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A B S T R A C T

Although innovation and support schemes are among the main forces that drive investment in renewable
energy (RE) technologies, both involve considerable uncertainty. We develop a real options framework
to analyse the impact of technological, policy and electricity price uncertainty on the decision to invest
sequentially in successively improved versions of a RE technology. Technological uncertainty is reflected in
the random arrival of innovations, and policy uncertainty in the likely provision or retraction of a subsidy
that takes the form of a fixed premium on top of the electricity price. We show that greater likelihood of
subsidy retraction (provision) lowers (raises) the incentive to invest, and, by comparing a stepwise to a lumpy
investment strategy, we show how an embedded option to adopt an improved technology version mitigates the
impact of subsidy retraction on investment timing. Specifically, we show how stepwise investment facilitates
earlier technology adoption compared to lumpy investment, and that, under stepwise investment, technological
uncertainty accelerates technology adoption, thus further offsetting the incentive to delay investment in the
light of subsidy retraction.

1. Introduction

Investment in renewable energy (RE) technologies is considerably
risky, since it is typically made in the light of various interacting uncer-
tainties, including economic, technological and policy uncertainty. In-
deed, not only innovations arrive at random points in time, but schemes
that support their adoption are revised frequently, thus increasing the
likelihood of unreliable long-term investment signals. Consequently,
within an environment of increasing economic uncertainty, the chal-
lenge of timely technology adoption becomes rather formidable and
not only threatens the viability of private firms, but also impacts upon
the possible effectiveness of achieving in a timely way the new invest-
ment targets set by policy. For example, subsidies for RE technologies
fuelled a boom in solar panel manufacturing in China and allowed
solar production capacity to increase significantly. Combined with the
decrease in the price of silicon, the main component of traditional
solar panels, this reduced the competitive advantage of US companies,
many of which either went bankrupt or were purchased by Chinese
companies (The New York Times, 2013). Also, in Spain, promises
of 10% annual returns boosted the solar industry in 2008, yet the
subsequent reduction of subsidies at different points in time increased
producers’ reluctance to commit to future investments (The Economist,
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2013). However, recent tenders for RE with subsidies, have induced a
new investment boom (REN21, 2018).

Although the real options literature has grown considerably, models
that analyse the implications of policy uncertainty on investment de-
cisions are often narrowly specified, in that technological uncertainty
is either ignored or not considered within the context of complex
investment opportunities that involve embedded options (Yang et al.,
2008; Boomsma and Linnerud, 2015; Ritzenhofen and Spinler, 2016;
Zhang et al., 2016a). In turn, this implies that the value of the flexibility
to adopt improved technology versions may be critical in terms of
offsetting the impact of policy uncertainty, yet it is currently over-
looked. Therefore, in this paper we develop a real options framework to
address the following research questions: i. How does economic, policy
and technological uncertainty interact to affect sequential investment
decisions? ii. Does the likely arrival of improved technology versions
increase the value of a project and mitigate the reluctance to invest due
to policy uncertainty? and iii. Is the optimal investment policy under
sequential investment significantly different than that under a lumpy
investment strategy in the light of technological and policy uncertainty?
These research questions are also motivated by Renewables 2018 global
status report:
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‘‘. . . The interaction of policy, cost reductions and technology devel-
opment has led to rapid change in the energy sector, prompting both
proactive and reactive responses from policy makers.’’ (REN21, 2018)

Hence, the contribution of this paper is threefold: i. we develop a real
options framework for analysing how economic, technological and pol-
icy uncertainty interact to affect sequential investment in successively
improved versions of a RE technology; ii. we show how an embedded
option to adopt an improved technology version mitigates the impact of
subsidy retraction on invest timing, by comparing a stepwise to a lumpy
investment strategy; and iii. we derive insights on how policymakers
can devise more efficient policy mechanisms and incentivise investment
in RE technologies.

We assume that the subsidy takes the form of a fixed premium
on top of the electricity price. Thus, it resembles a feed-in premium,
which is one of the popular support schemes currently implemented in
various forms in many countries (IRENA, 2018a). We find that greater
likelihood of subsidy retraction postpones investment, yet the likely
provision of a subsidy raises the investment incentive. Interestingly,
we also find that the option to invest sequentially in improved tech-
nology versions raises the value of the investment opportunity, and
mitigates the loss in project value due to subsidy retraction. Therefore,
the implications of these new insights are important considering that
many countries implement a variety of selective support schemes,
without taking into account particular features of investment projects
or considering how cautiously private firms may act in the light of the
uncertainties due to innovation and frequent switches between policy
regimes. Consequently, this paper also offers a direction for further
research on the appropriate model specification for capturing features
of low-carbon investments, e.g. irreversibility, delay and embedded
options, that impinge upon the radical policy imperatives for structural
change in electricity markets to meet ambitious sustainability targets.

We proceed by discussing some related work in Section 2 and intro-
duce assumptions and notation in Section 3. In Section 4.1, we address
the problem of optimal investment timing taking into account only
price and technological uncertainty. We introduce policy uncertainty
in Sections 4.2 and 4.3 in the form of sudden retraction and provision
of a subsidy, and allow the sudden provision of a retractable subsidy
in Section 4.4. Section 5 presents numerical results for each case via a
case study on offshore wind, while Section 6 concludes the paper by
offering policy insights and directions for further research.

2. Related work

The seminal work of McDonald and Siegel (1985) and Dixit and
Pindyck (1994) has spawned a substantial literature in the area of
investment under uncertainty. A strand of this literature illustrates the
amenability of real options theory to emerging technologies, research
and development (R&D) and the energy sector (Bastian-Pinto et al.,
2010; Koussis et al., 2007; Rothwell, 2006; Siddiqui and Fleten, 2010;
Lemoine, 2010; Farzan et al., 2015; Franklin, 2015). Nevertheless,
analytical formulations of problems that address investment in emerg-
ing technologies either tackle the impact of technological uncertainty
on investment timing ignoring the implications of policy uncertainty
(Schwartz and Zozaya-Gorostiza, 2003) or allow for policy uncertainty
without taking into account the sequential nature of investment in
emerging technologies (Boomsma et al., 2012; Adkins and Paxson,
2016). However, since support schemes aim at facilitating the transition
of emerging technologies through the steep part of the learning curve,
uncertainty over the provision or retraction of a subsidy should be con-
sidered in combination with uncertainty over the arrival of innovations
that these subsidies are designed to support.

Allowing for policy uncertainty, Boomsma et al. (2012) develop
a real options model in order to investigate how different support
schemes, including fixed feed-in tariff (FIT), premium FIT and RE
certificate trading, as well as changes of a support scheme via Markov

switching, impact investment behaviour. They find that the implica-
tions of the uncertainty associated with each support scheme can be
crucial for both the time of investment and the size of a project. How-
ever, allowing changes in the level of a subsidy to follow a continuous-
time stochastic process does not facilitate insights on the permanent or
temporary termination of a support scheme. In the same line of work,
Kim and Lee (2012) present a stochastic model for the evaluation and
optimisation of FIT policies under different payoff structures. However,
like Boomsma et al. (2012), their analysis overlooks the implications
of technological uncertainty and how embedded options to adopt im-
proved technology versions may impact investment behaviour under
the different payoff structures of the FIT scheme.

A real options model for analysing how investors’ behaviour is
affected by different RE support schemes and the risk of their even-
tual termination is presented in Boomsma and Linnerud (2015). Their
results indicate that the prospect of subsidy retraction increases the rate
of investment if it is applied to new projects, yet slows down investment
if it has a retroactive effect. In the same line of work, Chronopoulos
et al. (2016) allow for discretion over project scale under sequential
policy interventions and find that the likely retraction of a subsidy
may facilitate investment, yet results in a smaller project. Also, the
implications of a FIT for RE investment is emphasised in Ritzenhofen
and Spinler (2016), who show that under a sufficiently attractive FIT
regime, future regime changes have little impact on current investment
projects, whereas under a free-market regime, in which investors are
exposed to electricity price uncertainty, investment may be deferred or
even withdrawn.

The importance of R&D investment for promoting the further de-
velopment of solar power is emphasised in Zhang et al. (2016b), who
develop a real options approach to assess the optimal levels of FIT
within the Chinese power market. However, the interaction between
technological and policy uncertainty is not taken into account. Also,
an analysis of the implications of different kinds of subsidy support
for investment timing and capacity sizing decisions is presented in
Wen et al. (2017). Their model also investigates whether it is possible
to align the firm’s investment decisions to the social optimal ones.
Results indicate that when the subsidy support is introduced from the
beginning, it accelerates investment, and that, under a linear demand
structure, the firm’s investment decision and the social optimal decision
cannot be aligned. However, there is a conditional subsidy regulation
that aligns the firm’s investment decision to the social optimal deci-
sion. Nevertheless, it remains unclear how embedded options to adopt
improved technology versions may impact the firms investment and
capacity sizing decisions, as well as the social welfare.

While policy-oriented real options papers offer important insights
on the impact of policy uncertainty on investment timing, they tend
to ignore technological uncertainty and how sequential investment
opportunities may impact the optimal investment policy. In the area
of sequential investment under uncertainty, Majd and Pindyck (1987)
show how traditional valuation methods understate the value of a
project by ignoring the flexibility embedded in the time to build. In
the same line of work, Gollier et al. (2005) compare a sequence of
modular nuclear power plants with a single nuclear power plant of
large capacity. They find that the value of modularity may trigger in-
vestment in the initial module at an electricity price level below the net
present value (NPV) threshold. Allowing for technological uncertainty,
Chronopoulos and Siddiqui (2015) develop a framework for sequential
technological adoption and analyse how economic and technological
uncertainty impact the optimal technology adoption strategy and the
associated investment rule. They find that, although economic uncer-
tainty postpones investment, uncertainty over the arrival of innovations
accelerates technology adoption.

Examples of early work that analyses the impact of technological
uncertainty on the timing of technology adoption include Balcer and
Lippman (1984), who find that the optimal timing of technology adop-
tion is influenced by expectations about future technological changes
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Fig. 1. State-transition diagram.

and that increasing technological uncertainty tends to delay adoption.
Grenadier and Weiss (1997) develop a sequential investment model to
study how the innovation rate and technological growth impact the
optimal technology adoption strategy, and find that a firm may adopt
an available technology although more valuable innovations may occur
in the future. Farzin et al. (1998) assume that technological innovations
follow a Poisson process and find that the NPV rule can be used as
an investment criterion in most cases. However, Doraszelski (2001)
revisits the framework of Farzin et al. (1998) and shows that a firm
will always defer investment when it takes the value of waiting into
account. Also, a discrete-time model for maintenance and replacement
of a technology is presented in Mehrez et al. (2000).

We extend Chronopoulos and Siddiqui (2015) by introducing policy
uncertainty in the form of sudden provision and retraction of a subsidy.
Since technological uncertainty and increased intervention of govern-
ment policy in trading arrangements may affect the optimal investment
policy of private firms, we explore their combined impact in this paper.
We assume that the electricity price follows a geometric Brownian
motion (GBM) and that policy interventions and technological inno-
vations follow independent Poisson processes. Thus, we confirm that
greater likelihood of subsidy retraction (provision) lowers (raises) the
investment incentive by decreasing (increasing) the expected value of
the project. Also, we compare a stepwise to a lumpy investment strategy
to show how an embedded option to adopt an improved technology
version mitigates the impact of subsidy retraction on investment timing.
Interestingly, we find that a stepwise investment strategy has a clear
advantage over lumpy investment, as it results in earlier technology
adoption. Additionally, we show how uncertainty over the arrival of
an innovation induces earlier investment, thus creating an opposing
force that further offsets the incentive to delay investment in the light
of subsidy retraction.

3. Assumptions and notation

We consider a price-taking firm with a perpetual option to invest in
𝑛 = 1, 2 successively improved versions of a RE technology, each with
infinite lifetime, facing price, technological and policy uncertainty.
Given a probability space (𝛺, ,P), we assume that technological and
policy uncertainty follow independent Poisson processes,

{

𝑀 𝑖
𝑡 , 𝑡 ≥ 0

}

,
where 𝑡 is continuous and denotes time, and 𝜆𝑖 ≥ 0 denotes the intensity
of the Poisson process associated with technological innovations (𝑖 = 𝜏)
or policy interventions (𝑖 = 𝑝). Intuitively, 𝑀 𝑖

𝑡 counts the number of
random events that occur at times ℎ𝑖𝑚, 𝑚 ∈ N between 0 and 𝑡, and
𝑇 𝑖
𝑚 = ℎ𝑖𝑚−ℎ𝑖𝑚−1 is the time interval between subsequent Poisson events.

Also, we assume that there is no operating cost, that the electricity price
at time 𝑡, 𝐸𝑡, is independent of 𝑀 𝑖

𝑡 (Boomsma and Linnerud, 2015), and
that only the second technology is subject to technological uncertainty,
i.e. the first technology that the firm invests in is the currently available
version.

The electricity price follows a GBM (Boomsma et al., 2012), which
is described in (1). We denote by 𝜇 the annual growth rate, by 𝜎 the an-
nual volatility, by 𝑑𝑍𝑡 the increment of the standard Brownian motion.

Also, we assume that the firm is risk-neutral and denote the risk-free
rate by 𝜌. With respect to our motivating examples, although energy
prices are mean reverting, empirical evidence based on 127 years of
data indicates that the rate of mean reversion is low enough, and,
therefore, assuming a GBM for investment analysis is unlikely to lead
to large errors (Pindyck, 1999).

𝑑𝐸𝑡 = 𝜇𝐸𝑡𝑑𝑡 + 𝜎𝐸𝑡𝑑𝑍𝑡, 𝐸0 ≡ 𝐸 > 0 (1)

We denote the investment cost of technology 𝑛 by 𝐼𝑛 (𝐼2 > 𝐼1) and
the corresponding output by 𝐷𝑛 (𝐷2 ≥ 𝐷1). Note that 𝐷𝑛 is assumed
to be fixed on the basis that for a specific technology annual average
production is unlikely to vary considerably. We let 𝑎 = 0, 1 denote the
current state of the subsidy in terms of being present (𝑎 = 1) or absent
(𝑎 = 0), and assume that, in the future, the subsidy can be provided
and retracted 𝑏 and 𝑐 times, respectively. We assume that the subsidy
takes the form of a fixed premium, 𝑦, on top of the electricity price, 𝐸𝑡.
Thus, the time of investment in technology 𝑛 is denoted by 𝜏𝑏,𝑐𝑛,𝑎 , while
𝜀𝑏,𝑐𝑛,𝑎 is the corresponding optimal investment threshold. For example,
if the subsidy is currently unavailable (𝑎 = 0) but will be provided
permanently (𝑏 = 1 and 𝑐 = 0) at a random point in time in the
future, then the optimal time to invest in the second technology is 𝜏1,02,0 ,
while the corresponding optimal investment threshold is 𝜀1,02,0. Finally,
𝐹 𝑏,𝑐
𝑛,𝑎 (⋅) is the maximised expected NPV from investing in technology 𝑛,

while 𝛷𝑏,𝑐
𝑛,𝑎 (⋅) is the expected value of the revenues of the active project

inclusive of embedded options.
The firm’s different states of operation are indicated in Fig. 1, where

a transition due to a Poisson event (investment) is indicated by a dashed
(solid) arrow. The value function and optimal investment threshold in
each state are determined via backward induction, which are described
below.

1. State 2: Initially, we assume that the firm operates technology
2, which is adopted at time 𝜏𝑏,𝑐2,𝑎, and, thus, the firm holds the
value function 𝛷𝑏,𝑐

2,𝑎(𝐸).

2. State (1,2): Next, we step back and assume that the firm holds
the value function 𝐹 𝑏,𝑐

2,𝑎 (𝐸), consisting of the value from operating
technology 1 and a single embedded option to invest in technol-
ogy 2. The latter is exercised at time 𝜏𝑏,𝑐2,𝑎, at which point the firm
obtains the value function 𝛷𝑏,𝑐

2,𝑎(𝐸), which is already determined
in the previous step.

3. State 1: Before the arrival of the second technology, the firm
operates technology 1 and holds an option to adopt technology
2 that has yet to become available. The firm’s value function
is 𝛷𝑏,𝑐

1,𝑎(𝐸) and consists of the expected value from operating
technology 1 and the embedded option to invest in technology
2, which is not available yet.

4. State (0,1): Finally, we assume that the firm is not active and
waits to adopt technology 1. Thus, before time 𝜏𝑏,𝑐1,𝑎 the firm holds
the value function 𝐹 𝑏,𝑐

1,𝑎 (𝐸), i.e. the option to invest in technology
1 with a single embedded option to invest technology 2, that has
yet to become available.
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Note that at a given state, a policy intervention (loop arrows) changes
the value of 𝑎, 𝑏 and 𝑐 via the recursive formulae 𝑎 ∶= 1−𝑎, 𝑏 ∶= 𝑏−1 and
𝑐 ∶= 𝑐−1. For example, in the case of provision of a retractable subsidy
we initially have 𝑎 = 0, 𝑏 = 1 and 𝑐 = 1. Once the subsidy is provided,
the updated value of 𝑎 is 𝑎 ∶= 1−0 = 1 and for 𝑏 is 𝑏 ∶= 1−1 = 0. Hence,
until the second policy intervention, the new state is defined by 𝑎 = 1,
𝑏 = 0 and 𝑐 = 1. Finally, following the retraction of the subsidy, we
have 𝑎 ∶= 1 − 1 = 0, 𝑏 = 0, as there are not further subsidy provisions,
and 𝑐 ∶= 1 − 1 = 0.

4. Model

4.1. Benchmark case: Investment without policy uncertainty

We assume that the firm has the option to invest in each technol-
ogy facing only price and technological uncertainty. Using backward
induction, we first assume that the firm is operating the first technology
holding the option to invest in the second one, that is already available,
as indicated in (2). The first term on the right-hand side is the immedi-
ate cash flows from operating the first technology and the second term
is the expected value of the option in the continuation region.

𝐹 0,0
2,𝑎 (𝐸) = 𝐷1𝐸 (1 + 𝑎𝑦) 𝑑𝑡 + 𝑒−𝜌𝑑𝑡E𝐸

[

𝐹 0,0
2,𝑎 (𝐸 + 𝑑𝐸)

]

(2)

By expanding the right-hand side of (2) using Itô’s lemma, we obtain
the ordinary differential equation (ODE) (3), where  = 1

2𝜎
2𝐸2 𝑑2

𝑑𝐸2 +
𝜇𝐸 𝑑

𝑑𝐸 denotes the differential generator.

( − 𝜌)𝐹 0,0
2,𝑎 (𝐸) +𝐷1𝐸 (1 + 𝑦𝑎) = 0 (3)

The solution of (3) is indicated in (4). The first term on the top part of
(4) reflects the expected present value of the revenues from operating
the first technology and the second term represents the option to invest
in the second one, where 𝛽1 > 0 is the positive root of the quadratic
1
2𝜎

2𝛽(𝛽 − 1) + 𝜇𝛽 − 𝜌 = 0. Also, the bottom part of (4) reflects the
expected value from operating the second technology, i.e. 𝛷0,0

2,𝑎(𝐸) =
𝐷2𝐸

0,0
2,𝑎 (1+𝑎𝑦)

𝜌−𝜇 , reduced by the investment cost (all proofs can be found in
the appendix).

𝐹 0,0
2,𝑎 (𝐸) =

{𝐷1𝐸(1+𝑎𝑦)
𝜌−𝜇 + 𝐴0,0

2,𝑎𝐸
𝛽1 , 𝐸 < 𝜀0,02,𝑎

𝛷0,0
2,𝑎(𝐸) − 𝐼2 , 𝐸 ≥ 𝜀0,02,𝑎

(4)

The optimal investment threshold, 𝜀0,02,𝑎, and the endogenous constant,
𝐴0,0
2,𝑎, are obtained analytically by applying value-matching and smooth-

pasting conditions to the two branches of (4). These conditions are
indicated in (A.2) and (A.3), respectively, and the expression for 𝜀0,02,𝑎
and 𝐴0,0

2,𝑎 is indicated in (5).

𝜀0,02,𝑎 =
𝛽1

𝛽1 − 1
𝐼2 (𝜌 − 𝜇)

(

𝐷2 −𝐷1
)

(1 + 𝑎𝑦)

and 𝐴0,0
2,𝑎 =

⎛

⎜

⎜

⎝

1
𝜀0,02,𝑎

⎞

⎟

⎟

⎠

𝛽1
⎛

⎜

⎜

⎝

(

𝐷2 −𝐷1
)

(1 + 𝑎𝑦) 𝜀0,02,𝑎
𝜌 − 𝜇

− 𝐼2
⎞

⎟

⎟

⎠

(5)

Although we do not consider the choice between the two technologies
(Décamps et al., 2006), the feasibility of a compulsive strategy relies
on the ratios between output produced and investment cost of the two
technologies, as indicated in Proposition 1. Intuitively, this relationship
reflects the assumption of the second technology being more advanced,
in terms of producing greater output, yet also more costly than the
first one. Formally, this trade-off is defined by the existence of 𝐸∗ > 0
such that 𝛷0,0

1,𝑎(𝐸) ≥ 𝛷0,0
2,𝑎(𝐸) for 𝐸 ≤ 𝐸∗ and 𝛷0,0

1,𝑎(𝐸) < 𝛷0,0
2,𝑎(𝐸) for

𝐸 > 𝐸∗. Consequently, this definition implies that the NPV at the point
of intersection between the expected NPVs of the two technologies is
positive, and, therefore, both technologies present viable investment
opportunities for different electricity price ranges. Otherwise, if the

NPV at the point of intersection is negative then only the new technol-
ogy presents a viable investment opportunity. This is also motivated by
offshore wind projects, where new projects have a substantially higher
yield but at a greater cost (see Section 5).

Proposition 1. A trade-off between the two technologies exists if 𝐷1
𝐼1

>
𝐷2
𝐼2
.

Next, we assume that the firm is in State 1, where it operates the
first technology holding an embedded option to adopt the second one,
which has yet to become available. We follow the approach of Dixit
and Pindyck (1994, p. 202–205) to describe the dynamics of the value
function 𝛷0,0

1,𝑎(𝐸), as in (6). The first term on the right-hand side of
(6) is the immediate profit from operating the first technology. As the
second term indicates, with probability 𝜆𝜏𝑑𝑡 the second technology will
arrive and the firm will receive the value function 𝐹 0,0

2,𝑎 (𝐸), whereas,
with probability 1 − 𝜆𝜏𝑑𝑡, no innovation will occur and the firm will
continue to hold the value function 𝛷0,0

1,𝑎(𝐸).

𝛷0,0
1,𝑎(𝐸) = 𝐷1𝐸 (1 + 𝑎𝑦) 𝑑𝑡

+ 𝑒−𝜌𝑑𝑡E𝐸

{

𝜆𝜏𝑑𝑡𝐹
0,0
2,𝑎 (𝐸 + 𝑑𝐸) +

(

1 − 𝜆𝜏𝑑𝑡
)

𝛷0,0
1,𝑎(𝐸 + 𝑑𝐸)

}

(6)

By expanding the right-hand side of (6) using Itô’s lemma, we obtain
the ordinary differential equation (7). Note that 𝐹 0,0

2,𝑎 (𝐸) is defined over
two different intervals of 𝐸, i.e. 𝐸 < 𝜀0,02,𝑎 and 𝐸 ≥ 𝜀0,02,𝑎. Consequently,
(7) must be solved for each one of these two price intervals, separately.

( − 𝜌)𝛷0,0
1,𝑎(𝐸) + 𝜆𝜏

[

𝐹 0,0
2,𝑎 (𝐸) −𝛷0,0

1,𝑎(𝐸)
]

+𝐷1𝐸 (1 + 𝑦𝑎) = 0 (7)

We solve (7) and obtain the expression for 𝛷0,0
1,𝑎(𝐸) that is indicated in

(8), where 𝐴0,0
1,𝑎 ≤ 0 and 𝐵0,0

1,𝑎 ≥ 0 are determined analytically via value-
matching and smooth-pasting conditions between the two branches of
(8) and are given in (A.4) and (A.5). The terms 𝛿1 > 1, 𝛿2 < 0 are the
roots of the quadratic 1

2𝜎
2𝛿(𝛿 − 1) + 𝜇𝛿 −

(

𝜌 + 𝜆𝜏
)

= 0. The first term on
the top part of (8) represents the expected present value of the revenues
from operating the first technology, while the second term is the option
to invest in the second one, adjusted via the third term because the
second technology has yet to become available. The first two terms
on the bottom part of (8) represent the expected profit from the two
technologies. Notice that both the output and investment cost in the
second technology are adjusted by 𝜆𝜏 , since the second technology is
not available yet. Similar formulations can be found in Huisman and
Kort (2004) and Chronopoulos and Siddiqui (2015). The third term
reflects the likelihood of the price dropping in the waiting region prior
to the arrival of an innovation. Note that if 𝜆𝜏 = 0, then the second
technology will never arrive and the firm will continue to operate the
first technology indefinitely, which means that 𝛷0,0

1,𝑎(𝐸) = 𝐷1𝐸(1+𝑎𝑦)
𝜌−𝜇 for

all 𝐸 > 0. In contrast, 𝜆𝜏 → ∞ implies that the second technology will
arrive within the next time interval, and, therefore, 𝛷0,0

1,𝑎(𝐸) = 𝐹 0,0
2,𝑎 (𝐸).

𝛷0,0
1,𝑎(𝐸) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷1𝐸 (1 + 𝑎𝑦)
𝜌 − 𝜇

+ 𝐴0,0
2,𝑎𝐸

𝛽1 + 𝐴0,0
1,𝑎𝐸

𝛿1 ,

𝐸 < 𝜀0,02,𝑎
(

𝜆𝜏𝐷2 + (𝜌 − 𝜇)𝐷1
)

𝐸 (1 + 𝑎𝑦)

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝜏
) −

𝜆𝜏𝐼2
𝜌 + 𝜆𝜏

+ 𝐵0,0
1,𝑎𝐸

𝛿2 ,

𝐸 ≥ 𝜀0,02,𝑎

(8)

Finally, the value of the option to invest in State (0,1) is described
in (9), where 𝜀0,01,𝑎 and 𝐶0,0

1,𝑎 ≥ 0, are determined numerically via value-
matching and smooth-pasting conditions between the two branches.
The top part on the right-hand side of (9) is the value of the option
to invest in the first technology, while the bottom part reflects the
expected value of the active project, inclusive of the embedded option
to invest in the second one, reduced by the investment cost.

𝐹 0,0
1,𝑎 (𝐸) =

{

𝐶0,0
1,𝑎𝐸

𝛽1 , 𝐸 < 𝜀0,01,𝑎
𝛷0,0

1,𝑎(𝐸) − 𝐼1 , 𝐸 ≥ 𝜀0,01,𝑎
(9)
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4.2. Permanent subsidy retraction

We extend the previous framework by assuming that a subsidy is
available and that it may be retracted permanently at a random point
in time, 𝑇 𝑝

1 , i.e. 𝑎 = 1, 𝑏 = 0 and 𝑐 = 1. Hence, the expected value of
the revenues from operating the second technology is indicated in (10).
The first term on the right-hand side is the expected present value of
the revenues in the absence of the subsidy, while, the second term, is
the expected value of the subsidy, that has an exponential lifetime and
will be retracted at 𝑇 𝑝

1 .

E𝐸

⎡

⎢

⎢

⎣

∫

∞

0

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑑𝑡 + ∫

𝑇 𝑝1

0

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑦𝑑𝑡
⎤

⎥

⎥

⎦

=
𝐷2𝐸
𝜌 − 𝜇

+ E
⎧

⎪

⎨

⎪

⎩

𝐷2𝐸𝑦
[

1 − 𝑒−(𝜌−𝜇)𝑇
𝑝
1
]

𝜌 − 𝜇

⎫

⎪

⎬

⎪

⎭

(10)

Since 𝑇 𝑝
1 ∼ exp(𝜆𝑝), by evaluating the expectation of this expression

with respect to 𝑇 𝑝
1 we obtain (11). Notice that the subsidy will never

be retracted if 𝜆𝑝 = 0, whereas a greater 𝜆𝑝 raises the likelihood of
subsidy retraction and lowers the expected NPV of the project.

𝛷0,1
2,1(𝐸) =

𝐷2𝐸
𝜌 − 𝜇

+ ∫

∞

0

𝜆𝑝𝑒
−𝜆𝑝𝑇

𝑝
1

𝐷2𝐸𝑦
[

1 − 𝑒−(𝜌−𝜇)𝑇
𝑝
1
]

𝜌 − 𝜇
𝑑𝑇1

=
𝐷2𝐸
𝜌 − 𝜇

+
𝐷2𝐸𝑦

𝜌 − 𝜇 + 𝜆𝑝
(11)

Next, we assume that the firm is in State(1,2), where it operates the
first technology and holds a single embedded option to invest in the
second one. The dynamics of the firm’s value function are described in
(12), where the first term on the right-hand side reflects the immediate
profit from operating the first technology. As the second term indicates,
the option to invest in the second technology will be exercised in the
permanent absence of a subsidy with probability 𝜆𝑝𝑑𝑡. By contrast, with
probability 1−𝜆𝑝𝑑𝑡, no policy intervention will take place and the firm
will continue to hold the option to invest in the second technology in
the presence of a retractable subsidy.

𝐹 0,1
2,1 (𝐸) = 𝐷1𝐸(1 + 𝑦)𝑑𝑡

+ 𝑒−𝜌𝑑𝑡E𝐸

{

𝜆𝑝𝑑𝑡𝐹
0,0
2,0 (𝐸 + 𝑑𝐸) +

(

1 − 𝜆𝑝𝑑𝑡
)

𝐹 0,1
2,1 (𝐸 + 𝑑𝐸)

}

(12)

By expanding the right-hand side of (12) using Itô’s lemma, we obtain
(13).

( − 𝜌)𝐹 0,1
2,1 (𝐸) + 𝜆𝑝

[

𝐹 0,0
2,0 (𝐸) − 𝐹 0,1

2,1 (𝐸)
]

+𝐷1𝐸(1 + 𝑦) = 0 (13)

The solution of (13) is described in (14), where 𝜀0,12,1 and 𝐴0,1
2,1 ≥ 0 are

determined via value-matching and smooth-pasting conditions, while
𝜂1 > 1, 𝜂2 < 0 are the roots of the quadratic 1

2𝜎
2𝜂(𝜂−1)+𝜇𝜂−

(

𝜌 + 𝜆𝑝
)

= 0.
The first two terms in the top part of (14) represent the expected value
of the revenues from operating the first technology, while the third
term is the option to invest in the second one in the absence of a
subsidy, adjusted via the fourth term since the subsidy is currently
available.

𝐹 0,1
2,1 (𝐸) =

⎧

⎪

⎨

⎪

⎩

𝐷1𝐸
𝜌−𝜇 + 𝐷1𝐸𝑦

𝜌−𝜇+𝜆𝑝
+ 𝐴0,0

2,0𝐸
𝛽1 + 𝐴0,1

2,1𝐸
𝜂1 , 𝐸 < 𝜀0,12,1

𝛷0,1
2,1(𝐸) − 𝐼2 , 𝐸 ≥ 𝜀0,12,1

(14)

Next, we step back to State 1, where an innovation has not taken
place yet, but may occur over the time interval 𝑑𝑡 with probability 𝜆𝜏𝑑𝑡.
The dynamics of 𝛷0,1

1,1(𝐸) are described in (15), where the first term
on the right-hand side represents the immediate profit from operating
the first technology and the second term reflects the expected value
in the continuation region. If the subsidy is retracted with probability
𝜆𝑝𝑑𝑡, then either an innovation will take place with probability 𝜆𝜏𝑑𝑡

and the firm will receive the value function 𝐹 0,0
2,0 (𝐸), or no innovation

will take place with probability 1 − 𝜆𝜏𝑑𝑡 and the firm will continue to
operate the first technology in the absence of a subsidy. Similarly, if no
policy intervention occurs with probability 1 − 𝜆𝑝𝑑𝑡, then the firm will
either receive the value function 𝐹 0,1

2,1 (𝐸) with probability 𝜆𝜏𝑑𝑡, or it will
continue to hold the value function 𝛷0,1

1,1(𝐸) with probability 1 − 𝜆𝜏𝑑𝑡.

𝛷0,1
1,1(𝐸) = 𝐷1𝐸(1 + 𝑦)𝑑𝑡

+𝑒−𝜌𝑑𝑡E𝐸

{

𝜆𝑝𝑑𝑡
[

𝜆𝜏𝑑𝑡𝐹
0,0
2,0 (𝐸 + 𝑑𝐸) +

(

1 − 𝜆𝜏𝑑𝑡
)

𝛷0,0
1,0(𝐸 + 𝑑𝐸)

]

+
(

1 − 𝜆𝑝𝑑𝑡
)

[

𝜆𝜏𝑑𝑡𝐹
0,1
2,1 (𝐸 + 𝑑𝐸) +

(

1 − 𝜆𝜏𝑑𝑡
)

𝛷0,1
1,1(𝐸 + 𝑑𝐸)

]

}

(15)

By expanding the right-hand side of (15) using Itô’s lemma, we obtain
(16).

( − 𝜌)𝛷0,1
1,1(𝐸) + 𝜆𝑝

[

𝛷0,0
1,0(𝐸) −𝛷0,1

1,1(𝐸)
]

+ 𝜆𝜏
[

𝐹 0,1
2,0 (𝐸) −𝛷0,1

1,1(𝐸)
]

+𝐷1𝐸(1 + 𝑦) = 0 (16)

The expression of 𝛷0,1
1,1(𝐸) is indicated in (17), where 𝐴0,1

1,1 ≤ 0 and
𝐵0,1
1,1 ≤ 0 are determined numerically via value-matching and smooth-

pasting conditions, while 𝜃1 > 1, 𝜃2 < 0 are the roots of the quadratic
1
2𝜎

2𝜃(𝜃 − 1) + 𝜇𝜃 −
(

𝜌 + 𝜆𝑝 + 𝜆𝜏
)

= 0. The first two terms in the
top part of (17) represent the expected revenues from operating the
first technology, while the third term is the option to invest in the
second one, adjusted via the fourth term due to policy uncertainty.
The fifth term reflects the loss in option value due to the absence of
the second technology, and is adjusted via the last term due to policy
uncertainty. The first three terms in the bottom part of (17) represent
the expected revenues from investing in the second technology, while
the last two terms reflect the likelihood of the price dropping in the
waiting region before the arrival of the second technology, adjusted
for policy uncertainty.

𝛷0,1
1,1(𝐸) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷1𝐸
𝜌 − 𝜇

+
𝐷1𝐸𝑦

𝜌 − 𝜇 + 𝜆𝑝
+ 𝐴0,0

2,0𝐸
𝛽1 + 𝐴0,1

2,1𝐸
𝜂1

+𝐴0,0
1,0𝐸

𝛿1 + 𝐴0,1
1,1𝐸

𝜃1 , 𝐸 < 𝜀0,12,1
𝜆𝜏𝐷2𝐸 + (𝜌 − 𝜇)𝐷1𝐸
(𝜌 − 𝜇)

(

𝜌 − 𝜇 + 𝜆𝜏
) +

[

𝜆𝜏𝐷2 +
(

𝜌 − 𝜇 + 𝜆𝑝
)

𝐷1
]

𝐸𝑦
(

𝜌 − 𝜇 + 𝜆𝑝
) (

𝜌 − 𝜇 + 𝜆𝑝 + 𝜆𝜏
)

− 𝜆𝜏𝐼2
𝜌+𝜆𝜏

+ 𝐵0,0
1,0𝐸

𝛿2 + 𝐵0,1
1,1𝐸

𝜃2 , 𝐸 ≥ 𝜀0,12,1

(17)

Next, we step back to State (0,1), and, following the same approach
as in (12), the dynamics of the option to invest in the first technology
are described in (18).

( − 𝜌)𝐹 0,1
1,1 (𝐸) + 𝜆𝑝

[

𝐹 0,0
1,0 (𝐸) − 𝐹 0,1

1,1 (𝐸)
]

= 0 (18)

The expression of 𝐹 0,1
1,1 (𝐸) is indicated in (19), where 𝜀0,11,1 and 𝐶0,1

1,1 ≥
0 are obtained numerically via value-matching and smooth-pasting
conditions. The first term in the top part of (19) is the option to invest
in the absence of a subsidy, adjusted via the second term, since the
subsidy is currently available. The bottom part represents the expected
value from operating the first technology inclusive of the embedded
option to invest in the second one.

𝐹 0,1
1,1 (𝐸) =

{

𝐶0,0
1,0𝐸

𝛽1 + 𝐶0,1
1,1𝐸

𝜂1 , 𝐸 < 𝜀0,11,1
𝛷0,1

1,1(𝐸) − 𝐼1 , 𝐸 ≥ 𝜀0,11,1
(19)

Alternatively, to facilitate the analysis of how 𝜆𝑝 and 𝜆𝜏 impact
the optimal investment policy, 𝐹 0,1

1,1 (𝐸) can be expressed as in (20) for
𝐸 < 𝜀0,11,1 < 𝜀0,12,1. The optimal investment threshold can be obtained
numerically by applying the first-order necessary condition (FONC) to
(20) and equating the marginal benefit (MB) of delaying investment to
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the marginal cost (MC) as in (21).

𝐹 0,1
1,1 (𝐸) =

⎛

⎜

⎜

⎝

𝐸
𝜀0,11,1

⎞

⎟

⎟

⎠

𝛽1
[

𝛷0,1
1,1

(

𝜀0,11,1
)

− 𝐼1 − 𝐶0,1
1,1𝜀

0,1𝜂1
1,1

]

, 𝐸 < 𝜀0,11,1 (20)

The left-hand side of (21) reflects the MB of delaying investment and
the right-hand side is the MC. Formally, the MB (MC) consists of
terms that offer a positive (negative) contribution to 𝜕𝐹 0,1

1,1 (𝐸)∕𝜕𝜀0,11,1.
Specifically, the first two terms on the left-hand side of (21) consist
of the stochastic discount factor multiplied by the incremental project
value created by waiting until the price is higher. These terms are
positive, decreasing functions of the electricity price, as waiting longer
allows the project to start at a higher initial price, yet the rate at
which this benefit accrues diminishes due to the effect of discounting.
The third term represents the reduction in the MC of waiting due to
saved investment cost. Similarly, the first two terms on the right-hand
side reflect the discounted opportunity cost of forgone cash flows. The
fourth and third term on the left- and right-hand side, respectively,
reflect the loss in option value, since the second technology is not
available yet. Specifically, the fourth term on the left-hand side is the
MB from postponing the loss in value, whereas the third term on the
right-hand side is the MC from a potentially greater impact of the loss
from waiting for a higher threshold price. The last two terms on the
left- and the right-hand side reflect the necessary adjustments due to
policy uncertainty.

⎛

⎜

⎜

⎝

𝐸
𝜀0,11,1

⎞

⎟

⎟

⎠

𝛽1
[

𝐷1
𝜌 − 𝜇

+
𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
+

𝛽1𝐼1
𝜀0,11,1

− 𝛽1𝐴
0,0
1,0𝜀

0,1
1,1

𝛿1−1 − 𝛽1𝐴
0,1
1,1𝜀

0,1
1,1

𝜃1−1

+
[

𝛽1𝐶
0,1
1,1 + 𝜂1𝐴

0,1
2,1

]

𝜀0,11,1
𝜂1−1

]

=
⎛

⎜

⎜

⎝

𝐸
𝜀0,11,1

⎞

⎟

⎟

⎠

𝛽1
[

𝛽1𝐷1
𝜌 − 𝜇

+
𝛽1𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
− 𝛿1𝐴

0,0
1,0𝜀

0,1
1,1

𝛿1−1 − 𝜃1𝐴
0,1
1,1𝜀

0,1
1,1

𝜃1−1

+
[

𝜂1𝐶
0,1
1,1 + 𝛽1𝐴

0,1
2,1

]

𝜀0,11,1
𝜂1−1

]

(21)

As shown in Proposition 2, greater likelihood of subsidy retraction
lowers the MC by more than the MB, thereby raising the incentive
to postpone investment. Intuitively, the incentive to invest early in
order to take advantage of the subsidy for a longer period is mitigated
completely by the rapid reduction in the value of the active project
due to subsidy retraction. However, as shown in Chronopoulos and
Siddiqui (2015), an increase in the innovation rate while holding 𝜆𝑝
fixed lowers the optimal investment threshold. Hence, in relation to the
second research question, the likely arrival of an improved technology
version creates an opposing force that mitigates the impact of subsidy
retraction on the incentive to invest. Despite this opposing force, a
higher likelihood of subsidy retraction raises the optimal investment
threshold when 𝜆𝜏 is fixed.

Proposition 2. Greater likelihood of subsidy retraction raises the optimal
investment threshold.

To emphasise the implications of a stepwise investment strategy,
we also consider the alternative option of lumpy investment, where the
firm incurs the cost 𝐼1+𝐼2 in a single step to develop a project producing
output of 𝐷2. Proposition 3 indicates that adopting a lumpy investment
strategy results in later technology adoption compared to a stepwise
investment strategy. Consequently, with respect to the third research
question, the option to adopt an improved technology version alters the
optimal investment policy relative to the case of lumpy investment, by
increasing the incentive to invest earlier in an existing technology and
expand capacity at a later point once an innovation becomes available.

Proposition 3. Stepwise investment induces earlier technology adoption
than a lumpy investment strategy as long as 𝐼1

𝐼2
> 𝑦.

4.3. Provision of a permanent subsidy

Here, we assume that a subsidy will be provided permanently at
a random point in time, i.e. 𝑎 = 0, 𝑏 = 1 and 𝑐 = 0. Hence, like in
Section 4.2, we assume that there is a single policy intervention and
denote the random time at which it takes place by 𝑇 𝑝

1 . The expected
present value of the revenues from operating the second technology is
indicated in (22), and, according to the right-hand side, it consists of
the expected value of the project in the absence of the subsidy (first
term) and the extra value of the subsidy (second term) that will be
provided at time 𝑇 𝑝

1 .

E𝐸

⎡

⎢

⎢

⎣

∫

∞

0

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑑𝑡 + ∫

∞

𝑇 𝑝1

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑦𝑑𝑡
⎤

⎥

⎥

⎦

=
𝐷2𝐸
𝜌 − 𝜇

+E

{

𝐷2𝐸𝑦𝑒−(𝜌−𝜇)𝑇
𝑝
1

𝜌 − 𝜇

}

(22)

Since 𝑇 𝑝
1 ∼ exp(𝜆𝑝), taking the expectation of this expression with

respect to 𝑇 𝑝
1 yields (23).

𝛷1,0
2,0(𝐸) =

𝐷2𝐸
𝜌 − 𝜇

+
𝜆𝑝𝐷2𝐸𝑦

(

𝜌 − 𝜇 + 𝜆𝑝
)

(𝜌 − 𝜇)
(23)

Stepping back to State (1,2), the dynamics of the option to invest in the
second technology are described in (24).

( − 𝜌)𝐹 1,0
2,0 (𝐸) + 𝜆𝑝

[

𝐹 0,0
2,1 (𝐸) − 𝐹 1,0

2,0 (𝐸)
]

+𝐷1𝐸 = 0 (24)

The expression of 𝐹 1,0
2,0 (𝐸) is indicated in (25), where 𝜀1,02,0, 𝐴1,0

2,0 ≤ 0,
𝐵2,0
2,0 ≥ 0, and 𝐶1,0

2,0 ≥ 0, are determined numerically via value-matching
and smooth-pasting conditions between the three branches. Note that,
unlike the case of sudden subsidy retraction, 𝐹 1,0

2,0 (𝐸) is now defined
over three different regions of 𝐸: (i) if 𝐸 < 𝜀0,02,1, then the firm would
not invest even in the presence of a subsidy, (ii) if 𝜀0,02,1 ≤ 𝐸 < 𝜀1,02,0, then
the firm would invest immediately if the subsidy is provided, and (iii)
if 𝐸 ≥ 𝜀1,02,0, then investment will take place immediately even in the
absence of the subsidy. Intuitively, compared to (14), the extra region
reflects the implications of subsidy provision in terms of the expected
increase in the firm’s profits, and, in turn, the likelihood of investment
when the subsidy is not available but rather a future promise.

𝐹 1,0
2,0 (𝐸) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷1𝐸
𝜌 − 𝜇

+
𝜆𝑝𝑦𝐷1𝐸

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝑝
) + 𝐴0,0

2,1𝐸
𝛽1 + 𝐴1,0

2,0𝐸
𝜂1 , 𝐸 < 𝜀0,02,1

𝜆𝑝𝐷2𝐸 (1 + 𝑦) + (𝜌 − 𝜇)𝐷1𝐸

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝑝
) −

𝜆𝑝𝐼2
𝜌 + 𝜆𝑝

+ 𝐵1,0
2,0𝐸

𝜂2 + 𝐶1,0
2,0𝐸

𝜂1 ,

𝜀0,02,1 ≤ 𝐸 < 𝜀1,02,0
𝛷1,0

2,0(𝐸) − 𝐼2, 𝐸 ≥ 𝜀1,02,0

(25)

The dynamics of the value of the active project before the arrival of
the second technology in State 1 are described in (26).

( − 𝜌)𝛷1,0
1,0(𝐸) + 𝜆𝑝

[

𝛷0,0
1,1(𝐸) −𝛷1,0

1,0(𝐸)
]

+ 𝜆𝜏
[

𝐹 1,0
2,0 (𝐸) −𝛷1,0

1,0(𝐸)
]

+𝐷1𝐸 = 0 (26)

Notice that (26) must be solved separately for each of the expressions
of 𝐹 0,0

2,1 (𝐸), 𝛷0,0
1,1(𝐸), and 𝐹 1,0

2,0 (𝐸) that are indicated in (4), (8) and (25),
respectively. Thus, 𝛷1,0

1,0(𝐸) is also defined over three different regions
of 𝐸. Following the same approach as in Section 4.2, we obtain the ex-
pression for 𝛷1,0

1,0(𝐸) that is described in (27), where 𝐴1,0
1,0, 𝐵

1,0
1,0 , 𝐶1,0

1,0 and
𝐷1,0

1,0 are determined via value-matching and smooth-pasting conditions
between the three branches. Each branch reflects the expected value of
the first technology with an embedded option to invest in the second
one. The second technology is not available yet and the corresponding
investment option will not be exercised if the electricity price is low,
i.e. 𝐸 < 𝜀0,02,1 (top branch), however, it will be exercised instantly if the
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subsidy is provided (middle branch) or immediately regardless of the
subsidy (bottom branch).

𝛷1,0
1,0(𝐸) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐷1𝐸
𝜌 − 𝜇

+
𝜆𝑝𝐷1𝐸𝑦

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝑝
)

+𝐴0,0
2,1𝐸

𝛽1 + 𝐴1,0
2,0𝐸

𝜂1 + 𝐴0,0
1,1𝐸

𝛿1 + 𝐴1,0
1,0𝐸

𝜃1 , 𝐸 < 𝜀0,02,1
[
[

𝜆𝜏𝐷2 + (𝜌 − 𝜇)𝐷1
]

𝜌 − 𝜇 + 𝜆𝜏
+

𝜆𝜏𝐷2
𝜌 − 𝜇 + 𝜆𝑝

]

×
𝜆𝑝𝐸 (1 + 𝑦)

(𝜌 − 𝜇)2
(

1 + 𝜆𝑝+𝜆𝜏
𝜌−𝜇

) +
𝐷1𝐸

𝜌 − 𝜇 + 𝜆𝑝

−
(

1
𝜌 + 𝜆𝜏

+ 1
𝜌 + 𝜆𝑝

) 𝜆𝜏𝜆𝑝𝐼2
𝜌 + 𝜆𝑝 + 𝜆𝜏

+𝐵1,0
2,0𝐸

𝜂2 + 𝐶1,0
2,0𝐸

𝜂1 + 𝐵0,0
1,1𝐸

𝛿2

+𝐵1,0
1,0𝐸

𝜃2 + 𝐶1,0
1,0𝐸

𝜃1 , 𝜀0,02,1 ≤ 𝐸 < 𝜀1,02,0
[ 𝜆𝑝 (1 + 𝑦)
𝜌 − 𝜇 + 𝜆𝜏

+
𝜆𝑝𝑦

𝜌 − 𝜇 + 𝜆𝑝
+ 1

]

𝜆𝜏𝐷2𝐸

(𝜌 − 𝜇)2
(

1 + 𝜆𝑝+𝜆𝜏
𝜌−𝜇

)

+

⎡

⎢

⎢

⎢

⎣

𝜆𝑝𝑦

(𝜌 − 𝜇)
(

1 + 𝜆𝑝+𝜆𝜏
𝜌−𝜇

) + 1

⎤

⎥

⎥

⎥

⎦

×
𝐷1𝐸

𝜌 − 𝜇 + 𝜆𝜏
−

𝜆𝜏𝐼2
𝜌 + 𝜆𝜏

+ 𝐵0,0
1,1𝐸

𝛿2 +𝐷1,0
1,0𝐸

𝜃2 , 𝐸 ≥ 𝜀1,02,0

(27)

Like in (26), the dynamics of the option to invest in the first
technology with a single embedded option to upgrade to the second
one are described in (28).

( − 𝜌)𝐹 1,0
1,0 (𝐸) + 𝜆𝑝

[

𝐹 0,0
1,1 (𝐸) − 𝐹 1,0

1,0 (𝐸)
]

= 0 (28)

The expression of 𝐹 1,0
1,0 (𝐸) is indicated in (29), where 𝜀1,01,0, 𝐺

1,0
1,0, 𝐻

1,0
1,0 ,

and 𝐽 1,0
1,0 , are determined numerically via value-matching and smooth-

pasting conditions between the three branches. The first term in the top
branch of (29) reflects the value of the option to invest in the presence
of a subsidy, adjusted via the second term due to policy uncertainty.
The first two terms in the second branch represent the expected value
of the project if the subsidy is provided, while the third term is the
option to invest in the second technology, adjusted for technological
uncertainty via the fourth term. The last two terms reflect the likelihood
of the price either dropping below 𝜀0,01,1 or increasing beyond 𝜀1,01,0.

𝐹 1,0
1,0 (𝐸) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶0,0
1,1𝐸

𝛽1 + 𝐺1,0
1,0𝐸

𝜂1 , 𝐸 < 𝜀0,01,1
𝜆𝑝𝐷1𝐸 (1 + 𝑦)

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝑝
) −

𝜆𝑝𝐼1
𝜌 + 𝜆𝑝

+ 𝐴0,0
2,1𝐸

𝛽1

+
𝜆𝑝

𝜆𝑝 − 𝜆𝜏
𝐴0,0
1,1𝐸

𝛿1 +𝐻1,0
1,0𝐸

𝜂2 + 𝐽 1,0
1,0𝐸

𝜂1 , 𝜀0,01,1 ≤ 𝐸 < 𝜀1,01,0

𝛷1,0
1,0(𝐸) − 𝐼1 , 𝐸 ≥ 𝜀1,01,0

(29)

Although it is not possible to express the value of the option to
invest as in (20), we analyse the impact of 𝜆𝑝 on 𝜀1,01,0 by applying
the FONC to the value-matching condition between the bottom two
branches of (29), and, thus, obtain (30). The first term on the left-hand
side represents the extra benefit from allowing the project to start at
a higher threshold price, the second term reflects the reduction in the
MC due to saved investment cost and the third term is the MB from
being able to delay investment should the electricity price drop below
𝜀0,01,1. The first term on the right-hand side is the MC of the forgone cash
flows, while the second term represents the MC associated with the
absence of the second technology. The fourth term on the left-hand side
reflects the increase in MB due to the likelihood of a subsidy, whereas

the third term on the right-hand is the corresponding MC of waiting
because the subsidy is not available yet.

⎛

⎜

⎜

⎝

𝐸
𝜀1,01,0

⎞

⎟

⎟

⎠

𝜂1
[

𝐷1
𝜌 − 𝜇 + 𝜆𝑝

+
𝜂1𝜌𝐼1

(

𝜌 + 𝜆𝑝
)

𝜀1,01,0

+𝜃1𝐴
1,0
1,0𝜀

1,0
1,0

𝜃1−1 +
(

𝜂1 − 𝜂2
)

𝐻1,0
1,0 𝜀

1,0
1,0

𝜂2−1
]

=
⎛

⎜

⎜

⎝

𝐸
𝜀1,01,0

⎞

⎟

⎟

⎠

𝜂1
[

𝜂1𝐷1
𝜌 − 𝜇 + 𝜆𝑝

−

(

𝛿1 − 𝜂1
)

𝜆𝜏
𝜆𝜏 − 𝜆𝑝

𝐴0,0
1,1𝜀

1,0
1,0

𝛿1−1 + 𝜂1𝐴
1,0
1,0𝜀

1,0
1,0

𝜃1−1
]

(30)

As shown in Proposition 4, greater likelihood of subsidy provision
lowers the MB by more than the MC, thereby decreasing the optimal
investment threshold. In combination with technological uncertainty,
this result further emphasises how the optimal investment policy un-
der stepwise investment differs from that under lumpy investment.
Indeed, holding 𝜆𝑝 fixed, an increase in 𝜆𝜏 raises the investment in-
centive, i.e. reduces the investment threshold, thus making the impact
of subsidy provision even more pronounced.

Proposition 4. Greater likelihood of subsidy provision lowers the optimal
investment threshold.

The relative loss in option value due to subsidy provision (𝑎 = 0, 𝑏 =

1, 𝑐 = 0) or retraction (𝑎 = 1, 𝑏 = 0, 𝑐 = 1) is
𝐹 0,0
1,1 (𝐸)−𝐹 𝑏,𝑐

1,𝑎 (𝐸)

𝐹 0,0
1,1 (𝐸)

. For example,

under sudden subsidy provision, 𝜆𝑝 = 0 means that the subsidy will
never be provided and the relative loss in option value is maximised.
By contrast, a greater 𝜆𝑝 increases the likelihood of permanent subsidy
provision and lowers the relative loss in option value. The range of
possible value for the relative loss in option value is indicated in
Proposition 5.

Proposition 5.
𝐹 0,0
1,1 (𝐸)−𝐹 𝑏,𝑐

1,𝑎 (𝐸)

𝐹 0,0
1,1 (𝐸)

∈
[

0, 1 − 1
(1+𝑦)𝛽1

]

.

4.4. Provision of a retractable subsidy

Unlike Section 4.3, here, we assume that the subsidy that was
provided at time 𝑇 𝑝

1 may be retracted at time 𝑇 𝑝
2 , i.e. 𝑎 = 0, 𝑏 = 1 and

𝑐 = 1. Consequently, once the subsidy is provided, the firm receives
the value of a retractable subsidy, which is already described in (11).
The expected value of the project can be calculated as indicated in (31).
Unlike (22), the second term on the left-hand side of (31) indicates that
the subsidy is only available until time 𝑇 𝑝

2 . Using the properties of the
Erlang distribution for the joint density of 𝑇 𝑝

1 and 𝑇 𝑝
2 , we can express

the expected value of the active project as in (31).

E𝐸

⎡

⎢

⎢

⎣

∫

∞

0

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑑𝑡 + ∫

𝑇 𝑝2

𝑇 𝑝1

𝑒−𝜌𝑡𝐷2𝐸𝑡𝑦𝑑𝑡
⎤

⎥

⎥

⎦

=
𝐷2𝐸
𝜌 − 𝜇

+ E
⎧

⎪

⎨

⎪

⎩

𝐷2𝐸𝑦
[

𝑒−(𝜌−𝜇)𝑇
𝑝
1 − 𝑒−(𝜌−𝜇)𝑇

𝑝
2
]

𝜌 − 𝜇

⎫

⎪

⎬

⎪

⎭

=
𝐷2𝐸
𝜌 − 𝜇

+
𝐷2𝐸𝑦
𝜌 − 𝜇

[

∫

∞

0

𝜆𝑝𝑒
−𝜆𝑝𝑇

𝑝
1 𝑒−(𝜌−𝜇)𝑇

𝑝
1 𝑑𝑇 𝑝

1

−∫

∞

0

𝜆2𝑝𝑇
𝑝
2 𝑒

−𝜆𝑝𝑇
𝑝
2 𝑒−(𝜌−𝜇)𝑇

𝑝
2 𝑑𝑇 𝑝

2

]

(31)

The analytical expression of (31) is indicated in (32). Unlike Sec-
tion 4.3, the subsidy is now available for a smaller time period, and,
thus, its expected value is reduced, since 𝜆𝑝

(

𝜌−𝜇+𝜆𝑝
)2 ≤ 𝜆𝑝

(𝜌−𝜇)
(

𝜌−𝜇+𝜆𝑝
) .

𝛷1,1
2,0(𝐸) =

𝐷2𝐸
𝜌 − 𝜇

+
𝜆𝑝𝐷2𝐸𝑦

(

𝜌 − 𝜇 + 𝜆𝑝
)2

(32)
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Next, in State (1,2), the firm operates the first technology and
holds a single embedded investment option. The dynamics of the value
function 𝐹 1,1

2,0 (𝐸) are described in (33), which must be solved for each
expression of 𝐹 0,1

2,1 (𝐸), that is indicated in (14). The expression for
𝐹 1,1
2,0 (𝐸) is indicated in (D.1).

( − 𝜌)𝐹 1,1
2,0 (𝐸) + 𝜆𝑝

[

𝐹 0,1
2,1 (𝐸) − 𝐹 1,1

2,0 (𝐸)
]

+𝐷1𝐸 = 0 (33)

Stepping back to State 1, the dynamics of the value function 𝛷1,1
1,0(𝐸) are

indicated in (34), and the expression of 𝛷1,1
1,0(𝐸) is indicated in (D.2).

( − 𝜌)𝛷1,1
1,0(𝐸) + 𝜆𝑝

[

𝛷0,1
1,1(𝐸) −𝛷1,1

1,0(𝐸)
]

+ 𝜆𝜏
[

𝐹 1,1
2,0 (𝐸) −𝛷1,1

1,0(𝐸)
]

+𝐷1𝐸 = 0 (34)

Finally, in State (0,1), the dynamics of the value of the option to invest
in the first technology are described in (35). Solving (35) for each
expression of 𝐹 0,1

1,1 (𝐸) indicated in (19), we obtain (D.3).

( − 𝜌)𝐹 1,1
1,0 (𝐸) + 𝜆𝑝

[

𝐹 0,1
1,1 (𝐸) − 𝐹 1,1

1,0 (𝐸)
]

= 0 (35)

As it will be shown numerically, the likely retraction of the subsidy
lowers the investment incentive compared to the case of permanent
subsidy provision. This happens because the reduction in the lifetime
of the subsidy renders it less valuable and raises the incentive to delay
investment.

5. Case study

We illustrate the impact of price, policy and technological uncer-
tainty on the optimal investment policy via a case study on offshore
wind, which has experienced a tremendous growth over the last twenty
years. Particularly impressive is the output increase over this time
period, which is mostly driven by greater hub-heights, sweep area
and average capacity. These factors have increased the capital cost
of such projects considerably. Indeed, a typical offshore-wind turbine
has a capacity of 4 MW today compared to only 2 MW in 2000. Also,
the capacity factor, i.e. the average electricity generated divided by
the capacity, has increased from 30% twenty years ago to 42% today
(IRENA, 2018b). Hence, we can expect a typical offshore-wind turbine
to yield 14.5 GWh per year today (4 MW×0.42 × 24h×365d) compared
to 10 GWh in 2000. According to IRENA (2018b), the total cost of
an offshore-wind turbine is approximately 4000 EUR/kW, and, with
a capacity of 4 MW, the total installation cost is 16 million EUR,
while less advanced platforms cost around 5.4 million EUR for a 2 MW
capacity.

The relevant parameter values are indicated in Table 1. Apart from
𝐼𝑛 and 𝐷𝑛 that are obtained from IRENA (2018b), the remaining param-
eter values are based on stylised assumptions. However, 𝜇 and 𝜎 can
be estimated from historic electricity prices, 𝑟 can be estimated from
government bonds and 𝜆𝜏 can be estimated by fitting a Poisson process
to historical data on innovation (https://ens.dk/en). Also, information
on historic policy changes that can be used to gauge policymakers’
commitment to current subsidies can be found at www.res-legal.eu/.
The support scheme we consider is akin to a premium FIT, i.e. a fixed
proportion on top of the electricity price (Couture et al., 2010). [For
example, under the FIT scheme in Germany the subsidy has been set to
15 EUR/MWh],1 and since market prices were around 50 EUR/MWh in
early 2019, the subsidy amounts to 30% of the electricity price.2 Also,
we consider a context where rapid technological innovation renders
existing technologies obsolete so that only a new technology presents
a viable investment opportunity after the first one has already been
adopted.

1 A detailed description of the subsidy scheme in Germany can be
found in http://www.res-legal.eu/search-by-country/germany/single/s/res-e/
t/promotion/aid/premium-tariff-i-market-premium/lastp/135/.

2 Market prices are available at https://www.epexspot.com/en/market-
data/elix.

Table 1
Parameter values.

Parameter Description Benchmark values

𝐷2 Output for technology 2 14.5 GWh per year
𝐼2 Investment cost for technology 2 16 mEUR
𝐷1 Output for technology 1 5 GWh per year
𝐼1 Investment cost for technology 1 5 mEUR
𝑦 Subsidy level 30%
𝑟 Risk-free rate 2%
𝜇 Electricity price growth parameter 0%
𝜎 Volatility electricity price 20%
𝜆𝑝 Policy uncertainty 𝜆𝑝 ∈ [0, 1]
𝜆𝜏 Technological uncertainty 𝜆𝜏 ∈ [0, 1]

Fig. 2 illustrates the project and option value as well as the optimal
investment threshold for the second technology in the case of perma-
nent subsidy retraction (left panel) and permanent subsidy provision
(right panel). As the left panel illustrates, greater likelihood of subsidy
retraction lowers the expected value of both the investment opportunity
and the active project. This increases the incentive to delay investment
and raises the optimal investment threshold. However, greater likeli-
hood of subsidy provision raises the expected value of the option to
invest and lowers the optimal investment threshold.

Fig. 3 illustrates the impact of technological and policy uncertainty
on the optimal investment threshold in the second (left panel) and the
first technology (right panel) under sudden subsidy retraction. As both
panels illustrate, greater price uncertainty raises the opportunity cost of
investment, and, in turn, the value of waiting, thereby increasing the
incentive to postpone investment. Also, the threat of permanent subsidy
retraction decreases the firm’s incentive to invest and raises the optimal
investment threshold, as shown in Proposition 2. However, the right
panel illustrates the interaction between economic, technological and
policy uncertainty, and indicates that stepwise investment facilitates
earlier technology adoption compared to lumpy investment and that an
increase in 𝜆𝜏 makes this result even more pronounced. Intuitively, as
𝜆𝜏 increases, the time interval between subsequent technology versions
decreases. Consequently, in the attempt to maintain a compulsive
strategy, a firm would be more willing to adopt the current technology
version sooner before the new technology version is released. Further-
more, when the second technology is uncertain, i.e. for 0 < 𝜆𝜏 < ∞, an
earlier adoption of the first technology facilitates the arrival of the sec-
ond one. Hence, the firm has an incentive to adopt the first technology
earlier to increase the expected NPV of the second one. From a technical
standpoint, an increase in 𝜆𝜏 while holding 𝜆𝑝 fixed raises the value of
the embedded option, and, in turn, the incentive to invest. However, for
a given 𝜆𝑝, the impact of 𝜆𝜏 on the optimal investment threshold in the
first technology is not monotonic. This happens because in the presence
of the embedded option (𝜆𝜏 → ∞) the project and option value for the
first technology are greater compared to the case 𝜆𝜏 = 0, yet the optimal
investment threshold is not affected. This implies that, the firm behaves
myopically when adopting the first technology given that the second
one is available, as shown in Chronopoulos and Siddiqui (2015). This
is why we observe the non-monotonic behaviour, whereby the optimal
investment threshold decreases (increases) with higher 𝜆𝜏 when 𝜆𝜏 is
small (large).

This result emphasises how modular capacity expansion in the
light of technological uncertainty can have a critical impact on the
decision to invest compared to a lumpy investment strategy and has
important implications for both private firms and policymakers. Indeed,
the former can take into account the impact of policy uncertainty on
the value of the project and the option to invest, and, thus, make
more informed investment and operational decisions. Similarly, the
latter can devise more effective policy mechanisms by balancing the
adverse impact of subsidy retraction on investment timing in terms of
decelerating investment against the value of stepwise investment that
induces earlier technology adoption. Note that the value of stepwise

https://ens.dk/en
http://www.res-legal.eu/
http://www.res-legal.eu/search-by-country/germany/single/s/res-e/t/promotion/aid/premium-tariff-i-market-premium/lastp/135/
http://www.res-legal.eu/search-by-country/germany/single/s/res-e/t/promotion/aid/premium-tariff-i-market-premium/lastp/135/
https://www.epexspot.com/en/market-data/elix
https://www.epexspot.com/en/market-data/elix
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Fig. 2. Option and project value for investment in the second technology under permanent subsidy retraction (left) and permanent subsidy provision (right) for 𝜆𝑝 = 0.00, 0.2 and
𝜎 = 0.20. Greater likelihood of subsidy retraction (provision) lowers (raises) the expected value of the project and decreases (increases) the investment incentive.

Fig. 3. Impact of 𝜆𝑝 and 𝜆𝜏 on the optimal investment threshold in the second (left) and the first technology (right) under sudden subsidy retraction. A higher innovation rate
raises the value of the project and the incentive to invest, thereby mitigating the impact of subsidy retraction.

investment in terms of the timing of technology adoption is two-fold:
First, stepwise investment facilitates earlier technology adoption as it
entails an initial investment cost that is lower than that under lumpy
investment. Second, greater likelihood of technological innovation low-
ers the optimal investment threshold for the first technology for a given
level of 𝜆𝑝, thus further increasing the discrepancy between the lumpy
and the stepwise investment investment threshold.
The practical relevance of the results of Fig. 3 is also indicated in
Table 2. Notice that an increase in 𝜆𝑝 for 𝜆𝜏 = 0 increases the incentive
to delay investment and raises the optimal investment threshold. For
example, an increase of 𝜆𝑝 from 0 to 0.12 when 𝜆𝜏 = 0 raises 𝜀0,10,1
from 43.5 to 49.67. However, an increase in 𝜆𝜏 from 0 to 0.0181 for
𝜆𝑝 = 0.12 results in a decrease in 𝜀0,10,1 to its initial value, i.e. 43.5. Hence,
the implications of subsidy retraction in terms of delaying investment
can be completely offset by incentivising greater R&D efforts. The
implications of this result are relevant from a policymaking perspective
considering how private firms often own a portfolio of technologies
with different innovation rates, e.g. wind, solar, etc. Hence, quantifying

the extent to which sequential investment opportunities accelerate
technology adoption enables the design of policy commitments, so that
the delay in technology adoption that policy uncertainty motivates is
offset by the greater incentive to invest due to the likely arrival of an
improved technology version. Also, from a policymaking standpoint,
the comparison between lumpy and stepwise investment is critical in
terms of balancing the benefit of installing a greater capacity at a later
date (lumpy investment) over an earlier investment but in a smaller
initial project (stepwise investment).

Unlike the case of sudden subsidy retraction, the left panel of Fig. 4
indicates that greater likelihood of subsidy provision accelerates the
adoption of the second technology, as shown in Proposition 4. As the
right panel illustrates, this result also holds for the first technology,
however, the interaction between policy and technological uncertainty
is such that greater likelihood of innovation further accelerates invest-
ment in the first technology. Note that under a compulsive technology
adoption strategy the firm invests in each technology that becomes
available. Thus, an increase in 𝜆𝜏 raises the value of the embedded
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Fig. 4. Impact of 𝜆𝑝 and 𝜆𝜏 on the optimal investment threshold in the second (left) and the first technology (right) under sudden subsidy provision. The likely arrival of a new
technology raises the incentive to invest in the existing one and makes the impact of subsidy provision more pronounced.

Fig. 5. Impact of 𝜆𝑝 on the MB and MC of delaying investment for a permanent sudden retraction (left) and a permanent provision (right) for 𝜆𝜏 = 0.02 and 𝜎 = 0.20.

Table 2
Comparison between lumpy and stepwise investment.
Impact of 𝜆𝑝 on investment threshold Reduction in 𝜀0,10,1 due to innovation

𝜆𝑝 𝜆𝜏 Lumpy
investment

𝜀0,10,1 𝜆𝑝 𝜆𝜏 𝜀0,10,1

0.00 0.0 64.95 43.50 0.00 – –
0.12 – 73.86 49.67 0.12 0.0181 43.50
0.24 – 76.16 51.19 0.24 0.0012 49.67
0.36 – 77.37 51.99 0.36 0.0006 51.19
0.48 – 78.16 52.51 0.48 0.0004 51.99
0.60 – 78.72 52.87 0.60 0.0002 52.51

option to invest in the second technology, and, in turn, the value of
the option to invest in the first one.

Fig. 5 illustrates how the impact of policy uncertainty on the optimal
investment threshold can be decomposed with respect to the MB and
MC of delaying investment. Notice that greater likelihood of subsidy
retraction (left panel) lowers both the MB and the MC curve, yet the

latter shifts down by more than the former, and, as a result, the two
curves intersect at a higher threshold. Intuitively, the extra cost from
delaying investment is reflected partly in the loss in value due to the
absence of the second technology. This loss becomes more pronounced
as both the electricity price and the likelihood of subsidy retraction
increase. By contrast, greater likelihood of subsidy provision decreases
both the MB and MC, yet the MB decreases by more, thereby decreasing
the marginal value of delaying investment, and, in turn, the optimal
investment threshold (right panel).

As shown in Proposition 5 and illustrated in Fig. 6, the relative loss
in option value due to sudden subsidy retraction or provision obtains
values within the interval

[

0, 1 − 1
(1+𝑦)𝛽1

]

, which, for the parameter
value of Table 1, becomes [0, 35%]. Within this interval, an increase
in the likelihood of subsidy retraction (provision) from 𝜆𝑝 = 2% to
𝜆𝑝 = 4% raises (lowers) the relative loss in options value, as illustrated
in the left (right) panel of Fig. 6 via the upward (downward) shift
of the curves. Also, as both panels illustrate, the impact of 𝜆𝜏 on the
relative loss in option value is non-monotonic. Note that both 𝐹 0,0

1,1 (𝐸)
and 𝐹 1,0

1,1 (𝐸) reflect options to invest in an existing technology with
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Fig. 6. Impact of 𝜆𝑝 and 𝜆𝜏 on the relative loss in options value under permanent subsidy retraction (left) and permanent subsidy provision (right), for 𝜎 = 0.20. The likely arrival
of a more advanced technology version raises (lowers) the relative loss in option value due to subsidy retraction (provision).

a single embedded option to adopt an improved technology version.
Hence, as 𝜆𝜏 increases, the value of the embedded option increases
in both cases. However, since 𝐹 0,0

1,1 (𝐸) includes a permanent subsidy,
it increases proportionally by more than 𝐹 1,0

1,1 (𝐸), which explains the
increase in the relative loss in option value for low value of 𝜆𝜏 . This
increase stops as soon as 𝐹 0,0

1,1 (𝐸) approaches its maximum value. At
the same time, 𝐹 1,0

1,1 (𝐸) continues to increase yet at a lower rate, which
results in a slight decrease in the relative loss in option value until it
also reached its maximum and the relative loss remains constant.

Fig. 7 illustrates how the likely retraction of a subsidy following
its initial provision impacts the optimal investment policy and the
relative loss in option value. Compared to the case of permanent
subsidy provision (thin curves), the retraction of the subsidy lowers the
expected value of the project, and, in turn, the expected value of the
investment opportunity, thereby increasing the incentive to postpone
investment. This is in line with Karneyeva and Wüstenhagen (2017),
who find that retroactive policy changes in Italy increased perceived
policy risk, and, in turn, the value of the remaining feed-in tariffs. In
the right panel, the arrows indicate the direction of increasing policy
interventions, specifically, the shift from permanent provision of a
subsidy to provision of a retractable subsidy. Notice that, for each value
of 𝜆𝑝, the relative loss in option value under the sudden provision of
a retractable subsidy (thick curves) is greater than the relative loss in
option value in the case of sudden provision of a permanent subsidy
(thin curves). Thus, the right panel illustrates the adverse impact of
sequential policy interventions in terms of reducing the expected value
of the firm’s option to invest.

Fig. 8 illustrates the impact of 𝜆𝑝 and 𝜆𝜏 on the optimal investment
threshold in the case of provision of a permanent and a retractable
subsidy. As both panels illustrate, 𝜆𝑝 = 0 implies that the subsidy will
never be provided, and, therefore, 𝜀1,12,0 = 𝜀1,02,0. However, an increase in
𝜆𝑝 implies that the value due the provision of the subsidy is reduced due
to the likelihood of a subsequent retraction. Consequently, relative to
the case of permanent subsidy provision, the likelihood that the subsidy
will be available temporarily decreases the investment incentive and
raises the optimal investment threshold, i.e. 𝜖1,12,0 > 𝜖1,02,0 . This also implies
that the impact of 𝜆𝑝 on the optimal investment threshold is non-
monotonic when the subsidy is only temporarily available. Indeed,
for low values of 𝜆𝑝, 𝜖1,12,0 decreases due to the likely provision of
the subsidy. However, a further increase in 𝜆𝑝 shortens the period in
which the subsidy is available, thus increasing the incentive to postpone

investment. Furthermore, note that despite the likely withdrawal of a
subsidy, the mere prospect of subsidy provision induces earlier adop-
tion than no subsidy at all, as can be seen by comparing the surface
to the line when 𝜆𝑝 = 0. Interestingly, even though the subsidy is
assumed to be available under lumpy investment, a stepwise investment
approach leads to earlier technology adoption despite the uncertainty
over subsidy provision. This happens because the expected value of the
investment cost associated with the second technology is lower relative
to case of lumpy investment due to the effect of discounting.

Nevertheless, as the right panel illustrates, the possibility to upgrade
an existing technology by adopting a more advanced version creates
an opposing force that mitigates the impact of subsidy retraction. In
relation to the interaction between technological and policy uncer-
tainty, this result is crucial from the perspective of policymakers and
private firms. Indeed, within a volatile economic environment, support
schemes that aim to stimulate investment in RE technologies are likely
to be revised frequently. Hence, taking into account how private firms
may respond to frequent revisions of a support scheme when a project
entails embedded investment options, will facilitate informed revisions
of support schemes and decisions upon the rate of policy interventions
that do not risk the timing of the required investments in RE and
maintain it within desired limits.

6. Conclusions and policy implications

The implications of the structural transformation of the power sector
for both market participants and policymakers are considered to be
crucial as they are expected to change substantially the wholesale
market dynamics (Sensfuß et al., 2008). Within this environment,
private firms are required to make accurate investment decisions, while
policymakers must take into account how private firms respond to
different sources of uncertainty in order to incentivise investment. The
objective of the analysis is to provide complementary insights to the
well-established energy systems models by addressing the behavioural
impact of incentives upon market agents. These insights are particularly
relevant to the energy sector, where frequent revisions of support
schemes create uncertain responses to incentives, while technological
innovations create sequential investment opportunities. The results of
the analysis can be summarised into the following three main lessons:

i. Greater likelihood of subsidy retraction (provision) postpones (ac-
celerates) investment. The implications of this result are crucial
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Fig. 7. Option and project value for investment in the second technology under the provision of a permanent and a retractable subsidy for 𝜆𝑝 = 0.2 and 𝜎 = 0.2 (left) and relative
loss in option value (right). The likely retraction of a subsidy following its initial provision increases the incentive to postpone investment (left) and raises the relative loss in
option value (right).

Fig. 8. Impact of 𝜆𝑝 and 𝜆𝜏 on the optimal investment threshold in the second (left) and the first technology version (right) under sudden provision of a permanent and a
retractable subsidy, for 𝜎 = 0.22. The likely retraction of a subsidy following its initial provision decreases the expected value of the project and increases the incentive to postpone
investment. However, the option to adopt an improved technology version mitigates the impact of subsidy retraction.

from a policy-making standpoint as it quantifies how market
participants would act upon their flexibility to delay investment
in the light of economic, technological and policy uncertainty. In-
deed, discretion over investment timing impacts upon the possible
effectiveness of achieving timely the investment targets set by pol-
icy. For example, under the Paris Agreement, the EU’s nationally
determined contribution is to reduce greenhouse gas emissions
by at least 40% by 2030 compared to 1990 (The Independent,
2018a).

ii. The flexibility to proceed in stages enables efficient technological
risk management, which offers a critical advantage over a lumpy
investment strategy as it accelerates investment, and this result is
more pronounced in the light of technological uncertainty. This
implies that the possibility to invest in an improved version of
a RE technology mitigates the impact of policy uncertainty in
the case of subsidy retraction, and makes the impact of subsidy

provision more pronounced. Consequently, the decision to pro-
vide or retract a subsidy should account for the added value
of the flexibility to upgrade an existing RE technology and the
rate at which it will become available to ensure the efficient
use of scarce resources. Indeed, through new auction-based sys-
tems, governments have almost eliminated subsidy payments for
offshore-wind, which has demonstrated tremendous efficiency
improvements (IEA, 2017).

iii. Sequential policy interventions should be designed so as to min-
imise the likelihood of an adverse impact on the optimal timing
of technology adoption. For example, the retraction of a subsidy
following its initial provision results in later technology adoption
relative to the case of permanent subsidy provision. Quantifying
the delay caused by the retraction of a subsidy makes it possible
to design its duration in a way that maintains the timing of tech-
nology adoption within acceptable limits. This may also prevent
undesirable market reactions, such as the 56% decrease in RE
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investment after the announcement of RE subsidy cuts in the UK
(The Independent, 2018b).

Extensions of this framework may include the development of a
two-factor model in order to investigate how the correlation between
price and policy uncertainty impacts the optimal investment policy.
Additionally, empirical research regarding the rate of policy interven-
tions would provide crucial insights not only on the appropriate model
specification, but also on how to configure model parameters in order
to model realistic situations within the RE industry. Finally, to relax the
assumption of a GBM, a mean-reverting process could be implemented
within the same framework, while allowing for different technology
adoption strategies, e.g. leapfrog and laggard, would enable further
investigation of how the dominant strategy is affected by technological
and policy uncertainty.
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Appendix A. Benchmark Case

The dynamics of the value function 𝐹 0,0
2,𝑎 (𝐸) are described in (2). And

by using Itô’s lemma, we expand the right-hand side of (2), and, thus,
we obtain (A.1).
1
2
𝜎2𝐸2𝐹 0,0′′

2,𝑎 (𝐸) + 𝜇𝐸𝐹 0,0′
2,𝑎 (𝐸) − 𝜌𝐹 0,0

2,𝑎 (𝐸) +𝐷1𝐸 (1 + 𝑦𝑎) = 0 (A.1)

Notice that the solution of the homogeneous part of (A.1) is 𝐹 0,0
2,𝑎 (𝐸) =

𝐴0,0
2,𝑎𝐸

𝛽1 + 𝐵0,0
2,𝑎𝐸

𝛽2 . However, 𝐸 → 0 ⇒ 𝐵0,0
2,𝑎𝐸

𝛽2 → ∞, and, therefore,
𝐵0,0
2,𝑎 = 0. The expression for 𝐹 0,0

2,𝑎 (𝐸) is indicated in (4). Also, 𝜀0,02,𝑎 and
𝐴0,0
2,𝑎 are indicated in (5) and are determined analytically via the value-

matching and smooth-pasting conditions indicated in (A.2) and (A.3),
respectively.

𝐷2𝜀
0,0
2,𝑎 (1 + 𝑎𝑦)

𝜌 − 𝜇
− 𝐼2 =

𝐷1𝜀
0,0
2,𝑎(1 + 𝑎𝑦)

𝜌 − 𝜇
+ 𝐴0,0

2,𝑎𝜀
0,0
2,𝑎

𝛽1 (A.2)

𝐷2 (1 + 𝑎𝑦)
𝜌 − 𝜇

=
𝐷1(1 + 𝑎𝑦)

𝜌 − 𝜇
+ 𝛽1𝐴

0,0
2,𝑎𝜀

0,0
2,𝑎

𝛽1−1 (A.3)

Also, the endogenous constants 𝐴0,0
1,𝑎 and 𝐵0,0

1,𝑎 are indicated in (A.4)
and (A.5) and are determined by applying value-matching and smooth-
pasting conditions to (8). Note that 𝐴0,0

1,𝑎 ≤ 0, since the third term
in the top part of (8) reflects the reduction in option value (second
term) because the second technology has yet to become available. Also,
𝐵0,0
1,𝑎 ≥ 0 since the third term in the bottom part of (8) reflects the

likelihood of the price dropping in the waiting region.

𝐴0,0
1,𝑎 =

𝜀0,02,𝑎
−𝛿1

𝛿2 − 𝛿1

⎡

⎢

⎢

⎣

𝜆𝜏
(

𝛿2 − 1
) (

𝐷2 −𝐷1
)

(1 + 𝑦𝑎) 𝜀0,02,𝑎
(𝜌 − 𝜇)

(

𝜌 − 𝜇 + 𝜆𝜏
)

−
𝛿2𝜆𝜏𝐼2
𝜆𝜏 + 𝜌

+
(

𝛽1 − 𝛿2
)

𝐴0,0
2,𝑎𝜀

0,0
2,𝑎

𝛽1
⎤

⎥

⎥

⎦

≤ 0 (A.4)

𝐵0,0
1,𝑎 =

𝜀0,02,𝑎
−𝛿2

𝛿1 − 𝛿2

⎡

⎢

⎢

⎣

𝜆𝜏
(

1 − 𝛿1
) (

𝐷2 −𝐷1
)

(1 + 𝑦𝑎) 𝜀0,02,𝑎
(𝜌 − 𝜇)

(

𝜌 − 𝜇 + 𝜆𝜏
)

+
𝛿1𝜆𝜏𝐼2
𝜆𝜏 + 𝜌

− (𝛽1 − 𝛿1)𝐴
0,0
2,𝑎𝜀

0,0
2,𝑎

𝛽1
⎤

⎥

⎥

⎦

≥ 0 (A.5)

Proposition 1. A trade-off between the two technologies exists if 𝐷1
𝐼1

> 𝐷2
𝐼2
.

Proof. The electricity price, 𝛼, where the expected NPVs of the profits
of the two technologies are equal is given in (A.6).

𝐷1𝛼 (1 + 𝑎𝑦)
𝜌 − 𝜇

− 𝐼1 =
𝐷2𝛼 (1 + 𝑎𝑦)

𝜌 − 𝜇
− 𝐼2 ⇒ 𝛼 =

(

𝐼1 − 𝐼2
)

(𝜌 − 𝜇)
(

𝐷1 −𝐷2
)

(1 + 𝑎𝑦)
(A.6)

Since the value function must be positive at 𝛼, we have:
(

𝐼1 − 𝐼2
)

(𝜌 − 𝜇)
(

𝐷1 −𝐷2
)

(1 + 𝑎𝑦)
𝐷1 (1 + 𝑎𝑦)

𝜌 − 𝜇
− 𝐼1 > 0

⟺
(

𝐼1 − 𝐼2
)

𝐷1 −
(

𝐷1 −𝐷2
)

𝐼1 < 0

Hence, the condition becomes: 𝐼1𝐷2⟨𝐼2𝐷1 ⟺ 𝐷1∕𝐼1⟩𝐷2∕𝐼2. ■

Appendix B. Permanent subsidy retraction

Proposition 2. Greater likelihood of subsidy retraction raises the optimal
investment threshold.

Proof. Since technological and policy uncertainty are modelled as
independent Poisson processes, the impact of greater 𝜆𝑝 on the optimal
investment threshold would be qualitatively the same for each value of
𝜆𝜏 , as demonstrated in the right panel of Figs. 3 and 4. For example,
considering the first technology in the absence of the second one
(𝜆𝜏 = 0), greater 𝜆𝑝 lowers the expected value of the active project
as indicated in (B.1).

𝜕
𝜕𝜆𝑝

𝛷0,1
1,1(𝐸) = 𝜕

𝜕𝜆𝑝

[

𝐷1𝐸
𝜌 − 𝜇

+
𝐷1𝐸𝑦

𝜌 − 𝜇 + 𝜆𝑝

]

< 0 (B.1)

Also, to demonstrate the additive impact of 𝜆𝑝 on the expected value
of the active project for 𝜆𝜏 > 0, we consider the case 𝜆𝜏 → ∞ and the
option to invest in the second technology, 𝐹 0,1

2,1 (𝐸), for 𝐸 < 𝜀0,12,1, which is
indicated in the top part of (14). As shown in (B.2), the impact of 𝜆𝑝 on
𝐹 0,1
2,1 (𝐸) consists of the impact on the expected value from operating the

first technology (first term) and the impact on the option to invest in the
second one (second term). Like in (B.1), greater 𝜆𝑝 lowers the expected
value from operating the first technology. Also, greater 𝜆𝑝 lowers the
expected value of the embedded option since 𝐴0,1

2,1𝐸
𝜂1 reflects the added

value from the subsidy which decreases with greater 𝜆𝑝.

𝜕
𝜕𝜆𝑝

𝐹 0,1
2,1 (𝐸) = 𝜕

𝜕𝜆𝑝

[

𝐷1𝐸
𝜌 − 𝜇

+
𝐷1𝐸𝑦

𝜌 − 𝜇 + 𝜆𝑝

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0

+ 𝜕
𝜕𝜆𝑝

[

𝐴0,0
2,0𝐸

𝛽1 + 𝐴0,1
2,1𝐸

𝜂1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0

(B.2)

Consequently, to facilitate the exposition of the derivation we will show
that that greater likelihood of subsidy retraction raises the optimal
investment threshold for 𝜆𝜏 = 0. First, note that, based on the general
expression of 𝛽1, 𝜂1, 𝛿1 and 𝜃1 indicated in (B.3), where 𝑑 = 𝜇−0.5𝜎2, we
have the following relationships: 𝜃1 ≥ 𝜂1 ≥ 𝛽1 ≥ 1 and 𝜃1 ≥ 𝛿1 ≥ 𝛽1 ≥ 1,
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while 𝜕𝜂1
𝜕𝜆𝑝

> 0, 𝜕𝛿1
𝜕𝜆𝜏

> 0, 𝜕𝜃1
𝜕𝜆𝑝

> 0, and 𝜕𝜃1
𝜕𝜆𝜏

> 0.

𝛽1 =
−𝑑 +

√

𝑑2 + 2𝜎2𝜌
𝜎2

𝜂1 =
−𝑑 +

√

𝑑2 + 2𝜎2(𝜌 + 𝜆𝑝)

𝜎2

𝛿1 =
−𝑑 +

√

𝑑2 + 2𝜎2(𝜌 + 𝜆𝜏 )
𝜎2

𝜃1 =
−𝑑 +

√

𝑑2 + 2𝜎2(𝜌 + 𝜆𝜏 + 𝜆𝑝)

𝜎2

(B.3)

If 𝜆𝜏 = 0, then (21) simplifies to (B.4). This happens because 𝛿1 =
𝛽1 ⇒ −𝐴0,1

1,1 = 𝐴0,1
2,1, and, therefore, the terms involving 𝐴0,1

2,1, 𝐴
0,1
1,1 and

𝐴0,0
1,0 cancel out.

⎛

⎜

⎜

⎝

𝐸
𝜀0,11,1

⎞

⎟

⎟

⎠

𝛽1
[

𝐷1
𝜌 − 𝜇

+
𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
+

𝛽1𝐼1
𝜀0,11,1

+ 𝛽1𝐶
0,1
1,1𝜀

0,1
1,1

𝜂1−1
]

=
⎛

⎜

⎜

⎝

𝐸
𝜀0,11,1

⎞

⎟

⎟

⎠

𝛽1
[

𝛽1𝐷1
𝜌 − 𝜇

+
𝛽1𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
+ 𝜂1𝐶

0,1
1,1𝜀

0,1
1,1

𝜂1−1
]

(B.4)

We start by subtracting the right- from the left-hand side of (B.4) as
indicated in (B.5), where 𝐶0,1

1,1𝜀
0,1
1,1

𝜂1−1 = 𝐷1
𝜌−𝜇 + 𝐷1𝑦

𝜌−𝜇+𝜆𝑝
− 𝐼1

𝜀0,11,1
−𝐶0,0

1,0𝜀
0,1
1,1

𝛽1−1.

𝐷1
𝜌 − 𝜇

+
𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
+

𝛽1𝐼1
𝜀0,11,1

+ 𝛽1

[

𝐷1
𝜌 − 𝜇

+
𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝

−
𝐼1
𝜀0,11,1

− 𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
]

−
𝛽1𝐷1
𝜌 − 𝜇

−
𝛽1𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝

− 𝜂1

[

𝐷1
𝜌 − 𝜇

+
𝐷1𝑦

𝜌 − 𝜇 + 𝜆𝑝
−

𝐼1
𝜀0,11,1

− 𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
]

= 0 (B.5)

Next, we rewrite (B.5) as in (B.6).

𝐷1
𝜌 − 𝜇

+

(

1 − 𝜂1
)

𝐷1𝑦
𝜌 − 𝜇 + 𝜆𝑝

−𝛽1𝐶
0,0
1,0𝜀

0,1
1,1

𝛽1−1−𝜂1

[

𝐷1
𝜌 − 𝜇

−
𝐼1
𝜀0,11,1

−𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
]

= 0

(B.6)

Finally, we set

𝑀 = 𝜕
𝜕𝜆𝑝

⎡

⎢

⎢

⎣

𝐷1
𝜌 − 𝜇

+

(

1 − 𝜂1
)

𝐷1𝑦
𝜌 − 𝜇 + 𝜆𝑝

− 𝛽1𝐶
0,0
1,0𝜀

0,1
1,1

𝛽1−1

−𝜂1
⎡

⎢

⎢

⎣

𝐷1
𝜌 − 𝜇

−
𝐼1
𝜀0,11,1

− 𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

(B.7)

with the objective to show that 𝑀 > 0, as this would imply that the MC
of delaying investment decreases by more than the MB with greater
𝜆𝑝, and, therefore, greater likelihood of subsidy retraction increases
the marginal value of delaying investment, and, in turn, the optimal
investment threshold.

𝑀 = 𝜕
𝜕𝜆𝑝

(

1 − 𝜂1
)

𝐷1𝑦
𝜌 − 𝜇 + 𝜆𝑝

−
[

𝐷1
𝜌 − 𝜇

−
𝐼1
𝜀0,11,1

− 𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
]

𝜕𝜂1
𝜕𝜆𝑝

≥ 0 (B.8)

Note that 𝜕
𝜕𝜆𝑝

(1−𝜂1)𝐷1𝑦
𝜌−𝜇+𝜆𝑝

= 𝐷1𝑦
(

𝜌−𝜇+𝜆𝑝
)2

[

𝜂1 − 1 −
(

𝜌 − 𝜇 + 𝜆𝑝
) 𝜕𝜂1

𝜕𝜆𝑝

]

and, thus,
we can rewrite 𝑀 as in (B.9).

𝑀 =
𝐷1𝑦

[

𝜂1 − 1 − (𝜌 − 𝜇 + 𝜆𝑝)
𝜕𝜂1
𝜕𝜆𝑝

]

(

𝜌 − 𝜇 + 𝜆𝑝
)2

−
[

𝐷1
𝜌 − 𝜇

−
𝐼1
𝜀0,11,1

−𝐶0,0
1,0𝜀

0,1
1,1

𝛽1−1
]

𝜕𝜂1
𝜕𝜆𝑝

≥ 0

(B.9)

Multiplying both sides of the inequality by 𝜀0,11,1 we obtain:

⎡

⎢

⎢

⎣

𝐶0,0
1,0𝜀

0,1
1,1

𝛽1 −
⎛

⎜

⎜

⎝

𝐷1𝜀
0,1
1,1

𝜌 − 𝜇
− 𝐼1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

𝜕𝜂1
𝜕𝜆𝑝

+
𝐷1𝑦𝜀

0,1
1,1

(

𝜌 − 𝜇 + 𝜆𝑝
)2

[

𝜂1 − 1 −
(

𝜌 − 𝜇 + 𝜆𝑝
) 𝜕𝜂1
𝜕𝜆𝑝

]

≥ 0 (B.10)

Note that the first term in (B.10) is positive since 𝜕𝜂1
𝜕𝜆𝑝

> 0 while

the expression within the brackets can be written as 𝐹 0,0
1,0

(

𝜀0,11,1
)

−
(

𝛷0,0
1,0

(

𝜀0,11,1
)

− 𝐼1
)

and we know that 𝐹 0,0
1,0

(

𝜀0,11,1
)

> 𝛷0,0
1,0

(

𝜀0,11,1

)

− 𝐼1 for
𝜀0,11,1 < 𝜀0,01,0, i.e. the expected option value is greater than the expected
NPV at a price level lower than the optimal one. The second term

is also positive since
𝐷1𝑦𝜀

0,1
1,1

(

𝜌−𝜇+𝜆𝑝
)2 > 0 while 𝜂1 − 1 −

(

𝜌 − 𝜇 + 𝜆𝑝
) 𝜕𝜂1

𝜕𝜆𝑝
≥

0 requires that 𝜂1 − 1 ≥
√

𝜌+𝜆𝑝
2𝜎2 or equivalently that

√

𝜌+𝜆𝑝
2𝜎2 ≤

√

4 ⋅ 𝜌+𝜆𝑝
2𝜎2 +

(

𝜇
𝜎2

− 1
2

)2
−
(

𝜇
𝜎2

+ 1
2

)

. For low values of 𝜇 (as in Table 1),
𝜇
𝜎2

≃ 0 and the last condition simplifies to 𝜌+𝜆𝑝
2𝜎2 > 1

3

√

𝜌+𝜆𝑝
2𝜎2 , which

holds. ■

Proposition 3. Stepwise investment induces earlier technology adoption
than a lumpy investment strategy as long as 𝐼1

𝐼2
> 𝑦.

Proof. The objective is to show that the lumpy investment threshold,
denoted by 𝜀0,0.,1 , is greater than the optimal investment threshold in the
first technology under stepwise investment. We will show this result for
the case of subsidy retraction. Following a similar process, the same
result can be shown for the case of subsidy provision as well. In this
comparison, we ignore technological and policy uncertainty based on
the following reasoning:

• Technological uncertainty does not impact the optimal invest-
ment threshold when a firm holds a single investment opportu-
nity, as is the case with lumpy investment, only the corresponding
option and project value (Chronopoulos and Siddiqui, 2015).

• Also, with respect to the stepwise investment strategy, techno-
logical uncertainty accelerates investment in the first technology.
Consequently, in view of showing that 𝜀0,11,1 < 𝜀0,0.,1 , we may ignore
technological uncertainty as greater 𝜆𝜏 decreases 𝜀0,11,1 relative to
𝜀0,0.,1 .

• From Proposition 2, we know that greater likelihood of sub-
sidy retraction raises the optimal investment threshold. Hence,
it suffices to show that 𝜀0,11,1 < 𝜀0,0.,1 at the extreme values of 𝜆𝑝,
i.e. for 𝜆𝑝 = 0 and 𝜆𝑝 → ∞. In the latter case, the subsidy will
be retracted immediately, and, therefore, the optimal investment
threshold in both cases is obtained analytically, thus facilitating
the comparison’’.

First, we consider the case of 𝜆𝑝 = 0 for both lumpy and stepwise
investment and the comparison between the optimal thresholds is
indicated in (B.11).

𝜀0,0.,1 > 𝜀0,01,1 ⇔
𝛽1

𝛽1 − 1

(

𝐼2 + 𝐼1
)

(𝜌 − 𝜇)
𝐷2 (1 + 𝑦)

>
𝛽1

𝛽1 − 1
𝐼1 (𝜌 − 𝜇)
𝐷1 (1 + 𝑦)

⇔
𝐼1 + 𝐼2
𝐷2

>
𝐼1
𝐷1

(B.11)

From Proposition 1 we know that 𝐼1
𝐷1

< 𝐼2
𝐷2

< 𝐼1+𝐼2
𝐷2

and therefore (B.11)
holds.

Next, we assume that 𝜆𝑝 → ∞ for the case of stepwise investment
and show that 𝜀0,0.,1 > 𝜀0,01,0.

𝛽1
𝛽1 − 1

(

𝐼2 + 𝐼1
)

(𝜌 − 𝜇)
𝐷2 (1 + 𝑦)

>
𝛽1

𝛽1 − 1
𝐼1 (𝜌 − 𝜇)

𝐷1
⇔

𝐼2 + 𝐼1
𝐷2 (1 + 𝑦)
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>
𝐼1
𝐷1

⇔
𝐷1
𝐼1

>
𝐷2 (1 + 𝑦)
𝐼2 + 𝐼1

(B.12)

Note that (B.12) holds due to Proposition 1 if the subsidy is close
to zero, yet will not necessarily hold if 𝑎 = 1. However, by using
Proposition 1 we have 𝜀0,0.,1 > 𝜀0,11,1 as long as 𝐼1

𝐼2
> 𝑦. ■

Appendix C. Provision of a permanent subsidy

Proposition 4. Greater likelihood of subsidy provision lowers the optimal
investment threshold.

Proof. Like in Proposition 2, we show this result for the case 𝜆𝜏 = 0 to
facilitate the exposition of the derivation. If 𝜆𝜏 = 0, then (30) can be
rewritten as in (C.1), since 𝜃1 = 𝜂1.

⎛

⎜

⎜

⎝

𝐸
𝜀1,01,0

⎞

⎟

⎟

⎠

𝜂1
[

𝐷1
𝜌 − 𝜇 + 𝜆𝑝

+
𝜂1𝜌𝐼1

(

𝜌 + 𝜆𝑝
)

𝜀1,01,0
+
(

𝜂1 − 𝜂2
)

𝐻1,0
1,0 𝜀

1,0
1,0

𝜂2−1
]

=
⎛

⎜

⎜

⎝

𝐸
𝜀1,01,0

⎞

⎟

⎟

⎠

𝜂1
[

𝜂1𝐷1
𝜌 − 𝜇 + 𝜆𝑝

]

(C.1)

By inserting the expression for 𝐻1,0
1,0 = 1

(𝜂1−𝜂2)𝜀0,01,1
𝜂2

(

(

𝜂1 − 𝛽1
)

𝐶0,0
1,1𝜀

0,0
1,1

𝛽1 −

(

𝜂1 − 1
) 𝜆𝑝𝐷1𝜀

0,0
1,1(1+𝑦)

(𝜌−𝜇)
(

𝜌−𝜇+𝜆𝑝
) + 𝜂1

𝜆𝑝𝐼1
𝜌+𝜆𝑝

)

in (C.1), subtracting the left from the
right-hand side and taking the derivative with respect to 𝜆𝑝, we obtain
(C.2).

𝐿 = 𝜕
𝜕𝜆𝑝

⎡

⎢

⎢

⎢

⎣

(

𝜂1𝐷1(𝜌 − 𝜇) + 𝜆𝑝𝐷1
)

[

𝜀0,0
1−𝜂2

1,1 (1 + 𝑦) − 𝜀1,0
1−𝜂2

1,0

]

(𝜌 − 𝜇)(𝜌 − 𝜇 + 𝜆𝑝)

+
𝜂1𝜌𝐼1

[

𝜀1,0
−𝜂2

1,0 − 𝜀0,0
−𝜂2

1,1

]

𝜌 + 𝜆𝑝

⎤

⎥

⎥

⎥

⎦

+ (𝜂1 − 𝜂2)𝐻
1,0
1,0 log

⎛

⎜

⎜

⎝

𝜀1,01,0
𝜀0,01,1

⎞

⎟

⎟

⎠

𝜕𝜂2
𝜕𝜆𝑝

(C.2)

The objective is to show that 𝐿 < 0, as this would imply that the MB
of delaying investment decreases by more than the MC with greater
𝜆𝑝, and, therefore, that greater likelihood of subsidy provision lowers
the marginal value of delaying investment, and, in turn, the optimal
investment threshold. Below, we consider each term of (C.2) separately.

• We start with the second term on the right-hand side of (C.2) and
determine its partial derivative with respect to 𝜆𝑝 as in (C.3).

𝜕
𝜕𝜆𝑝

𝜂1
𝜌 + 𝜆𝑝

=

𝜕𝜂1
𝜕𝜆𝑝

(𝜌 + 𝜆𝑝) − 𝜂1

(𝜌 + 𝜆𝑝)2
<

𝜕𝜂1
𝜕𝜆𝑝

(𝜌 + 𝜆𝑝) −
√

𝜌+𝜆𝑝
𝜎2

(𝜌 + 𝜆𝑝)2
(C.3)

Note that 𝜕𝜂1
𝜕𝜆𝑝

= 1

𝜎2
√

(

𝜇
𝜎2

− 1
2

)2
+

2(𝜌+𝜆𝑝 )
𝜎2

and by inserting the expres-

sion of 𝜕𝜂1
𝜕𝜆𝑝

in the numerator of (C.3) we obtain: 𝜕𝜂1
𝜕𝜆𝑝

(𝜌 + 𝜆𝑝) −
√

𝜌+𝜆𝑝
𝜎2

< 0 ⇔
(

𝜇
𝜎2

− 1
2

)2
+ (𝜌+𝜆𝑝)

𝜎2
< 0, which holds.

• Next, we determine the partial derivative of the first term on the
right-hand side of (C.2) with respect to 𝜆𝑝, as indicated in (C.4).

𝜕
𝜕𝜆𝑝

𝜂1𝐷1(𝜌 − 𝜇) + 𝜆𝑝𝐷1

(𝜌 − 𝜇)(𝜌 − 𝜇 + 𝜆𝑝)
=

𝐷1

[

𝜕𝜂1
𝜕𝜆𝑝

(𝜌 + 𝜆𝑝 − 𝜇) − 𝜂1 + 1
]

(𝜌 − 𝜇)(𝜌 − 𝜇 + 𝜆𝑝)2
(C.4)

Similarly, we can show that 𝜕𝜂1
𝜕𝜆𝑝

(𝜌 + 𝜆𝑝 − 𝜇) − 𝜂1 + 1 < 0, that

𝜀0,0
1−𝜂2

1,1 (1 + 𝑦) − 𝜀1,0
1−𝜂2

1,0 < 0, and that 𝜀0,01,1(1 + 𝑦) = 𝜀0,01,0.
• Finally, the third term on the right-hand side of (C.2) is negative

because 𝜕𝜂2
𝜕𝜆𝑝

< 0, while the other terms are positive.

Consequently, the MB of delaying investment decreases by more than
the MC with greater 𝜆𝑝, which lowers the marginal value of delaying
investment, thereby raising the investment incentive. ■

Proposition 5.
𝐹 0,0
1,1 (𝐸)−𝐹 𝑏,𝑐

1,𝑎 (𝐸)

𝐹 0,0
1,1 (𝐸)

∈
[

0, 1 − 1
(1+𝑦)𝛽1

]

.

Proof. For the case of permanent subsidy retraction (𝑎 = 1, 𝑏 = 0, 𝑐 = 1),
the relative loss in option value is outlined in (C.5).

𝐹 0,0
1,1 (𝐸) − 𝐹 0,1

1,1 (𝐸)

𝐹 0,0
1,1 (𝐸)

=

(

𝐶0,0
1,1 − 𝐶0,0

1,0

)

𝐸𝛽1 − 𝐶0,1
1,1𝐸

𝜂1

𝐶0,0
1,1𝐸

𝛽1
(C.5)

We will determine the expression of the relative loss in options for
𝜆𝑝 = 0 and 𝜆𝑝 → ∞.

• Notice that 𝜆𝑝 = 0 ⇒ 𝐹 0,0
1,1 (𝐸) = 𝐹 0,1

1,1 (𝐸) ⇒
𝐹 0,0
1,1 (𝐸)−𝐹 0,1

1,1 (𝐸)

𝐹 0,0
1,1 (𝐸)

= 0.

• By contrast, as 𝜆𝑝 increases, the relative loss increases since

𝐶0,1
1,1 → 0. Also, notice that 𝜀0,02,1 =

𝜀0,02,0
1+𝑦 , 𝐴0,0

2,1 = 𝐴0,0
2,0 (1 + 𝑦)𝛽1 , and,

𝜀0,01,1 =
𝜀0,01,0
1+𝑦 . Thus, 𝐴0,0

1,1 = (1 + 𝑦)𝛿1 𝐴0,0
1,0, and by substituting 𝜀0,01,1, 𝐴

0,0
1,1

and 𝐴0,0
2,1 in the expression for 𝐶0,0

1,1 , we obtain:

𝐶0,0
1,1 = (1 + 𝑦)𝛽1 1

𝜀0,01,1
𝛽1

(𝐷1𝜀
0,0
1,0

𝜌 − 𝜇
−𝐼1+𝐴

0,0
2,0𝜀

0,0
1,0

𝛽1+𝐴0,0
1,0𝜀

0,0
1,0

𝛿1
)

= (1 + 𝑦)𝛽1 𝐶0,0
1,0

(C.6)

Hence,
𝐶0,0
1,1

𝐶0,0
1,0

= (1 + 𝑦)𝛽1 , and, thus,
𝐹 0,0
1,1 (𝐸)−𝐹 0,1

1,1 (𝐸)

𝐹 0,0
1,1 (𝐸)

=
[

(1+𝑦)𝛽1𝐶0,0
1,0−𝐶

0,0
1,0

]

𝐸𝛽1−0

𝐶0,0
1,1𝐸

𝛽1
= 1 − 1

(1+𝑦)𝛽1
.

Following similar steps, we can derive the relative loss in option value
for the case of permanent subsidy provision. ■

Appendix D. Provision of a retractable subsidy

By solving (33), we obtain (D.1). The first two terms in the top
part reflect the expected profit from operating the first technology. The
third term represents the option to invest in the second technology in
the permanent absence of a subsidy, adjusted via the last term, since
the subsidy will be provided and subsequently retracted. Similarly, the
first three terms in the middle part represent the expected profit from
operating the second technology, while the last two terms represent the
likelihood of the price either dropping in the waiting region or rising
above 𝜀1,12,0.

𝐹 1,1
2,0 (𝐸) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐷1𝐸
𝜌 − 𝜇

+
𝜆𝑝𝐷1𝐸𝑦

(

𝜌 − 𝜇 + 𝜆𝑝
)2

+ 𝐴0,0
2,0𝐸

𝛽1

+
[

𝜆𝑝𝐴
0,1
2,1

1
2 𝜎

2−𝜂1𝜎2−𝜇
ln𝐸 + 𝐴1,1

2,0

]

𝐸𝜂1 , 𝐸 < 𝜀0,12,1
𝜆𝑝𝐷2𝐸 + (𝜌 − 𝜇)𝐷1𝐸

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝑝
) +

𝜆𝑝𝐷2𝐸𝑦
(

𝜌 − 𝜇 + 𝜆𝑝
)2

− 𝜆𝑝
𝜌+𝜆𝑝

𝐼2 + 𝐵1,1
2,0𝐸

𝜂2 + 𝐶1,1
2,0𝐸

𝜂1 , 𝜀0,12,1 ≤ 𝐸 < 𝜀1,12,0
𝛷1,1

2,0(𝐸) − 𝐼2 , 𝐸 ≥ 𝜀1,12,0
(D.1)

Similarly, by solving (34) for each expression of 𝐹 1,1
1,0 (𝐸) that is indi-

cated in (D.1), we obtain (D.2). Note that 𝐴1,1
1,0, 𝐵

1,1
1,0 , 𝐶1,1

1,0 and 𝐷1,1
1,0 are
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determined via value-matching and smooth-pasting conditions between

the three branches.
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𝐷1𝐸
𝜌 − 𝜇

+
𝜆𝑝𝐷1𝐸𝑦

(

𝜌 − 𝜇 + 𝜆𝑝
)2

+ 𝐴0,0
2,0𝐸

𝛽1 + 𝐴0,0
1,0𝐸

𝛿1 + 𝐴1,1
1,0𝐸

𝜃1

+
𝜆𝑝𝐴

0,1
1,1 ln𝐸

1
2𝜎

2 − 𝜃1𝜎2 − 𝜇
𝐸𝜃1 +

(𝜆𝑝
𝜆𝜏

𝐴0,1
2,1 + 𝐴1,1

2,0

)

𝐸𝜂1

+
𝜆𝜏𝜆𝑝𝐴

0,1
2,1𝐸

𝜂1

(𝜃2 − 𝜃1)
(

1
2𝜎

2 − 𝜂1𝜎2 − 𝜇
)

1
2𝜎

2

×

[
(

𝜂1 − 𝜃1
)

ln𝐸 − 1
(

𝜂1 − 𝜃1
)2

−

(

𝜂1 − 𝜃2
)

ln𝐸 − 1
(

𝜂1 − 𝜃2
)2

]

,

𝐸 < 𝜀0,12,1
[

𝜆𝜏𝐷2 + (𝜌 − 𝜇)𝐷1

(𝜌 − 𝜇)
(

𝜌 − 𝜇 + 𝜆𝜏
) +

[

𝜆𝜏𝐷2 +
(

𝜌 − 𝜇 + 𝜆𝑝
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𝐷1
]

𝑦
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+
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(
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(D.2)

Finally, the expression of 𝐹 1,1
1,0 (𝐸) is indicated in (D.3), where 𝜀1,11,0,

𝐺1,1
1,0, 𝐻1,1

1,0 , and 𝐽 1,1
1,0 are determined via value-matching and smooth-

pasting conditions between the three branches. The first term on the

top branch of (D.3) is the option to invest in the permanent presence

of a subsidy, adjusted via the second term due to policy uncertainty.

The second branch reflects the expected project value if the subsidy

becomes available, and the bottom branch is expected project value

when the price is high enough so that investment is optimal even in

the absence of a subsidy.
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(
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(D.3)
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