l̂rβββMi,Nj,Lk in (34) are determined by the following
expressions (ht and hb are distances from the cone vertex to the unperturbed
free surface and the bottom, respectively; the βppMi,Nj coefficients appear in
expression for β0 (20), and δij is the Kronecker delta):

lx =
π

4

(
h4
t − h4

b

)
x2

20, lxppMi,Nj =
h2
t

2
δMNδijΛ

cc
MNλMi,Nj ,

lxrrmi,nj =
h2
t

2
δmnδijΛ

ss
mnλmi,nj , lxpppMi,Nj,Lk =

2

3
htΛ

ccc
MNLλMi,Nj,Lk,

lxprrMi,nj,lk = 2htΛ
css
MnlλMi,nj,lk, l̂ypMi = h3

t δ1,MΛcc1M λ̂Mi,

l̂ypppMi,Nj,Lk = htΛ
cccc
1MNLλ̂Mi,Nj,Lk + 3h2

t δ1MΛcc1M λ̂MiδNLδjkβ
pp
Nj,Lk,

l̂yppMi,Nj =
3

2
h2
tΛ

ccc
1MN λ̂Mi,Nj , l̂yrrmi,nj =

3

2
h2
tΛ

css
1mnλ̂mi,nj ,

l̂yprrMi,nj,lk = 3htΛ
ccss
1Mnlλ̂Mi,nj,lk + 3h2

t δ1MΛcc1M λ̂Miδnlδjkβ
rr
nj,lk,

l̂zpmi = h3
t δ1mΛssm1λ̂mi, l̂zprMi,nj = 3h2

tΛ
css
Mn1λ̂Mi,nj ,

l̂zpprMi,Nj,lk = 3htΛ
ccss
MNl1λ̂Mi,Nj,lk + 3h2

t δ1lΛ
ss
l1 λ̂lkδMNδijβ

pp
Mi,Nj ,

l̂zrrrmi,nj,lk = htΛ
ssss
mnl1λ̂mi,nj,lk + 3h2

t δ1lΛ
ss
l1 λ̂lkδmnδijβ

rr
mi,nj .

(78)

The following notation is adopted

λ̂Mi, . . . , Nj︸ ︷︷ ︸
N3

=

∫ x20

0
x2

2 fMi (x2) · . . . · fNj (x2)︸ ︷︷ ︸
N3

dx2, (79)

in addition to (64) and (65).
When using the Moiseev-Narimanov asymptotics (37) in (34), we deduce
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that only the following components should be kept

l1 = lx + lxpp11,11p
2
11 + lxrr11,11r

2
11 + lxprr11,11,11p11r

2
11 + lxppp11,11,11p

3
11,

l2 = l̂ypp11,11p
2
11 + l̂yrr11,11r

2
11 + l̂yprr11,11,11p11r

2
11 + l̂yppp11,11,11p

3
11

+
∑
i

l̂yp1i p1i +
∑
i

(̂
lypp0i,11 + l̂ypp11,0i

)
p11p0i

+
∑
i

(̂
lypp2i,11 + l̂ypp11,2i

)
p11p2i +

∑
i

(̂
lyrr2i,11+ l̂yrr11,2i

)
r11r2i,

l3 = l̂zpr11,11p11r11 + l̂zrrr11,11,11r
3
11 + l̂zppr11,11,11p

2
11r11

+
∑
i

l̂zp1i r1i +
∑
i

l̂zpr0i,11r11p0i +
∑
i

l̂zpr11,2ip11r2i +
∑
i

l̂zpr2i,11r11p2i.

(80)

The derivatives ∂l1/∂βN by pMi and rmi take the following form

∂l1
∂pEh

= l̄xppEh,EhpEh +
∑
MNij

l̄xpppEh,Mi,NjpMipNj +
∑
mnij

l̄xprrEh,mi,njrmirnj

+
∑

MNLijk

l̄xppppEh,Mi,Nj,LkpMipNjpLk +
∑

Mnlijk

l̄xpprrEh,Mi,nj,lkpMirnjrlk,
(81a)

∂l1
∂reh

= l̄xrreh,ehreh +
∑
Mnij

l̄xprrMi,nj,ehpMirnj

+
∑

MNlijk

l̄xpprrMi,Nj,lk,ehpMipNjrlk +
∑
mnlijk

l̄xrrrrmi,nj,lk,ehrmirnjrlk,
(81b)

where the derived l̄-coefficients are expressed in terms of l1 as follows

l̄xppEh,Eh = 2lxppEh,Eh, l̄xpppEh,Mi,Nj = 3lxpppEh,Mi,Nj , l̄xprrEh,mi,nj = lxprrEh,mi,nj ,

l̄xppppEh,Mi,Nj,Lk = 4lxppppEh,Mi,Nj,Lk, l̄xpprrEh,Mi,nj,lk = 2lxpprrEh,Mi,nj,lk,

l̄xprrMi,nj,eh = 2lxprrMi,nj,eh, l̄xpprrMi,Nj,lk,eh = 2lxpprrMi,Nj,lk,eh,

l̄xrreh,eh = 2lxrreh,eh, l̄xrrrrmi,nj,lk,eh = 4lxrrrrmi,nj,lk,eh.

(82)

For the steady-state sloshing regimes (53), (55), using the Moiseev-
Narimanov asymptotics derives the second time derivative for horizontal
components of the vector l as

l̈2 = Bs
(
λsy1 +A2

cλ
ccs
y1 +B2

sλ
sss
y1

)
σ2 sinσt+Bs

(
A2
c −B2

s

)
λsssy3 σ

2 sin 3σt,

l̈3 = Ac
(
λcz1 +A2

cλ
ccc
z1 +B2

sλ
css
z1

)
σ2 cosσt+Ac

(
A2
c −B2

s

)
λcccz3 σ

2 cos 3σt,

(83)
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where coefficients λijk are

λsy1 = λcz1 = −πh3
t λ̂11, λ̂111 =

x2
20λ̂11,11,11 − 4λ̂11λ11,11

4htx2
20

,

λsssy1 = λsssyo1 + λsssyn1, λ
ccs
y1 = λccsyo1 + λccsyn1, λ

sss
y3 = λsssyo3 + λsssyn3,

λcccz1 = λccczo1 + λccczn1, λ
css
z1 = λcsszo1 + λcsszn1, λ

ccc
z3 = λccczo3 + λccczn3,

λsssyo1 = λccczo1 = −3
4πh

2
t

(
3λ̂111 + 2 (2o010 + o012) λ̂01,11

+2 (o210 + o212) λ̂21,11

)
,

λccsyo1 = λcsszo1 = −3
4πh

2
t

(
λ̂111 + 2 (2o010 − o012) λ̂01,11

− (2o210 − 3o212) λ̂21,11

)
,

λsssyo3 = λcccz3 = −27
4 πh

2
t

(
λ̂111 + 2o012λ̂01,11 + o212λ̂21,11

)
,

λcccyn1 = 1
2πh

2
t

(
2htG

λ̂1
11 − 3

(
2C λ̂010 + C λ̂012 + Sλ̂210 + 1

2S
λ̂21
2

))
,

λcssyn1 = 1
2πh

2
t

(
2htG

λ̂1
12 − 3

(
2C λ̂010 + C λ̂012 + Sλ̂210 − 3

2S
λ̂21
2

))
,

λcccyn3 = 9
2πh

2
t

(
2htG

λ̂1
3 − 3C λ̂012 − 3

2S
λ̂21
2

)
,

(84)

and

C λ̂k1j =
∞∑
i=2

λ̂ki11o0ij , Sλ̂k1j =
∞∑
i=2

λ̂ki11o2ij ,

Gλ̂13 =
∞∑
i=2

λ̂1io1i3, Gλ̂1jk =
∞∑
i=2

λ̂1io1ijk.

(85)

A.6 The d-, g-, t-coefficients in (35)

The d-, g-, t-coefficients of the infinite-dimensional nonlinear modal equa-
tion (35) are computed by the formulas

dp,EhMi = δM,Eδi,hVpMi,EhZ
p
Mi, gp,EhMi = δM,Eδi,hl̄

opp
Eh,Mi,

gpp,EhMi,Nj = l̄opppEh,Mi,Nj , gprr,EhMi,nj,lk = l̄opprrEh,Mi,nj,lk,

dpp,EhMi,Nj = Vp.pNj,Eh,MiZ
p
Nj +

∑
Ab

δA,Eδb,hVpAb,EhZ
pp,Ab
Mi,Nj ,

drr,Ehmi,nj = Vr.rnj,Eh,miZrnj +
∑
Ab

δA,Eδb,hVpAb,EhZ
rr,Ab
mi,nj ,

tpp,EhMi,Nj =
1

2
Wpp.p
Mi,Nj,EhZ

p
MiZ

p
Nj +

∑
Ab

δA,Eδb,hVpAb,EhZ
pp,Ab
Mi,Nj ,

trr,Ehmi,nj =
1

2
Wrr.p
mi,nj,EhZ

r
miZrnj +

∑
Ab

δAEδbhVpAb,EhZ
rr,Ab
mi,nj ,
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dppp,EhMi,Nj,Lk = Vp.ppLk,Eh,Mi,NjZ
p
Lk +

∑
Ab

Vp.pAb,Eh,MiZ
pp,Ab
Nj,Lk

+
∑
Ab

δAEδbhVpAb,EhZ
ppp,Ab
Mi,Nj,Lk,

dprr,EhMi,nj,lk = Vr.prlk,Eh,Mi,njZ
r
lk +

∑
ab

Vr.rab,Eh,njZ
pr,ab
Mi,lk

+
∑
Ab

Vp.pAb,Eh,MiZ
rr,Ab
nj,lk +

∑
Ab

δAEδbhVpAb,EhZ
prr,Ab
Mi,nj,lk,

grr,Ehmi,nj = l̄oprrEh,mi,nj , gppp,EhMi,Nj,Lk = l̄oppppEh,Mi,Nj,Lk,

drrp,Ehmi,nj,Lk= Vp.rrLk,Eh,mi,njZ
p
Lk +

∑
ab

Vr.rab,Eh,miZ
rp,ab
nj,Lk

+
∑
Ab

δAEδbhVpAb,EhZ
rrp,Ab
mi,nj,Lk,

tppp,EhMi,Nj,Lk =
1

2
Wpp.pp
Nj,Lk,Eh,MiZ

p
NjZ

p
Lk +

∑
Ab

Vp.pAb,Eh,MiZ
pp,Ab
Nj,Lk

+
∑
Cd

1

2

(
Wpp.p
Cd,Nj,Eh + Wpp.p

Nj,Cd,Eh

)
ZpNjZ

pp,Cd
Mi,Lk

+
∑
Ab

δAEδbhVpAb,Eh
(
Zppp,AbMi,Nj,Lk + Zppp,AbNj,Mi,Lk

)
,

tprr,EhMi,nj,lk =
∑
Ab

Vp.pAb,Eh,MiZ
rr,Ab
nj,lk +

∑
Ab

δAEδbhVpAb,EhZ
prr,Ab
Mi,nj,lk

+
1

2
Wrr.pp
nj,lk,Eh,MiZ

r
njZrlk +

∑
cd

1

2

(
Wrr.p
cd,lk,Eh + Wrr.p

lk,cd,Eh

)
ZrlkZ

pr,cd
Mi,nj ,

trpr,Ehmi,Nj,lk = Wpr.pr
Nj,lk,Eh,miZ

p
NjZ

r
lk +

∑
Cd

1

2

(
Wpp.p
Cd,Nj,Eh + Wpp.p

Nj,Cd,Eh

)
× ZpNjZ

rr,Cd
mi,lk +

∑
cd

1

2

(
Wrr.p
cd,lk,Eh + Wrr.p

lk,cd,Eh

)
ZrlkZ

rp,cd
mi,Nj

+
∑
ab

Vr.rab,Eh,mi
(
Zpr,abNj,lk + Zrp,ablk,Nj

)
+
∑
Ab

δAEδbhVpAb,Eh
(
Zprr,AbNj,mi,lk + Zrrp,Abmi,lk,Nj + Zrrp,Ablk,mi,Nj

)
,

dr,ehmi = δm,eδi,hVrmi,ehZrmi, gr,ehmi = δm,eδi,hl̄
orr
mi,eh,

gpr,ehMi,nj = l̄oprrMi,nj,eh, gppr,ehMi,Nj,lk = l̄opprrMi,Nj,lk,eh, grrr,ehmi,nj,lk = l̄orrrrmi,nj,lk,eh,
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tpr,ehMi,nj = Wpr.r
eh ZpMiZ

r
nj +

∑
ab

δaeδbhVrab,eh
(
Zpr,abMi,nj + Zrp,abnj,Mi

)
,

dpr,ehMi,nj = Vr.pnj,Mi,ehZ
r
nj +

∑
ab

δaeδbhVrab,ehZ
pr,ab
Mi,nj ,

drp,ehmi,Nj = Vp.rNj,mi,ehZ
p
Nj +

∑
ab

δaeδbhVrab,ehZ
rp,ab
mi,Nj ,

dprp,ehMi,nj,Lk= Vp.prLk,Mi,nj,ehZ
p
Lk +

∑
Ab

Vp.rAb,nj,ehZ
pp,Ab
Mi,Lk

+
∑
ab

Vr.pab,Mi,ehZ
rp,ab
nj,Lk +

∑
ab

δaeδbhVrab,ehZ
prp,ab
Mi,nj,Lk,

dppr,ehMi,Nj,lk = Vr.pplk,Mi,Nj,ehZ
r
lk +

∑
ab

Vr.pab,Mi,ehZ
pr,ab
Nj,lk

+
∑
ab

δaeδbhVrab,ehZ
ppr,ab
Mi,Nj,lk,

drrr,ehmi,nj,lk = Vr.rrlk,mi,nj,ehZrlk +
∑
Ab

Vp.rAb,mi,ehZ
rr,Ab
nj,lk

+
∑
ab

δaeδbhVrab,ehZ
rrr,ab
mi,nj,lk,

trpp,ehmi,Nj,Lk =
1

2
Wpp.rr
Nj,Lk,mi,ehZ

p
NjZ

p
Lk +

∑
Ab

Vp.rAb,mi,ehZ
pp,Ab
Nj,Lk

+
∑
cd

Wpr.r
Nj,cd,ehZ

rp,cd
mi,LkZ

p
Nj +

∑
ab

δaeδbhVrab,ehZ
prp,ab
Nj,mi,Lk,

tppr,ehMi,Nj,lk = Wpr.pr
Nj,lk,Mi,ehZ

p
NjZ

r
lk +

∑
cd

Wpr.r
Nj,cd,ehZ

pr,cd
Mi,lkZ

p
Nj

+
∑
Ab

Wpr.r
Ab,lk,ehZ

pp,Ab
Mi,NjZ

r
lk +

∑
ab

Vr.pab,Mi,eh

(
Zpr,abNj,lk + Zrp,ablk,Nj

)
+
∑
ab

δaeδbhVrab,eh
(
Zppr,abMi,Nj,lk + Zppr,abNj,Mi,lk + Zprp,abMi,lk,Nj

)
,

trrr,ehmi,nj,lk =
1

2
Wrr.rr
nj,lk,mi,ehZrnjZrlk +

∑
Ab

Wpr.r
Ab,lk,ehZ

rr,Ab
mi,njZ

r
lk

+
∑
Ab

Vp.rAb,mi,ehZ
rr,Ab
nj,lk +

∑
ab

δaeδbhVrab,eh
(
Zrrr,abmi,nj,lk + Zrrr,abnj,mi,lk

)
.
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A.7 Coefficients of the modal system (38)

The nonzero hydrodynamic coefficients in (38) take the form

µp0h = dp,1i1i = µr0h = dr,li1i , σ
2
0h = gp,1i1i /d

p,1i
1i , G0h = gpp,1i11,11 = grr,1i11,11,

d8,h = tpp.1i11,11 = trr,1i11,11, d10,h = dpp,1i11,11 = drr,1i11,11,

µp2h = dp,2h2h = µr1k = dr,2h2h , σ2
2h = gp,2h2h /dp,2h2h = gr,2h2h /dr,2h2h ,

G4,h = gpp,2h11,11 = −grr,2h11,11 = 1
2gpr,2h11,11, d7,h = tpp,2h11,11 = −trr,2h11,11 = 1

2tpr,2h11,11,

d9,h = dpp,2h11,11 = −drr,2h11,11 = dpr,2h11,11 = drp,2h11,11 ,

µp11 = dp,11
11 = µr1k = dr,11

11 , σ2
11 = gp,11

11 /dp,11
11 = gr,11

11 /dr,11
11 ,

G1 = gppp,11
11,11,11 = gprr,11

11,11,11 = gppr,11
11,11,11 = grrr,11

11,11,11, G
j
2 = gpp,11

0j,11 + gpp,11
11,0j = gpr,11

0j,11,

Gj3 = gpp,11
11,2j + gpp,11

2j,11 = grr,11
11,2j + grr,11

2j,11 = gpr,11
11,2j = −gpr,11

2j,11,

d1 = dppp,11
11,11,11 = dprr,11

11,11,11 = tppp,11
11,11,11 = tprr,11

11,11,11 = dprp,11
11,11,11 = drrr,11

11,11,11

= trpp,11
11,11,11 = trrr,11

11,11,11,

d2 = drrp,11
11,11,11 = −dprr,11

11,11,11 = 1
2trpr,11

11,11,11 = −1
2tprr,11

11,11,11 = dppr,11
11,11,11

= −dprp,11
11,11,11 = 1

2tppr,11
11,11,11 = −1

2trpp,11
11,11,11,

d j3 = dpp,11
2j,11 = drr,11

2j,11 = tpp,11
2j,11 + tpp,11

11,2j = trr,11
2j,11 + trr,11

11,2j = drp,11
2j,11

= −dpr,11
2j,11 = tpr,11

11,2j = −tpr,11
2j,11,

d j4 = dpp,11
11,2j = drr,11

11,2j = dpr,11
11,2j = −drp,11

11,2j ,

d j5 = dpp,11
0j,11 = tpp,11

0j,11 + tpp,11
11,0j = dpr,11

0j,11,11 = tpr0j,11,11,

d j6 = dpp,11
11,0j = drp,11

11,0j ,

µp3h = dp,3h3h = µr3h = dr,3h3h , σ2
3h = gp,3h3h /dp,3h3h = gr,3h3h /dr,3h3h ,

G6,h = gppp,3h11,11,11 = −1
3gprr,3h11,11,11 = 1

3gppr,3h11,11,11 = −grrr,3h11,11,11,

Gj5,h = gpp,3h11,2j + gpp,3h2j,11 = −grr,3h11,2j − grr,3h2j,11 = gpr,3h11,2j = gpr,3h2j,11 ,

d11,h = dppp,3h11,11,11 = −drrp,3h11,11,11 = −1
2dprr,3h11,11,11 = dppr,3h11,11,11 = −drrr,3h11,11,11 = 1

2dprp,3h11,11,11,

d12,h = tppp11,11,11 = −tprr,3h11,11,11 = −1
2trpr,3h11,11,11 = trpp,3h11,11,11 = −trrr,3h11,11,11 = 1

2tppr,3h11,11,11,

d j13,h = dpp,3h2j,11 = −drr,3h2j,11 = drp,3h2j,11 = dpr,3h2j,11 ,

d j14,h = dpp,3h11,2j = −drr,3h11,2j = dpr,3h11,2j = drp,3h11,2j ,

d j15,h = tpp,3h2j,11 + tpp,3h11,2j = −trr,3h2j,11 − trr,3h11,2j = tpr,3h11,2j = tpr,3h2j,11 ,

µp1k = dp,1k1k = µr1k = dr,1k1k , σ2
1k = gp,1k1k /dp,1k1k = gr,1k1k /dr,1k1k ,
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G1k = gppp,1k11,11,11 = gprr,1k11,11,11 = gppr,1k11,11,11 = grrr,1k11,11,11,

Gj2,k = gpp,1k11,2j + gpp,1k2j,11 = grr,1k11,2j + grr,1k2j,11 = gpr,1k1k,11,2j = −gpr,1k2j,11 ,

Gj3,k = gpp,1k0j,11 + gpp,1k11,0j = gpr1k,0j,11,

d j16,k = dppp,1k11,11,11 = dprr,1k11,11,11 = dprp,1k11,11,11 = drrr,1k11,11,11,

d j17,k = drrp,1k11,11,11 = −dprr,1k11,11,11 = dppr,1k11,11,11 = −dprp,1k11,11,11,

d j18,k = tppp,1k11,11,11 = tprr,1k11,11,11 = trpp,1k11,11,11 = trrr,1k11,11,11,

d j19,k = trpr,1k11,11,11 = −tprr,1k11,11,11 = tppr,1k11,11,11 = −trpp,1k11,11,11,

d j20,k = dpp,1k2j,11 = drr,1k2j,11 = drp,1k2j,11 = −dpr,1k2j,11 ,

d j21k = dpp,1k11,2j = drr,1k11,2j = −drp,1k11,2j = dpr,1k11,2j ,

d j22,k = tpp,1k2j,11 + tpp,1k11,2j = trr,1k2j,11 + trr,1k11,2j = tpr,1k11,2j = −tpr,1k2j,11 ,

d j23,k = dpp,1k0j,11 = dpr,1k0j,11 , d j24,k = dpp,1k11,0j = drp,1k11,0j ,

d j25,k = tpp,1k0j,11 + tpp,1k11,0j = tpr,1k0j,11 .
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