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Effekten av omega-3 flerumettede fettsyrer på humane kreftceller - 
involverte molekylære mekanismer 
 
Fet fisk og fiskeolje (tran) har i århundrer vært vanlige bestanddeler i norsk kost. På siste 
halvdel av 1800-tallet produserte apotekeren Møller ren tran til medisinsk bruk. Den norske 
professoren Notevarp fant på 1950- og 1960-tallet at fiskeolje inneholdt omega-3 fettsyren (n-
3 PUFA) dokosaheksaensyre (DHA). Han var også den første som beskrev en gunstig effekt 
av n-3 PUFAs på hjerte- og karsykdommer. På 1970-tallet fant legene Bang og Dyerberg at 
Inuitter fra Grønnland hadde lav forekomst av hjerte- og karsykdommer og relaterte det til økt 
innhold av n-3 PUFAs i blodet. Noen epidemiologiske observasjonsstudier har vist at n-3 
PUFAs kan redusere forekomsten av noen krefttyper, blant annet tarmkreft, men resultatene 
har ikke vært entydige. Allikevel har noen kliniske studier, samt mange dyre- og 
cellekultureksperimenter vist at n-3 PUFAs har en vekstinhiberende effekt på noen typer 
kreftceller, men mekanismene bak dette er uklare. Målet med studiene i denne avhandlingen 
har vært å se nærmere på hvordan n-3 PUFAs påvirker veksten av kreftceller og studere 
hvilke mekanismer i cellene som endres ved tilsats av slike fettsyrer i vekstmediet.  

Tilførsel av DHA til humane tarmkreftceller (SW620) i kultur viste at veksten ble 
kraftig redusert i fysiologisk relevante konsentrasjoner, og genekspresjonsanalyser indikerte 
endringer i uttrykket til flere tusen gener involvert i flere ulike biologiske spor. Tilførsel av n-
3 PUFA medførte stress i endoplasmatisk retikulum (ER) og induksjon av ufoldet protein 
respons (UPR). Noen av hovedfunksjonene til ER er protein folding, regulering av 
kalsiumnivå og syntese av lipider og steroler. Forstyrrelse av disse mekanismene, som 
opphopning av ufoldede/feilfoldede proteiner, kan gi ER stress og induksjon av UPR. 
Stressresponsen som kjennetegnes ved økt fosforylering av eukaryot translasjons 
initieringsfaktor 2  (eIF2 -P) ble indusert så tidlig som 3 timer etter DHA-tilførsel. Økt 
eIF2 -P fører til stopp i protein translasjon, redusert nivå av cellesyklusregulatoren cyclin D 
og cellesyklusarrest, slik at cellene får tid til reparere skader/gjenopprette homeostasen i ER. 
Dersom skadene blir for store, vil imidlertid cellenes dødsmaskineri (apoptose) aktiveres. 

Genekspresjonsesultatene tydet også på endringer i kalsium- og kolesterolhomeostase. 
Tilførsel av DHA til SW620 cellene økte nivået av intracellulært kalsium, sannsynligvis som 
følge av frigjøring av kalsium fra ER og opptak av eksogent kalsium. Den cellulære 
kolesterolsyntesen reguleres av blant annet sterolregulerende elementbindende protein 2 
(SREBP2). Til tross for aktivert SREBP2, ble bare noen av dens målgener oppregulert etter 
DHA-tilførsel. Nysyntese av kolesterol og inkorporering av nysyntetisert kolesterol til 
kolesterylestere ble nedregulert, mens det totale kolesterolnivået var lite påvirket.  

Endringer i kalsiumhomeostase ble ytterligere undersøkt ved å benytte en human 
leukemicellelinje (HL-60) og en mutert klon av HL-60 (E2R2) som er resistent mot det 
kalsiumhomeostase-forstyrrende kjemikalet econazole. Veksten av HL-60 cellene ble kraftig 
redusert ved tilførsel av eikosapentaensyre (EPA), mens veksten av E2R2 cellene bare ble 
moderat påvirket. Genekspresjonsanalyser og induksjon av eIF2 -P i EPA-behandlede HL-60 
celler indikerte endringer i kalsiumhomeostase og induksjon av UPR. Det ble imidlertid ikke 
påvist ER stress og UPR i E2R2 cellene. Dette tyder på at EPA-responsen i morcellelinjen var 
assosiert med endringer i kalsiumhomeostase og induksjon av UPR.   

Tilførsel av DHA til SW620 cellene indikerte også endringer i uttrykket av flere gener 
og proteiner involvert i regulering av cellesyklus og celledød. Proteinnivået av survivin, livin 
og nukleær faktor kappa B (NF B) ble redusert, noe som er interessant ettersom disse er 
indusert i ulike krefttyper og er kjente målproteiner for cellegiftbehandling. Hvorvidt n-3 
PUFAs har en plass som supplement til klinisk kreftbehandling beror imidlertid på ytterligere 
forskning innen dette feltet.  
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Abstract 
 

Fatty fish and cod liver oil have been common ingredients in the Norwegian diet for centuries. 

In the latter half of the 1800s the apothecary Møller produced pure cod liver oil for medicinal 

use. In the 1950s and 1960s, the Norwegian Professor Notevarp found that fish oil contained 

the omega-3 polyunsaturated fatty acid (n-3 PUFA) docosahexaenoic acid (DHA). He was 

also the first to describe a beneficial effect of n-3 PUFAs on cardiovascular disease. In the 

1970s, the doctors Bang and Dyerberg found that Greenland Inuits had low incidence of 

cardiovascular disease, and related it to increased n-3 PUFA content in the blood. Some 

epidemiological observational studies have found that n-3 PUFAs may reduce the incidence 

of some cancer types like colon cancer; however, the results have not been consistent. Yet, 

some clinical studies, as well as several animal and cell culture experiments have shown that 

n-3 PUFAs have a growth inhibiting effect on some types of cancers, but the mechanisms 

behind this effect are unclear. The aim of the studies has been to explore the molecular 

mechanisms behind the growth reducing effect of n-3 PUFAs on cancer cells in vitro. 

 Supplementation of DHA to human colon cancer cells (SW620) in culture strongly 

reduced cell growth in physiological relevant concentrations, and gene expression analysis 

indicated changed expression of thousands of genes involved in different biological pathways. 

The DHA treatment resulted in stress in the endoplasmic reticulum (ER) and induction of 

unfolded protein response (UPR). Some of the main functions of the ER are protein folding, 

regulation of calcium levels, as well as synthesis of lipids and sterols. Disruption of any of 

these mechanisms such as accumulation of unfolded/misfolded proteins may result in ER 

stress and induction of UPR. This stress response is characterized by phosphorylation of the 

eukaryotic translation initiation factor 2  (eIF2 -P) which was induced as early as 3 hours 

after DHA administration. Increased eIF2 -P arrests protein translation, reduces the cell cycle 

regulator cyclin D and induces cell cycle arrest, allowing the cells to repair the damage/restore 

ER homeostasis. However, if damage is too severe, the cell death machinery (apoptosis) will 

be activated.  

 The gene expression results also indicated changes in calcium and cholesterol 

homeostasis. Addition of DHA to SW620 cells increased the intracellular calcium level, 

probably as a result of calcium release from the ER and uptake of exogenous calcium. 

Cellular cholesterol synthesis is regulated by e.g. sterol regulatory element binding protein 2 

(SREBP2). Despite active SREBP2, only some of its target genes were up-regulated by DHA 

supplementation. New synthesis of cholesterol and incorporation of newly synthesized 
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cholesterol into cholesteryl esters were down-regulated, while total cholesterol levels were not 

markedly affected. Changes in calcium homeostasis were further investigated using a human 

leukemia cell line (HL-60) and a mutant HL-60 clone (E2R2) which is resistant towards the 

calcium homeostasis-disturbing chemical econazole. The HL-60 cells were strongly growth 

inhibited by addition of eicosapentaenoic acid (EPA), while the growth of E2R2 cells was 

only moderately affected. Gene expression analysis and induction of eIF2 -P in EPA-treated 

HL-60 cells indicated changes in calcium homeostasis and induction of UPR in the mother 

cell line, while there was no evidence of ER stress and UPR in E2R2 cells.  

 Administration of DHA to SW620 cells also resulted in changed expression of several 

genes and proteins involved in regulation of cell cycle and cell death. Protein levels of 

survivin, livin and nuclear factor  B (NF B) were reduced, which is interesting since they 

are induced in different tumors and are known targetproteins of chemotherapy. Whether n-3 

PUFAs have a place as supplements to clinical cancer treatment depends, however, on further 

research within this field. 
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1. Introduction 

1.1 Fatty acids – structure and function 

Fatty acids (FAs) are important macronutrients. They consist of a hydrocarbon chain of 

variable length, with a carboxyl group (COOH) at one end and a methyl (CH3) group at the 

other end (n- or -end) (Fig.1). FAs are classified according to the number of carbons in the 

chain and the type of bond between the carbons. Saturated FAs (SFAs) only have single 

bonds fully saturated with hydrogen atoms, while mono- (MUFA) and polyunsaturated FAs 

(PUFAs) have one or more double bonds, respectively, which are not saturated with hydrogen 

atoms (reviewed in (1-3)). The n-9 MUFA oleic acid (OA, 18:1) is the most common MUFA 

in human diet. Olive oil is rich in OA, but OA is also synthesized in the human body 

(reviewed in (3-5)). The most common PUFAs in nature are those of the n-3 and n-6 families, 

in which the first double bond is positioned either 3 or 6 carbons from the n-end, respectively. 

The n-3 PUFA -linoleic acid (ALA, 18:3)  and the n-6 PUFA linoleic acid (LA, 18:2) are 

considered essential fatty acids (EFA) because mammals lack the desaturase enzyme which 

inserts the double bond into the n-3 and n-6 position of PUFAs; hence these PUFAs have to 

be provided by the diet. Plants and vegetables have this desaturase and are therefore 

considered the main source of EFAs in mammals (reviewed in (2, 6)). Dietary sources of n-3 

PUFAs are vegetable oils rich in ALA; canola and flaxseed, leafy green vegetables, walnuts, 

and seafood, fatty fish and fish oil (FO) rich in docosahexaenoic acid (DHA, 22:6) and 

eicosapentaenoic acid (EPA, 20:5) (Fig. 1). N-6 PUFAs mostly originate from plant oils rich 

in LA; corn, safflower and soybean (reviewed in (6)).  
 

 
Figure 1. Structure and nomenclature of DHA, EPA and AA. 

 

ALA and LA can be lengthened (elongated) and further desaturated through a series of 

steps involving elongases and delta-5 ( 5)- and 6 desaturases (Fig. 2). ALA can be 

converted to EPA and further to DHA, while LA can be converted to e.g. arachidonic acid 
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(AA, 20:4 n-6). The last step in the conversion of both n-3 and n-6 PUFAs is a cycle of -

oxidation in the peroxisomes. However, n-3 and n-6 PUFAs are not convertible between the 

two classes. These two PUFA classes compete for the same metabolic enzymes. ALA has 

higher affinity for the 6-desaturase compared to LA, but since LA is considered the most 

common dietary PUFA source and is presented in higher amounts than ALA in the Western 

diet, LA will be the more common substrate for the 6-desaturase. Consequently, it is 

important to ensure high enough n-3 PUFA intake, especially through FO, in order to reduce 

LA desaturation and hence the production of AA and eicosanoids derived from this FA 

(reviewed in (4, 6, 7)). However, the activities of 5- and 6 desaturases are known to be 

slow in humans and different factors may influence their activities. Saturated fat and 

cholesterol inhibit their actions, insulin activates the 6 desaturase and the activity of this 

desaturase is reduced with age (reviewed in (8)).  

 

 
 

Figure 2. Desaturation, elongation and -oxidation of n-3 and n-6 essential FAs. Full names are stated in the 

abbreviations list. 
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PUFAs are distributed to different degrees in different tissues and organs. The main n-6 

and n-3 PUFAs in cellular membranes are AA and DHA, respectively (reviewed in (9, 10)). 

Of the n-3 PUFAs, DHA is present in all organs, but especially in brain and retina, while 

ALA and EPA are much less present in tissues. Of the n-6 PUFAs, AA is present in most 

tissues and LA is the most common PUFA stored in triacylglycerols (TAG) in adipose tissue 

(reviewed in (9)). The long chain FAs play different roles in cellular homeostasis. They are 

incorporated into membrane phospholipids, act as substrates for energy production through -

oxidation and serve as energy stores as part of TAGs. They are also involved in modification 

of proteins i.e. through acetylation in addition to being important in modification of gene 

expression (reviewed in (11-13)). The functions of FAs will be further dealt with in chapter 

1.3.  

 

1.2 Recommendations regarding PUFA intake and bioavailability  

The Western diet today shows signs of increased consumption of fat. In the European 

populations, FAs count for as much as 28-42 % of total energy (TE) consumed, compared to 

approximately 20-30 % of TE in the diet of our ancestors (reviewed in (14)). The latest 

recommendations regarding dietary intake of fat and FAs state that the total fat intake should 

be within 20-35 % of TE, as  concluded in the report “Fats and fatty acids in human nutrition”  

from the 2008 expert consultation held by the World Health Organization (WHO) and Food 

and Agriculture Organization of the United Nations (FAO) (15). This recommendation is 

fulfilled in Norway (Table 1) (16). The type of fat consumed has changed towards an increase 

in saturated fat (especially animal fat) and n-6 PUFA rich oils (reviewed in (14)) and in 

Norway the consumed level of SFAs is higher than recommended (16). There has also been a 

rapid (from an evolutionary point of view) increase in consumption of foods rich in n-6 

PUFAs and a decrease in the intake of n-3 PUFAs in Western societies during the past 150 

years. This results in an increased n-6 to n-3 ratio (n-6/n-3), ranging from 10-20/1 compared 

to 1/1 in the ancestral diet (reviewed in (17)) which contained as much as ~5-6 g/day of n-3 

PUFAs with a high EPA and DHA proportion (reviewed in (14)). PUFA consumption by 

Norwegians is just below the lower recommended intake of total PUFAs (n-3 and n-6) (Table 

1). The consumed amount of n-6 PUFAs is above the recommended, however, the intake of n-

3 PUFAs is sufficient according to recommendations (15, 16). An n-3 PUFA intake of 0.5 

g/day correlates with a minimum of recommended fish intake of 2 fish meals per week (30-40 

g/day), one of them oily fish (reviewed in (14)). However, in contrast to the values presented, 
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a national dietary survey in Norway found that mean daily fish intake was as high as 67 g/day 

and intake of long chain n-3 PUFAs was 0.9 g/day, counting for as much as 0.4 % of TE (18). 

Japanese also fulfil the n-3 PUFA recommendations, while Americans consume far too little 

DHA and EPA (Table 1) (16). 

 

 
Table 1. Recommended intake of dietary fat and FAs, and intake consumed in Norway, Japan and USA. Con = 

consumed, Rec = recommended, % = Percent of total energy intake, g = g/day, M = male, F = female. Data 

collected from (15, 16, 19). aTot = LA + ALA + EPA + DHA, bN-3 = ALA + n-3 long chain PUFAs. 

 

An increase in n-3 PUFA intake could be achieved by promoting fish consumption 

and increasing the use of ALA rich oils instead of dressing oils like safflower oil which is rich 

in n-6 PUFAs. Both wild fish and wild plants tend to have higher amounts of n-3 PUFAs than 

their farmed counterparts, hence intake of these should be promoted (reviewed in (14)). 

Industrial food could be prepared using n-3 PUFA rich oils. Feeding farm animals with n-3 

FA-enriched food has resulted in production of eggs and milk with increased n-3 FA content 

and animals and plants can be genetically manipulated to contain more n-3 PUFAs (reviewed 

in (20)). FO supplements such as n-3 PUFA capsules are also an alternative way to increase 

consumption of these FAs. Intake of one 1 g standard FO capsule provides about 300 mg EPA 

and DHA (reviewed in (21)). Cooking methods also needs to be considered since n-3 PUFAs 

are highly oxidable resulting in harmful free radicals. The n-3 PUFA content in cooked fish 

might be reduced by as much as 50% (reviewed in (14)). 

 One way to assess the bioavailability of n-3 PUFAs is to measure their concentrations 

in blood serum. The basal n-3 PUFA concentration in healthy humans was in one study found 

 
Total fat PUFA LA ALA EPA DHA 

M F M F M F M F M F M F 

Con 
Norway 

31.5% 
97.4g 

30.6% 
67.0g 5.7% 5.3% 13.5g 8.8g 1.8g 1.2g 0.41g 0.27g 0.59g 0.40g

Con 
Japan  49.2g 46.2g   12.9g 10.7g 2.0g 1.6g 0.36g 0.31g 0.63g 0.57g

Con 
USA 98.1g 69.4g   17.1g 12.8g 1.7g 1.3g 0.05g 0.04g 0.09g 0.07g

Rec 
intake 20-35% Tot 6-11%a 

n-3 0.5-2%b 2.5-9% 1-2 g 
 0.5% 0.25-2g 
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to be 136 μM EPA and 261 μM DHA when measured in serum. The concentrations increased 

by 129 % and 45 %, to 312 μM and 379 μM, respectively, after ingesting 57 g cooked salmon 

containing 0,7 g DHA and 0.5 g EPA/day for 8 weeks (22). Others have also shown that the 

EPA and DHA levels measured as free fatty acids (FFA) or phospholipids can be increased 

upon supplementation with n-3 PUFAs (9, 23, 24). Blonk et al found that 12 weeks of 

supplementation with 12 FO capsules (300 mg EPA and 200 mg DHA per capsule, in the 

form of ethyl esters) led to as much as 362 % and 69 % increase in EPA and DHA in plasma 

phospholipids, respectively (24). However, there tend to be a saturation level for n-3 PUFAs 

in blood (9, 24). Harris et al found that the DHA and EPA concentrations correlated well 

between plasma and red blood cells, the latter called the “Omega-3 index”. This index is used 

as an n-3 PUFA bioavailability marker and reflects the n-3 PUFA intake during several 

weeks. It is expressed as n-3 PUFA % of total FAs in red blood cells, with 8 % as an optimal 

target level, and 4 % as undesirable, when it comes to cardioprotection (25).  

 

1.3 Lipid metabolism 

1.3.1 Lipogenesis 

The liver and adipose tissue are the major sites of de novo FA biosynthesis, also called 

lipogenesis. Carbons from glucose (or acetate) are incorporated into FAs through a series of 

enzymatic reactions starting with the formation of malonyl-CoA from acetyl-coenzyme A 

(CoA) by acetyl CoA carboxylase (ACC). The multifunctional enzyme FA synthase (FAS) 

then uses malonyl-CoA as a carbon donor, adding two-carbon units to synthesize mainly the 

SFA palmitatic acid (PA, 16:0) (reviewed in (26, 27)). PA can be further lengthened by 

elongation of very long-chain fatty acid (Elovl) enzymes like Elovl6 in the endoplasmic 

reticulum (ER), or desaturated by the 9 stearoyl-CoA desaturaes (SCD), mainly SCD-1, 

thereby achieving the double bond characteristic of MUFAs (reviewed in (26)).  

 

1.3.2 FA uptake, transport, storage and mobilization by lipolysis 

Dietary TAGs are hydrolysed by lingual and pancreatic lipases into monoacylglycerol (MAG) 

and FAs before uptake by enterocytes, reesterification into TAGs and incorporation into 

chylomicrons. In the liver, FAs are incorporated into very low density lipoprotein (VLDL). 

Hence, FAs are transported in the blood as chylomicrons (exogenous FAs), VLDL 
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(endogenous FAs) as well as FFAs bound to albumin. The enzyme lipoprotein lipase (LPL) 

hydrolyzes FAs from chylomicrons and lipoproteins, which are then free to be transported 

into adipocytes for TAG synthesis (reviewed in (28)). However, the mechanisms by which 

FAs are taken up by adipocytes are not fully understood and it is debated whether the uptake 

is diffusion- or protein mediated. The diffusion theory is based on the observation that FAs 

can flip/flop through membranes, while the protein theory considers the action of FA 

translocase (FAT/CD36), FA transport proteins (FATPs) and plasma membrane bound FA 

binding protein (FABPpm) (reviewed in (29)).  

After entering the cell, FAs are bound to FABPs and transported to the ER where acyl-

CoA synthetases (CoAS) activate FAs into fatty acyl-CoA thioesters (reviewed in (30)). 

These are esterified into TAGs by two different pathways. The MAG pathway esterifies FAs 

with MAG to form first diacylglycerol (DAG) and then TAG. This pathway counts for 75-85 

% of synthesized TAG. The glycerol-3-phosphate pathway stepwise acetylates glycerol-3-

phosphate and/or dihydroxyacetone (from glycolysis) to phosphatidic acid which is 

hydrolysed to DAG which is acetylated to TAG (reviewed in (31)). TAGs are stored in lipid 

droplets in the adipocytes, controlled by perilipins. During basal conditions perilipin-1 

protects TAG from cytosolic lipases and promotes TAG storage, while upon increased 

energetic demands it controls mobilization of FAs from TAGs. This process called lipolysis 

yields FFAs and glycerol, and is controlled by the three lipases hormone-sensitive lipase 

(HSL), adipose triglyceride lipase and MAG lipase. The cAMP-dependent protein kinase A 

pathway is the main pathway known to activate lipolysis and HSL (reviewed in (32)). The 

FFAs bind to adipocyte FABP and are transported to the plasma membrane (reviewed in 

(29)). TAG is the main dietary source of FAs and through lipolysis the yield is ~95 g FAs 

from 100 g TAG (reviewed in (31)), counting for as much as 90 % of the fuel reserves in 

adults (reviewed in (33)). 

 

1.3.3 -oxidation of FAs 

FAs are degraded to produce energy by a multistep process called -oxidation. This process 

takes place mainly in the mitochondria, but also in peroxisomes. To be -oxidized in the 

mitochondria, FFAs have to be taken up by the cell and converted to their fatty acyl-CoA 

thioesters as described above. This can be performed by an acyl-CoAS at the outer 

mitochondrial membrane. The inner mitochondrial membrane is impermeable to long chain 

CoA derivatives and therefore carnitine shuttle proteins have to carry these fatty acyl residues 
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across the membrane. In the mitochondrial matrix, the acyl residues are transferred from 

carnitine to CoA, thereby regenerating acyl-CoA thioesters which are used for -oxidation. 

FAs up to 10 carbons can enter mitochondria independent of carnitine and are activated by 

acyl-CoASs in the mitochondrial matrix (reviewed in (30)).  

There are four enzymatic steps in the -oxidation spiral. The third step produces 3-

ketoacyl-CoA that in the fourth step is cleaved between the - and  carbons (hence it is 

called -oxidation) to give acetyl-CoA and fatty acyl-CoA shortened by two carbons that can 

then enter the spiral again. The -oxidation of unsaturated FAs (UFA) in mitochondria 

requires additional enzymes, in order to handle their double bonds (reviewed in (30)). Acetyl-

CoA can be oxidized by the tricarboxylic acid/Krebs cycle to yield energy, used for the 

formation of ketone bodies through ketogenesis, or take part in cholesterol synthesis 

(reviewed in (27)). Both -oxidation and lipolysis are regulated by the ratio of the hormones 

[glucagon]/[insulin] which again depend on the nutritional state of the animal (reviewed in 

(30)). During mitochondrial -oxidation, electrons are transferred to, and hence reduce, 

flavin-adenine dinucleotide and nicotinamide-adenine dinucleotide (NAD+) which drives 

adenosine triphosphate (ATP) synthesis by adding electrons to the electron transport chain. 

High energy level results in a high level of malonyl-CoA which inhibits the carnitine shuttle 

protein carnitine palmitoyltransferase I. Hence, -oxidation increases when the energy and 

malonyl-CoA level is low and the adenosine monophosphate-activated kinase (AMPK) sensor 

of energy level is high. Mitochondrial -oxidation oxidizes short- to long chain FAs, while 

very long chain FAs are -oxidized in peroxisomes and -oxidized by the cytochrome P450 

system (reviewed in (27)).  

 

1.3.4 Incorporation of FAs into phospholipids of cellular membranes 

FAs are part of the structural backbone of cellular membranes as they are incorporated into 

membrane phospholipids. The levels of SFAs and MUFAs in membranes are relatively 

constant, while the level of n-3 and n-6 PUFAs are influenced by the dietary intake of these 

FAs. This may be a consequence of the inability of higher animals to synthesize these PUFA 

classes de novo. The type of FAs in membrane lipids is important for membrane function. The 

length and number of double bonds in the chain of FAs are important for the fluidity of the 

lipids, with UFAs increasing the fluidity and therefore always occupying the sn-2 position of 

membrane lipids in order to achieve the correct physical properties of membranes (reviewed 

in (34)).  
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Membranes also contain lipid micro domains such as lipid rafts and caveolae which 

are membrane domains rich in cholesterol, sphingolipids and phospholipids with saturated 

fatty acyl chains. Several membrane receptors, signaling proteins and lipids are found within 

such lipid rafts, making these microdomains important in signal transduction. The caveolae, 

are enriched in the caveolin-1 protein and are, in addition to signal transduction, known to be 

important in endocytosis and cholesterol transport (reviewed in (35)).  

 

1.3.5 Release of membrane bound FAs and eicosanoid synthesis 

PUFAs are released from phospholipids through cleavage by the phospholipase A2 (PLA2) 

enzyme family (Fig. 3). The C20 PUFAs dihomo- -LA (DGLA, 20:3 n-6), AA and EPA are 

then further metabolized to eicosanoids which are biologically potent, short-lived, local 

hormone-like lipids (autacoids) that affect inflammatory and immune responses, and are 

important in platelet aggregation, cellular growth and cell differentiation (reviewed in (10)). 

EPA and AA are metabolized by the same enzymes in the three eicosanid synthesis pathways 

(Fig.3); the cyclo-oxygenase (COX), lipoxygenase (LOX) and cytochrome P450 

monooxygenase (CYP) pathways. The COX pathway produces prostaglandins (PGs) and 

thromboxanes (TXs), the LOX pathway gives leukotrienes (LTs), hydroxy FAs (HETEs, 

HEPEs) and hydroperoxy FAs (HPETEs and HPEPEs) and lipoxins (LXs), and the CYP 

pathway yields HETEs, diHETEs and epoxy FAs (EETs) (reviewed in (10, 36)). Eicosanoids 

derived from the n-3 PUFA EPA include the 3-series of PGs and TXs and the 5-series of LTs, 

HEPE and LX. Recently, other EPA- and DHA-derived autacoids have also been identified, 

named E series of resolvins (RvE, EPA-derived through aspirin-modified COX-2 and LOX), 

D series of resolvins (RvD, through DHA-derived aspirin-modified COX-2 or LOX), 

protectins (DHA-derived through leucocyte-mediated pathways) and maresins (DHA-derived 

through macrophage-mediated pathways) which are all anti-inflammatory (reviewed in (36, 

37)). N-6 PUFA AA-derived eicosanoids include the 2-series of PGs and TXs, the 4-series of 

LTs, LXs, EETs, HETEs, diHETEs and aspirin-triggered lipoxin (ATL, through aspirin-

modified COX-2 and LOX) (reviewed in (36)). DGLA-derived eicosanoids include the 1-

series of PGs. The AA-derived eicosanoids are generally considered pro-inflammatory and 

some have been linked to carcinogenesis, while EPA-derived eicosanoids are anti-

inflammatory and may have anti-cancer properties. Therefore the competition between AA 

and EPA for being incorporated to phospholipids will affect the inflammation status. As 

mentioned above, AA is the major PUFA in cellular membranes, but high intake of n-3 
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PUFAs will result in partial replacement of AA in the membrane phospholipids, less AA-

derived eicosanoids and hence reduced inflammation (reviewed in (10)). The dietary n-6/n-3 

ratio may also be important in modulation of the AA-derived eicosanoid synthesis, since the 

capacity of the n-3 PUFAs to suppress the LA to AA conversion depend on the amount of 

both n-3 and n-6 PUFAs in the diet (reviewed in (4, 38)).  

 

 
Figure 3. Biosynthesis of AA- and EPA-derived eicosanoids, including EPA- and DHA-derived autacoids. Full 

names are stated in the abbreviations list. 

 

1.3.6 Regulation of lipid metabolism by PUFAs 

Lipidomics is the “omics” research field of lipids, which includes the use of several different 

techniques for characterization of cellular lipids and the mechanisms by which they affect 

cellular functions (reviewed in (39)). PUFAs and their metabolites are known to affect gene 

expression through direct binding to transcription factor members of the nuclear receptor 

(NR) superfamily, and indirectly through affecting transcription factors like sterol regulatory 

element binding proteins (SREBP) and carbohydrate response element-binding protein 

(ChREBP). FAs are known to bind to and activate the peroxisome proliferator-activated 
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receptors (PPAR) family; PPAR , PPAR  and PPAR . PPARs form heterodimers with the 

PUFA-binding retinoid X receptor (RXR) and bind to a PPAR/RXR consensus sequence in 

the promoter region of target genes, especially genes involved in lipid metabolism (reviewed 

in (40)). PPAR  is a FA sensor regulating FA mobilization and catabolism, all three 

oxidation-systems described above as well as ketogenesis through its regulation of 

mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMG-CoAS) (reviewed in 

(27)).  

The liver X receptors (LXR  and LXR ) are also targets for FA regulation. LXRs bind 

oxysterols, form heterodimers with RXR, and regulate genes involved in hepatic bile acid 

synthesis. However, UFAs have been shown to antagonize oxysterol activation of LXR 

(reviewed in (13)). LXRs are also important in regulation of cholesterol homeostasis as well 

as lipogenesis through regulation of SREBP1c. PUFAs are known to supress lipogenic gene 

expression and suppress the gene expression, protein maturation and target gene expression of 

SREBP1C thereby reducing FA and TAG synthesis (reviewed in (27)). PUFAs also supress 

lipogenesis through interfering with the nuclear translocation of ChREBP (reviewed in (40)). 

The hepatic nuclear factor 4 (HNF-4  and HNF-4 ) class of NRs binds fatty acyl-CoA and is 

important in regulation of several hepatic genes encoding proteins involved in e.g. lipoprotein 

metabolism and bile acid synthesis. Saturated acyl-CoA stimulates its transcriptional activity, 

while polyunsaturated fatty acyl-CoA inhibits the effects of HNF-4 on gene expression. The 

nuclear factor farnesoid X receptor (FXR) is activated by bile acids; however this activation is 

antagonized by PUFAs. The last known PUFA-binding NR is the retinoic acid-related orphan 

receptor beta, also known to regulate lipid metabolism (reviewed in (40)).  

 

1.3.7 Cholesterol homeostasis

Cholesterol is an important lipid in e.g. maintenance of membrane fluidity and permeability, 

lipid raft formation and transcriptional regulation. It can be synthesized de novo or taken up 

via plasma lipoproteins like low density lipoprotein (LDL). Cholesterol synthesis, uptake, 

storage, transport and catabolism are tightly regulated by NRs like LXR and SREBPs which 

senses the cholesterol level (reviewed in (41)). The synthesis can be induced by SREBP1a and 

SREBP2, the latter known to regulate genes involved in cholesterol synthesis like HMG-CoA 

reductase (HMG-CoAR), the rate limiting enzyme in de novo cholesterol synthesis. In case of 

low cholesterol level, the SREBP cleavage-activating protein (SCAP) senses the low sterol 

level and escorts SREBP from its position in the ER membrane to the Golgi where the site-1 
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and site-2 proteases (S1P and S2P) cleave and activate SREBP. The nuclear SREBP fragment 

translocates to the nucleus and activates transcription of target genes with sterol response 

elements. In case of high cholesterol level, SCAP retains SREBP in the ER membrane 

(reviewed in (42)), hence SREBP-induced expression of genes involved in cholesterol 

synthesis and uptake is suppressed. NRs, especially LXRs, regulate gene expression involved 

in the sterol homeostasis towards storage, transport and catabolism. High cholesterol level 

also facilitates SREBP1c-induced transcription of genes involved in FA synthesis, thereby 

producing oleyl-CoA that is utilized by acyl-CoA:cholesterol acyltransferase (ACAT) in the 

esterification of cholesterol into cholesteryl esters (CE). CEs can be stored in lipid droplets or 

lipoproteins (reviewed in (41)).  

 

1.4 N-3 PUFAs and disease 

Pioneering work exploring the beneficial health effects of n-3 PUFAs was performed by the 

Norwegian professor Notevarp during the 1950s-1960s. A study published by his research 

group as early as in 1961 described the effect of n-3 PUFAs on cardiovascular disease (43). In 

the 1970s, Bang and Dyerberg revealed a connection between high consumption of sea food 

rich in n-3 PUFAs and low cholesterol- and TAG levels among the Greenland Inuit 

populations. They also speculated that these results could explain the low incidence of 

coronary heart disease in this population (44). Later, research has suggested a disease 

preventive effect of n-3 PUFAs, as outlined below.  

N-3 PUFAs may improve dyslipidaemias and lower the plasma levels of TAGs. 

Individuals with established cardiac pathologies have been shown to benefit from n-3 PUFAs 

as they may slightly decrease blood pressure and inhibit the formation of atherosclerotic 

plaques, as well as reduce the risk of sudden death, cardiac arrhythmias and stroke (reviewed 

in (6, 21, 45, 46)). Even if the n-3 PUFA effect on cardiovascular disease has been studied 

extensively, a meta-analysis by Hooper et al found that results considering n-3 fats and 

cardiovascular disease and total mortality were inconsistent (47). However, their report had 

several drawbacks, as reflected by an expert panel report requested from the International 

Society for the Study of Fatty Acids and Lipids (ISSFAL). The authors concluded that the 

evidence regarding the risk-reducing effect of DHA and EPA on cardiovascular disease were 

sufficient at that time (2006) (48). Also, the experts attending the FAO/WHO consultation in 

2008 concluded that there was convincing evidence for decreased risk of coronary heart 

disease when SFAs are replaced by PUFAs (15).  
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Increased consumption of n-3 PUFAs may also be cardio protective in persons with 

diabetes type 2 (reviewed in (49)), and patients with the multifactor disease metabolic 

syndrome (MS) (reviewed in (14)). Observational studies have suggested that higher maternal 

intake of DHA during pregnancy may have positive influence on some foetus developmental 

outcomes (reviewed in (50)). N-3 PUFAs may also possibly prevent different 

neurodegenerative diseases, like modify the risk and progression of Alzheimer’s disease. In 

addition, they may have positive effects on inflammatory diseases like rheumatoid arthritis 

and inflammatory bowel disease (reviewed in (6, 21, 45, 46)). However, the reports on n-3 

PUFAs and the effect on different diseases are not fully conclusive, which is reflected in the 

FAO/WHO report stating that there is a need for further investigation on e.g. the effect of n-3 

PUFAs on diabetes, Alzheimer’s disease and MS (15). 

N-3 PUFAs have been shown to interfere with the catabolic signal transduction 

pathways involved in cancer cachexia, and may possibly have a positive influence on the loss 

of weight and lean body mass in advanced cancer patients (reviewed in (51)). However, there 

is inconsistency between studies reporting on cachexia and n-3 PUFAs, as reviewed in (52). 

Extensive research has also found that n-3 PUFAs may possibly work as chemopreventive 

agents. Some studies have found an increased intake of n-3 PUFAs to reduce the risk and 

incidence of cancers of e.g. colon and breast. However, these results are not consistent; 

several studies have not found such an association (reviewed in (4)) and the FAO/WHO 

report encourage more research to be performed also in this field (15). The possible “anti-

tumor” effect of PUFAs will be further outlined below.  

 

1.4.1 N-3 PUFAs and cancer  

Dietary fats have for a long time been ascribed a role in cancer development (reviewed in (53, 

54)). Early epidemiological studies reported a positive correlation between high dietary fat 

content and e.g. colon cancer risk. However, some of these studies did not consider the 

different types of fats or their FA content, which later epidemiological observational studies 

found to be important when assessing the relationship between dietary fats and cancers, and 

not the total fat per se (reviewed in (4, 55)). Diets rich in FO and n-3 PUFAs have been 

inversely correlated with the incidence of colorectal and breast cancer in some 

epidemiological observational studies, while diets high in animal fat and n-6 PUFAs 

correlated with an increased risk of these cancers (reviewed in (54, 56)). However, results 

from epidemiological studies exploring the relation between PUFAs and cancers have not 
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been consistent. Even so, cell culture and animal experiments have shown that n-3 PUFAs 

display a growth inhibitory effect on cancer cells originating from e.g. colon, breast and 

leukaemia (reviewed in (2, 4, 10, 57-59)). Interestingly, some clinical intervention studies 

have reported increased effect of conventional chemotherapy and normalization of abnormal 

colorectal tissue proliferation upon n-3 PUFA supplementation (60-64). 

 

Epidemiological observational studies  

Epidemiological observational studies have shown divergent results regarding the anti-tumor 

effects of n-3 PUFAs. Some studies have reported an association between increased n-3 

PUFAs or fish intake and reduced risk for cancers of colon, breast and prostate (reviewed in 

(10, 59, 65)). There are several factors that may have influenced the epidemiological data, and 

thereby complicated the interpretation of them, as outlined below.  

The level of n-3 PUFA intake varies between different populations and a high level of 

fish consumption has been correlated with reduced incidence of some cancers. This has been 

reflected in studies from e.g. Japan, a country with relatively low breast cancer risk and 

dietary fat intake, but high consumption of n-3 PUFAs (reviewed in (4, 65)). However, the 

incidence of breast, colon and prostate cancers is now increasing in Japan natives, reflecting a 

more Westernized diet with decreased fish intake and increased dietary n-6 FAs. The breast 

cancer incidence in Japanese women has been shown to increase within one generation when 

migrating to the USA, a country with relatively high breast cancer risk and dietary fat intake, 

as well as low n-3 PUFA consumption (reviewed in (4, 66)). In Alaskan Eskimos and Aleuts 

lower rates of breast, endometrium and prostate cancers were reported. They have a diet with 

a high fat content; however this comes mainly from fish and marine mammals, giving them a 

high intake of n-3 PUFAs. As in Japan, later studies have shown increasing incidence of both 

breast and colon cancers in this population as well, possibly due to urbanization and changed 

dietary habits (reviewed in (4)).  

It may also be difficult to reveal the real daily intake of n-3 PUFAs in population 

studies where the participants are having fish included in the diet as the n-3 PUFA source. 

This may be due to the differences in n-3 PUFA content between different fish species. Also, 

marine and farmed fish may be contaminated with carcinogenic organochlorine pesticides. 

This should be considered in order to avoid introduction of a carcinogenic agent (the 

pesticides) in addition to antineoplastic agents (n-3 PUFAs), since this could possibly 

interfere with the n-3 PUFA effect in a negative way. This is especially important for breast 

and prostate cancer since the incidence of these cancers has been associated with exposure of 
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such pesticides (reviewed in (57)).  How to increase n-3 consumption was outlined in chapter 

1.2. It is also important to mention that several epidemiological observation studies have 

analyzed the intake of n-3 PUFAs independently of the intake of n-6 PUFAs. However, the n-

6/n-3 ratio has been found to be associated with breast cancer risk (reviewed in (10, 65, 66)).  

 

Clinical and intervention studies 

Several epidemiological observation studies, but not that many clinical studies, exploring the 

effect of n-3 PUFAs in human cancers have been performed. However, some clinical studies 

have been published on colon, breast and prostate. Early clinical studies were performed in 

the 1990s by Anti et al (60, 62). In the first study they supplemented high levels of EPA and 

DHA, 4.1 g and 3.6 g respectively, for periods of 2 weeks to 3 months to persons at high risk 

of having colon cancer because of sporadic polyposis of the colon. The intervention resulted 

in increased levels of DHA and EPA, as well as lower level of LA and AA, in the colonic 

mucosa and plasma. Also, the changed proliferation in colonic mucosa reverted to normal 

(62). The same outcome was also found in the second study, using the same type of patients, 

but supplementing with a lower amount of EPA and DHA (2.5 g/day) for 30 days or 6 months 

(60). Even if 2.5 g/day is somewhat higher than the recommendations from the FAO/WHO 

report (15), it is important to note that n-3 PUFA doses lower than 3.0 g/day are considered 

safe (reviewed in (67)).  

 In the nutritional intervention phase II trial by Read et al, a supplement with 0.92 g 

DHA and 2.18 g EPA/day for up to 9 weeks was given advanced colorectal cancer patients 

receiving chemotherapy. They found an increase in body weight and energy level. Plasma 

phospholipid EPA and DHA levels increased, while AA decreased upon the first three weeks 

of the intervention and were then stable until 9 weeks. Even if not significant, there was a 

trend towards improvement of the quality of life measurement for overall well-being, reduced 

diarrhea and fatigue (68).  

 An interesting randomized, double-blind, placebo-controlled clinical trial carried out 

by West et al enrolled patient with familial adenomatous polyposis (FAP) that had underwent 

colectomy and were undergoing endoscopy surveillance. Patients taking enteric-coated EPA 

as FFA 2 g/day for 6 months had reduced polyp number (>20 %) and size (~30 %), as well as 

decreased polyp burden, compared to the placebo group. EPA supplementation also led to a 

significant increase in mucosal EPA content. The EPA treatment was safe and well tolerated 

(44), and the dose was within the FAO/WHO recommendations (Table 1).   
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Bougnoux et al found that breast cancer patients with a higher n-3 PUFA level in 

breast adipose tissue responded better to chemotherapy (higher degree of tumor regression) 

and that DHA level was associated with tumor response (63). In a pilot phase II clinical trial, 

Bougnoux et al reported that DHA improved the outcome of women with breast cancer 

metastasis treated with an anthracycline-based chemotherapy. The dose used was 1.8 g 

DHA/day (which is within the FAO/WHO recommendations (Table 1)). They found the 

combination of chemotherapy and DHA to be safe without adverse effects. Both time to 

progression and overall survival was higher in patients which had a high incorporation of 

DHA into plasma phospholipids. DHA was found to act as a chemosensitiser, increasing the 

effect of chemotherapy (64).  

 Aronson et al reported the findings from a randomized prospective phase II trial in 

which prostate cancer patients undergoing prostatectomy were given either a low-fat or 

Western diet for 4-6 weeks. The low-fat diet contained 15 % calories from fat and an n-6/n-3 

ratio of 2:1, while the Western diet had 40 % of calories from fat and an n-6/n-3 ratio of 15:1. 

Results showed that the prostate cancer proliferation decreased upon intervention in the low-

fat diet group. Also, the n-6 PUFA, TAG and cholesterol levels decreased, while the n-3 

PUFA level increased in the prostate tissue membranes after invention (61).  

   

Animal studies 

Animal studies using mice or rats bearing human cancer xenografts have shown that an n-3 

PUFA-containing diet can slow down growth of different cancers, e.g. colon, breast, prostate 

and lung, as well as suppress the development and growth of carcinogen-induced cancers in 

animals (reviewed in (1, 4, 37)). In one study, Fini et al supplemented the diet of APCMin/+ 

mice (a model for FAP) with 2 different doses of EPA in the form of FFA for 12 weeks. The 

lowest dose contained EPA (2.5 % of diet in g) and corn oil (CO, 4.5 %), while the highest 

contained EPA (5 %) and CO (2.0 %), and the control diet CO (7.0 %). The EPA diets both 

suppressed the number of polyps with over 70 % and the polyp load with over 80%, however, 

EPA 5 % was most effective (69). Bathen et al showed that supplementing the diet of athymic 

mice (implanted with human colon cancer cells) with FO (DHA and EPA 12 % of calories) 

compared to CO (12 % of calories) resulted in tumor growth reduction (70). N-3 PUFAs have 

also been shown to increase the efficacy of radiation therapy and different cancer 

chemotherapy drugs in vivo (reviewed in (57, 71). Hardman et al implanted lung cancer cells 

into mice and co-treated them with doxorubicin chemotherapy and FO (19 % of diet in g) and 

CO (1 %) or CO (20%). They found that FO in combination with chemotherapy significantly 



23 
 

reduced growth of cancer xenografts compared to chemotherapy in combination with CO 

(72). Reddy et al introduced rats to the azoxy-methane carcinogen and supplemented their 

diet with different levels of Menhaden oil (MO) containing n-3 FAs and CO. Introduction of 

MO to the diet reduced the incidence of  having colon adenocarcinomas, however, only the 

diet with the highest content of MO (17.6 %) reduced the number of tumors/rat (73). 

Studies showing an anti-tumor effect of n-3 PUFAs may be promising in the search for 

nontoxic alternative cancer therapies or co-treatments, such as combining conventional 

chemotherapy with n-3 PUFAs in order to sensitize cancer cells to lower concentrations of the 

antineoplastic drugs and reduce harmful side effects (reviewed in (57, 74)).  

 

Cell culture studies 

Several cell culture studies have gathered substantial evidence showing that n-3 PUFAs do 

have a growth-inhibiting effect on e.g. colon, breast and prostate cancer cells in vitro. The 

anti-tumor effect of these PUFAs occur through multiple mechanisms (reviewed in (2, 4, 10, 

58, 65, 75)), as described in chapter 1.5. In vitro cell culture studies also show that n-3 PUFAs 

increase the sensitivity of several types of cancer cells to different chemotherapies, affecting 

different molecular mechanisms that inhibit cell growth (reviewed in (74)).  

 

N-3 PUFAs and colon cancer  

Among both sexes in Western populations in 2008, colorectal cancer was the 3rd most 

frequent type of cancer and cause of cancer deaths. Worldwide, the incidence of colorectal 

cancer in 2008 was ~1,235,000 (9.8 % of all cancers) and number of colorectal cancer deaths 

~609,000 (8.1 % of all cancer deaths). Among the new incidences in 2008 about 60 % 

occurred in developed regions (76). In Norway in 2009, 27,520 new cancer incidents were 

reported, and colorectal cancer (2,405 new incidents) was the second and third most frequent 

cause of cancer deaths among women and men, respectively. The cumulative risk of 

developing colon cancer by the age of 75 in the period of 2005-2009 in Norway ,was 3 % 

among males and 2.7 % among females (this means that about 1 in 33 Norwegian men may 

develop this type of cancer before the age of 75). However, there is a trend towards a 

stabilization of the colon cancer incidence in Norway. More people survive and the mortality 

is declining for both men and women in regard to both colon and rectal cancer. This may be 

due to introduction of a new surgery type and preoperative radiation (77). The high incidence 

and mortality of colon cancer, implies the need for more scientific research, concerning the 

prevention and treatment of colon cancer.  
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Some epidemiological case-control and cohort studies have demonstrated an inverse 

association between n-3 PUFAs or fish intake and the risk of developing colorectal cancer. 

Yet, the results are inconsistent, since several studies find no such association. However, 

promising results are emerging from animal and cell culture studies, showing reduced 

incidence and growth of colorectal cancer after n-3 PUFA treatment. Also, n-3 PUFAs have 

been shown to increase sensitivity towards different colon cancer therapies (reviewed in (67, 

78)). Some human intervention studies have also been performed, like the studies by Anti and 

West et al described above. Recently, Cockbain et al published a comprehensive review on n-

3 PUFAs and their role in treatment and prevention of colorectal cancer (37). 

 

1.5 Main mechanisms and biological pathways involved in the anti-tumor 

effect of n-3 PUFAs    

Several different biological mechanisms and pathways have been proposed to explain the 

anti-tumor effects of n-3 PUFAs, as summarized in Fig. 4. Recently it has been suggested that 

certain PUFAs also are capable of enhancing the uptake of anti-cancer drugs and reducing the 

drug efflux in drug-resistant cells, thereby increasing their anti-tumor action (79). Before the 

n-3 PUFAs can be used as chemo preventive agents or as a supplement to existing cancer 

therapies, clarification of the mechanisms involved is needed.  

 

 
 

Figure 4. Summary of main mechanisms and biological pathways involved in the anti-tumor effect of n-3 

PUFAs  
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1.5.1 Lipid peroxidation and antioxidant defense mechanisms 

Long chain n-3 PUFAs, are highly susceptible to lipid peroxidation (LPO) because of their 

double bonds. Hence, their incorporation into phospholipids of cellular membranes may 

sensitize cells to reactive oxygen species (ROS) and thereby induce oxidative stress (reviewed 

in (80)). LPO is known to degrade phospholipids in cellular membranes, thereby changing 

their permeability and fluidity, as well as producing a range of reactive LPO products that 

drives the reaction further (reviewed in (81)).  

The level of antioxidant enzymes may be altered in cancer cells; lower levels of 

superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase affect in a negative 

way their ability to handle oxidative stress (reviewed in (82)). LPO products derived from n-3 

PUFAs are involved in the antitumor effects of these PUFAs on some cancer cells, but the 

mechanisms behind this effect is not yet clear (reviewed in (80)). Antioxidants like vitamin E 

and SOD may be able to prevent this effect. Free radicals and LPO can lead to cell death by 

damaging several enzymes, proteins, DNA and depleting ATP levels in the cells. PUFAs have 

the ability of suppressing the antioxidant content of cancer cells, like inhibiting the expression 

of the antioxidant and anti-apoptotic B-cell leukemia/lymphoma 2 (BCl-2), thereby rendering 

the cells even more susceptible to LPO and activation of apoptosis (reviewed in (83)). DHA 

may decrease the intracellular glutathione level in cancer cells (reviewed in (82)). Also, GPX 

was reduced in breast cancer xenografts of mice supplemented with a FO concentrate 

containing n-3 PUFAs. This FO concentrate also potentiated the peroxidizing effect of the 

chemotherapeutic drug doxorubicin which is known for its oxidative stress-inducing effect 

(84). LPO was also involved in the growth reduction of DHA-treated colon cancer cells (85). 

However, a recent review concluded that supplementation of n-3 PUFAs within 0.5-1 g/day or 

slightly higher doses, do not seem to induce a high grade of cytotoxic or pro-carcinogenic 

oxidative stress in normal tissues (86).  

 DHA also incorporates into phospholipids in the mitochondrial membrane of colon 

cancer cells, preferentially cardiolipin (CL), which is important for the integrity of the 

mitochondrial membrane. N-3 PUFA rich CL is easily peroxidized, resulting in altered 

membrane composition and integrity, which together with the resulting CL hydroperoxides 

initiate apoptosis by triggering the release of pro-apoptotic factors, like cytochrome C from 

mitochondria (reviewed in (80, 82)).  
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1.5.2 Eicosanoid production and angiogenesis 

The COX enzyme has two isozymes: COX-1, which is constitutively expressed in several cell 

types, and COX-2, which is induced during inflammation, but not in most normal, non-

inflamed tissues. COX-2 is increased in several cancers, including breast and colon cancer 

(reviewed in (66)). However, n-3 PUFAs may inhibit the induction (87) and reduce the 

expression of COX-2 (69, 88-91). Since EPA competes with AA for COX activity, n-3 

PUFAs will change the type of COX-2-produced products towards less inflammatory and less 

proliferative. This competition also results in reduction of e.g. the pro-tumorigenic AA-

derived PGE2 in favor of the anti-tumorigenic EPA-derived PGE3 (reviewed in (37)). Jia et al 

showed that n-3 FA desaturase-transgenic mice producing n-3 PUFAs from n-6 PUFAs with 

carcinogen-induced colitis-associated colon adenocarcinoma, expressed more PGE3 and less 

PGE2 compared to wild type mice (92). It is important to note that COX inhibitors, like 

celecoxib, may suppress growth of colon cancer in both mice and humans (reviewed in (66, 

80)). N-3 PUFAs can also reduce COX-2 expression by inhibiting nuclear factor kappa B 

(NF B) resulting in both reduced COX-2 and reduction of NF B-induced growth promoting 

targets (reviewed in (66)). Even if it is not yet known if RvEs has anti-tumor activity, RvE1 

inhibits NF B which influences the regulation of colorectal carcinogenesis at an early stage 

(reviewed in (37)).  

There are links between the eicosanoids and angiogenesis, the development of new 

blood vessels, which is critical for tumor growth (reviewed in (93, 94)). DHA and EPA 

reduced growth of HT-29 colon cancer cells in vitro and reduced expression of COX-2, 

vascular endothelial growth factor (VEGF) and reduced PGE2 level. DHA and EPA also 

inhibited phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK 1 and ERK2) 

and overexpression of hypoxia-inducible-factor 1  (HIF-1 ). Both DHA and EPA inhibited 

growth of HT-29 xenografts in mice, reduced mircovessel formation and the levels of COX-2, 

PGE2 and VEGF (91). Nitric oxide (NO) is known to increase the activity of prostaglandin 

syntethase and the production of PGE2 (reviewed in (95)). NO is produced by the inducible 

form of NO synthase (iNOS), which have increased activity and/or expression in colon cancer 

in both animal- and human studies and may increase tumor invasiveness, metastatic potential 

and angiogenesis (reviewed in (96, 97)). DHA may decrease iNOS expression, at mRNA and 

protein level, and NO production in colon cancer cells (89, 97). In addition, n-3 PUFAs also 

inhibit angiogenesis by down-regulating angiogenic mediators, such as platelet-derived 

growth factor, NF B, -catenin and matrix metalloproteinases (reviewed in (98)).  
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1.5.3 Changes in membrane characteristics and cholesterol synthesis 

Cancer cell membranes are different in composition from noncancerous cell membranes. 

Colonic adenocarcinomas were found to contain more of the SFA stearic acid (SA, 18:0) than 

normal colon mucosa from the same patients, as well as have increased ratios of SA to OA 

and LA. This may result in alterations in lipid rafts structure and protein composition; thereby 

enhancing cancer cell growth and preventing apoptosis ((99) and reviewed in (100)).  

 N-3 PUFAs like DHA and EPA may affect the formation, composition, structure and 

function of lipid rafts such as caveolae, which may affect the physiology of the cell and 

thereby the development of different diseases like cancer. DHA is known to alter the structure 

of cell membranes as well as changing membrane characteristics like permeability and 

fluidity, resulting in changes in membrane based signaling (reviewed in (100)).  

The cholesterol content of cancer cells may be enriched. Some cancer cell types have 

lost the feedback regulation of cholesterol synthesis and absorption; hence they have up-

regulated cholesterol synthesis. The synthesis of SFAs and cholesterol is regulated by FAS 

and HMG-CoAR, respectively and the activity of these enzymes are up-regulated in some 

tumors (reviewed in (100)). EPA may down-regulate the gene expression of FAS (101), and 

EPA and DHA reduced the expression of HMG-CoAR in liver cancer cells (101, 102).  N-3 

PUFAs have been found to down-regulate the transcript (102, 103) and nuclear protein level 

of SREBP1 (104) and SREBP2 in cancer cells (105). Also, a combination of DHA and EPA 

was incorporated into lipid rafts from breast cancer cells in vitro and reduced growth, lipid 

raft sphingomyelin, cholesterol and DAG levels, and interfered with epidermal growth factor 

(EGF) signaling which takes place in lipid rafts (106).  

 

1.5.4 Cell cycle regulation 

The cell cycle ensures proper chromosome duplication and cell division. This happens 

through four different cell cycle phases (Fig. 5); gap 1 (G1), synthesis (S), gap 2 (G2) and 

mitosis (M). Upon cell proliferation signals, cells enter the G1 phase to prepare for DNA 

synthesis/chromosome duplication. During the S phase cells duplicate their chromosomes 

before entering the G2 phase in which they prepare for cell division. During the M phase, 

cells distribute the chromosomes equally to daughter cells. However, most cells in the body 

enters a resting stage called G0 where they are quiescent and do not divide. Deregulation of 

the cell cycle usually leads to activation of apoptosis followed by elimination of the 

deregulated cells from the body. However, if cells overcome their built-in control 
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mechanisms, they may experience a so called “cell cycle disease”, also called cancer, through 

which they continue to divide (reviewed in (107)).   

 In order to maintain correct regulation of the cell cycle, cells have several different 

classes of proteins involved in this regulation. Especially important are cyclin dependent 

kinases (CDKs) which are activated in a cell-cycle stage-specific manner through their 

association with cyclins. CDK activity is also regulated by CDK-inhibitors (CKIs) as well as 

different kinases and phosphatases. Proper progression through the cell cycle is maintained 

through “cell cycle checkpoints,” regulatory pathways ensuring correct order and timing of 

the cell cycle events. If errors like DNA damage occur, checkpoints will delay the cycle until 

the damage is repaired or if not able to repair the damage, lead the cells into apoptosis 

(reviewed in (107)).  

 

G1/S phases and checkpoint 

During G0- and early G1 phases, the cyclin levels are low, CKI levels are high and hence the 

CDK activity is low. Upon extracellular proliferative stimulation through G0 or G1, cells 

enter a new round of cell division. They are committed to perform this cycle when they pass 

the “G1/S transition point”/“restriction (R) point.” Proliferation signals lead to accumulation 

of D-type cyclins which bind CDK4/6, and activation of the CDK4/6-cyclin D complex by the 

CDK-activating kinase (CAK). Active CDK4/6-cyclin D and CDK2-cyclin E complexes 

phosphorylate the retinoblastoma protein (Rb), leaving members of the E2F protein family 

free and active to stimulate the transcription of genes whose products are important for S-

phase entry. The CDK2-Cylin E complex also induces degradation of inhibitory factors like 

the CDK interacting protein/ kinase inhibitory protein (CIP/KIP) family member p27. In case 

of defective DNA, absence of appropriate mitogenic signals or presence of anti-proliferative 

signals, the G1/S checkpoint is activated. The CKI families inhibitor of CDK4 (INK4; p15, 

p16, p18 and p19) and CIP/KIP (p21, p27 and p57) serve as effectors at this checkpoint by 

inhibiting CDKs and preventing cell cycle progression. When the level of proteins required 

for S phase entry is adequately high, tightly controlled chromosome replication is initiated. 

Progression through the S phase is regulated by the CDK2-cyclinA complex, which 

phosphorylates components of the DNA replication machinery and thereby initiating DNA 

replication (reviewed in (107)). 
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G2/M phases and checkpoint 

After completed chromosome duplication, cells enter the G2 phase in which the newly 

divided genetic material is controlled. If DNA damage has occurred, checkpoint pathways 

initiating G2 phase arrest will be activated, leading to CDK1 (CDC2)-inhibition. Potential 

genotoxic stress may activate phosphorylation of human checkpoint kinases 1 and 2 (Chk1 

and Chk2) leading to phosphorylation and thereby inhibition of cell division cycle 25 

(CDC25), a process enhanced by the binding of the CDC25 inhibitor stratifin (SFN/14-3-3 ). 

This blocks CDC25 from dephoshorylating and hence activating CDK1, rendering CDK1 

inactive and preventing mitosis entry. Also, SFN and p21 may bind to the CDK1/cyclin B 

complex, enhancing the G2 arrest. The rate limiting step of mitosis entry is dephosphorylation 

of CDK1/cyclin B by CDC25 homolog B (CDC25B) and CDC25C thereby increasing its 

activity. The M phase tightly controls the division into two daughter cells (reviewed in (107)).    

 

 
Figure 5. Overview of cell cycle regulation and the G1/S and G2/M checkpoints. Full names are stated in the 

abbreviations list.  
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Mutations, overexpression or gene amplification of positive cell cycle regulators (potent 

proto-oncogenes), such as v-myc myelocytomatosis viral oncogene homolog (c-myc), may 

render their activity continuously on and thereby promoting cell proliferation. Overexpression 

of cyclin A, D1 and E, as well as CDK4 and 6 has been found in some human tumors. The 

mutation or deletion and hence inactivation of negative cell cycle regulators (potent tumor 

suppressor genes), such as p53, may destroy their ability to delay/arrest cell cycle progression, 

and hence leave the cell cycle active. Mutations in the p53 gene is found in over 50% of 

human cancers (reviewed in (107)).  

 Several studies have found n-3 PUFAs capable of interfering with cell cycle 

progression in cancer cells, inducing cell cycle arrest in either the G1/S or the G2/M phases 

(88, 104, 108-112) and changing the expression of several genes involved in cell cycle 

regulation at mRNA and/or protein level in different cancer cell types. DHA and/or EPA may 

reduce the protein level of cyclin A (88, 112), cyclin D (89, 113), cyclin E (88, 113), CDK2 

(88, 112), phosphorylated Rb (110, 112) and proliferating cell nuclear antigen (PCNA) (114), 

and increase the protein level of p21 (112). Narayanan et al showed that DHA induced 

extensive changes in gene expression of transcripts involved in e.g. cell cycle regulation, 

including up-regulation of the CKIs p18, p19, p21, p27 and p57 and down-regulation of 

CDK3 in a colon cancer cell line (97, 115). 

 PPAR transcription factors are, in addition to their role in regulation of lipid 

metabolism, also involved in cell proliferation. N-3 PUFAs are known to be PPAR ligands 

which bind to and thereby enhance their transcriptional activity (reviewed in (116)). PPAR  

expression may be up-regulated at mRNA level by DHA and EPA (115, 117), and at protein 

level by DHA (118). In order to activate PPAR , the DHA concentration has to be >10-30 μM 

(reviewed in (116)).  Several studies have reported PPAR  to have anti-tumor effects through 

cell cycle regulation, like inducing expression of the tumor-suppressor gene p53 and thereby 

the expression of p21, and induction of apoptosis by inducing expression of the Fas ligand 

and Syndecan 1 among others (reviewed in (116)). Also, the PPAR  and PPAR  anti-

inflammatory properties may contribute to suppression of tumor growth (reviewed in (10, 94, 

119)). 

Studies have shown that n-3 PUFAs suppress the expression of protein kinase C (PKC), 

which is known to be mitosis-stimulating (reviewed in (66, 80)), as well as decrease the 

activity of the mitosis-stimulators ras and activator protein 1. The latter ones are oncogenic 

transcription factors known to be frequently activated in cancers (reviewed in (1, 66)). EPA 

and DHA may also reduce the level of the pro-proliferative transcription factor -catenin by 
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increasing its degradation (89, 90, 120) and reducing its translocation into the nucleus (69, 

120). Decreased level of -catenin was followed by down-regulation of some of its tumor-

growth involved target genes like c-Met (90) and the inhibitor of apoptosis (IAP) survivin 

(120). 

 

1.5.5 Endoplasmic reticulum homeostasis  

The endoplasmic reticulum (ER) is a metabolic compartment within cells. It has four main 

functions; maintenance of Ca2+ homeostasis, biosynthesis of lipids and sterols, membrane and 

secretory protein synthesis and protein folding. Perturbation of any of these functions causes 

ER stress (reviewed in (121)).  

ER is an important Ca2+ store in eukaryote cells. Within the ER the free [Ca2+] is much 

higher (~1-2 mM) than in the cytosol (0.1 μM). However, the total [Ca2+] in the ER can be 

much higher due to the presence of Ca2+-binding proteins. Ca2+ in- and efflux into/from the 

ER are controlled by the ryanodine receptor (RyR), inositol 1,4,5-triphosphate (IP3) receptor 

(IP3R) and the sarcoplasmic/ER Ca2+ ATPases (SERCA) 1-3. IP3R and RyR are responsible 

for most of the Ca2+ efflux from and SERCA for most of the Ca2+ influx to ER. Ca2+ depletion 

of the ER will lead to inhibition of protein folding and target unfolded proteins for ER 

associated degradation (ERAD), as well as interfering with chaperone function and ER to 

golgi trafficking of proteins (reviewed in (121)). 

The ER membrane is the site for elongation and desaturation of FAs, cholesterol 

metabolism and phospholipid biosynthesis. Depletion of cholesterol or SFAs may increase the 

membrane fluidity, resulting in activation of the SREBP transcription factors that induces 

expression of genes involved in e.g. cholesterol biosynthesis. As mentioned in chapter 1.3.7; 

if the cholesterol level is too high, cholesterol will be esterified with PUFAs by ACAT and 

stored as CEs in lipid droplets in the cell. Sterols may also stimulate degradation of HMG-

CoAR and thereby inhibit cholesterol biosynthesis (reviewed in (121)).  

Within the ER there must be a balance between influx of unfolded proteins, efflux of 

proper folded proteins and targeting of unfolded proteins for proteasomal degradation. This 

retains the protein folding homeostasis in the ER and is added to by a range of chaperones like 

glucose-regulated protein 94 kDa (GRP94), valosin-containing protein (VCP) and several 

different heat shock proteins (Hsps) which bind the hydrophobic surface patches of unfolded 

proteins thereby promoting protein folding and prevent them from binding and aggregating 

with each other. Unfolded or misfolded proteins may be degraded by the proteasomes during 
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ERAD or autophagy (a degradation pathway described below) (reviewed in (121)). Proper 

protein folding and maturation requires a highly oxidizing and Ca2+-rich environment in the 

ER (reviewed in (122)).  

Disturbances in any of the ER functions lead to accumulation of unfolded proteins in 

the ER lumen and thereby induction of ER stress and the common signaling pathway named 

the unfolded protein response (UPR). Different models exist to describe how ER stress is 

sensed. The “competition model” describes how the ER luminal domains of the three ER 

stress sensors double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), 

activating transcription factor 6 (ATF6) and inositol requiring 1 (IRE1) compete with 

unfolded proteins for binding to the heavy chain binding protein/glucose-regulated protein of 

78 kDa (BiP/GRP78) (Fig. 6). BiP is normally bound to the luminal domains of these sensor 

proteins, thereby keeping them in an inactive state. Upon accumulation of unfolded proteins, 

BiP preferentially associates with the unfolded proteins and is thereby sequestered from the 

sensors which then can be activated (reviewed in (121)). During the recent years increased 

knowledge about the sensing of ER stress has emerged, especially on the regulation of IRE1. 

However, much of this work was performed in yeast, but is currently being explored also in 

humans (reviewed in (123)). 

 

PERK 

Dissociation of BiP from PERK leads to its dimerization and autophosphorylation of PERK’s 

cytosolic kinase domain that phosphorylates eukaryotic translation initiation factor 2 alpha 

(eIF2 -P) (Fig. 6). This leads to inhibition of translation/protein synthesis to relieve the 

protein burden of the ER. However, it induces the transcription of specific genes like 

activating transcription factor 4 (ATF4) (reviewed in (124, 125)). ATF4 regulates genes 

involved in amino acid import, glutathione biosynthesis and resistance to oxidative stress 

(reviewed in (126)). ATF4 induces transcription of genes involved in restoring ER 

homeostasis, a pro-adaptive effect. However, it may also induce a switch from a pro-adaptive 

to a pro-apoptotic effect (reviewed in (127)). Jiang et al found that ATF4 was induced as early 

as 1 h after thapsigargin (TG)-induced ER stress, followed by induction of activating 

transcription factor 3 (ATF3) after 1-3 h, CAAT/enhancer binding protein (C/EBP) 

homologous protein/ growth arrest and DNA damage-153 (CHOP/GADD153) and  growth 

arrest and DNA damage-34 (GADD34) after 6 h. ATF4 was found to be responsible for the 

induction of ATF3 and CHOP, while ATF3 induced GADD34 (128).  
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PERK also phosphorylates the nuclear factor erythroid-2-related factor-2 (Nrf2) 

leading to its dissociation from the inhibitor Kelch-like ECH-associated protein 1 (Keap1). 

Nrf2 translocates to the nucleus where it stimulates gene transcription of genes with 

antioxidant response elements (reviewed in (124)) and thereby plays a pro-survival role 

(reviewed in (126)). 

 

ATF6 

BiP dissociates from ATF6, resulting in the transportation of ATF6 to the Golgi where it is 

cleaved by S1P and S2P (Fig. 6). ATF6 then translocates to the nucleus where it binds to and 

activates target genes with ATF/cAMP response element and ER stress responsive element, 

including several ER chaperones (reviewed in (124)). ATF6 is known to induce the 

transcription of BiP, CHOP and 58 kDa inhibitor of PKR (P58IPK) (reviewed in (126)). X-box 

binding protein 1 (XBP-1) is also induced by ATF6 and their target genes are involved in 

protein folding and degradation in the ER (reviewed in (127)).  

 

IRE1 

Thirdly, the release of BiP from IRE1 leads to dimerization, autophosphorylation and 

activation of its RNAse activity (Fig. 6). IRE1 removes a nucleotide fragment from the XBP-

1 mRNA leading to a spliced mature XBP-1. The precursor and the mature form are both 

translated, but they have different functions. The mature XBP-1 translocates to the nucleus 

and activates UPR target genes (reviewed in (129)), such as proteins involved in protein 

folding and ERAD (reviewed in (127)). The XBP-1 precursor acts as an inhibitor of XBP-1 

signaling, especially important during the recovery phase when ER stress declines and IRE1 

is no longer active (reviewed in (129)). The IRE1 pathway is known to regulate expansion of 

the ER during ER stress (reviewed in (126)).  
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Figure 6. Overview of the UPR and key regulators. Full names are stated in the abbreviations list. 
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pathway to be activated. This is followed by activation of ATF6 which requires cleavage and 
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believed to be activated later in UPR. This is because the level of its target XBP-1 is normally 
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CDKs. The cell cycle arrest provides time for restoring ER homeostasis and prevents cells 

from dividing when protein folding is not optimal (reviewed in (131)). 

The adaptive responses induced by UPR are pro-survival. However, prolonged ER 

stress may induce a switch towards cell death (apoptosis is described in chapter 1.5.7). CHOP 

is known to induce the transcription of GADD34 which acts as a feedback loop on the PERK 

pathway in stressed cells, by dephosphorylating eIF2  and thereby blocking this protecting 

pathway. Also, the induction of P58IPK during UPR is known to repress PERK activity and 

play a role during late UPR. CHOP is also known to induce apoptosis by up-regulation of pro-

apoptotic members like BCl-2 antagonist killer (BAK) and BCl-2 antagonist of cell death 

(BAD), and down-regulation of anti-apoptotic members (BCl-2) of the BCl-2 family. This 

leads to cytochrome c release from mitochondria to cytosol and activation of downstream 

caspase-9 and caspase-3 cascades (reviewed in (127)). CHOP suppresses BCl-2 transcription 

through an interaction with the C/EBP beta (C/EBP ) isoform liver inhibitory protein (LIP) 

(reviewed in (130)). Another molecular switch between pro-survival and pro-apoptotic 

function of the PERK pathway is the CHOP-induced tribbles-related protein 3 (TRIB3). 

TRIB3 is proposed to exert negative feedback on CHOP so that cells may adapt to mild ER 

stress. However, TRIB3 inhibits v-Akt murine thymoma viral oncogene homolog 1 (Akt) and 

thereby leads to apoptosis during persistent ER stress (reviewed in (122)).  

IRE1 may recruit tumor-necrosis factor receptor associated factor 2 (TRAF2), thereby 

activating a MAPK cascade through signal-regulating kinase 1 (ASK1), resulting in activation 

of cJUN NH2-terminal kinase (JNK) and p38 MAPK. Activation of JNK can either induce 

autophagy in order to let cells adapt to ER stress, or induce apoptosis when ER stress is 

persistent (reviewed in (122)). Induction of apoptosis requires that JNK activates the pro-

apoptotic BCl-2-interacting protein BIM (BIM) and inhibits BCl-2, thereby leading to 

cytochrome C release and caspase activation. IRE1-signaling is positively regulated by 

interaction with the pro-apoptotic BCl-2 members BAK and BCl-2-associated X protein 

(BAX), and negatively by the anti-apoptotic BAX inhibitor 1 (reviewed in (122, 125)). 

Prolonged ER stress can lead to hyperoxidized ER lumen resulting in H2O2 leakage to 

cytoplasm and ROS production. This hyperoxidation has been linked to the CHOP target ER 

oxidase 1 alpha (ERO1 ). CHOP-induced apoptosis has been shown to involve ERO1 -

activation of IP3R1, Ca2+ signaling in the cytoplasm and activation of the Ca2+-sensing kinase 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) (reviewed in (130)) 

 Different conditions that induce ER stress can lead to leakage of Ca2+ from the ER to 

the cytosol. This may activate calpain which induces cleavage of procaspase-12, leading to 
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activation of the caspase-9 cascade (reviewed in (127)).  Increased concentration of 

intracellular Ca2+ ([Ca2+]i) may lead to its uptake by the mitochondria. This may activate 

caspase-8 which cleaves B-cell receptor-associated protein 31 (BAP31), an ER membrane-

bound protein, creating a truncated BAP20 product that may promote Ca2+ release from the 

ER. Ca2+ uptake by the mitochondria leads to increased cytochrome C efflux (reviewed in 

(125)).  

 If UPR is not able to restore ER homeostasis, autophagy can be induced to protect 

against the consequences of misfolded/aggregated proteins and damaged organelles. 

Autophagy is a mechanism through which damaged DNA, proteins and organelles are 

sequestered in autophagic vesicles before degradation by lysosomes in order to recycle 

building stones of important macromolecules. It is known as a survival response to growth 

factor or nutrient deprivation, but has also been suggested as a second form of programmed 

cell death (reviewed in (122, 132)). ER stress may induce expansion of the ER membrane as 

well as ER-phagy; the formation of vesicles containing parts of ER, also called ER-containing 

autophagosomes or ERAs. The ERAs may contain damaged ER or ER with protein 

aggregates that have to be degraded. It may also be that ER is degraded in this way in order 

reduce the ER volume upon declined ER stress (133, 134). In ER-stressed cells, autophagy 

can be initiated by PERK, IRE1 and Ca2+-release. PERK-induced eIF2 -P leads to up-

regulation of autophagy gene 12 (Atg12) which is important in autophagosome formation 

(reviewed in (122)). Upon hypoxia, PERK may also induce the expression of 

Atg8/microtubule-associated protein 1 light chain 3 (LC3) and Atg5 through ATF4 and 

CHOP, respectively (135). Hence, ER stress and autophagy are interlinked.  

 

N-3 PUFAs, ER stress and cancer 

ER stress and UPR are known to be induced in different types of cancers. UPR is important in 

cancer cells in order to induce pro-survival factors such as NF B, which helps them survive 

and maintain malignancy. UPR factors linked to tumorigenesis include XBP-1, ATF6, eIF2 -

P, ATF4, CHOP and BiP, as well as Hsps that may be implicated in the adaption of cancer 

cells to different stresses by repairing or degrading damaged proteins. In most normal cells 

UPR is in a quiescent stage. Activation of UPR during early tumorigenesis may induce cell 

cycle arrest in the G1 phase as well as activating p38 mitogen-activated protein kinase 

(MAPK). If UPR induces apoptotic signals at this stage in cancer cells, cells with mutations in 

apoptotic genes may have increased survival. In cancer therapy this can be utilized by 

inducing an overload of misfolded proteins or inhibit the adaptive and anti-apoptotic 
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pathways of UPR. Different cancer drugs targeting the UPR are under development and some 

are being tested in the clinic e.g. different HSP90- and proteasome inhibitors and an active 

component of marijuana called delta (9)-tetrahydrocannabiol (THC) (reviewed in (127)). THC 

was reported to induce cell death in human glioma cells. This was linked to induction of 

autophagy by increased eIF2 -P and up-regulation of the transcription factors p8, ATF4, 

CHOP and TRIB3, and subsequent TRIB3-dependent inhibition of the AKT/mammalian 

target of rapamycin complex 1 (mTORC1) pathway (136). EPA and/or DHA may decrease 

the phosphorylation and activity of AKT in tumor cells. The AKT/ Phosphoinositide 3-kinase 

(PI3K) signaling pathway is known to be important in the regulation of the cell cycle and 

autophagy, and has been suggested to be constitutively activated in different types of cancers 

(reviewed in (71)). Phosphorylation and hence inactivation of AKT is also associated with 

induction of apoptosis; it hinders it from phosphorylating and hence inhibiting the pro-

apoptotic BAD (137).  

 N-3 PUFAs may decrease the biosynthetic rate of cholesterol (reviewed in (100), as 

outlined in chapter 1.5.3. Changes in cholesterol homeostasis in the ER can induce ER stress 

(reviewed in (121)), and cholesterol depleted cancer cells are known to be prone to induction 

of apoptosis (reviewed in (100)). ER stress may activate SREBP2 (138). However, Zeng et al 

found that ER stress-induced activation of ATF6 may affect cholesterol synthesis by 

interfering with the transcription of SREBP2 target genes (139). Some studies have also 

reported that n-3 PUFAs interfere with Ca2+ homeostasis leading to inhibition of translation 

initiation/eIF2 -P (113), as well as induction of BiP and CHOP (140). Mechanisms for how 

n-3 PUFAs may increase [Ca2+]i will be outlined below. 

 

1.5.6 Intracellular calcium homeostasis 

Changes in [Ca2+]i are known to interfere with several different signaling pathways and the 

Ca2+ level within cells must therefore be strictly regulated. This regulation includes Ca2+ 

efflux from the ER to the cytosol (commonly through the IP3R), providing a signal for Ca2+ 

influx via the plasma membrane, a process called capacitative or store-operated Ca2+ entry. 

Hence, the Ca2+ level of intracellular Ca2+ stores regulates Ca2+ influx via the plasma 

membrane (reviewed in (141, 142)). However, the mechanism for capacitative influx has been 

largely unknown and under constant research. It is currently believed that it is regulated 

through the ER Ca2+-sensors stromal interaction molecule 1 (STIM1) and STIM2 which may 

lead to the activation of the pore-forming subunit of store-operated Ca2+ release-activated 
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Ca2+ channels (CRAC); Ca2+ release-activated Ca2+ modulator 1 (CRACM1/ORAI) (reviewed 

in (142)). N-3 PUFAs have been reported to release Ca2+ from intracellular Ca2+ stores; 

thereby increasing [Ca2+]i in cancer cells, while the results regarding the ability of n-3 PUFAs 

to stimulate capacitative influx have not been consistent (113, 143).  

 TG increases [Ca2+]i by inhibiting SERCA causing ER Ca2+ depletion and capacitative 

Ca2+ influx (144). The antifungal drug econazole (Ec) also increases the [Ca2+]i in cancer cells 

by inhibiting SERCA and thereby depleting Ca2+ from ER. However, Ec inhibits the TG-

induced capacitative influx in some cancer cells (145, 146), while it may induce capacitative 

Ca2+ influx in other cells (147). Studies have shown that also PUFAs like DHA and EPA may 

decrease TG-induced increase in [Ca2+]i in cancer cells by inhibiting TG-induced capacitative 

influx (113, 148, 149). Mutant cell lines resistant to both Ec and TG have been isolated from 

the human leukemic HL-60 cells. These cells like the E2R2 cells are resistant to ER Ca2+ 

depletion by Ec and have increased capacitative influx. When treated with Ec/TG they 

maintain protein synthesis, probably due to increased content of ribosomal proteins (150).  

 

1.5.7 Apoptosis in cancer cells 

Apoptosis, also called programmed cell death, is tightly regulated by pro- and anti-apoptotic 

factors. Dysregulation may promote cancer. Apoptotic hallmarks include cell shrinkage, 

membrane blebbing and bursting, followed by phagocytosis by surrounding cells or 

packaging into apoptotic bodies. There are two major apoptotic pathways; extrinsic and 

intrinsic. Upon a death signal, the extrinsic pathway is initiated by Fas ligand binding to a Fas 

death receptor. This complex further recruits death domain-containing protein (FADD) and 

procaspase-8 resulting in a protein complex called death inducing signaling complex (DISC) 

in which procaspase-8 is cleaved and activated before it cleaves and activates the effector 

procaspase 3 which drives the apoptotic pathway further (reviewed in (132, 151)). The 

intrinsic pathway is initiated by permeabilization of the mitochondrial membrane thereby 

causing leakage of cytochrome C to the cytosplasm where it binds apoptosis protease-

activating factor 1 (Apaf-1) and procaspase-9 forming an “apoptosome”. Procaspase-9 is 

activated before caspase-3 activation. The last apoptotic steps, packaging into apoptotic 

bodies and phagocytosis by surrounding cells, are the same for the extrinsic and intrinsic 

pathways (reviewed in (151)).  
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Apoptosis and n-3 PUFAs 

Induction of apoptosis is of huge importance in cancer treatment. Several in vitro cell culture 

studies and animal studies have demonstrated that DHA and EPA are able to promote 

apoptosis in cancer cells (reviewed in (75)). The apoptosis inducing effect includes activation 

of different pro-apoptotic factors and down-regulation of anti-apoptotic factors. DHA and/or 

EPA have been found to up-regulate the mRNA level of the procaspases 5, -8, -9, -10 and -13 

(115), as well as increase the cleavage and hence activation of procaspase 3 (137, 152, 153) 

and caspase 8 (152-154). DHA and/or EPA may also induce apoptosis in cancer cells via 

activation of BAD (137) and BH3-interacting domain death agonist (BID) (152) which are 

capable of promoting cytochrome C release, or suppression of the anti-apoptotic BCl-2 family 

members BCl-2 (85, 153-155) and BCl-2 like 1 (BCl2L1/BCl-Xl) (155). DHA also increases 

the expression of the cell proliferator regulator and pro-apoptotic transcription factor c-MYC 

(155), induces cytochrome C release from mitochondria and causes mitochondrial membrane 

depolarization (152). The pro-apoptotic effect of n-3 PUFAs on cancer cells may also involve 

increased activity of neutral sphingomyelinase (156) and formation of ceramide (112, 156). 

NF B is an important transcription factor in apoptosis regulation. It is usually 

inhibited by inhibitor of B (I B) in mammalian cells, but is released and activated upon pro-

apoptotic stimuli. NF B is constitutively activated in some cancers where it adds to tumor 

growth and cancer cell survival (reviewed in (66, 132)). N-3 PUFAs have been found to 

decrease the expression of NF B (89, 97), decrease its activity (114) and block the 

degradation of I B, thereby rendering NF B inactive (reviewed in (10, 157)).  

 There is also a strong connection between ER stress, autophagy and apoptosis, as 

outlined above (chapter 1.5.5). The effect of ER stress and autophagy may depend on the 

ability of cancer cells to induce apoptosis according to the genetic changes displayed 

(reviewed in (122)).  

 

1.6 Gene expression analysis 

The field of molecular diagnostics includes the elucidation of disease mechanisms to find 

gene-based biomarkers. An important tool in this field, and in molecular biology research, is 

global gene expression analysis using mircroarrays, which allows simultaneously examination 

of the expression of thousands of genes. This tool offers the opportunity to obtain gene 

expression signatures of diseased cells and patient samples, which can be used in the 

exploration of biomarkers and thereby improving early diagnosis and individual treatment. In 
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cancer research this tool can be used for studying changes in gene expression patterns of 

cancer cells compared to normal cells, or in response to drugs, as well as investigating tumor 

classification and cancer progression.  

Different microarray technologies exist in which the probes can be made of cDNA or 

oligonucleotides and are either spotted or synthesized on the microarray surface (reviewed in 

(158)). Different suppliers offer whole genome microarrays, covering the entire transcriptome 

(all the RNA) of different organisms. The Affymetrix GeneChip® System offers microarrays, 

chemicals, instruments and data analysis programs for gene expression analysis. Arrays are 

available for several different organisms, including human. The arrays are produced either as 

focus arrays, with a specific selection of probes, or whole genome arrays, presenting 

transcripts of gene sequences with both known and unknown functions (159). The human full 

genome array from Affymetrix analyzes the expression of about 47,000 transcripts and 

variants. The array fabrication and handling is well standardized which is reflected by low 

technical variability. Variation is although introduced due to e.g. differences in RNA quality 

(reviewed in (160)), which is a critical factor in microarray experiments.  

Gene expression analysis by microarrays is a valuable tool in the field of nutritional 

transcriptomics; the studying of how nutrients may regulate gene expression. Different 

bioactive food components have been reported to affect gene expression in cells (reviewed in 

(161)). Microarrays have also added to the understanding of the possible anti-tumor 

mechanisms of n-3 PUFAs. Scientists have used this technology to outline n-3 PUFA induced 

changes at mRNA level in cell culture and animal experiments, revealing several different 

molecular pathways involved (97, 102, 115).  Hence, it may be that the anti-tumor effect of n-

3 PUFAs involves a combination of different mechanisms, and the elucidation of these 

mechanisms can be aided by the use of microarrays. The requirement for publishing of raw 

data from microarray experiments into public databases also adds to the revealing of 

molecular mechanisms, since the data can be re-analyzed by new approaches in order to find 

additional pathways involved. 
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2. Aims of study  

 
N-3 PUFAs in the form of FO have been a common nutritional supplement in Norway for 

decades. These PUFAs have been associated with positive effects on different diseases like 

cardiovascular disease, some inflammatory conditions and possibly cancer cachexia. Several 

epidemiological observational studies have found that high n-3 PUFA intake reduces the risk 

of some cancers like colon cancer, even if the results are not consistent. These studies are 

supported by an increasing number of clinical studies, as well as animal- and cell culture 

experiments reporting a possible anti-tumor activity of n-3 PUFAs. Several different 

mechanisms have been suggested to be involved in the anti-tumor effect of n-3 PUFAs, but 

the mechanisms have not yet been fully established. N-3 PUFAs may also have a role as 

chemotherapy supplements, but in order to use these PUFAs clinically, the molecular 

mechanisms involved have to be elucidated.  

 

This study aimed at revealing how n-3 PUFAs affect cancer cell growth and in particular 

assessing the molecular mechanisms and cellular pathways contributing to their anti-tumor 

effects by using microarrays for global gene expression profiling. The identification of n-3 

PUFA-induced early responses in cancer cells and the influence of n-3 PUFAs on known 

cancer therapy targets were of special interest.  
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3. Summary of papers 

 

Paper I 
DHA induces ER stress and growth arrest in human colon cancer cells: associations with 

cholesterol and calcium homeostasis 

In order to reveal molecular mechanisms behind DHA-induced growth inhibition of cancer 

cells, gene expression profiling was performed using the Affymetrix GeneChip system and 

the Affymetrix Human Genome Focus array. Gene expression results revealed extensive 

changes at transcription level after DHA (70 μM)-supplementation of SW620 colon cancer 

cells for 12, 24 and 48 h. At 12 h of DHA treatment 839 transcripts were up-regulated and 

1066 down-regulated. At 24 h these numbers increased (1157 up-regulated and 1222 down-

regulated), while a markedly fewer genes were differentially expressed at 48 h (288 up-

regulated and 267 down-regulated). Affected transcripts belonged to numerous different 

molecular pathways. Interestingly, several transcripts indicative of ER stress and induction of 

UPR were up-regulated. These included factors from all three UPR branches (ATF6, PERK, 

XBP-1), especially transcripts downstream of PERK; ATF4, ATF3, GADD34, TRIB3 and 

heme oxygenase 1 (HMOX1). This was confirmed by phosphorylation of eIF2  (eIF2  –P, 3 

h) and induction ATF4 (6 h) at protein level; indicating that ER stress and UPR were early 

responses to DHA treatment. Tranlational shutdown by eIF2  –P was suggested by reduced 

cyclin D1. EPA (70 μM) also induced ER stress in SW620 cells, while OA (70 μM) did not. 

Several chaperones and Hsps like HSP70 were highly up-regulated after 12 h, indicating 

presence of unfolded proteins and increased need for correct protein folding. Also, several 

proteasomal subunits were up-regulated at mRNA level and one representative at protein 

level. Together with up-regulation of GRP94, VCP and sequestosome 1 (SQSTM1) this 

indicated induction of ERAD. Transcripts involved in the regulation of ER Ca2+ homeostasis 

like IP3R1 and IP3R3 were up-regulated. Further, measurement of Ca2+ levels indicated that 

DHA treatment for 12, 24 and 48 h increased the [Ca2+]i via Ca2+ release from the ER. DHA 

also enhanced the second phase of ATP-induced increase in [Ca2+]i, probably due to 

capacitative Ca2+ influx. These results imply that DHA treatment interferes with Ca2+ 

homeostasis in SW620 cells. Some pro-apoptotic transcripts like caspase 4 and caspase 7 

suggested a link between ER stress and induction of cell death. However, caspase 7 was not 

induced at protein level. The PERK target Nrf-2 and some of its downstream targets were up-

regulated at mRNA level, pointing towards a DHA-induced antioxidant response. The 
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cholesterol synthesis regulators HMG-CoAR, and the mature form of SREBP2 (mSREBP2) 

were induced at protein level upon DHA treatment. However, some transcripts encoding 

proteins involved in cholesterol biosynthesis were down-regulated and de novo cholesterol 

biosynthesis was found to decrease upon DHA treatment. Transcripts for some proteins 

involved in cholesterol uptake and transport like LDL receptor (LDLR) and niemann-pick 

disease type C1 (NPC1) were up-regulated, the latter also at protein level. This may reflect an 

increased need for cholesterol, but impaired ability to induce cholesterol synthesis. Total 

cholesterol level did not change at the earliest time points, but increased slightly after 48 h, 

while there was a reduction in synthesis of CEs from newly synthesized cholesterol. Taken 

together, these data imply that the growth inhibiting effect of DHA on the SW620 cells 

involves induction of ER stress, UPR and changes in Ca2+- and cholesterol homeostasis.  

 

Paper II 
The antiproliferative effect of EPA in HL-60 cells is mediated by alterations in calcium 

homeostasis 

Based on the results from paper I indicative of DHA-induced changes in Ca2+ homeostasis, 

the influence of such changes on n-3 PUFA sensitivity in cancer cells was further 

investigated. We used the human leukemia cancer cell lines HL-60 and E2R2 which represent 

an interesting cell model for studying the influence of changes in Ca2+ homeostasis on drug 

sensitivity and resistance, reflected by their different responses towards Ec and TG treatment. 

Incubation of HL-60 cells with EPA (35 μM) resulted in a strong growth inhibition, but had 

no effect on the growth of E2R2 cells. However, doubling the EPA concentration halved the 

growth of E2R2 cells while abolishing further proliferation of HL-60 cells, indicating a large 

difference between these two cell lines in the ability of handling the presence of EPA. Gene 

expression profiling was performed using the Affymetrix Human Genome U133 2.0 plus 

array. Gene expression results from EPA (35 μM) treatment of HL-60 cells after 12, 24 and 

48 h revealed changed expression of a high number of genes, representative for several 

different molecular pathways. Numbers of differentially expressed genes were highest after 

12 h (2974 up-regulated and 2247 down-regulated), decreased at 24 h (908 up-regulated and 

138 down-regulated) and was lowest after 48 h of EPA treatment (90 up-regulated and 11 

down-regulated). The transcription level of PERK and the ATF4 downstream targets ATF3 

and HMOX1 were up-regulated; indicating ER stress and activation of UPR. Induction of 

eIF2 -P (3 h) and ATF4 (12 h), at protein level, revealed ER stress and UPR as early 
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responses during EPA treatment. Transcription and protein level of cyclin D1 was down-

regulated; suggestive of translational shutdown by eIF2 -P. Transcription of several factors 

involved in protein folding like molecular chaperones such as Hsp90 and GRP94, and protein 

degradation like VCP, SQSTM1 (also at protein level) and proteasomal subunits were up-

regulated which points towards induction of ERAD. Transcription of Ca2+ homeostasis 

regulators like IP3R1 and CAMK1, and apoptosis like caspase 4 and caspase 7 were up-

regulated. Interestingly, in the E2R2 cells the protein levels of eIF2 -P, ATF4, SQSTM1 and 

cyclin D1 remained unchanged upon EPA-treatment. These results suggest that the anti-tumor 

effect of EPA on HL-60 cells is mediated by changes in Ca2+ homeostasis and induction of 

ER stress and UPR.  

 

Paper III 
DHA alters expression of target proteins of cancer therapy in chemotherapy resistant 

SW620 colon cancer cells 

Gene expression results from paper I indicated changes in different cell signaling pathways 

upon DHA (70 μM)-treatment of SW620 cells for different time points. The work presented 

in this paper focused on changes in the expression of transcripts encoding important cell 

cycle- and apoptosis regulators; some of which are known chemotherapy targets. Changes in 

gene expression of cell cycle regulators acting at the G1/S checkpoint included up-regulation 

of p21 and down-regulation of CDK2, CDK4, cyclin D1, cyclin D3 and PCNA. Changes in 

expression of G2/M checkpoint regulators included up-regulation of stratifin and down-

regulation of CDK1, CDC25B, CDC25C, cyclin A2 and cyclin B2. Changes in expression of 

CDC25C, CDK1, p21 and stratifin were also confirmed at protein level. This indicates that 

both G1/S and G2/M checkpoints were affected by DHA. The ER stress-related pro-apoptotic 

transcripts GADD34, TRIB3, caspase 4 and caspase 7 were up-regulated, and CHOP 

increased at protein level, indicating sustained ER stress. Decreased total protein level of the 

cancer therapy target NF B p65 and increased level of phosphorylated p38 MAPK also 

pointed towards induction of apoptosis. The malignancy-associated IAPs survivin (mRNA 

down-regulated) and livin (both - and  isoforms) were reduced at protein level, while the 

apoptotic cleaved livin (tLivin) increased. These findings may add to the explanation of how 

DHA may enhance cancer chemotherapy treatments in vivo.  
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4. Discussion 

 
There is common concern about the reduced n-3 PUFA and increased n-6 PUFA intake, and 

hence increased n-6/n-3 ratio, in the Western diet today. This change in PUFA balance over 

the last century is reflected by a reduction of DHA in membrane phospholipids, which may 

lead to “life-style” diseases like cardiovascular disease and neurological disorders (reviewed 

in (38, 56)). The populations in Norway and Japan have a relatively high fish consumption 

level and they have a higher intake of n-3 PUFAs compared to USA which has a very low n-3 

PUFA intake, as outlined in the introduction (chapter 1.2, table 1). However, the n-3 PUFA 

intake is declining in Norway as well, as shown by the statistics department of FAO 

(FAOSTAT) in their food balance sheets for Norway; the fat supply quantity (g/capita/day) 

consumed from fish or seafood decreased from 6.6 g in 1977 to 4.9 g in 2007 (162). 

Colorectal cancer has been associated with the type of food we eat (reviewed in (163)), and 

this cancer form is very common in the Western world (164). Reduced n-6/n-3 ratio has been 

suggested to have a preventive effect on colorectal cancer (165) and be associated with 

reduced breast (166) and prostate (167) cancer risk. However, the results from studies 

reporting on n-6/n-3 ratio in relation to cancer are not consistent (reviewed in (168)). Reduced 

n-6/n-3 ratio also correlates with reduced death rate from cardiovascular disease (reviewed in 

(38)). A reduced n-6/n-3 ratio could be achieved by consuming more fatty fish or n-3 FO 

supplements, less plant oil containing n-6 PUFAs and use optimal cooking methods which 

preserves the n-3 PUFAs, as outlined in the introduction (chapter 1.2). 

Even though results from epidemiological observation studies reporting on fish, n-3 

PUFA intake and cancer are inconsistent, the meta-analysis of prospective cohort studies by 

Geelen et al revealed a 4 % and 3 % reduction in colorectal cancer risk per each extra fish 

meal or 100 g fish consumed per week, respectively (169). One of the studies included in this 

meta-analysis was the large European Prospective Investigation into Cancer and Nutrition 

Study, following over 470 000 people from 10 European countries. They found increased fish 

consumption to have a protective effect on colorectal cancer incidence (170). Few clinical 

studies on n-3 PUFAs and cancer have been performed, but the positive results from the 

intervention studies by Anti (60, 62), West (44), Aronson (61) and others, as outlined in the 

introduction (chapter 1.4.1), are convincing. However, the report from the FAO/WHO expert 

consultation in 2008 concluded that the evidence reporting on a possible relationship between 

n-3 PUFA consumption and cancer was insufficient at that time point (15). Even so, the report 

stated that there is a “probable” decrease in colorectal cancer risk correlated to intake of DHA 
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and EPA (500 mg/day) or ingestion of 2-3 portions of fish per week. The report also 

commented on some of the reasons why epidemiological observational studies have been 

unable to give concluding results on an effect of fat intake like n-3 PUFAs on cancers. 

Especially two factors were highlighted; the fact that fish also contains vitamin D and 

selenium which possibly have an effect against some cancers, and that food frequency 

questionnaires (FFQ) used to asses exposure levels may be error prone since they are not able 

to quantify the FAs accurately (15). This was also reflected in a report by Dennis et al where 

they reviewed the inconsistency in methods used to measure and report dietary fat and fatty 

acids in epidemiological studies of prostate cancer; differences in FFQs for dietary 

measurements, along with other factors, were reported to contribute to large heterogeneity 

between the reviewed studies (171). 

 

4.1 N-3 PUFAs changes the gene expression profiles of human cancer cells 

In the search for mechanisms involved in the anti-tumor effect of n-3 PUFAs, special 

attention has been given to lipid peroxidation and antioxidant defense, eicosanoid formation, 

changes in membrane characteristics and gene expression, as well as regulation of cell cycle 

and apoptosis (reviewed in (4, 10, 172)). Many studies have reported that n-3 PUFAs induce 

changes in expression of specific genes and proteins. However, the microarray technology 

brings the opportunity to study changes in gene expression in a new and genome wide 

manner. The technology is highly hypothesis-creating and exceptionally valuable in screening 

for drug-induced changes in gene expression and in nutritional transcriptomics, as mentioned 

in the introduction (chapter 1.6). Anyway, it is important to be aware of the fact that 

transcriptional changes cannot be directly related to changes at protein level. Gene expression 

can be regulated at different levels like mRNA synthesis, mRNA stability and regulation of 

translation; hence, biological interpretation of gene expression results requires further study 

like verification at protein level (reviewed in (173)). Some studies have presented microarray 

results from n-3 PUFA treated human cancer cells (97, 102, 115) and colon adenoma cells 

(174), all reporting changes in the expression of genes involved in regulation of cell growth. 

However, these studies have used microarrays covering only parts of the human genome. The 

gene expression profiling results presented in this thesis are based on two microarray types; 

one covering a selection of ~8500 well characterized human genes (paper I and III) and the 

second covering the whole human genome (paper II). Results indicated that n-3 PUFAs 

induced extensive changes in the expression of several genes belonging to several different 
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molecular pathways, in cancer cells (paper I, II and III). Some transcripts were highly up or 

down-regulated, whereas most differentially expressed transcripts showed moderate changes. 

However, the level of change in gene expression did not necessary correlate with the 

importance of specific transcripts when it comes to anti-tumor action of n-3 PUFAs. 

Differentially expressed genes were representative for e.g. induction of ER stress, UPR, 

changes in Ca2+- and cholesterol homeostasis, as well as changes in regulation of cell cycle 

and apoptosis (paper I, II and III). 

 

4.2 Induction of ER stress and UPR by n-3 PUFAs in human cancer cells 

The finding that n-3 PUFAs induced ER stress and UPR in human cancer cells is especially 

interesting and had to our knowledge not been shown before, at least not to the extent 

presented here. Even if all three branches of UPR were affected in DHA-treated SW620 cells, 

the n-3 PUFA-induced expression of PERK and targets downstream of ATF4 were striking in 

both SW620 (paper I, table 1) and HL-60 cells (paper II, table 2). Phosphorylation of eIF2  

(eIF2 -P) is an important ER stress and UPR marker (reviewed in (126)), and was induced 

already 3 h after n-3 PUFA supplementation in both cell lines (paper I, fig. 2/3 and paper II, 

fig. 3). Together with induction of ATF4 (paper I, fig. 2/3 and paper II, fig. 3), this indicated 

that ER stress and UPR were early responses to n-3 PUFA treatment in these cancer cell lines. 

The reduction of eIF2 -P over time in SW620 cells may be due to up-regulated GADD34 

(paper I, table 1), which dephosphorylates eIF2 , as outlined in the introduction 

(chapter1.5.5). OA did not change eIF2 -P or ATF4 protein levels; hence, it did not induce 

ER stress in SW620 cells (paper I, fig. 3). Previously, even if not referring to their 

observations as “ER stress” or “UPR”, Aktas et al found that EPA induced eIF2 -P and 

expression of factors downstream of ATF4 in NIH3T3 cells (140). In line with our results, 

other FAs have also been found to induce ER stress in different cancer cells (175-178), 

indicating that not only n-3 PUFAs are capable of inducing ER stress.  

 Upon ER stress, eIF2 -P leads to translational shutdown and reduction of cyclin D1 

which is an important G1 phase regulator (179, 180). Correlating with the induction of eIF2 -

P, reduced cyclin D1 at both mRNA and protein level was observed after n-3 PUFA treatment 

in both SW620 (paper I, table 1, fig. 2/3) and HL-60 cells (paper II, table 2, fig. 3). Even 

OA reduced the cyclin D1 level slightly in SW620 cells, although to a much lesser extent and 

did not affect cell growth (paper I, fig. 3). Others have shown that OA did not affect the 

growth of HL-60 cells (181). Consistent with our results, Palakurthi et al showed that EPA 
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induced eIF2 -P and reduced cyclin D1, leading to G1 cell cycle arrest in NIH3T3 cells. 

However, they ascribed eIF2 -P to another eIF2  kinase; protein kinase R (PKR) (113), while 

our results indicate that this happens through the PERK pathway in the cancer cells studied 

(paper I and II).  

 Protein folding in the ER requires an oxidative milieu and disturbances in the 

oxidative status of the ER may lead to ER stress and an increased production of ROS 

(reviewed in (126)). ROS may give oxidative damage on DNA and proteins as well as LPO 

and hence an increased need for antioxidants (reviewed in (182)). Gene expression profiling 

showed that DHA affected the antioxidant response of SW620 cells, as indicated by up-

regulated expression of Nrf-2 and its target HMOX1 (paper I, table 1) which was one of the 

highest up-regulated transcripts. However, short interference RNA (siRNA) knockout of 

HMOX1 did not affect cell growth during DHA-treatment (paper I, results not shown). Nrf-2 

may be activated by PERK in a ROS- and eIF2 -P independent manner (183) and has an 

important role in the redox balance in cells. Nrf-2 induces glutamate-cysteine ligase (GCL) 

which is the rate limiting enzyme in biosynthesis of the cellular redox buffer glutathione 

(reviewed in (182)); hence, up-regulated GCL catalytic (GCLC) and modifier (GCLM) 

subunits point towards an up-leveling of the antioxidant defense in DHA-treated SW620 cells 

(paper I, table 1). Further, we recently found DHA-induced increase in ROS production at 

early time points (1-4 h), correlating with induction and nuclear translocation of Nrf-2 in 

SW620 cells (Overland et al, submitted). However, the antioxidant vitamin E did not relieve 

DHA-induced growth inhibition (104); hence, LPO is probably not the main cause of the anti-

tumor effect of DHA in the SW620 cells. EPA-treatment of HL-60 cells was previously 

shown to induce ROS production; hence oxidative stress was suggested to be involved in 

triggering cell death in these cells (152). However, Finstad et al showed that vitamin E did not 

reduce the effect of EPA on HL-60 cells (184).  

Upon accumulation of misfolded proteins in the ER, the ERAD process is activated 

(reviewed in (121)). The up-regulated expression of several n-3 PUFA-induced proteasomal 

subunits and Hsps/chaperones in cancer cells (paper I, table 1, supplementary table 1 and 

paper II, table 2), like induction of 26S proteasome regulatory subunit RPN2 

(RPN2/PSMD1) and Hsp70 in DHA-treated SW620 cells (paper I, table 1, fig. 2), may 

indicate presence of unfolded proteins in the ER lumen and that cells are signaling an 

increased need for ERAD components. This is also reflected by the up-regulated expression 

of GRP94/HSP90B1, which may be considered a hallmark of ER stress responses, in both 

SW620 (paper I, supplementary table 1) and HL-60 cells (paper II, table 2). It has several 
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functions during ER stress such as chaperone-induced protein folding, Ca2+-binding and 

targeting of proteins for ERAD (reviewed in (185)). This ubiquitin selective chaperone VCP 

and SQSMT1 are also important in ERAD. VCP disassembles protein complexes and 

translocates proteins from ER to the proteasomes in cytosol, but is also important in cell cycle 

regulation (reviewed in (186)). SQSTM1 is induced upon accumulation of unfolded proteins 

(reviewed in (187)); hence, the up-regulated expression of these ERAD components by n-3 

PUFA treatment in both of the profiled cancer cell lines (paper I, table 1 and paper II, table 

2, fig. 3) strengthens the suggestion of ERAD induction.  

Increased expression of ER stress-induced pro-apoptotic transcripts points towards 

sustained ER stress. The induction of CHOP during DHA-induced ER stress in SW620 cells 

(paper III, fig. 2) is especially interesting and consistent with previous studies (140, 188). 

CHOP may be induced by all three UPR branches and regulates the balance between pro- and 

anti-apoptotic BCl-2 family proteins (as outlined in chapter1.5.5), thereby affecting the 

balance between protective UPR and induction of cell death (reviewed in (121)). The BID 

transcript was up-regulated in DHA-treated SW620 cells (paper I, supplementary table 1) and 

others have found activation of BID to be involved in EPA-induced apoptosis of HL-60 cells 

(152). Also, the BCl-2/adenovirus E1B 19 kDa interacting protein 3-like (BNIP3L) transcript 

was up-regulated by n-3 PUFA treatment in both SW620 and HL-60 cells (paper I, re-

examination of gene list and paper II, table 2). BNIP3L may interact with BCL-2 (189), and 

BNIP3L overexpression reduced the growth of SW480 colon cancer cells (190). Taken 

together, this may illustrate why we find ER stress to be induced early after n-3 PUFA 

exposure, while changes in cell growth and DNA synthesis appear later. Recently, we used 

the xCELLigence RTCA DP instrument (Roche) to monitor cell growth in real time during 

DHA treatment of SW620 cells. Cell index declined after 10-15 h of DHA (but not OA) 

treatment in these cells (Overland et al, submitted).  

Sustained ER stress is also indicated by up-regulated XBP-1 (paper I, table 1) and its 

target C/EBP  (191) in both n-3 PUFA-treated SW620 and HL-60 cells (paper I and II, re-

examination of gene lists). The C/EBP  LIP isomer has been found to increase during 

prolonged ER stress, attenuate ATF4-dependent transcription and probably be pro-apoptotic 

(192). Recently, we also found LIP and the LIP/liver activator protein (LAP) ratio to be 

increased upon tetradecylthioacetic acid (TTA)-treatment of SW620 cells (193). Increased 

LIP has been found important for CHOP-induced apoptosis (194), and C/EBP /CHOP may 

be important for the up-regulation of TRIB3 (195). TRIB3 was up-regulated by n-3 PUFA 

treatment in both cell lines tested (paper I, table 1 and paper II, table 2) and may promote 
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apoptosis through inhibiting AKT (196) and NF B (197). In addition, up-regulated GADD34 

(paper I, table 1) and caspases 4 and 7 (paper I, table 1 and paper II, table 2, reviewed in 

(198)), as well as calpains (paper I, table 1, (199)) have been implicated in ER stress-induced 

apoptosis. However, we were not able to detect activated caspase 7 (paper I, results not 

shown) or observe apoptosis in DHA-treated SW620 cells (104), while others have found 

EPA-induced apoptosis in HL-60 cells, as discussed below (chapter 4.5).    

Extensive ER stress may also induce the expression of genes involved in autophagy 

(reviewed in (122)). Further examination of differentially expressed genes (paper I and II) 

revealed that the already mentioned up-regulated transcripts: SQSTM1/p62, VCP (200), 

BNIP3L (201) and C/EBP  (202), in addition to LC3B (reviewed in (187), re-examination of 

gene lists paper I) were also implicated in autophagy. This may indicate induction of 

autophagy upon n-3 PUFA treatment of SW620 and HL-60 cells. Also, we recently showed 

that DHA treatment up-regulated several important UPR and autophagy factors as early as 

after 3 and 6 h in SW620 cells, however, this did not result in increased autophagy level in 

these cells (Overland et al, submitted). Even so, Jing et al newly found that DHA induced 

autophagy and apoptosis in cervical cancer that was p53 dependent (203). 

 ER stress and UPR are known to play a role in some human diseases. Even if 

induction of UPR correlates with survival of some tumors, as discussed in chapter 1.5.5, UPR 

may be detrimental in other diseases like retinitis pigmentosa in which misfolded mutant 

rhodopsin protein leads to apoptosis, degeneration of the retina and hence results in blindness 

(reviewed in (204)). ER stress and UPR are also implicated in the pathogenesis of obesity and 

transcriptional regulation of lipogenesis through all three arms of UPR (reviewed in (205, 

206)). Our results show that DHA- and EPA-induced ER stress and UPR in human cancer 

cells correlated with reduction of cell growth (paper I and II). However, in search for 

relevant biomarkers for prediction of PUFA-sensitivity or targeted therapies, there is a need 

for more research on the molecular mechanisms involved. Currently, different UPR-based 

“anti-tumor” drugs are being explored and tested, both in the laboratory and the clinic. Given 

the fact that UPR can be both protective and death-inducing, such drugs may be directed at 

changing the balance of UPR towards induction of cell death. This can be achieved e.g. by 

inhibiting proteasomal degradation and thereby ERAD; resulting in extensive ER stress and 

apoptosis (reviewed in (207)).  
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4.3 N-3 PUFAs disturb Ca2+ homeostasis in human cancer cells 

Proper regulation of the Ca2+ homeostasis in the ER is important in maintaining overall ER 

homeostasis (reviewed in (121)). Gene expression results indicated that DHA interfered with 

the expression of some genes like IP3Rs involved in regulation of Ca2+ homeostasis in the 

SW620 cells (paper I, table 1, supplemental table 1). Measurement of  cellular Ca2+ levels 

showed that DHA increased the [Ca2+]i, probably by triggering Ca2+ release from the IP3 

sensitive ER Ca2+ store and increasing capacitative Ca2+ flux into cells (paper I, fig. 4). 

Consistent with our results, Aires et al previously found that DHA increased [Ca2+]i via IP3-

dependent release from intracellular Ca2+ stores and capacitative Ca2+ entry in leukemia cells 

(143). Chow et al also demonstrated an n-3 PUFA-induced two phasic increase in [Ca2+]i in a 

leukemic cell line, however, the increase in [Ca2+]i mobilized from the ER Ca2+ pool did not 

depend on IP3 and the second phase lower Ca2+ level was not due to Ca2+ influx (208). Some 

studies have found that DHA and/or EPA reduced the TG-induced rise in [Ca2+]i by inhibiting 

TG-induced capacitative Ca2+ influx (113, 148). This is contradictory to our observation in 

DHA-treated SW620 cells where we found DHA supplementation to increase [Ca2+]i to an 

even higher level than TG alone (paper I, fig. 4). Hence, results on the capability of n-3 

PUFAs to affect capacitative influx are not consistent for unknown reasons. Interestingly, 

capacitative Ca2+ influx is currently believed to include STIM and ORAI proteins (reviewed 

in (142)). Reentry of the gene expression results (paper I) showed that STIM1 was up-

regulated at 24 and 48 h upon DHA-stimulation in SW620 cells. This may be to increase 

capacitative Ca2+ flux into cells, in order to refill the ER Ca2+ store. The up-regulated calcium 

modulating ligand (CAMLG) (paper I, table 1) is also worth mentioning, since it is known to 

induce Ca2+ flux in to cells (209). OA has been shown to inhibit TG-induced capacitative Ca2+ 

influx (149, 210). OA was not included in the Ca2+ measurements, however, we may speculate 

that the influence of OA on Ca2+ transport is different from DHA, and hence OA did not 

induce ER stress in the SW620 cells (paper I).  

It is possible that the observed disturbance in Ca2+ homeostasis is linked to induction 

of ER stress in SW620 cells. The measurements of the effect of DHA on Ca2+ levels in 

SW620 cells were performed at late time points. Considering the early induction of eIF2 -P 

(3 h) and ATF4 (6 h) the observed changes in Ca2+ homeostasis could be a result of, rather 

than the cause of, ER stress induction. These experiments should be repeated at earlier 

treatment time points in order to explore whether there could be an initial transient Ca2+-
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release prior to the observed ER stress or not. Some previous studies have reported that n-3 

PUFAs induces a rapid increase in [Ca2+]i in some cancer cells (113, 143, 208).  

 The findings of ER stress and UPR induction, as well as changes in the [Ca2+]i led us 

to suggest that regulation of Ca2+ homeostasis may be important in the “anti-tumor” effect of 

n-3 PUFAs. In order to further investigate this hypothesis, we took advantage of the already 

described HL-60/E2R2 cancer cell model in which the two cell lines respond differentially to 

the Ca2+ homeostasis disturbing chemicals Ec and TG (150). Zhang et al showed that in 

contrast to HL-60 cells, E2R2 cells displayed sustained protein synthesis levels and did not 

induce eIF2 -P upon Ec/TG treatment, which may reflect decreased stress in the E2R2 cells 

possibly due to increased capacitative influx and increased refilling of the ER (150). We 

hypothesized that these two cell lines would respond differentially to n-3 PUFA 

supplementation. EPA (35 μM) did indeed induce strong growth inhibition of HL-60 cells, 

while E2R2 cells were resistant (paper II, fig. 2). These results correlated with an early 

induction of eIF2 -P (3 h) and ATF4 and reduction of cyclin D1 only in HL-60 cells (paper 

II, fig. 3). Hence, induction of ER stress and UPR, and translational shutdown was not 

observed in the E2R2 cells. Based on this we suggested that the degree of n-3 PUFA 

sensitivity correlated with the differences in regulation of Ca2+ homeostasis between these cell 

lines. It has been shown that PUFAs and Ec may mobilize Ca2+ from the same intracellular 

Ca2+ store (211). We did not measure Ca2+ release in this cancer cell model. However, the 

gene expression profiling of HL-60 cells showed up-regulation of several genes involved in 

regulation of Ca2+ homeostasis like IP3R, which may indicate increased need of such 

receptors to regulate Ca2+ release from the IP3-sensitive ER Ca2+ store (paper II, table 2). It 

would be interesting to explore and compare the effect of n-3 PUFAs on [Ca2+]i in this model.  

Recently it was reported that Ec resistance in the E2R2 cells correlated with high 

overexpression of the ATP-binding cassette, sub-family F (GCN20), member 1 

(ABC50/ABCF1) gene which has a role in translation initiation. Overexpression of ABC50 in 

HL-60 cells decreased sensitivity towards Ec, decreased eIF2 -P, increased ribosomal content 

and increased protein translation, while ABC50 knockdown in E2R2 cells gave the opposite 

characteristics; hence increased the Ec sensitivity in these cells (212). Reinspection of gene 

expression results (paper II) revealed that ABC50 was down-regulated upon EPA treatment 

in HL-60 cells. This may be consistent with EPA-induced growth inhibition, induction of 

eIF2 -P and translational shut down in HL-60 cells, but not in E2R2 cells (paper II). If the 

expression of ABC50 is affected by EPA in the E2R2 cells remains to be investigated.   
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In light of our results it is tempting to speculate that the differences in sensitivity to n-3 

PUFAs are correlated with differences in capability of cancer cells to handle changes in Ca2+ 

homeostasis. This may be reflected by a study by Palakurthi et al reporting that the cancer cell 

line U118-MG had a low half maximal inhibitory concentration (IC50) value of 36 μM EPA 

and induced a rapid increase in Ca2+ level, while the less sensitive cancer cell line HTB-174 

had a high IC50 value of 80 μM and did not give such a rapid increase in Ca2+ level. Hence, 

the degree of EPA sensitivity correlated with the ability to increase in [Ca2+]i in these cancer 

cells (113). 

 

4.4 DHA deregulates lipid metabolism in cancer cells  

The ER homeostasis is sensitive to changes in cholesterol homeostasis (reviewed in (121)). 

Interestingly, we found induction of the important cholesterol synthesis regulators SREBP2 

(mature form) and HMG-CoAR in DHA-treated SW620 cells (paper I, fig. 5), in addition to 

up-regulated expression level of some genes encoding proteins involved in cholesterol 

synthesis, uptake and transport like LDLR and NPC1 (paper I, table 1, supplementary table 

1, fig.5). This could indicate an increased need for cholesterol synthesis upon DHA 

supplementation. Based on these results, we measured de novo cholesterol synthesis which 

turned out to be down-regulated (paper I, fig. 6), accompanied by some down-regulated 

cholesterol synthesis transcripts (paper I, table 1). However, the total cholesterol level in 

these cells did not change markedly (paper I, results not shown). Taken together with the 

previous observations of accumulated DHA-rich CEs and accumulation of lipids in lipid 

droplets upon DHA treatment of SW620 cells (104), these results suggested a redistribution of 

cholesterol from the free form into CEs. The reduction in de novo cholesterol synthesis and 

the accumulation of CEs could possibly lead to depletion of free cholesterol in the ER. DHA 

supplementation of CaCo-2 cells has been shown to reduce cholesterol transport from the 

plasma membrane to the ER (213). A similar event in SW620 cells may contribute to reduced 

ER cholesterol level. Cholesterol depletion may induce ER stress and UPR (214), which could 

be responsible for the activation of SREBP2 (138). Consistent with the observed reduction in 

cholesterol synthesis, previous studies have reported that n-3 PUFAs reduced HMG-CoAR 

mRNA level (101, 102, 215) and nuclear SREBP2 (105), as well as induced LDLR in cancer 

cells (215, 216). Hence to our knowledge, we are the first to report activation of SREBP-2 

upon n-3 PUFA supplementation of cancer cells.   
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A possible explanation for reduced cholesterol synthesis and reduced expression of 

some cholesterol synthesis genes could be that ER stress-induced ATF6 might interfere with 

SREBP2-regulated gene expression by binding the active transcription factor and thereby 

reducing its activity (139). However, we recently showed that down-regulated expression of 

some SREBP2 target genes (as early as after 6 h) and increased activated SREBP2 level were 

most likely regulated independently of ER stress and ATF6 during DHA-treatment of SW620 

cells. This was also reflected by the induction of SREBP2 by OA (217), which did not induce 

ER stress (paper I, fig. 3) or accumulation of CEs (104) in these cells. The observed 

deregulation of cholesterol synthesis by DHA supplementation needs to be further examined.  

In addition to SREBP2, cholesterol synthesis is also known to be induced by 

SREBP1a (reviewed in (42)). Consistent with our previous finding of reduced nuclear 

SREBP1 protein upon DHA-treatment of SW620 and SW480 cells (104), we found SREBP1 

expression to be down-regulated (paper I, supplementary table 1). Others have also found 

reduced SREBP1 mRNA and protein level upon n-3 PUFA supplementation (103, 105). 

SREBP1 also regulates lipogenesis e.g. through induction of FAS, and consistent with the 

results of others (101), the expression of FAS was also reduced by DHA-treatment of SW620 

cells (paper I, reinspection of gene lists). Whether the reduction of SREBP1 may cause 

down-regulation of the expression of some cholesterol biosynthesis genes upon DHA-

treatment needs to be further investigated. Interestingly, SREBP nuclear levels were recently 

shown to be influenced by the mTORC1 pathway; inhibition of mTORC1 resulted in 

increased nuclear localization of lipin 1 which could reduce nuclear SREBP (218). 

Reinspection of the gene lists (paper I) revealed that Akt1 expression was down-regulated 

which may lead to reduced mTORC1 activation. The expression of lipin 1 was up-regulated in 

DHA-treated SW620 cells (complementary unpublished results). 

The finding of reduced incorporation of newly synthesized cholesterol into CEs 

(paper I, fig. 6) correlates with the previous observation of reduced ACAT1 mRNA and 

protein level upon DHA-treatment of SW620 cells. However, reduction of ACAT1 took place 

after 24 h and beyond (104); hence there is time for accumulation of CEs preceding this 

reduction and ACAT1 reduction could possibly be a feedback mechanism to this 

accumulation. Further, accumulation of DHA-rich CEs in lipid droplets could possibly be due 

to reduced CE turnover. This speculation is supported by the finding of down-regulated gene 

expression of neutral cholesterol ester hydrolase 1 (NCEH1, complementary unpublished 

results) in DHA-treated SW620 cells. NCEH1 degrades CEs from cytosolic lipid droplets 

(reviewed in (219)); hence its reduction could lead to accumulation of CEs in lipid droplets. 
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Interestingly, knockdown of NCEH1/KIAA1363 has been found to reduce growth of cancer 

cell xenografts in vivo (220).  

Cholesterol depletion has been reported to induce autophagy (221, 222) and induce 

SREBP2-dependent transcription of several autophagy genes like LC3B, possibly in order to 

induce autophagy of lipid droplets to access the sterols stored therein (221). This could be 

consistent with our observations of activated SREBP2, a possible local cholesterol depletion 

in the ER (paper I) and induction of the expression of autophagic genes after DHA treatment 

of SW620 cells, even though it did not correlate with increased autophagy in these cells 

(Overland et al, submitted). This is also reflected by the accumulation of cytosolic lipid 

droplets (104) whose degradation has been shown to be regulated by autophagy-dependent 

lipolysis (macrolipophagy) (223). Interestingly, Velikkakath et al recently showed that the 

autophagy protein Atg2 co-localized with lipid droplets and found that knockout of Atg2A 

and Atg2B resulted in accumulation and clustering of lipid droplets in HeLa cells (224). The 

relation between cholesterol, lipid droplets and autophagy was lately reviewed in (225). 

 As an important component of cellular membranes, cholesterol is essential for cell 

growth (reviewed in (41)) and cancer cells may have a higher demand for cholesterol in order 

to keep up membrane synthesis in rapidly growing cells (226). Cholesterol starvation has been 

shown to decrease CDK1 activity and arrest cancer cells in the G2 phase of the cell cycle 

(227). This is also reflected in a study by Kaneko et al who showed that the HMG-CoAR 

inhibitor lovastatin down-regulated the IAP survivin that is normally active in the G2/M 

phase. They also found that siRNA against survivin induced apoptosis in SW480 cells (228). 

Hence, there seems to be a link between the reduction in cholesterol biosynthesis (paper I) 

and the previously observed G2/M arrest (104) via reduction of CDK1 and survivin (paper 

III, table 1, fig. 2) after DHA-supplementation of SW620 cells. However, we recently showed 

that cholesterol supplementation in combination with DHA did not effect DHA-induced 

growth inhibition of these cells (217).  

 

4.5 N-3 PUFAs affect G1/S and G2/M cell cycle checkpoints and regulation 

of apoptosis

Based on previous reports of cell cycle arrest in the G2/M and G1 phases of DHA-treated 

SW620 cells (104) and EPA-treated HL-60 cells (184), respectively, the changed expression 

of cell cycle regulators was expected (paper II, table 2 and paper III, table 1, fig. 1). Others 

have also reported n-3 PUFAs to arrest cancer cells in the G1 and G2/M cell cycle phases (88, 
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108-112). However, in DHA-treated SW620 cells both G1 and G2/M phase regulators were 

differentially expressed; hence DHA probably affected both of these phases simultaneously. 

Down-regulated transcription of G1 phase cyclin D and CDKs in DHA-treated SW620 cells 

(paper III, table 1, fig. 2) may indicate a hinder from passing on to the G2/M phase. DHA-

induced p21 (paper III, table 1, fig. 2) may inhibit cyclin-CDK complexes at both the G1/S 

and G2/M checkpoints (reviewed in (229)) and down-regulate PCNA (paper III, table 1), in 

order to halt cell cycle progression (reviewed in (230)). Consistently, others have also 

reported n-3 PUFAs to induce changes in the expression of p21 (97, 112), CDK2 (88, 112), 

Cyclin A (88, 112) and PCNA (114). Re-examination of the gene lists from paper II revealed 

up-regulated expression of the G1 cell cycle inhibitors p18 and p27, as well as down-

regulated expression of CDK4 and cyclins D1-3 and cyclin E in EPA-treated HL-60 cells 

(paper II, table 2); hence indicating G1 arrest. Changed transcription of p18 and p27 were 

previously reported in DHA-treated colon cancer cells (115). 

 The G2/M phase was also clearly affected by DHA treatment of SW620 cells, as 

shown by down-regulated expression for several different G2/M phase regulators (paper III, 

table 1). The reduction of nuclear CDK1 and CDC25C (paper III, fig. 2) may be due to 

increased cytosolic SFN (paper III, fig. 2) which binds and retains these proteins in the 

cytoplasm (reviewed in (231)). This, in addition to down-regulation of G2/M cyclins (paper 

III, table 1), may be critical for induction of G2/M arrest in SW620 cells. To our knowledge, 

DHA-induced SFN, as well as reduced CDK1 and CDC25C have not been reported 

previously.   

 In a review on PUFAs and induction of apoptosis in cancer cells, Serini et al (75) 

commented on our results from paper I. Given the fact that conjungated-LA (CLA) has been 

reported to induce ER stress-associated apoptosis in breast cancer cells (175), they suggested 

looking for apoptosis following PUFA-induced ER stress in colon cancer cells. However, 

even if DHA induced changes in different biological pathways that may lead to apoptosis 

(paper I and III), we have not able to show induction of apoptosis in SW620 cells by 

TUNEL-assay (104) or activation of caspase 7 (paper I, results not shown). Consistent with 

our results, Chen et al could neither demonstrate apoptosis in SW620 cells upon DHA-

treatment, even if DHA induced apoptosis and detectable DNA ladder in SW480 cells in the 

same study (85). It is important to note that Chen et al used double the DHA concentration 

(150 μM) compared to paper I and III (70 μM). However, both concentrations are 

physiologically relevant (22). Intriguingly, Huerta et al found that SW620 cells were more 

resistant to apoptosis than SW480 cells, and that SW620 cells expressed less of some 
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important apoptotic factors, while the survivin level was higher in SW620 cells compared to 

SW480 cells, and only SW620 cells expressed the NF B p65 (232). Considering that the fact 

that SW480 and SW620 cell lines origin from a primary tumor and a lymph node metastasis 

of a human Duke’s stage B colon adenocarcinoma, respectively, and most likely have a 

monoclonal origin (233), this may indicate that the ability to induce apoptosis is reduced 

during progression from primary tumor to metastasis (232). Consistent with the growth 

inhibiting effect of n-3 PUFAs on the SW620 cells in vitro (104), we also showed this effect 

in vivo by feeding nude mice a diet containing FO compared to CO in the control diet. Three 

weeks after initiation of SW620 xenografts, tumor growth was reduced, the n-3 PUFA level 

increased, while the n-6 PUFA level decreased. The FO diet also reduced the phosphocholine 

level in these cells (70) which is known to be increased in different cancers (reviewed in 

(234)).  

 Several pro-apoptotic transcripts were up-regulated after 12 h of EPA supplementation 

in HL-60 cells, including five different caspases like the ER stress-implicated caspases 4 and 

7 (paper II, table 2). Consistent with these results, Arita et al found that EPA reduced HL-60 

cell growth in a time- and dose dependent manner, induced apoptosis (above 60 μM for more 

than 6 h), induced cytochrome C, increased mitochondrial membrane potential and cleaved 

BID (152). Other studies have also shown that DHA and/or EPA may induce growth 

reduction and/or apoptosis/necrosis in HL-60 cells (181, 184, 235-237) and other human 

cancer cells (reviewed in (75)). 

 

4.6 Known anti-tumor targets affected by DHA 

PUFAs are emerging as a nontoxic supplement to cancer therapy. It seems to be well tolerated 

by humans and do not give harmful side effects during clinical trials (61, 64, 68). In cell 

culture and animal experiments, n-3 PUFAs in combination with conventional cancer therapy 

have shown increased effect of chemotherapeutic drugs such as doxorubicin and radiation of 

different cancer types, as well as reduction of chemotherapeutic side effects (reviewed in 

(74)). Gene expression profiling of DHA-treated SW620 cells revealed changes in expression 

of genes which are known targets for cancer therapy. Reduction of the IAPs survivin and livin 

(both - and  isoforms), and induction of the apoptotic cleaved livin (tLlivin) at protein level 

were especially interesting (paper III, fig. 2). Survivin and livin have been associated with 

cancer malignancy and found to be up-regulated in different cancers (reviewed in (238)) like 

colorectal cancer in which their expression was inversely correlated with overall survival 
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(239). Interestingly, Calviello et al previously showed that DHA supplementation to SW480 

cells reduced survivin in a time- and dose dependent manner (120). Also, knockdown of 

survivin mRNA by siRNA increased the sensitivity of radiation-induced apoptosis and 

arrested SW480 cells in the G2/M phase (240). 

Since NF B is constitutionally active in several cancers and facilitates tumorigenesis, 

the NF B-pathway is very interesting for therapeutic targeting in cancer. Unfortunately, 

several chemotherapies are known to activate NF B, which may lead to resistance towards 

the apoptosis inducing effect of these agents (reviewed in (71)). Therefore we were exited to 

find that DHA-treatment of SW620 cells decreased NF B p65 (Rel A) at both mRNA and 

protein level (paper III, table 1, fig. 2). Others have also found n-3 PUFAs to interfere with 

the expression and activity of NF B (reviewed in (71)). Consistent with our results, 

Narayayan et al found that DHA reduced both NF B p65 and cyclin D1 at protein level in 

colon cancer cells (89). Interestingly, ER stress may activate NF B at an early stage through 

all three UPR branches and increased [Ca2+]i or ROS, but also inhibit NF B if the stress is 

persistent through e.g. C/EBP  (reviewed in (241)). In addition, NF B can be activated by 

AKT (reviewed in (71)), but this may be counteracted and lead to induction of apoptosis 

through TRIB3 inhibition of AKT (196). NF B may also inhibit CHOP (242) and interfere 

with the regulation of the ER Ca2+ storage (243).  Hence the DHA-induced reduction of NF B 

p65 in cancer cells is an important finding. 

The DHA-induced up-regulation, phosphorylation and hence activation of p38 MAPK 

was also an interesting finding (paper III, table 1, fig. 2). In addition to its well-known role in 

proliferation inhibition (reviewed in (244)), p38 MAPK is also known to be activated during 

ER stress, and may increase the activity of CHOP (reviewed in (198)). Activation of p38 

MAPK has also been suggested as a link between induction of ER stress and ER stress-

induced apoptosis and autophagy (245). Further, the anticancer drug celecobix may activate 

p38 MAPK which is implicated in the down-regulation of survivin and induction of growth 

inhibition and apoptosis in colorectal cancer cells (246). Others have also found activated p38 

MAPK to be involved in the anti-tumor effect of n-3 PUFAs (106, 247). However, the role of 

p38 MAPK in growth regulation is not clear; some studies have reported a pro-survival role of 

p38 MAPK in cancer cells and assign it a role in metastasis. Therefore caution should be 

taken when manipulating p38 MAPK for therapeutic purposes (reviewed in (244)).  
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4.7 Different cancer cells may respond differently to n-3 PUFA treatment  

Animal and cell culture experiments have shown that n-3 PUFAs may have anti-tumor 

effects. However, the degree of n-3 PUFA sensitivity may vary substantially between 

different cell lines. Both SW620 and HL-60 cells are sensitive towards quite low doses of 

DHA and EPA (104, 184), as are several other cancer cell lines from various tissues, while 

some cancer cell lines seem to be very resistant towards these n-3 PUFAs (113, 184, 248). 

Ding et al showed that the IC50 values of DHA treatment of different cancer cell lines varied 

between ~5-300 μM for the most sensitive and the most resistant, respectively (248). The 

wide spectra in n-3 PUFA sensitivity between different cancer cells was also reflected by the 

study of Palakurthi et al who tested the growth reduction potential of EPA in several different 

human cancer cell lines (113). Several factors, probably both known and unknown may be 

considered in this context since different types of cells display different characteristics; they 

have different gene- and protein expression which is likely to be very important for their 

response to different types of stimuli. Therefore different cancer cell lines may respond to 

exposure of n-3 PUFAs through several different pathways and the degree of growth 

inhibition or cell death may vary substantially. In addition, Diggle reviewed several factors 

that may influence the outcome of in vitro studies reporting on the association between 

PUFAs and cancer; cell type differences, grade and stage of tumors, differences in cell 

cultivation conditions (cell density and medium contents), specific PUFA characteristics 

(number of double bonds and chain length), as well as PUFA concentration and exposure time 

(249). Hence, some of these factors may possibly explain why our results show that DHA (35 

and 70 μM), but not OA (70 μM), induced ER stress at in the SW620 colon cancer cells 

(paper I, fig. 3), while Caviglia et al reported that 400-1200 μM OA, but not 200-800 μM 

DHA, induced ER stress in a hepatoma cell line (176). It is tempting to mention that 

supplementation of SW620 cells with 105 μM almost completely abolished further growth, as 

assessed by MTT assay (unpublished complementary results). In addition, how n-3 PUFAs 

are delivered to cancer cells; as LDL, bound to albumin (250) or FFAs (paper I, II and III), 

may also be of importance.  
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5. Conclusion and future perspectives 

Extensive research has been performed on the possible anti-tumor effect of n-3 PUFAs. 

However, in order to use these PUFAs in cancer prevention or as a supplement to already 

established cancer therapies it is important to elucidate the molecular mechanisms behind this 

effect. By taking advantage of the microarray technology, we found that n-3 PUFAs induced 

extensive changes in the gene expression profiles of cancer cells. Early responses were ER 

stress and induction of the UPR, which correlated with changes in Ca2+ and cholesterol 

homeostasis. These changes may lead to cell cycle arrest and possibly induction of autophagy 

and cancer cell death. Importantly, DHA supplementation had a favorable effect on known 

cell cycle regulators and cancer therapy targets. These results may contribute to the 

understanding of how natural n-3 PUFAs exert their anti-tumor effect on cancer cells and how 

they may enhance the effect of conventional cancer chemotherapies. 

The observed n-3 PUFA-induced ER stress, UPR and changes in Ca2+ and cholesterol 

homeostasis should be further studied in the established and other cancer cell models, as well 

as normal cells, to explore if these responses are cancer cell specific and common between 

different cancer cell types. If cancer cell specific, the differences between normal and 

cancerous cells counting for these differences should be studied. Further studies are also 

needed to explore the effect of n-3 PUFAs on cancer therapy target genes and proteins. Also, 

the presented microarray studies have potential for further investigation of different 

mechanisms involved in the anti-tumor effect of n-3 PUFAs on cancer cells. In addition, it 

would be interesting to study the relation between lipids and autophagy (lipophagy) upon n-3 

PUFA treatment, as well as the n-3 PUFA effect on micro RNAs in cancer cells.  

In the context of personalized diagnostics and treatment, it is likely that specific 

transcriptomic or proteomic profiles could help reveal patients who would benefit more or 

less from co-treatment with chemotherapy and specific n-3 PUFAs. This could help reveal 

possible biomarkers related to n-3 PUFA sensitivity in cancer cells. Whether n-3 PUFAs have 

potential as supplements to clinical cancer treatment needs to be further elucidated. Especially 

clinical studies are needed, focusing on cancer prevention and cancer therapy co-treatment, as 

well as the understanding of the molecular mechanisms involved. Such studies should strictly 

control preparation and intake of n-3 PUFA dietary sources.  
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DHA induces ER stress and growth arrest in human colon
cancer cells: associations with cholesterol and
calcium homeostasis
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Abstract Polyunsaturated fatty acids (PUFAs) are normal
constituents of the diet, but have properties different from
other fatty acids (e.g., through generation of signaling mole-
cules). N-3 PUFAs reduce cancer cell growth, but no unified
mechanism has been identified. We show that docosahexae-
noic acid (DHA; 22:6 n-3) causes extensive changes in gene
expression patterns at mRNA level in the colon cancer cell
line SW620. Early changes include unfolded protein re-
sponse (UPR) and increased levels of phosphorylated eIF2a
as verified at protein level. The latter is considered a hall-
mark of endoplasmic reticulum (ER) stress and is abun-
dantly present already after 3 h. It may coordinate many
of the downstream changes observed, including signaling
pathways for cell cycle arrest/apoptosis, calcium homeosta-
sis, cholesterol metabolism, ubiquitination, and proteasomal
degradation. Also, eicosapentaenoic acid (EPA), but not
oleic acid (OA), induced key mediators of ER stress and
UPR at protein level. Accumulation of esterified cholesterol
was not compensated for by increased total levels of choles-
terol, and mRNAs for cholesterol biosynthesis as well as de
novo synthesis of cholesterol were reduced. These results
suggest that cytotoxic effects of DHA are associated with sig-
naling pathways involving lipid metabolism and ER stress.—
Jakobsen, C. H., G. L. Størvold, H. Bremseth, T. Follestad, K.
Sand, M. Mack, K. S. Olsen, A. G. Lundemo, J. G. Iversen,

H. E. Krokan, and S. A. Schønberg. DHA induces ER stress
and growth arrest in human colon cancer cells: associations
with cholesterol and calcium homeostasis. J. Lipid Res. 2008.
49: 2089–2100.

Supplementary key words gene expression • phosphorylated eIF2a •

antioxidant response • heat shock response • cytosolic free Ca21 • cell
cycle • total cholesterol level • cholesterol synthesis

Long-chain polyunsaturated fatty acids (PUFAs) of the
n-3 type are important dietary components that may pre-
vent or alleviate coronary heart disease and inflammatory
conditions (1, 2). Even though epidemiological studies on
the association between fish consumption and cancer risk
are not consistent, evidence from animal- and cell-culture
studies demonstrate that PUFAs inhibit cancer-cell growth,
induce apoptosis, and increase the efficiency of chemo-
therapeutic drugs (3–5). Several mechanisms have been
proposed for the antiproliferative effect of n-3 PUFAs;
among these are alterations in eicosanoid formation (6),
lipid peroxidation initiated by free radicals (7–9), accumu-
lation of cytotoxic lipid droplets (10), and specific changes
in gene expression patterns (11, 12). This could be me-
diated directly by PUFAs as ligands of transcription factors,
or indirectly through metabolites of PUFAs or other sec-
ondary events. There is evidence indicating that fatty acids
may regulate gene expression directly. The activity and
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abundance of several nuclear transcription factors, like per-
oxisome proliferator-activated receptors (PPARa/y/g), liver
X receptors (LXRa/b), and sterol regulatory element-
binding proteins (SREBP1/2), have been shown to be reg-
ulated by dietary PUFAs and their metabolites (11, 13).

Cellular stress from cytotoxic agents may result in adap-
tive mechanisms in several cellular compartments, including
endoplasmic reticulum (ER). ER has three main functions:
1) folding, glycosylation, and sorting of proteins to their
proper destination; 2) synthesizing cholesterol and other
lipids; and 3) maintenance of Ca21 homeostasis. Disruption
of any of these processes causes ER stress and activates the
unfolded protein response (UPR). The UPR up-regulates
genes that support adaptation to and recovery from ER
stress as well as initiating apoptotic pathways when damage
is severe. Three transmembrane proteins mediate the UPR
signal across the ER membrane: inositol-requiring enzyme
1 (IRE1), eukaryotic translation initiation factor 2a (eIF2a)
kinase 3 (EIF2AK3/PKR-like ER kinase [PERK]), and acti-
vating transcription factor 6 (ATF6). PERK belongs to a
family of eIF2a kinases that regulates the translational
control during the UPR. Phosphorylation of eIF2a by
PERK leads to attenuation of global protein synthesis, but
promotes translation of certain mRNAs, like activating tran-
scription factor 4 (ATF4) mRNA (14). Downstream targets
of ATF4 are CHOP, GADD34, ATF3, and genes involved in
amino acid metabolism, glutathione biosynthesis, resis-
tance to oxidative stress, and protein secretion. Loss of cy-
clin D1 during ER stress leads to G1 arrest and provides
the cell with an opportunity to restore cell homeostasis
(15). However, prolonged ER stress may cause cell death.
ER stress-induced apoptosis may be mediated by caspase-
12, caspase-9, and caspase-7 (16).

Several links exist between signaling pathways control-
ling the UPR and lipogenesis. Activation of the transcription
factors ATF6 as well as the SREBPs that control cholesterol
and lipid synthesis requires translocation from the ER to
the Golgi followed by cleavage by site-1 protease (S1P)
and site-2 protease (S2P) (17). Also, ER stress may activate
expression of genes involved in cholesterol biosynthesis
(18, 19). Both elevated levels of cholesterol as well as de-
pletion have been shown to induce ER stress (20, 21).

We have previously shown that the human colon cancer
cell lines SW480 and SW620, derived from a primary and a
secondary tumor of the same patient, respectively, were
strongly growth inhibited by docosahexaenoic acid (DHA)
(5). DHA enhanced lipid peroxidation in both cell lines sig-
nificantly, measured as accumulation of the end product
malondialdehyde. The antioxidant vitamin E (a-tocopherol)
completely abolished the increase in malondialdehyde,
without restoring cell growth, demonstrating that the cells
were resistant to lipid peroxidation products. DHA accumu-
lated mainly as triglyceride and cholesteryl ester-enriched
lipid droplets in SW480 and SW620, respectively. The
protein level of the nuclear form of SREBP1 (nSREBP1)
decreased in both cell lines, indicating a possible relation-
ship between disturbances in lipid homeostasis and cell-
cycle arrest. We demonstrate that DHA-treatment of
SW620 cells results in extensive changes in gene expres-

sion patterns at the mRNA level. Early changes include in-
duction of ER stress, as evident from the abundant presence
of phosphorylated eIF2a (eIF2a-P); increase in cytosolic
Ca21; and disturbances in lipid metabolism. Downstream
signaling subsequently results in growth arrest and protein
degradation. Key mediators of ER stress, eIF2a-P, as well as
ATF4 were also induced by eicosapentaenoic acid (EPA),
but not by oleic acid (OA) treatment.

MATERIALS AND METHODS

Cell culture and fatty acid treatment
Human colon adenocarcinoma cell line, SW620, was obtained

from American Type Culture Collection (Rockville, MD). Cells
were cultured in Leibovitzʼs L-15 medium (Cambrex, BioWhittaker,
Walkersville, MD) supplemented with L-glutamine (2 mM), FBS
(10%), and gentamicin (45 mg/l) (complete growth medium)
and maintained in a humidified atmosphere of 5% CO2: 95%
air at 37°C. Stock solutions of DHA, EPA, and OA in ethanol
(Cayman Chemical, Ann Arbor, MI) were stored at 220°C and
diluted in complete growth medium before experiments (final
concentration of ethanol , 0.025% v/v).

RNA isolation
Seeded in 75 cm2 flasks were 1.5 3 106 cells. After 8 h, com-

plete growth medium supplemented with DHA (70 mM) or an
equal volume of ethanol (control) was added, and cells were in-
cubated for 12, 24, and 48 h. Cells were harvested by scraping in
ice-cold phosphated buffered saline (PBS) and stored at 280°C.
Total RNA was isolated using the High Pure RNA Isolation Kit
(Roche, Mannheim, Germany) according to instruction manual.
RNase inhibitor rRNasin (40U/ml, 1 ml) (Promega, Madison, WI)
was added, and RNA was up-concentrated on a speed vac and re-
suspended in RNase free distilled H2O. RNA concentration and
quality were determined using the NanoDrop1000 (NanoDrop
Technologies, Wilmington, DE) and agarose gel electrophoresis.

Gene expression profiling
Five micrograms total RNA was used for cDNA and cRNA syn-

thesis according to the eukaryote expression manual (Affymetrix,
Santa Clara, CA). Detailed gene expression profiling procedure
can be found in supplementary data. cRNA was hybridized to
the Human Genome Focus Array (Affymetrix). Washing and stain-
ing were performed using the Fluidics Station 400 (Midi-Euk2v3
protocol). The arrays were scanned using an Affymetrix GeneChip
GA2500 Scanner, controlled by GeneChip: Operating Software
1.2 (GCOS, Affymetrix). Expression profiling was performed in
triplicates at all time points using RNA from independent bio-
logical replicates. All experiments have been submitted to Array-
Express with accession number E-MEXP-1014.

Statistical analysis of gene expression data
Statistical analysis was performed based on summary expression

measures for each probe set of the GeneChips, using the raw data
(CEL) files and a linear statistical model for background-corrected,
quantile normalized, and log-transformed perfect match values,
performed by the robust multiarray average (RMA) method
(22, 23).

For each transcript, a linear regression model including pa-
rameters representing treatment effects and time effects for the
treatment group was fitted to the RMA expression measures.
Based on the estimated effects, tests for significant differential ex-
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pression due to DHA treatment were performed using moder-
ated t-tests, in which gene-specific variance estimates are replaced
by variance estimates found by borrowing strength from data on
the remaining genes (24).

To account for multiple testing, adjusted P values controlling
the false discovery rate were calculated (25) by inserting the es-
timated value of the proportion of nondifferentially expressed
genes (26). Differentially expressed genes were selected based
on a threshold of 0.05 on the adjusted P values.

Time effect in the control groups were considered negligible
and omitted from the model. Statistical analysis was performed
in R (27), using the packages Limma and affy from Bioconductor
(28). Differentially expressed genes were annotated using the
NetAffx Analysis Centre (http://www.Affymetrix.com) and NMC
Annotation Tool/eGOn V2.0 (http://www.GeneTools.no).

Immunoblot analysis
DHA treatment of cells and preparation of total protein ex-

tracts were performed as described previously (5). Nuclear ex-
tracts for detection of ATF4 were prepared using a Nuclear
extract kit (Active Motif, Belgium) according to manufacturerʼs
instructions. To detect phosphorylated eIF2a, cells were washed
and scraped in ice-cold PBS-1 mM EDTA and pelleted by centri-
fugation. Pellets were lysed in 2 3 packed cell volumes of lysis
buffer on ice for 10 min. Equal amounts of protein were sepa-
rated on 10% precast denaturing NuPAGE gels (Invitrogen,
Carlsbad, CA) and transferred to polyvinylidene difluoride mem-
branes (Millipore, Billerica, MA). The blots were incubated with
the indicated primary and horse radish peroxidase-conjugated
secondary antibodies (DAKO, Carpinteria, CA) and detected by
chemiluminescense using Super Signal West Femto Maximum
Sensitivity Substrate (Pierce, Rockford, IL) and visualized by
Kodak Image Station 4000R (Eastman Kodak Co., Rochester,
NY). Quantification was performed using Kodak Molecular Imag-
ing Software (version 4.0.1). Details about buffers and primary
antibodies can be found in the supplementary data.

Measurement of cytosolic calcium in single cells
Cytosolic free Ca21 in single cells was determined as previously

described (29). In short, cells were incubated for 40 min at 37°C
with a solution of 5 mM fura-2, 0.25% DMSO, and 0.025% Pluronic
F-127 (TefLab, Austin, TX) in HEPES-buffered salt solution
(HSS). Cells were then washed once and incubated in 400 ml
HSS. Applications to cells were done by injecting 100 ml of ago-
nist into the well. Ca21 imaging and registration software has
been developed by Rotnes and Iversen (30). Cytosolic Ca21 con-
centration was calculated using the equation: [Ca21] 5 Kdb(R 2
Rmin)/(Rmax 2 R) (31). Fluorescence data were analyzed using
the program LICS (32).

Analysis of total cholesterol levels
Seeded in 175 cm2 flasks were 4 3 106 cells. The following day,

medium was replaced with complete growth medium supple-
mented with DHA (70 mM) or medium with equal volume of
ethanol and harvested after 3, 6, 12, 24, and 48 h incubation.
Cells were harvested by trypsination and resuspended in PBS to-
gether with floating cells collected by centrifugation. The cell sus-
pension was counted using a Coulter Counter (Beckman Coulter,
Fullerton, CA) and an aliquot of 4 3 106 cells was collected by
centrifugation. Lipids were extracted from the cell pellet (33)
using chloroform-methanol-water (1:2:0.8 v/v/v). Total choles-
terol levels (cholesteryl ester and free cholesterol) in the lipid ex-
tracts were determined using the Amplex Red Cholesterol Assay
Kit (Invitrogen) according to the instruction manual. Data were
expressed as mg cholesterol/mg protein.

Analysis of cholesterol and cholesteryl ester synthesis
Seeded in 175 cm2 flasks were 4 3 106 cells. The following day,

medium was replaced with complete growth medium supple-
mented with DHA (70 mM) or with equal volume of ethanol (con-
trol) and incubated for 24 h. Cells were then incubated with
complete growth medium containing 14C-acetate (1.2 mCi/ml)
and DHA (70 mM) or ethanol (control cells) for 4 and 6 h. Cells
(12 3 106) were harvested by trypsination, and cellular lipids
were extracted with chloroform/methanol according to a method
modified after Bligh and Dyer (33). Lipids were separated by thin
layer chromatography using hexane/diethyl ether/acetic acid
(70:30:1, v/v/v) and lipids were visualized using iodine vapor.
Lipid fractions were solubilized in Insta-gel plus (Perkin Elmer)
before counting. Data were expressed as incorporation of 14C-
acetate into cholesterol/cholesteryl ester (cpm/mg protein).

RESULTS

Growth inhibition by DHA through ER stress and growth
arrest signaling

The human colon cancer cell line SW620 is strongly
growth-inhibited by DHA. Between 72 h and 144 h, essen-
tially no growth could be observed after treatment with
70 mM DHA (5). Although growth retardation was modest
after 24 h, [3H]thymidine incorporation was reduced 30–
40% in SW620 cells already by 12 h, while no effect was
observed after 6 h (data not shown).

We demonstrate that complex gene networks and cell
signaling pathways are affected at the mRNA level after
DHA treatment in SW620 cells (Fig. 1 and Table 1). The
number of transcripts differentially expressed increased
from 12 to 24 h of DHA treatment [up-regulated: 839
(12 h) vs. 1157 (24 h); down-regulated: 1066 (12 h) vs.
1222 (24 h)], while the number decreased at 48 h (up-
regulated: 288; down-regulated: 267). The fold change of
transcript levels after DHA treatment ranged from 1.2 to
24, the majority of which being toward the lower end.
Transcripts could be classified into several functional cate-
gories after annotation as shown in Table 1 and outlined
in later discussion. More comprehensive information on
changes in gene expression is found in the supplemen-
tary Table I. Early changes include induction of ER stress
and UPR.

The protein levels of selected target genes were mea-
sured in SW620 cells after DHA treatment. Importantly,
we demonstrate that an abundant amount of eIF2a-P is
found as early as 3 h after DHA treatment, preceding the
activation of ATF4 and HMOX1 (Fig. 2A). Phosphorylation
of eIF2a is considered a hallmark of the UPR and ER stress
and leads to attenuation of global protein synthesis, but
promotes translation of certain mRNAs, like ATF4 mRNA
(15). In accordance with this, ATF4 is up-regulated here
both at the mRNA and protein level (Table 1 and Fig. 2A).
Downstream targets of ATF4, ATF3, and genes involved in
amino acid metabolism (ASNS), glutathione biosynthesis,
resistance to oxidative stress (HMOX1), and protein secretion
are up-regulated at the mRNA level and (when examined)
at the protein level (Fig. 2A, Table 1 and supplementary
Table I). Also, ATF6, PERK, and X-box binding protein 1
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(XBP1), a downstream target of ATF6, are up-regulated at
mRNA level in SW620 cells (Table 1). XBP1 regulates a
subset of ER-resident chaperones that are essential for pro-
tein folding, maturation, and degradation in the ER (34).

Cyclin D1 is significantly down-regulated both at mRNA
and protein level (Table 1, Fig. 2B, C), probably mediated
by phosphorylated eIF2a that has been shown to attenuate
cyclin D1 translation and cause cell-cycle arrest (G1 phase)
in response to prolonged ER stress (15). mRNA for GADD34,
a subunit in phosphorylated eIF2a phosphatase, is up-
regulated in SW620 cells, possibly explaining in part the de-
crease in phosphorylated eIF2a at 12 h and later (Fig. 2A).

Induction of the UPR is initiated through dissociation of
PERK from the ER-resident chaperone BiP/GRP78 that
engages in numerous complexes (35). The protein level of
BiP remained constant at all time points (data not shown).
Treatment of SW620 cells with the ER stress inducers tuni-
camycin (1 mg/ml) and thapsigargin (0.2 mM) for 6 h,
caused a marked down-regulation of cyclin D1 compared
with control (results not shown). These results confirm
that ER stress in SW620 cells leads to down-regulation of
cyclin D1.

Induction of ER stress and UPR is followed by disruption
of protein folding and destruction of defective proteins by
ER-associated degradation. Several members of the molec-
ular chaperone Hsp40, Hsp70, and Hsp90 families were
up-regulated at the mRNA level (Table 1 and supplemen-
tary Table I). Hsp70 was also found to be up-regulated at
the protein level (Fig. 2A).

Several transcripts belonging to the ubiquitin/proteasome
system were up-regulated (Table 1 and supplementary Ta-
ble I). The proteasome family of proteins is responsible for
the degradation of damaged and short-lived proteins. In
SW620, mRNA for 27 out of 34 subunits (present on the
Human Genome Focus array) of the proteasome 26S were
up-regulated. The proteasomal subunit proteasome 26S
subunit, non-ATPase, 1 (PSMD1)/Rpn2 was significantly

increased relative to control at protein level (Fig. 2A).
Also, the mRNA level of sequestosome 1 (SQSTM1), which
serves as a storage place for ubiquitinated proteins in the
cytoplasm, was up-regulated at all time points in SW620
cells (Table 1). These results support the view that the
ER stress response initiated by DHA causes extensive
changes in protein homeostasis in these cells.

We have previously shown that EPA has an antiprolifera-
tive effect on SW620 cells, although to a lesser extent than
DHA, while OA has no effect (5). Key mediators of ER
stress and UPR were also induced at protein level by
EPA, but not OA, at equal molar concentrations (Fig. 3).
DHA-treatment (70 mM) of SW620 cells induced phos-
phorylation of eIF2a already after 3 h (Fig. 2A), while a
weaker response is observed after treatment with EPA
(70 mM) or half molar concentrations of DHA (35 mM)
first at 24 h (Fig. 3). A similar time- and concentration-de-
pendent response is also observed for the induction of
ATF4 (Fig. 3). Also, EPA (70 mM) and DHA (35 and 70
mM) reduced the level of cyclin D1 after 24 h (Fig. 2B, C
and Fig. 3). After 6 h, only DHA (70 mM) reduced the level
of cyclin D1 significantly, whereas DHA (70 mM) and EPA
(70 mM) both reduced cyclin D1 substantially and with com-
parable effects after 24 h. OA did not affect the prolifera-
tion of SW620 cells. However, OA reduced the level of
cyclin D1 after 24 h, although to a much lesser extent
(Fig. 3). This reflects the differences in the antiproliferative
effect between the PUFAs observed earlier.

DHA induces antioxidant response
PUFAs are subject to lipid peroxidation, thus causing

oxidative stress. Some cell lines that have weak antioxidant
defense are highly sensitive to n-3 PUFAs for this reason
(36). However, SW480 and SW620 cell lines display little
sensitivity to lipid peroxidation products (5). Activated
PERK phosphorylates nuclear factor (erythroid-derived
2)-like 2 (Nrf2) (up-regulated in SW620) (Table 1) that

Fig. 1. Docosahexaenoic acid (DHA) induces endo-
plasmic reticulum (ER) stress in SW620 cells. Diagram
showing transcripts found to be affected by DHA treat-
ment in SW620 cells by gene expression analysis (up-
regulated, pink; down-regulated, blue) in the main
pathways of ER stress signaling. Three transmembrane
proteins mediate the unfolded protein response
(UPR) across the ER membrane after dissociation
from BiP, activating transcription factor 6 (ATF6),
PERK, and inositol-requiring enzyme 1 (IRE1). Each
of these proteins represents distinct pathways of the
ER stress response.

2092 Journal of Lipid Research Volume 49, 2008



TABLE 1. Functional categories of differentially expressed transcripts affected in SW620 cells treated with docosahexaenoic acid (DHA) (70 mM) at
time points indicated

SW620 Fold Change

Gene Symbol Affymetrix ID Refseq NCBI ID Description 12 h 24 h 48 h

ER Stress Response
ATF3 202672_s_at NM_001030287 Activating transcription factor 3 3.7 4.1 3.1

NM_001040619
NM_001674
NM_004024

ATF4 200779_at NM_001675 Activating transcription factor 4 2.1 2.0 1.6
NM_182810

ATF6 203952_at NM_007348 Activating transcription factor 6 1.3 1.2 —
EIF2S1 201142_at NM_004094 Eukaryotic translation initiation factor 2-a NC NC NC
GADD34 37028_at NM_014330 Growth arrest and DNA-damage-inducible 34 6.3 3.9 —
NRF2 201146_at NM_006164 Nuclear factor E2-related factor 2.0 1.8 —
PERK 218696_at NM_004836 PKR-like ER kinase 1.4 2.0 —
VCP 208649_s_at NM_007126 Valocin containing protein 1.9 1.6 —
XBP1 200670_at NM_001079539 X-box binding protein 1 2.0 1.8 —

NM_005080
Chaperones/Protein Folding/UPR Response
DNAJB1 200666_s_at NM_006145 DnaJ homolog, subfamily B, member 1 8.0 4.1 —
HMOX1 203665_at NM_002133 Heme oxygenase (decycling) 1 24.0 10.6 5.7
HSPA1A/B 200800_s_at NM_005345 Heat shock 70 kDa protein 1A/B 17.8 9.8 5.1

NM_005346
HSPA1B 202581_at NM_005346 Heat shock 70 kDa protein 1B 9.8 6.5 3.1
HSP47 207714_s_at NM_001235 Heat shock protein 47 4.4 1.8 —
Ubiquitine/Proteasome
PSMD1/RPN2 211198_s_at NM_002807 Proteasome 26S subunit, non-ATPase, 1 2.2 2.2 —
SQSTM1 213112_s_at NM_003900 Sequestosome 1 7.7 6.7 5.0
SQSTM1 201471_s_at NM_003900 Sequestosome 1 6.7 7.3 3.9
Ca21 Homeostasis
CAMLG 203538_at NM_001745 Calcium modulating ligand 1.9 1.9 —
CAPN2 208683_at NM_001748 Calpain 2, large subunit 1.3 1.8 1.4
CAPN7 203356_at NM_014296 Calpain 7 — 1.5 —
IP3R1 203710_at NM_002222 Inositol 1,4,5-triphosphate receptor, type 1 1.5 2.2 1.4
IP3R3 201189_s_at NM_002224 Inositol 1,4,5-triphosphate receptor, type 3 — — 1.3
Antioxidants/Oxidative Stress
CAT 201432_at NM_001752 Catalase — 21.4 —
GCLC 202922_at NM_001498 Glutamate-cysteine ligase, catalytic subunit 1.6 1.3 —
GCLM 203925_at NM_002061 Glutamate-cysteine ligase, modifier subunit 3.7 3.5 2.0
HMOX1 203665_at NM_002133 Heme oxygenase (decycling) 1 24.0 10.6 5.7
SOD1 200642_at NM_000454 Superoxide dismutase 1 1.5 1.6 —
TXNRD1 201266_at NM_003330 Thioredoxin reductase 1 3.2 2.9 1.9

NM_182729
NM_182742
NM_182743

Cell Cycle/Apoptosis
BAG3 217911_s_at NM_004281 BCL2-associated athanogene 3 9.9 5.4 —
CASP4 209310_s_at NM_001225 Caspase 4 1.6 2.9 —

NM_033306
NM_033307

CASP7 207181_s_at NM_001227 Caspase 7 1.6 2.1 —
NM_033338
NM_033339
NM_033340

CCND1 208712_at NM_053056 Cyclin D1 21.7 22.0 —
TRIB3 218145_at NM_021158 Tribbles homolog 3 (Drosophila) 7.4 6.5 3.3
Cholesterol Biosynthesis, Uptake, Metabolism, and Transport
CAV1 203065_s_at NM_001753 Caveolin 1, caveolae protein, 22 kDa 21.5 21.4 —
DHCR24 200862_at NM_014762 24-dehydrocholesterol reductase 21.6 21.7 —
DHCR7 201791_s_at NM_001360 7-dehydrocholesterol reductase 21.6 21.5 —
FDPS 201275_at NM_002004 Farnesyl diphosphate synthase 21.3 21.2 —
HMGCR 202539_s_at NM_000859 3-hydroxy-3-methylglutaryl-CoA reductase NC NC NC
LDLR 202068_s_at NM_000527 Low density lipoprotein receptor 2.4 2.4 —
LSS 202245_at NM_002340 Lanosterol synthase 21.3 —
NPC1 202679_at NM_000271 Niemann-Pick disease, type C1 3.0 4.5 1.9
NPC2 200701_at NM_006432 Niemann-Pick disease, type C2 1.5 1.5
OSBP 201800_s_at NM_002556 Oxysterol binding protein 1.4 1.4 —
PMVK 203515_s_at NM_006556 Phosphomevalonate kinase -1.3 21.8 —
SREBP2 201247_at NM_004599 Sterol regulatory element binding protein 2 NC NC NC
TM7SF2 210130_s_at NM_003273 Transmembrane 7 superfamily member 2 21.4 21.9 —
VLDLR 209822_s_at NM_001018056 Very low density lipoprotein receptor 1.6 1.6 —

NM_003383

NC, no change; UPR, unfolded protein response.
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promotes transcription of genes involved in redox homeo-
stasis, which contributes to survival of ER stress induced in
mammalian cells. Oxidative stress-related genes that were
found to be up-regulated in SW620 cells included thio-
redoxin reductase 1 (TXNRD1), superoxide dismutase 1
(SOD1), HMOX1, glutamate-cysteine ligase modifier
(GCLM), and glutamate-cysteine ligase catalytic subunits,
(GCLC) indicating a disturbance in the redox balance
(Fig. 1 and Table 1). HMOX1, GCLM, and TXNRD1 are
downstream targets of Nrf2 (14). HMOX1 displays a 24-fold
induction at 12 h and is also strongly induced at the pro-
tein level (Fig. 2A and Table 1). HMOX1 catabolizes cellu-
lar heme to biliverdin, which is reduced to bilirubin, both
being very potent cytoprotective antioxidants (37). How-
ever, knockdown of HMOX1 by siRNA did not result in in-
creased DHA-sensitivity in SW620 cells (data not shown),
supporting our previous findings that lipid peroxidation
is not the key mediator of cytotoxicity.

Effect of DHA treatment on Ca21 homeostasis and genes
involved in apoptosis

ER stress-induced depletion of Ca21 stores or dysreg-
ulation of Ca21 homeostasis may trigger apoptosis. We
found that mRNA for a large number of genes involved
in Ca21 homeostasis was changed, mostly up-regulated,
after DHA treatment in SW620 cells. Thus, transcripts for
the inositol 1,4,5-triphosphate receptors (IP3R1 and 3)
were up-regulated, indicating a release of Ca21 regulated
by these receptors (Table 1 and supplementary Table I).
In agreement with this, treatment with DHA (70 mM) for
12–48 h resulted in an increase in cytosolic Ca21 concen-
tration (Fig. 4A). Cytosolic [Ca21] is mainly regulated by
means of transport across cell membranes (e.g., the plasma
and ER membranes). Thapsigargin is a specific inhibitor of
a Ca21 ATPase, which pumps Ca21 into ER. The rate of
[Ca21] increases in cytosol after addition of thapsigargin
thus reflects Ca21 turnover in ER, the main intracellular

Fig. 2. Analysis of proteins involved in ER stress signaling and UPR. A: Western blot analysis of proteins
involved in ER stress signaling and UPR from total cell extracts (except for ATF4: nuclear extracts; eIF2a:
cytoplasmic extracts) of SW620 cells treated with DHA for indicated time periods (h). Controls were har-
vested at all time points; only the 24 h control (C means control) is shown. B: Western blot analysis of cyclin
D1 from total extracts of SW620 cells treated or not treated (controls) with DHA for the indicated time
periods (h). C: Quantification of cyclin D1 Western blots in B [DHA treated cells (gray bars) compared with
controls (black bars)]. Results were verified in three independent experiments; one representative blot is
shown. b-actin (total extracts), lamin C (nuclear extacts), or total eIF2a was used as a control for equal
protein loading. The blots were quantified and protein band intensities normalized relative to loading con-
trol. The adjusted band intensities from the DHA and control membranes were then normalized relative to
the 24 h control band, present at all membranes, to adjust for differences in signal intensities between the
membranes. The numbers under the blots represent mean fold change (SD) of DHA samples relative to
control at the indicted time points for three independent experiments. * Significantly different from control
(Studentʼs t-test, P , 0.05).

2094 Journal of Lipid Research Volume 49, 2008



Ca21 store. In SW620 this effect was apparent first after 48
h DHA incubation (average [Ca21] increase 267nM vs.
187nM in control). The time course of these registrations
is shown in Fig. 4B.

A Ca21 signal after agonist-binding to a G protein cou-
pled receptor often displays two phases: an initial peak re-
sponse, which is due to release from intracellular stores;
and a prolonged phase, which is attributable to Ca21 entry
through the plasma membrane due to emptying of intra-
cellular Ca21 stores (“capacitative” or store operated Ca21

influx). This Ca21 entry is abolished when free extracellu-
lar [Ca21] is chelated by ethylene glycol tetraacetic acid
(EGTA). We find that ATP is an agonist that releases a
two-phasic Ca21 signal in most SW620 cells. Incubation
with DHA for 12 h and more seemed to accentuate the sec-
ond phase Ca21 elevation in SW620 cells (Fig. 4C, Table 2),
whereas the first peak response was virtually unchanged.
The time course of the registrations from ATP-stimulated
SW620 cells are shown in Fig. 4C. When EGTA was added
to SW620 cells treated with DHA for 24 h and then stimu-
lated with ATP, we found that the second phase Ca21 eleva-
tion was abolished (Fig. 4D, Table 3). The elevation in
prolonged Ca21 signal in DHA-treated cells after ATP stim-
ulation can therefore be ascribed to Ca21 entry, probably of
the capacitative type.

Disturbances in the Ca21 pool of ER activate calpain in
the cytosol, which then converts ER-localized procaspase
12 to caspase 12 (38). Calpain 7 and a large subunit of

calpain 2 as well as the ER stress-related caspases (caspase
4 and 7) were up-regulated in SW620 cells (Table 1). The
proapoptotic members of the Bcl-2 family, BAD and BIK,
were down-regulated, while BID was up-regulated (SW620).
BCL2-associated athanogene 3 (BAG3), known to partici-
pate in regulation of apoptosis, was up-regulated 9.9-fold
in SW620 cells after 12 h incubation with DHA. Also, the
proapoptotic factor Tribbles homolog 3 (TRIB3), known
to be induced by ER stress through the PERK-ATF4-CHOP
pathway, was up-regulated at all time points (Table 1) (39).
The protein level of active caspase 7 was found to increase
with time in SW480 cells, while not detected in SW620 cells
(data not shown).

Effect of DHA on cellular cholesterol and
cholesterol metabolism

We have previously shown that treatment of SW480
and SW620 with DHA leads to accumulation of numerous
large lipids droplets, mainly containing triglycerides in
SW480 and cholesteryl esters in SW620 (5). However, an
increase in cholesteryl esters was also seen in SW480. The
formation of lipid droplets is probably induced by DHA,
since they are highly enriched in this PUFA. To examine
whether this accumulation of esterified cholesterol was
compensated for by increased total cholesterol levels, we
measured cellular cholesterol content after DHA treatment.
No significant differences in total cholesterol were found at
3–24 h when comparing control and DHA-treated cells

Fig. 3. ER stress signaling and UPR in response to n-3 polyunsaturated fatty acids (PUFAs) and oleic acid
(OA). Western blot analysis of proteins involved in ER stress signaling and UPR (ATF4: nuclear extracts;
cyclin D1, eIF2a: cytoplasmic extracts) in SW620 cells treated with complete growth medium supplemented
with either OA (70 mM), DHA (35 mM), eicosapentaenoic acid (EPA, 70mM), or ethanol (control media, C)
for 6 and 24 h. b-actin (cytoplasmic extracts), lamin C (nuclear extracts), or total eIF2a was used as a control
for equal protein loading. One representative blot is shown. The blots were quantified and intensities
normalized relative to loading control. The numbers under the blots represent mean fold change (SD) rel-
ative to control for three independent experiments. * Significantly different from control (Studentʼs t-test,
P , 0.05).
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(data not shown). A slight, but significant increase in total
cholesterol levels in DHA-treated cells was observed at 48 h
(31.28 6 1.29 (control) vs. 38.75 6 3.39 mg cholesterol/
mg protein, P , 0.05). These results may indicate that
cholesterol available for organelles is reduced due to de-
position in lipid droplets.

From the gene expression data, it was apparent that sev-
eral genes encoding proteins involved in cholesterol bio-
synthesis were down-regulated at the mRNA level in
DHA-treated SW620 cells (Table 1). These include 7- and
24-dehydrocholesterol reductase (DHCR7, DHCR24), far-
nesyl diphosphate synthase (FDPS), phosphomevalonate

TABLE 2. Ca21 registrations in SW620 cells pretreated with DHA (70 mM) at time points indicated: SW620 cells
stimulated with ATP, 1 mM

Pretreatment # Cells (Responding Cells, %) Maximal [Ca21] Increase, nM Decline of the Response

None (control) 120 (56) 190 (6 13.2) 1.64 (6 0.06)
DHA 6 h 110 (53) 196 (6 10.8) 1.66 (6 0.16)
DHA 12 h 107 (55) 226 (6 15.9)a 1.39 (6 0.06)a

DHA 24 h 94 (51) 201 (6 18.4) 1.27 (6 0.09)b

DHA 48 h 97 (45) 198 (6 21.1) 1.23 (6 0.04)b

After 30 s of [Ca21] registration ATP (1mM) (Sigma-Aldrich) or vehicle was added. Maximal [Ca21] increase is
calculated as difference between baseline and peak [Ca21] in the responding cells. The decline of the response is
quantified as the ratio between peak [Ca21] and [Ca21] at the end of the registration (180 s). Registrations are
depicted in Fig. 4C. The data are presented as means with standard errors (6 SEM).

a Statistically significant difference from control (P , 0.05).
b Statistically significant difference from control (P , 0.01).

Fig. 4. Cytosolic Ca21 release after DHA treatment. Registrations of cytosolic Ca21 in DHA-treated SW620 cells. A: DHA treatment in-
creases the basic cytosolic Ca21 level in SW620 cells. SW620 cells were incubated with DHA (70 mM) for various time periods as indicated.
Average Ca21 concentrations in 196–324 cells are shown. Bars indicate SEM values. The average basic cytosolic Ca21 level from each time
period was tested against time 0. Statistically significant difference from control (no treatment): ** P , 0.01. B: DHA treatment affects the
thapsigargin-inhibited Ca21 transport. SW620 cells were incubated with DHA (70 mM) for 48 h as indicated. After 30 s of [Ca21] registration
thapsigargin (5 mM) (Sigma-Aldrich) or vehicle was added (arrow). Average registrations from all cells are shown since virtually all cells
responded. Cytosolic [Ca21] at the end of the registration (180 s) in DHA-treated cells was statistically significant different from control (P,
0.05). C: ATP stimulation causes a prolonged Ca21 signal in DHA-treated cells. SW620 cells were incubated with DHA (70 mM) for various
time periods as indicated. After 30 s of [Ca21] registration ATP (1 mM) was added (arrow). Average registrations from responding cells are
shown. D: Removal of extracellular Ca21 with ethylene glycol tetraacetic acid (EGTA) abolishes the prolonged ATP response in DHA-treated
cells. SW620 cells were incubated with DHA (70 mM) for 24 h. The cells were incubated in a 10 mM HEPES buffer without Ca21, but with
0.1 mM EGTA or in a 10 mM HEPES buffer containing 1.2 mM Ca21 for 10 min before registration. After 30 s of [Ca21] registration, ATP
(1 mM) was added (arrow). Average registrations from responding cells are shown.
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kinase (PMVK), 3b-hydroxysterol D14-reductase (TM7SF2)
(12, 24 h), and lanosterol synthase (LSS) (12 h). However,
some transcripts involved in cholesterol uptake and intracel-
lular cholesterol transport, such as low and very low density
lipoprotein receptor (LDLR, VLDLR), the Niemann-Pick

C1 protein (NPC1), NPC2, and the oxysterol binding pro-
tein (OSBP), were found to be up-regulated in SW620 cells
after DHA-treatment (Table 1). NPC1 protein levels were in
addition analyzed by Western blot and were increased in
DHA-treated cells compared with control at 24 h (Fig. 5A).

TABLE 3. Ca21 registrations in SW620 cells pretreated with DHA (70 mM) at time points indicated: SW620 cells
stimulated with ATP, 1mM

Pretreatment # Cells Baseline [Ca21], nM Maximal [Ca21] Increase, nM Decline of the Response

None (control) 103 123 (6 4.1) 247 (6 10.6) 2.07 (6 0.09)
DHA 24 h 85 141 (6 4.7)a 238 (6 14.1) 1.61 (6 0.07)a

2. EGTA 81 103 (6 3.7)a 259 (6 18.2) 2.51 (6 0.14)a

EGTA, DHA 24 h 73 105 (6 3.8)a,b 227 (6 17.3) 2.11 (6 0.12)a,b

EGTA, ethylene glycol tetraacetic acid. After 30 s of [Ca21] registration ATP (1mM) (Sigma-Aldrich) or vehicle
was added. Maximal [Ca21] increase is calculated as difference between baseline and peak [Ca21] in the responding
cells. The decline of the response is quantified as the ratio between peak [Ca21] and [Ca21] at the end of the
registration (180 s). Registrations are depicted in Fig. 4D. The data are presented as means with standard errors
(6 SEM).

a Significantly different from control (P , 0.05).
b Significantly different from DHA 24 h (÷ EGTA) (P , 0.001).

Fig. 5. Changes in cholesterol metabolism induced by DHA. A: Western blot analysis of HMGCR,
mSREBP2, and NPC1 protein levels in total protein extracts from SW620 cells treated with DHA for the
indicated time periods (h). Controls were harvested at all time points; only 24 h control is shown for
mSREBP2 and NPC1. For HMGCR, controls are shown for all time points. b-actin was used as a control
for equal protein loading. One blot, representing three independent experiments, is shown. The blots were
quantified and protein band intensities normalized relative loading control. The actin adjusted band inten-
sities from the DHA and control membranes were further normalized relative to the 24 h control band,
present at all membranes, to adjust for differences in signal intensities between the membranes. The num-
bers under the blots represent mean fold change (with SD) of DHA samples relative to control at indicted
time points for three independent experiments. * Significantly different from control (Studentʼs t-test, P ,
0.05). B: Alterations in HMGCR and mSREBP2 protein levels in control (baseline) and DHA treated cells at
the indicated time periods. The plots show the mean value of the actin adjusted band intensitites normalized
relative to the 24 h control band for DHA treated cells (gray bars) and control cells (black bars). The data
represent the mean and SD of three independent experiments. * Significantly different from control (Stu-
dentʼs t-test, P , 0.05).
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Since several of the differentially expressed transcripts
listed above are regulated by sterol regulatory element bind-
ing protein 2 (SREBP2), the protein levels of mSREBP2
(mature) and pSREBP2 (precursor) were analyzed by
Western blot. An increase in mSREPB2 levels was observed
in control and DHA-treated cells over the time period
assayed, but DHA-treated cells displayed higher levels of
mSREBP2 compared with control cells at all time points
(Fig. 5A, B). The level of pSREBP2 was unchanged in
SW620 control cells at all time points, while a slight decrease
was observed after 48 h treatment with DHA (data not
shown). We also analyzed the level of the rate-limiting
enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglu-
taryl-CoA reductase (HMGCR) by Western blot after DHA
treatment. The protein levels of HMGCR in DHA-treated
and control cells were similar at 3 and 6 h. At 12–48 h,
the HMGCR protein levels were reduced in controls, while
the protein level in DHA-treated cells increased slightly
(Fig. 5A, B).

To investigate de novo synthesis of cholesterol in DHA-
treated cells, the incorporation of 14C-acetate into choles-
terol and cholesteryl esters was measured after treating the
cells with DHA for 24 h. The amount of 14C-acetate incor-
porated into cholesterol in DHA treated cells was slightly,
but significantly lower relative to control at 4 h; a similar
trend, although not significant was seen after 6 h (Fig. 6).
The amount of 14C-acetate incorporated into cholesteryl
esters in DHA treated cells was reduced by approximately
60% relative to control at both time points (Fig. 6).

DISCUSSION

Exploring how dietary factors interact with and modu-
late signaling pathways to promote or counteract cancer
development and progression constitutes a major chal-
lenge. The purpose of the present study was to examine
whether n-3 PUFAs like DHA exert their cytotoxicity by

changing gene expression patterns and signaling pathways
regulating cell growth. We found that ER stress is estab-
lished already after 3 h treatment with DHA, as demon-
strated by increased levels of phosphorylated eIF2a, a
hallmark of ER stress. Phosphorylation of eIF2a adapts
cells to various conditions of stress by attenuation of pro-
tein synthesis. We found that the n-3 PUFAs DHA and EPA,
but not OA, cause phosphorylation of eIF2a, thereby gen-
erally inhibiting translation initiation. This is in agreement
with previous results showing that inhibition of translation
initiation mediates the antiproliferative action of EPA in
NIH 3T3 cells by decreased levels of cyclin D1 (40). In-
creased expression of genes downstream of phosphorylated
eIF2a is mediated through induction of the transcription
factor ATF4 (14). Genes with ATF4 binding sites are in-
volved in restoring ER homeostasis in response to various
stresses (41). Several downstream targets of ATF4 are af-
fected at the mRNA and protein level in our study, indi-
cating that ER stress induced by DHA in SW620 cells is
mediated through the ER-localized PERK pathway. Induc-
tion of the UPR is initiated by dissociation of PERK from
the ER-resident chaperone BiP. However, the protein level
of BiP remained constant at all time points. Pimpl et al.
(42) have reported that transcriptional induction of BiP
rarely leads to increased protein levels of BiP/GRP78, this
being due to increased turnover.

UPR is activated to restore cellular homeostasis and in-
duces transcription of genes encoding proteins that me-
diate ER-associated degradation in response to prolonged
ER stress. A large number of 20S and 26S proteasomal sub-
units were up-regulated in SW620 cells. The proteasome
plays a central role in proteolysis of ubiquitinated proteins
and are responsible for cleaving many regulatory proteins,
like cyclins and members of the NFkB family (43). Pro-
longed ER stress may cause induction of apoptosis. We show
that even though the ER stress-related caspases 4 and 7 are
up-regulated in DHA-treated SW620 cells, active caspase 7
is not detectable. On the other hand, active caspase 7 was
detected in SW480 cells (data not shown). Chen and Istfan
(44) have studied the apoptotic response to DHA in sev-
eral cell lines, among these SW480 and SW620. A DNA lad-
der was observed after incubation with DHA (150 mM) for
24 h in SW480, but not in SW620 cells; this is in accor-
dance with our results. Previously, we were not able to de-
tect apoptosis by the TUNEL-assay in either SW480 or
SW620 (5). This may indicate that the survival threshold
is not exceeded in these cells within the time period as-
sayed and concentration used.

ER is the principal site for protein synthesis and folding,
Ca21 storage and signaling, as well as biosynthesis of fatty
acids and cholesterol. Any perturbation that interferes with
these activities promotes ER stress and initiates the UPR.
We found that DHA treatment mobilizes Ca21 from ER
into the cytosol, in agreement with previous results investi-
gating the effects of n-3 and n-6 PUFAs (40, 45–47), but
the mechanism is not known. Our results indicate that cal-
cium release induced by DHA may be linked to induction
of ER stress. A redistribution of cholesterol from intracel-
lular regulatory compartments like ER to DHA-cholesteryl

Fig. 6. Effect of DHA on incorporation of 14C- acetate into choles-
terol and cholesteryl esters. Amount of 14C-acetate (% of control)
incorporated in cholesterol (black bars) and cholesteryl esters
(gray bars) in SW620 cells treated with DHA for 24 h, and further
coincubated with DHA and 14C-acetate for 4 and 6 h. The mean
and 6 SD from (4 h, n 5 3; 6 h, n 5 2) independent experiments
is displayed. * Significantly different from control (Studentʼs t-test,
P , 0.05).
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ester-enriched lipid droplets (5), causing functional deple-
tion of cholesterol in the ER could potentially lead to ER
stress and Ca21 mobilization, since total cholesterol is not
increased (this work). Harding et al. (21) have shown that
compounds that deplete cellular cholesterol stores acti-
vate an integrated stress response (ISR) by promoting
ER stress.

The observed stabilization of HMGCR, the rate limiting
enzyme in cholesterol biosynthesis, and the increased level
of mSREBP2 observed in DHA-treated SW620 cells, indi-
cate an increased cellular need for de novo synthesized
cholesterol during DHA treatment. Surprisingly, both in-
creased and decreased expression of several SREBP2 tar-
get genes is observed in SW620, despite an increase in
the active transcription factor. Inhibition of transcription
of SREBP2 target genes has previously been associated
with ER stress-induced activation and cleavage of ATF6,
and is mediated by interaction of the two transcription fac-
tors in the nucleus (48). Reduced expression of SREBP2
target genes may result in a decreased ability of the cells
to synthesize new cholesterol, in spite of activated SREBP2.
In line with this, we show that DHA promotes a reduced
de novo synthesis of cholesterol. Surprisingly, we also find
a reduced incorporation of newly synthesized cholesterol
into cholesteryl esters (this work), despite the previous ob-
served accumulation of cholesteryl esters in SW620 cells
treated with DHA (5). This might possibly result from re-
duced turnover of DHA-enriched cholesteryl esters in drop-
lets resulting in accumulation in spite of reduced synthesis.

Recently, a link between molecular chaperones, heat
stress, and cholesterol synthesis was demonstrated (49).
In this work, the chaperone DnaJA4 (DnaJ/Hsp40) was
identified as a novel SREBP target gene that can be turned
on under conditions of low sterol availability and heat
shock. They postulated that SREBP-regulated chaperones
may function as effectors linking heat-shock response and
the maintenance of membrane components. Also, Lee
and Ye (18) have shown that both hypotonic conditions
and thapsigargin induced ER stress in CHO-7 cells leads
to activation of SREBP2, while no increase in cholesterol
synthesis was observed.

The reasons why SREBP2 target genes are regulated dif-
ferently, and consequences thereof, remain to be investi-
gated in our system.

Up-regulation of transcripts involved in cellular uptake
and intracellular transport of cholesterol, like LDLR,
VLDLR, NPC1/NPC2, and OSBP in SW620 cells treated
with DHA, also suggests an increased demand for intracel-
lular cholesterol. A recent report indicates that DHA treat-
ment inhibits transport of exogenous cholesterol from the
plasma membrane to the ER by an unknown mechanism
in CaCo2 colon cancer cells (50). In addition, a study on a
panel of colon carcinoma cell lines revealed a deficiency of
the LDLR in SW480 cells, indicating a dependency on
endogenous cholesterol biosynthesis (51). This would
probably also apply to the SW620 cell line, which is estab-
lished from a metastasis derived from the primary SW480
tumor. Reduced de novo cholesterol synthesis and inhi-
bition of transport of exogenous cholesterol to the ER

pool, in combination with increased cholesterol esteri-
fication as observed earlier, may lead to depletion of cho-
lesterol in the ER. This may be an important factor
contributing to the observed prolonged ER stress that
may cause growth inhibition and eventually cell death.

In vitro studies suggest that pharmacological activation
of the UPR can alter the sensitivity of tumor cells to che-
motherapeutic agents (52). Understanding how common
dietary chemicals like DHA affect gene expression and sig-
naling pathways in tumor cells may reveal possible treat-
ment strategies that may be targeted and possibly enhance
the impact of conventional therapy.

Technical assistance from Beate Buland and Jens Erik Slagsvold
is highly appreciated. We are sincerely grateful for the gener-
ous financial support given to the project in remembrance of
Egon Leren.
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

Gene expression profiling – detailed method 

Synthesis of cDNA and biotinylated cRNA was performed according to the eukaryote 

expression manual provided by Affymetrix. In brief, 5 μg total RNA from the SW620 cell 

line was subjected to double-stranded cDNA synthesis using a T7-oligo(dT)24-primer 

(Affymetrix, Santa Clara, CA) and the SuperScript™ Double-Stranded cDNA Labeling Kit 

(Invitrogen, Carlsbad, CA). After clean up (GeneChip Sample Clean Up Module, 

Affymetrix), all the prepared cDNA was used for in vitro transcription using Enzo BioArray 

HighYield RNA Transcript Labeling kit (Enzo, Farmingdale, NY). 10 μg fragmented cRNA 

were hybridized to the Human Genome Focus Array (midi format, Affymetrix) containing 

probe sets for 8500 of the best characterized human genes. Hybridization and 

washing/staining were performed using the Hybridization oven 640 and Fluidics Station 400 

(Midi-Euk2v3 protocol). Staining was performed using Streptavidin, R-phycoerythrin 

conjugate (SAPE, Molecular Probes, Eugene, Oregon) and biotinylated anti-streptavidin 

antibody (Vector Laboratories, Burlingame, CA). The arrays were scanned using an 

Affymetrix GeneChip GA2500 Scanner, controlled by GeneChip  Operating Software 1.2 

(GCOS, Affymetrix).  

Statistical analysis of gene expression data - comment 

First, a model was fitted that included time effects for both the DHA-treated and control 

groups. However, the time effects in the control group turned out to be negligible, and these 

effects were omitted from the model.  

Antibodies

Primary antibodies detecting the following proteins were used to probe the membranes; 

HSP70 and HMOX1 (all mouse monoclonal antibodies, Stressgen, Victoria, BC, Canada), 



ATF4 (rabbit polyclonal antibody), HMGCR and lamin (goat polyclonal antibodies) (all from 

Santa Cruz Biotechnology, CA), Cyclin D1 (mouse monoclonal antibody, Cell Signaling 

Technology, Danvers, MA), RPN2 (mouse monoclonal), active CASP7, NPC1 and SREBP2 

(all three rabbit polyclonal antibodies, all four from Abcam, Cambridge, UK). 

Phosphorylation of eIF2 was assayed using an antibody recognizing phosphorylated eIF2

(Serine 51, Cell Signaling Technology). The membranes were also probed for total eIF2

(Cell Signaling Technology) as a control after stripping the membrane in Restore Western 

blot Stripping buffer (Pierce, Rockford, IL). All blots were reprobed with -Actin (Abcam) as 

a loading control. Membranes were probed with horseradish peroxidase (HRP)-conjugated 

secondary antibodies (DAKO, Carpinteria, CA) for one hour at room temperature. 
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Errata





Errata list
 
Page 3 (line 5) 
Current sentence: 
ATF  activation transcription factor  
Corrected to: 
ATF  activating transcription factor  
 
Page 5 (line 5) 
Current sentence: 
PPAR peroxisome proliferators-activated receptor 
Corrected to: 
PPAR peroxisome proliferator-activated receptor 
 
Page 6 (line 3) 
Current sentence: 
…the Norwegian professor Notevarp 
Corrected to: 
…the Norwegian Professor Notevarp 
 
Page 10 (chapter 1.2, line 8) 
Current sentence: 
The type of fat consumed has changed towards an increase in saturated fat (especially animal fat and n-6 PUFA 
rich oils)… 
Corrected to: 
The type of fat consumed has changed towards an increase in saturated fat (especially animal fat) and n-6 PUFA 
rich oils… 

Page 11 (line 9) 
Current sentence: 
Feeding farm animals with n-3 FA-enriched food have resulted in production of eggs and milk with increased n-
3 FA content…  
Corrected to: 
Feeding farm animals with n-3 FA-enriched food has resulted in production of eggs and milk with increased n-3 
FA content…  
 
Page 11 (line 8) 
Current sentences: 
Cooking methods also needs to be considered since n-3 PUFAs are highly oxidable resulting in harmful free 
radicals. The n-3 PUFA content in cooked fish might be reduced by as much as 50% (reviewed in 14),  
Corrected to: 
The sentences have been moved to the end of the paragraph.  

Page 11 (line 9) 
Current sentence: 
The n-3 PUFA content in cooked fish might be reduced by as much as 50% (reviewed in 14), and industrial food 
should be prepared using n-3 PUFA rich oils. 
Corrected to: 
Industrial food should be prepared using n-3 PUFA rich oils.  
 
Page 15 (line 1) 
Current sentence: 



Membrains also contain lipid micro domains such as lipid rafts and caveolae which are membrane domains rich 
in cholesterol, sphingolipids and phospholipids.  
Corrected to: 
Membrains also contain lipid micro domains such as lipid rafts and caveolae which are membrane domains rich 
in cholesterol, sphingolipids and phospholipids with saturated fatty acyl chains.   
 
Page 15 (chapter 1.3.5, line 6) 
Current sentence: 
EPA and AA are metabolized by the same enzymes in the three eicosanoid syntehesis pathways… 
Corrected to: 
EPA and AA are metabolized by the same enzymes in the three eicosanoid synthesis pathways… 
  
Page 19 (line 5) 
Current sentence: 
…(reviewed in (50).  
Corrected to: 
…(reviewed in (50)). 
 
Page 19 (chapter 1.4.1, line 5) 
Current sentence: 
…found be important… 
Corrected to: 
…found to be important 
 
Page 20 (last sentence) 
Current sentence: 
This is especially important for breast and prostate cancer since the incidence of these cancers has been 
associated with exposition of such pesticides.  
Corrected to: 
This is especially important for breast and prostate cancer since the incidence of these cancers has been 
associated with exposure of such pesticides.  

Page 24 (line 7) 
Current sentence: 
Some human intervention studies have also been performed, like the studies by Anti, West and Aronson et al 
described above. 
Corrected to: 
Some human intervention studies have also been performed, like the studies by Anti and West et al described 
above. 
 
Page 26 (second paragraph, line 3) 
Current sentence: 
DHA and EPA reduced micro vessel formation in HT-29 colon cancer cells in vitro, as a result of reduced 
expression of COX-2 and vascular endothelial growth factor (VEGF), and reduced PGE2 level. 
Corrected to: 
DHA and EPA reduced the growth of HT-29 colon cancer cells in vitro and reduced expression of COX-2, 
vascular endothelial growth factor (VEGF) and reduced PGE2 level.  
 
Page 27 (chapter 1.5.3, last line) 
Current sentence: 
…(EGF) signaling which to takes place in lipid rafts.  
Corrected to: 
…(EGF) signaling which takes place in lipid rafts.  



 
Page 32 (PERK chapter, line 3) 
Current sentence: 
This leads to inhibition of translation/protein synthesis to relive the protein burden of ER. 
Corrected to: 
This leads to inhibition of translation/protein synthesis to relieve the protein burden of ER. 
 
Page 39 (chapter Apoptosis and n-3 PUFAs, last line) 
Current sentence: 
…(reviewed in (122). 
Corrected to: 

…(reviewed in (122)). 

Page 41 (line 9) 
Current sentence: 
…the cause have not yet been fully established. 
Corrected to: 
…the mechanisms have not yet been fully established. 
 
Page 43 (line 4) 
Current sentence: 
Transcripts for some proteins involved in cholesterol uptake and transport like LDL receptor (LDLR) and 
niemann-pick disease type C1 (NPC1), the latter also at protein level. 
Corrected to: 
Transcripts for some proteins involved in cholesterol uptake and transport like LDL receptor (LDLR) and 
niemann-pick disease type C1 (NPC1) were up-regulated, the latter also at protein level. 
 
Page 43 (line 9) 
Current sentence: 
Taken together, these data imply that the growth inhibitiing effect of DHA on the SW620 cells involves 
induction of ER stress, UPR and changes in Ca2+- and cholesterol homeostasis 
Corrected to: 
Taken together, these data imply that the growth inhibiting effect of DHA on the SW620 cells involves induction 
of ER stress, UPR and changes in Ca2+- and cholesterol homeostasis 

Page 46 (last line) 
Current sentence: 
…induced extensive changes in the expression several genes belonging to a several different molecular 
pathways, in cancer cells.  
Corrected to: 
…induced extensive changes in the expression of several genes belonging to several different molecular 
pathways, in cancer cells.  
 
Page 48 (line 24) 
Current sentence: 
…hence oxidative stress was suggested to be involved in trigging cell death in these cells.  
Corrected to: 
…hence oxidative stress was suggested to be involved in triggering cell death in these cells.  
 
Page 50 (line 3) 
Current sentence: 
…have been implicated in ER stressed-induced apoptosis 
Corrected to: 



…have been implicated in ER stress-induced apoptosis 
 
Page 53 (chapter 4.4, line 5) 
Current sentence: 
…(paper I, table 1, fig. 5) 
Corrected to: 
…(paper I, table1, supplementary table 1, fig. 5) 
 
Page 54 (line 15) 
Current sentence: 
SREBP1 also regulates lipogenesis e.g. trough induction of FAS… 
Corrected to: 
SREBP1 also regulates lipogenesis e.g. through induction of FAS… 
 
Page 56 (4th line from the bottom) 
Current sentence: 
It is important to note that Chen et al used the double DHA concentration… 
Corrected to: 
It is important to note that Chen et al used double the DHA concentration… 
 
Page 58 (line 6) 
Current sentence: 
Unfortunately, several chemotherapeutics is known to activate NF B… 
Corrected to: 
Unfortunately, several chemotherapies are known to activate NF B… 
 
Page 60 (6th line from the bottom) 
Current sentence: 
This could help revealing… 
Corrected to: 
This could help reveal… 
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