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ABSTRACT 

We have studied the impact of lattice geometry on the dynamic properties of close-spaced arrays of 

circular nanomagnets, also known as magnonic crystals. To this end, we prepared 2D nanomagnet 

arrays with both square and hexagonal lattice symmetries (300 nm disc diameter, 400 nm center-to-

center distance) and performed broadband ferromagnetic resonance (FMR) measurements. 

Micromagnetic simulations were used to interpret distinct features of the measured resonance 

spectra. The FMR bias field was applied along two distinct principle directions for each lattice, and a 

sample with well-separated, decoupled discs was measured for reference. We found that the 

interdisc dipolar coupling has a strong impact on the FMR for these 2D magnonic crystals. Distinctly 

different oscillation modes were found for the individual nanomagnets, dependent on lattice 

symmetry and direction of the bias field. Moreover, we find that spectral peak splitting from 

excitation of edge and center modes, as well as the damping, depend on the lattice symmetry and 

the orientation of the bias field. These findings demonstrate that lattice geometry has a strong 



influence on the excited spin-wave spectrum and is a relevant design parameter for novel spintronic 

devices.  

 

INTRODUCTION 

Magnonic crystals are metamaterials in which the magnetic properties vary periodically [1]. These 

analogues to photonic crystals offer unprecedented tunability of the magnetodynamics [2-4]. A 

special application of such systems is generation of highly tunable microwaves from a nanoscale 

source [4]. Examples of magnonic crystals are magnetic thin films with non-magnetic holes placed in 

a periodic fashion [5,6] or dipolar-coupled ferromagnetic nanodots [7], as discussed in this paper. 

The dynamics of single isolated magnetic dots have been investigated extensively [8-11], whereas 

studies of closely spaced, dipolar coupled systems are few [12-14]. The dynamic properties of 

magnonic crystals are still poorly understood due to the high complexity of periodic dipolar-coupled 

systems [14]. Here, we present ferromagnetic resonance (FMR) studies of the spectral response of 

magnonic crystals, dependent on their symmetry and the bias field direction.  

 

 

  



METHODS 

 The magnonic crystal samples were made from 15 nm permalloy (Py) films, deposited on a 

silicon substrate and capped with a 2 nm aluminum oxide layer to serve as oxidation barrier. Using 

electron beam lithography, the films were subsequently patterned into arrays of discs with 

diameter d = 300 nm and a center-to-center distance of 400 nm, shown in Fig. 1(a) and 1(b). This 

results in an edge to edge spacing of 100 nm, i.e., less than the disc diameter and ensures sufficient 

dipole-dipole interaction to impact the dynamic properties of the arrays. The patterned area on each 

sample was 3 × 3 mm2 in order to ensure sufficient absorbed power in the FMR experiment. 

We performed broadband FMR measurements by acquiring FMR spectra at a constant microwave 

frequency while sweeping the external field, μ0H0, from 150 mT to 0 mT. The initial field of 150 mT 

ensures magnetic saturation of the discs for the FMR experiments. In this set-up, the sample is 

placed face down on a coplanar waveguide, where the microwave radiation is applied at frequencies 

from 3 − 12 GHz in increments of 1 GHz. The field derivative of the FMR absorption intensity was 

measured using an rf diode and using a lock-in amplifier at an ac modulation field of 133 Hz. In order 

to probe the anisotropy originating from intermagnet dipolar coupling, we applied the field along 

two high-symmetry lattice directions for each nanodisc array. For the square lattice, we applied the 

field μ0H0 in the in-plane [10] and [11] directions, and for the hexagonal lattice the field was applied 

in the [12�] and the [1�0] directions, cf. Fig. 1(a) and 1(b). In the hexagonal lattice, these directions 

correspond to a direction of nearest neighbors and a direction between nearest neighbors, 

respectively. Hysteresis loops measured using X-ray Magnetic Circular Dichroism (XMCD) 



spectroscopy at BL 6.3.1 at the Advanced Light Source showed a remanent magnetization close to 

saturation, confirming that the individual magnets remain in a monodomain state throughout this 

measurement range. In order to determine the spectral linewidths and resonance peak positions, we 

fitted the resulting spectra with a superposition of derivative and double derivative Lorentzians [15]. 

 For the micromagnetic simulations, we used the software package MuMax3, which solves the 

Landau-Lifshitz-Gilbert equation numerically for a given geometry [16]. The material parameters 

used to describe the magnetic properties of the nanomagnets are standard values for Py, i.e., 

exchange stiffness Aex = 10 pJ m⁄ , saturation magnetization MS = 800 kA m⁄ , and a crystalline 

anisotropy of 0 J/m3. The damping parameter was set to 𝛼𝛼 = 0.01, a typical value for patterned Py 

elements. The simulation cell size was optimized for mesh independence, to avoid anisotropies 

resulting from projection of the circular nanodiscs onto a square grid. However, the cells were large 

enough so that computation times were within reasonable bounds. The chosen cells had in-plane 

dimensions of 2.5 nm × 2.5 nm for the hexagonal lattice and 1.5 nm × 1.5 nm for the square lattice, 

both smaller than the magnetostatic exchange length, lS = �
2Aex
μ0MS

2 = 4.98 nm. The simulated FMR 

spectra were obtained by exciting the magnetic moments with an in-plane field pulse in the direction 

perpendicular to H0. The frequency spectra of the resulting oscillations are found by Fourier 

transformation, using a procedure known as the ‘ringdown method’ [17,18]. In order to obtain the 

full frequency spectra, this procedure is repeated for values of μ0H0 from 1 to 150 mT in steps of 1 

mT. Magnetic nanodiscs typically feature both edge and center modes [8], i.e. spatially 

inhomogenous oscillations. Thus, the spatial distribution of their amplitude is of interest. By applying 



the ‘ringdown method’ to every grid point 𝐦𝐦(xn, ym, t) to compute Fourier transforms 𝐦𝐦�(xn, ym, f), 

spatial amplitude and phase maps of the nanodisc oscillations were obtained, for applied bias fields 

μ0H0 from 20 to 140 mT, in increments of 20 mT.  

 

RESULTS AND DISCUSSION 

 Figures 1 (c) and 1 (d) compares experimental and simulated (derivative) FMR absorption 

spectra for the square lattice, with H0 pointing in the [11] direction and excitation frequencies from 

7 to 9 GHz.  When increasing the excitation frequency, the resonance splits into two separate peaks, 

centered at different values of μ0H0. The low-field peak retains a substantial amplitude throughout 

the frequency range, whereas the high-field peak broadens and rapidly attenuates with increasing 

frequency. The simulated spectra show a similar splitting of the ferromagnetic absorption resonance 

around 7 GHz, and excellent agreement between simulation and experiment is found. We note there 

is an offset in peak position HFMR between the simulated and experimental spectra, most likely due 

to the measurements being carried out at finite temperature (T = 295 K).  

 The spectra were fitted with superpositions of first and second derivative Lorentzian 

functions [15,19]: 

𝑑𝑑𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑𝐻𝐻0

∝ cos(𝜖𝜖)
2(𝐻𝐻0 − 𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹)∆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹

[∆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹
2 + (𝐻𝐻0 − 𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹)2]2 + sin(𝜖𝜖)

[∆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹
2 − (𝐻𝐻0 − 𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹)2]

[∆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹
2 + (𝐻𝐻0 − 𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹)2]2 

Here, HFMR is the peak position, ∆HHWHM is the linewidth defined as the half-width-at-half-

maximum (HWHM), and ϵ is the mixing angle between the symmetric and the antisymmetric term. 



We employed a least squares fitting method to derive these fitting parameters. The resonance 

frequencies were subsequently plotted versus peak position HFMR , following the Kittel curve, which 

can be fitted using the Kittel equation [20]. Measured and simulated Kittel curves for an array of 

magnetically uncoupled nanodiscs (300 nm disc diameter, 800 nm center-to-center distance) are 

shown in Fig. 2. The Kittel curves for the square lattice, with the bias field H0 applied along the [10] 

and [11] directions, are shown in Fig. 3(a) and (b), respectively, and results for the hexagonal lattice 

are shown in Figs. 4(a) and 4(b). The Kittel curves for a single disc and for the square lattice with H0 

oriented in the [10] direction show only one prominent branch. With H0 oriented in the [11] 

direction, two branches are obtained (cf. Fig. 4(b)). For the hexagonal lattice, the Kittel curves with 

H0 oriented along either the [12�] or the [1�0] directions split into two branches. This splitting occurs 

at a higher bias field than for the square lattice with H0 oriented in the [11] direction. 

 In all cases, the simulated FMR spectra accurately reproduce the spectral features of the 

experimental data, such as the mode splitting. The corresponding spin wave amplitude maps for the 

individual magnets are shown in the insets of Figs. 3 and 4 for the square and hexagonal lattice, 

respectively. The FMR spectra for the isolated disc and the square lattice with H0 in the [10] 

direction are nearly identical, differing only by a small offset in resonance frequency. For these 

systems, the resonances correspond chiefly to center modes throughout the entire frequency range 

(3 − 12 GHz), as can be seen from the insets in Fig. 3. A notable exception is the oscillation mode at 

an applied field of μ0H0 = 60 mT, which shows a splitting in two spatial maxima rather than a single 

maximum.  



 For H0 oriented in the [11] direction, we observe a much different resonance behavior. Here, 

the principle resonance splits into two branches for a field of approximately 40 mT (cf. Fig. 3(b)). 

From simulations, we find that the resonance at low fields arises from a mode with maximal 

amplitude localized near the edges of the nanodiscs, i.e., ‘edge modes’ (cf. insets of Fig. 3(b)). The 

high-field part of the Kittel curve features a high and a low frequency branch, corresponding to a 

center mode and an edge mode, respectively. The amplitude maps show that the high-field mode is 

not a pure edge mode, i.e., there is a finite, but small oscillation amplitude for the magnetization 

throughout the disc. This oscillation is a standing wave, with a wavelength of approximately the 

diameter of the magnetic disc.  

 We find a similar behavior for the hexagonal lattice, where the main resonance feature splits 

into two peaks at an applied field of approximately 60 mT. The resonances beyond this bias field also 

feature a low-frequency edge mode and a high-frequency center mode, as can be seen in Fig. 4. 

However, in contrast to the square lattice with the field applied along the [11] direction, the 

resonance is a center mode in the low-field range (i.e., for μ0H0 ≤ 60 mT). The two applied field 

directions in the hexagonal lattice show little difference in the measured and simulated spectra (cf. 

Fig. 5), suggesting negligible magnetic anisotropy for the hexagonal lattice.   

Additional resonances can be observed in the simulated FMR data, such as the branch at 

approximately half the frequency of the main mode, cf. Figs. 2-4. From the simulated amplitude 

maps, we find that this resonance corresponds to a pure edge mode (i.e. zero amplitude at the 



center of the disc). This mode does not show up in the experimental FMR spectra, most likely 

because it absorbs too little energy to be detected by our FMR set-up.  

 For the center mode oscillations of the nanodisc magnetization, we can fit the Kittel equation 

for an ellipsoid [8,20]:  

f =
γ
2π

�μ0H0 + μ0Ha + μ0MS�Ny − Nx� × �μ0H0 + μ0Ha + μ0MS(Nz − Nx) 

Here, Nx,y,z represent the demagnetization factors, Ha is the anisotropy field, MS is the saturation 

magnetization, μ0 is the permeability of free space, and 𝛾𝛾 is the gyromagnetic ratio. In our case, the 

discs are lying in the 𝑥𝑥𝑥𝑥-plane, and the bias field, H0, is applied in the 𝑥𝑥 direction. Because of the 

circular symmetry, we have 𝑁𝑁𝑦𝑦 = 𝑁𝑁𝑥𝑥 so that the term 𝑁𝑁𝑦𝑦 − 𝑁𝑁𝑥𝑥 vanishes, and we are left with:  

f = γ
2π�μ0H0 + μ0Ha × �μ0H0 + μ0Ha + μ0MS(Nz − Nx) (1) 

As the saturation magnetization for a blanket Py film has been determined by vibrating sample 

magnetometry, the demagnetization factor difference (Nz − Nx) and the anisotropy field μ0Ha are 

free fitting parameters. 

 For the square lattice edge mode measured with the bias field in the [11] direction, we take 

into account standing spin waves in the fitting procedure. The dispersion relation for magnetostatic 

spin waves (i.e., spin waves with a large wavelength, virtually unaffected by the exchange energy) is 

given by [9,21,22]: 

f(k) = γ
2π�μ0H0 × �μ0H0 + μ0MS ∙ FD(k)  (2) 



Here, FD(k) is a correction factor which arises from the dipole-dipole coupling between the spins, 

and k is the wavevector of the spin wave. Combining equations (1) and (2), we obtain: 

f(k) = γ
2π�μ0H0 + μ0Ha × �μ0H0 + μ0Ha + μ0MS(Nz − Nx) ∙ FD(k) (4) 

We fitted the Kittel equation for the center mode (Eq. 1) to the relevant branch in Fig. 4(b) to obtain 

values for (Nz − Nx) and Ha. For the square lattice, this fitting resulted in anisotropy fields of 

μ0Ha = 5 mT and μ0Ha = −2 mT for the field aligned along the [11] and [10] directions, 

respectively. Fitted values for the hexagonal lattice were μ0Ha = 1 mT and μ0Ha = 2 mT for the 

field aligned along [12�] or [1�0] directions. This leaves 𝐹𝐹𝐷𝐷(𝑘𝑘) as the free fitting parameter in Eq. 4 for 

the edge mode. The best fit was found for 𝐹𝐹𝐷𝐷(𝑘𝑘) = 0.9. Taking 𝐹𝐹𝐷𝐷(𝑘𝑘) to have the form valid for a 

blanket film, i.e., 𝐹𝐹𝐷𝐷(𝑘𝑘) = �1 − 𝑒𝑒−𝑘𝑘𝑘𝑘� 𝑘𝑘𝑑𝑑⁄ , where 𝑑𝑑 is the film thickness, the fitted wave vector 𝑘𝑘 

corresponds to a spin wave wavelength of 𝜆𝜆𝑘𝑘𝑑𝑑𝑑𝑑 ≈ 350 𝑛𝑛𝑛𝑛, which is approximately the disc diameter. 

This result is in close agreement with micromagnetic simulations. 

 The center mode branches in Figs. 4(a) and (b) have a difference in anisotropy field μ0Ha of 

1 mT, which is within the error margin of ±1 𝑛𝑛𝑚𝑚. This finding suggests that the hexagonal lattice 

shows little to no anisotropy in the FMR response, which corresponds well to theoretical predictions 

that a hexagonal lattice of dipolar-coupled discs has a continuous degeneracy with respect to the in-

plane magnetization direction [23]. For the hexagonal lattice, the only distinct difference between 

the [12�] and the [1�0] orientations of H0 is found in the amplitude maps for applied fields H0 <

60 mT. Figures 4 (a) and 4 (b) show that for μ0H0 = 20 mT, the oscillation mode features two 



amplitude maxima for H0 in the [12]�  orientation and one amplitude maximum only for H0 in the [1�0] 

orientation. 

 We have also investigated the damping of the oscillation modes for the different array 

symmetries and applied field orientations, shown in Fig. 5. The linewidth of the peaks in the FMR 

data is related to the damping 𝛼𝛼 by, 

μ0∆HHWHM(f) = μ0∆HHWHM
0 + 2π

γ
αf  (5) 

where the linewidth ∆HHWHM is expressed as half-width-at-half-maximum (HWHM). The quantity 

∆HHWHM
0  is the corresponding linewidth at zero frequency, and is related to inhomogeneous 

broadening [8]. It has been previously concluded that edge modes exhibit increased linewidth ∆𝐻𝐻0, 

as these modes are sensitive to edge imperfections from the lithography and lift-off processes [8,14].  

The damping α is proportional to the slope of the linewidth plotted as a function of frequency, and 

can be found from Eq. 5 as, 

α = γμ0
2π

∂
∂f
∆HHWHM (6) 

We measure a linewidth frequency dependence with a splitting into two branches at some frequency 

(field) for all dipolar-coupled configurations except the square array with the applied field oriented in 

the [10] direction, cf. Fig. 5. In Fig. 5(a), we note that the resonance linewidth for the single disc 

increases monotonically with frequency in a manner similar to that observed for the square array 

with H0 oriented in the [10] direction. Fitting of Eq. 6 to the frequency dispersion of the measured 

linewidths results in a damping constant of α = 0.006 ± 0.001, slightly less than that obtained for a 



blanket thin film of Py [8]. As center modes typically display low damping, this low value of α 

corroborates the result from simulations that we only excite center modes in the geometries shown 

in Fig. 5(a).  

 When H0 is oriented in the [11] direction of the square lattice, we observe a significantly 

different damping behavior (cf. Fig. 6(b)). The linewidth frequency dispersion then splits into two 

branches at a frequency of  ∼6 GHz . The lower branch has a modest slope, corresponding to 𝛼𝛼 =

0.006 ± 0.002, whereas the upper branch has a steeper slope, corresponding to a damping constant 

𝛼𝛼 = 0.025 ± 0.002. We attribute this difference in damping to a different resonance mode, with the 

upper branch corresponding to an edge mode and the lower branch to a center mode [8]. The 

resonance linewidth in the low-frequency regime (f < 6GHz) shown by open circles in Fig. 5(b) 

pertains to a mixed (edge and center) oscillation mode, as seen in simulations (cf. Fig. 3(b)).  

 With the hexagonal lattice (Fig. 5(c)), the difference in linewidth for the two directions of H0 

lies within the confines of the measurement uncertainty. The linewidth frequency dispersion splits 

into two branches at ∼ 8 GHz, i.e., at a higher frequency than that observed for the square lattice 

with H0 oriented in the [11] direction. The low-frequency part (f < 8 GHz) of the linewidth 

dispersion (open circles) again pertains to a mixed oscillation mode (cf. Fig. 4). For f > 8 GHz, the 

center mode has a damping constant 𝛼𝛼 = 0.009 ± 0.003, which is higher than that of the isolated 

disc. The damping constant of the edge mode in the hexagonal lattice is 𝛼𝛼 = 0.044 ± 0.004, almost 

twice the value obtained for the square lattice. We note from SEM images of the nanomagnet arrays 

(cf. Fig. 1(a) and 1(b)) that there is negligible difference in edge roughness between the hexagonal 



and the square lattice, which indicates that the difference in damping between the two arrays can be 

attributed to the intermagnet coupling. Micromagnetic simulations show (cf. Fig. 6) that the damping 

of the edge mode exceeds that of the center mode for the hexagonal lattice, while the two modes 

are damped equally for the square lattice with the field oriented in the [11] direction. This difference 

in damping indicates that the edge mode is more sensitive to the lattice symmetry, which is plausible 

given that the magnetic moments at the edges of neighboring nanodiscs are more closely separated 

(~100 nm) than their centers (~400 nm). In all cases, the measured damping of the edge mode is 

noticeably higher than in simulations. This is most likely due to edge roughness on the fabricated 

nanodiscs. Numerical investigations on lattices with dipolar-coupled nanospheres have been carried 

out previously by Mitsumata and Tomita [24], who also found that the damping is modified by dipole 

interactions between nanomagnets.  

 

CONCLUSIONS 

Dipolar coupling between magnetic nanodiscs in a lattice is found to have a profound impact on the 

dynamic response. This is seen from a distinct difference in the FMR spectra compared to a reference 

sample with uncoupled discs. Moreover, the lattice symmetry and the direction of the FMR bias field 

are found to promote different magnetic oscillation modes in the individual discs. The field 

dependence of the resonance for a square lattice with the bias field imposed in the [10] direction 

shows a single dominant Kittel curve across the full frequency range. A square lattice with the field 

imposed in the [11] direction, however, shows a Kittel curve splitting into edge and center mode 



branches for higher frequencies. Such a splitting is also observed for a hexagonal lattice, irrespective 

of the bias field direction. Moreover, we observe no anisotropy in dynamic response for this lattice 

geometry. The lattice symmetry and the orientation of the bias field are also found to impact the 

effective magnetic damping, α, with highest damping for the edge mode in the hexagonal lattice. The 

experimental results are corroborated by micromagnetic simulations. The present findings will be of 

importance to the design and understanding of novel magnonic crystals. 
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FIGURE 1 (single column) 

 

 Figure 1: (a) SEM image of the magnonic crystal with (a) hexagonal symmetry and 
(b) square symmetry. The discs are 300 nm in diameter with 100 nm separation. 
The lattice principal axes are indicated with red and blue arrows. (c) Measured and 
(d) simulated FMR absorption spectra for frequencies of 7-9 GHz for the square 
array, with the applied field oriented in the [11] direction.  



FIGURE 2 (single column) 

 
Figure 2: The upper graph shows the measured Kittel curve for a single disc. The insets show 
amplitude maps at fields of 20, 60, 100 and 140 mT, as determined by simulations. The lower 
graph shows corresponding contour plots for simulated absorption spectra. The noise at 
fields of 𝜇𝜇0𝐻𝐻 < 5 𝑛𝑛𝑚𝑚 is a result of some nanomagnets in the simulations having a flux-
closure ground state. 

  



FIGURE 3 (single column) 
 
 

 
 
Figure 3: Upper graphs show measured Kittel curves for the square lattice, with the field in 
the [01] direction (a) and the [11] direction (b). The blue solid dots and the pink open dots 
represent center- and edge modes, respectively, the insets show amplitude maps for applied 
fields of 20, 40, 60 and 80 mT. The lower graphs show corresponding contour plots for 
simulated absorption spectra, with insets showing magnetization directions.   

 

 

 

 

 

 

 

 

 

 

 

 



FIGURE 4 (single column) 

 

 

 

Figure 4: Upper graphs show measured Kittel curves for the hexagonal lattice, with the field 
in the [12�] direction (a) and the [1�0] direction (b). The insets show amplitude maps for 
applied fields of 20, 40, 60 and 80 mT. The lower graphs show corresponding contour plots 
for simulated absorption spectra, with insets showing magnetization directions. 

 

 

 

 

 

 

 

 

 
 
 
 
 



FIGURE 5 (single column) 

 

Figure 5. Absorption resonance linewidths, measured values and fitted linear frequency 
dispersions (dashed lines) for the edge modes (open triangles) and center modes (open 
squares), respectively. Open circles in (b) and (c) denote mixed modes. (a-c) show data for 
different lattice symmetries and bias field orientations, as indicated in the insets.  

 
 

 

 

  



FIGURE 6 (single column) 

 

 
 

 

Figure 6: Simulated absorption resonance linewidths for the edge modes 
(triangles) and center modes (squares). (a) square array with the bias field 
oriented in the [11] direction and (b) hexagonal array with the bias field 
oriented in the [12�] direction. 
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