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FEILKILDER VED ULTRALYD-BASERT TERMINFASTSETTELSE I 2. TRIMESTER,  
RELATERT TIL PREDIKSJONSMETODER OG MÅLINGER

Rutineundersøkelsen med ultralyd rundt svangerskapsuke 17–19 har vært en viktig del av norsk 
svangerskapsomsorg siden den ble innført i 1986. Når skjer fødselen? — altså sikker fastsettelse av 
fødselstermin, er ett av spørsmålene rutineundersøkelsen skal gi svar på. Terminen er blitt bestemt 
ved at fosterstørrelsen måles med ultralyd og relateres til antatt fosteralder og derfra til beregnet 
ultralydtermin. Termindato er vanligvis basert på målinger av fosterets hodestørrelse, men lengden av 
lårbeinet kan også brukes. Det er viktig at modellene som brukes til terminberegning og målingene de 
baserer seg på, ikke har svakheter som fører til utilsiktede, systematiske feil i ultralydterminene.

Vi har undersøkt 3 norske modeller for terminbestemmelse, ‘Snurra’, ‘Terminhjulet’ og ‘eSnurra’, og 
sammenliknet terminen som ble fastsatt med hver modell med det faktiske fødselstidspunktet. Vi har 
også gjort en studie der vi har vurdert om ultralydmålingene av fosterlårbein endres over tid som følge 
av tekniske forbedringer i ultralydmaskinene.

Studie 1:  I en database med 41 343 rutineundersøkelser utført ved St. Olavs Hospital, Trondheim, 
sammenliknet vi kvaliteten på terminene som ble fastsatt med de 2 tradisjonelle modellene Snurra og 
Terminhjulet. Vi fant systematiske avvik; Snurra beregnet termin for seint og Terminhjulet for tidlig i 
forhold til reelt fødselstidspunkt. Avvikene varierte med fosterstørrelsen på undersøkelsestidspunktet, 
de strakte seg fra 0 til 4 dager og i hver sin retning. Sannsynligvis skyldes avvikene at det litt snevre 
datagrunnlaget til de tradisjonelle modellene ikke er godt nok tilpasset den populasjonen de brukes i.

Studie 2:  I tillegg til de 2 tradisjonelle modellenes beregninger, så vi nå også på terminene som ble 
bestemt med en ny populasjonsbasert modell, eSnurra. Vi brukte en database med 9046 
rutineundersøkelser fra Stavanger Universitetssjukehus. Resultatene for de 2 første modellene 
tilsvarte resultatene i Studie 1 både for terminer beregnet fra hodemål og fra lårbeinsmål. eSnurra 
predikerte stabile, korrekte ultralydterminer, uavhengig av fosterstørrelsen ved undersøkelsen.

Studie 3:  Vi ønsket å se om resultatene fra Studie 1 og 2 lot seg reprodusere også i en tredje 
populasjon og analyserte derfor 23 020 rutineundersøkelse fra Oppland fylke. Også her var 
resultatene stabile for eSnurra; avviket mellom fødselstidspunkt og ultralydtermin var stort sett mindre 
enn 1 døgn. For de 2 andre modellene var mønsteret det samme som tidligere påvist. Avvikene virker 
uunngåelige med de tradisjonelle, seleksjonsbaserte modellene.

Studie 4:  Strålebredden i ultralydapparatene blir smalere når teknologien blir bedre. Dette kan tenkes 
å påvirke lengdemålinger av strukturer som måles på tvers av lydstrålens retning. Vi sammenliknet 
strålebredde i gamle og nye maskiner og analyserte deretter 41 941 ultralydmålinger av fosterlårbein, 
samlet over en 18-års periode. Tekniske forbedringer har redusert strålebredden, og dette påvirker 
enkelte ultralydmålinger ved at strukturen blir målt kortere. Gamle måletabeller kan gi feil resultat.

Konklusjon:  En undersøkelse som tilbyes alle gravide bør være standardisert og resultatene til å 
stole på. En termindato med avvik på 4 dager kan ha konsekvenser både for behandling av svært 
preterme fostre og for håndtering av overtidige svangerskap. En populasjonsbasert modell for termin-
fastsettelse (eSnurra) synes å være bedre tilpasset norske svangerskap enn de tradisjonelle modellene. 
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The myths and mysteries surrounding pregnant women and their childbirths have always puzzled the 

minds of investigators. 1900 years before the introduction of obstetric ultrasound, a Chinese 

mathematician, Sun-Tsu, probably in the first century AD wrote in a mathematics textbook:

A pregnant woman, who is 29 years of age, is expected to give birth to a child in the 9th month of the 

year. Which shall be her child, a son or a daughter? (Beckmann 1971)

And the solution, according to the Czech statistician and physicist Petr Beckmann (1924–1993), 

illustrates what he describes as a ‘quaint mixture of mathematics and mumbo-jumbo‘ — giving rather 

little credit to the ancient philosopher:

Take 49; add the month of her child-bearing; subtract her age. From what remains, subtract the 

heaven 1, subtract the earth 2, subtract the man 3, subtract the four seasons 4, subtract the five 

elements 5, subtract the six laws 6, subtract the seven stars 7, subtract the eight winds 8, subtract the 

nine provinces 9. If the remainder be odd, the child shall be a son; and if even, a daughter (Beckmann 

1971).

This takes Beckmann to the conclusion that ‘to say very impressively nothing at all is the secret of all 

such oracles’ (Beckmann 1971).

The actual ‘mumbo-jumbo’ was about the sex of the child. However, in all cultures at all times there 

has been an abundance of mysticism and old wives' tales speculating about the expected time of the 

birth of a child — in addition to assorted interpretations of signs indicating the sex, weight, talents, 

future health and predestined fate of babies about to be born. These aspects surrounding the birth of a 

child are still keeping “old wives” occupied, but are also puzzling the minds of excellent researchers in 

various disciplines. Some of these aspects have become the primary objectives of today’s basic 

pregnancy care and fetal medicine.
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Introduction

Antecedent theories on pregnancy length and time of delivery

Aristotle (384–322 BC)

The ancient Greek philosopher (Figure 1), 

considered a pioneer of the field of logic, formulated 

theories on the duration of gestation in different 

animals; he reasoned that there was a specific term 

that varied between animal species according to the 

size and life expectancy of the animal (Harvey 

1847). However, he wrote, ‘the human fetus is 

expelled both in the 7th and 10th month, and at any 

period of pregnancy between these; moreover, 

when the birth takes place in the 8th month it is 

possible for the infant to live’ (Harvey 1847).

William Harvey (1578–1657)

William Harvey (Figure 2), the ‘father of modern 

physiology’, was an English physician and the first to 

describe human blood circulation in detail; and he also 

founded the new science of embryology through his 

studies on eggs. He studied Aristotle's hypotheses 

thoroughly and discussed them in his works. Harvey 

wrote that ‘women are most prone to conceive either 

just before or just after the menstrual flux, for at these 

periods there is a greater degree of heat and 

moisture’ (Harvey 1847). 
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Figure 1.  Aristotle

http://www.liberal-vision.org/2010/01/07/aristotle-384-322-
bce-the-politics/ �                 (Accessed 25 May 2011)

Figure 2.  William Harvey

http://en.wikipedia.org/wiki/File:William_Harvey_(_1578-1657).jpg#file (Accessed 25 May 2011)



When it came to the duration of human pregnancy, he rather cited the Bible (the nine 

months from the Feast of the Annunciation in March until Christmas Day (Luke 1: 26–

38)). 

However, he stated that births may take place before the 7th or after the 14th month 

— as ‘the best ascertained signs of pregnancy have sometimes deceived not only 

ignorant women, but experienced midwives and even skilful and accurate 

physicians’ (Harvey 1847).

Hermanni Boerhaave (1668–1738)

Boerhaave (Figure 3) was one of the most influential figures in the early modern 

period of medicine, and he has later been recognized as the founder of clinical 

bedside teaching and modern academic hospitals. In a collection of his academic 

lectures in five volumes, edited and annotated by Albert Haller and published in 1744 

(Figure 4) (Boerhaave 1744, Hutchon 1998, Baskett and Nagele 2000), there is a 

lecture On Conception where he says: ‘Women for the most part are impregnated 

after the end of their period. Numerous experiments undertaken in France confirm 
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Figure 3.  Hermanni Boerhaave

http://www.sciencemuseum.org.uk/broughttolife/people/
hermanboerhaave.aspx (Accessed 25 May 2011)

Figure 4.  Boerhaave's lectures

http://www.baillement.com/lettres/boerhaave.html
(Accessed 25 May 2011)



this; for of 100 births altogether, 99 came about in the 9th month after the last 

menstruation by counting 1 week after the last period and by reckoning the 9 months 

of gestation from that time. For, at that time the uterus is purged and empty, and the 

plethora are drained out’ (Baskett and Nagele 2000). 

There was no specification of whether ‘counting 1 week after the last period’ meant 

counting from the start or from the end of the menstruation. Nevertheless, this 

suggested rule of Boerhaave is the first known presentation of an algorithm for 

calculating the date of delivery.

Franz Carl Nägele (1778–1851)

Nägele, the professor in obstetrics at the University of Heidelberg (Figure 5) first 

published a method for calculating date of delivery 200 years ago (Nägele 1812), 

later known as Nägele's rule. When the rule is discussed today, Nägele's ‘Lehrbuch 

der Geburtshülfe für Hebammen’, which was printed in 14 editions after the first 

1830-edition, is often cited (Nägele 1868). However, his original rule dates from 1812 

(Figure 6) (Nägele 1812). He quoted Boerhaave's method, but added his own 

observations: ‘According to experience, 

the woman in her reproductive phase 

does not always have the same capacity 

to conceive. The time the woman is most 

likely to conceive is immediately after 

menstruation’. He then cites Boerhaave in 

telling that women ‘always conceive after 

the last menstruation and scarcely at any 

other time’ (Nägele 1812, Baskett and 

Nagele 2000).

Nägele continued with his own 

observations: ‘The usual calculation of 

the duration of pregnancy starting from 
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Figure 5.  Franz Carl Nägele

http://www.123people.de/s/carl+nägele (Accessed 25 May 2011)



the last menstruation is correct in most instances; and conception within the last third 

of the cycle or in the second half between 2 periods is unusual and an exception to 

the rule’ (Baskett and Nagele 2000).

In the 13th edition of his textbook for midwives (Nägele 1868), Nägele discussed the 

problems surrounding pregnancy dating, listing the different possibilities of estimating 

date of delivery by counting from 1) Conception 2) Absence of menstruation 3) 

Recognized fetal movements or 4) Increasing size of the uterus. Then he states that 

the time of conception remains hypothetical and that calculating from the last 

menstrual period (LMP) is the reasonable way of dating. In cases of unreliable LMP-

data, the other methods of estimation have to be used, but then the day of delivery 

‘cannot be estimated precisely’. Afterwards, the exact way of calculating date of 
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Figure 6.  The publication 
with Nägele's rule from 1812

(Baskett and Nagele 2000)



delivery in the mode of Professor F. C. Nägele; counting 3 months backward from the 

LMP and then adding 7 days — the Nägele's rule — is accounted for (Nägele 1868):

Hence, the algorithms of Boerhaave and Nägele differed in that while Boerhaave 

counted 9 months forward from 1 week after the last period, Nägele counted 3 

months backward from the LMP and added 1 week. As we can see, Nägele was no 

more specific than Boerhaave on the issue of counting from the first or the last day of 

the LMP. Nevertheless, calculating from the first day has been the generally accepted 

method — obviously, it is easier to have a clear knowledge of the first, than of the last 

day of a period. However, in an amazing study from Belfast, Ireland (Gibson 1955), 

6000 women were interviewed, and Gibson found that the common practice in 

Ireland was to calculate the estimated date of delivery (EDD) from the last, rather 

than from the first day of the LMP.

As will be discussed further on, many authors have claimed that the length of human 

pregnancy is longer than Nägele estimated, and the lack of accordance has led to 

speculations as to whether Nägele's rule was based on anecdotal evidence of the 

common belief that human pregnancy lasted for 10 menstrual cycles, rather than on 

empirical data (Mittendorf et al. 1990). Regardless of these reservations and whether 

the rule is to be attributed to Boerhaave (1744) or Nägele (1812), it served as a 

reference point for investigations into pregnancy length and EDD until the last 

decades of the 20th century. 
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Figure 7.  The paragraph describing the rule of Nägele.
(Nägele 1868)



Towards evidence-based medicine and modern technology

The first models for estimation of gestational age (GA) from fetal ultrasound 

measurements were introduced by Stuart Campbell (Campbell 1969). At that time, 

the ultrasound machines were developed from A-mode (one-dimensional amplitude 

imaging) to B-mode (two-dimensional images with brightness variation), producing 

images easier to understand and interpret. Still, the only meaningful fetal 

measurement to obtain was the biparietal diameter (BPD) (Figure 8).  

Campbell's BPD-measurements were achieved by combining A-mode and B-mode.  

He was able to determine the orientation of the fetal head and assure a correct 

transverse scan at the appropriate level by means of the 2 different scans being 

made at right angles to each other. This method increased the precision of the 

measurement technique, avoiding the problems resulting from head moulding and 

asynclitism (Campbell 1968).

Campbell's studies on fetal age and the measurement charts he developed have 

been fundamental in the development of modern fetal medicine. His description of 

the BPD measurement plane in order to obtain a correct ultrasonic measurement is 

still considered a reference article (Campbell and Thoms 1977), which is widely cited. 

Campbell prepared the way into the era of ultrasound-based pregnancy dating 

18

Figure 8.  To the left, a typical A-mode image showing the skull echoes and the smaller 
midline echo. To the right, a B-mode image of a fetal skull at the BPD measurement level.



through early fetal cephalometry, and introduced the idea of a routine fetal 

examination, with correct fetal age estimation and term prediction as the primary 

purposes (Campbell 1969). He then — somewhat reluctantly — found that the field of 

prenatal diagnosis was more closely connected to the dating examinations than he 

had assumed. Nevertheless, what he recently described as ‘an unexpected dilemma’ 

brought him into the fields of prenatal anomaly diagnosing with ultrasound (Campbell 

2010), where he also became a true pioneer.

Norwegian ultrasound innovators

Campbell's first studies on fetal examinations were published around 1970, and at 

that time the ultrasound machines were, one by one, also being imported to Norway 

by committed obstetricians. The birth departments at the hospitals in Tromsø 

(Joachim Jenssen and Hans Andreas Sande) and in Bergen (Per Bergsjø and 

Christian Brodtkorb) were the first Norwegian departments to have their own 

scanners. These environments published smaller studies in Norwegian and Nordic 

journals in the early 1970s, concerning the use of and experience with obstetric 

ultrasound (Kvande 2008). Gradually, two different fetal growth curves were 

developed, by Bergsjø and Brodtkorb and by Sande (Kvande 2008). These curves 

were based mainly on longitudinal studies of third-trimester pregnancies, reflecting 

the fact that the primary aim of the curves was to diagnose intrauterine growth 

restriction (IUGR) in the third trimester (Bergsjø and Brodtkorb 1973).

According to the thesis by Lise Kvande (2008), there were 9 ultrasound scanners in 

Norway in 1974. In 1980, 40 departments had a scanner, and these 40 institutions 

took care of 83% of the deliveries. Internationally, the second-trimester routine 

examinations were about to be well established.
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Sturla Eik-Nes started his work as a resident in obstetrics and gynecology in Ålesund 

in 1976 and a brand new ultrasound scanner arrived simultaneously. 

Systematic measurements of second- and third-trimester fetuses were collected in 

Trondheim in 1979, and the basis for a new pregnancy dating wheel was formed, 

followed by a fetal growth formula. This was indeed a formula, based on polynomial 

regression analyses, not simply a collection of measurements from fetuses at 

different ages. The mathematical and medical skills of Per Grøttum were essential in 

transforming ultrasound measurements into a future prediction model for fetal age 

and growth (Eik-Nes et al. 1982a, Eik-Nes et al. 1982b, Eik-Nes and Grøttum 1983). 

Eik-Nes and Grøttum managed to provide Norway with ‘Snurra‘ (1983) — a 

pregnancy dating and fetal growth estimation model that was nationally used for at 

least 20 years.

During his years in Ålesund and the first years in Trondheim, Eik-Nes initiated two 

randomized controlled trials aimed at showing the potential benefits of routine 

second-trimester examinations (Bakketeig et al. 1984, Eik-Nes et al. 1984, Eik-Nes et 

al. 2000). A significant reduction of the need for induction in post-term pregnancies 

was a main finding. The introduction of ultrasound examinations to all pregnant 

women as a natural part of public pregnancy care was a hot topic at a scientific 

ultrasound meeting in Ålesund in 1984, and also at the Norwegian consensus 

conference on obstetric ultrasound, which was arranged 2 years later (Backe and 

Buhaug 1986, Kvande 2008).

Throughout more than a generation, Eik-Nes's continuous efforts to promote obstetric 

ultrasound in Norway as well as internationally, have been crucial for fetal medicine 

in general (Campbell 2010), for the organization of fetal routine ultrasound 

examinations in Norway, and for the education and training of midwives in obstetric 

ultrasound.
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Pregnancy dating in Norway

During the decade before routine ultrasound examinations became a part of public 

health care in Norway, there was a complete lack of organization of the examinations 

and standardization of the dating models that were used. Whether an ultrasound-

based EDD should be preferred to a reliable LMP-based date was an important part 

of the discussion. There were some ‘local’ curves in use at some hospitals, but the 

published curves were related to fetal growth in the third trimester and not to second-

trimester dating. Hence, there was an urgent need for quelling the chaos and for 

increasing the impact of evidence-based medicine in Norwegian obstetric ultrasound.

The data that were collected from fetal examinations in Trondheim were used by Eik-

Nes et al. to introduce the phrase ‘TUL‘ — Term according to ULtrasound — which 

for 25 years has been a fixed Norwegian term, resulting in a uniform dating system 

from ultrasound, regardless of whether the LMP was reliable or not. Even the Medical 

Birth Registry of Norway, founded in 1967, from 1999 records the ultrasound-based 

EDD. In 1984, Eik-Nes and Grøttum developed an ultrasound form, called ‘the blue 

form’. This was soon used nationally as a standard form for registration of the 

ultrasound findings throughout pregnancy, and it became part of the pregnant 

woman's medical journal until delivery.

Snurra (‘Trondheim–1984’)

The obstetric wheel ‘Snurra’ (Eik-Nes and Grøttum 1983), shown in Figure 9, was 

introduced in 1984 and was soon being used for ultrasound-based term prediction all 

over Norway. According to Snurra, the duration of Norwegian pregnancies was 

changed from 280 to 282 days; and somewhat surprisingly, without any objections 

from the obstetricians. EDD was predicted from BPD measurements between 38 and 

60 mm, and fetal growth and weight could be estimated from BPD and mean 

abdominal diameter (MAD) measurements throughout the third trimester. The model 

was based on the fetal measurements from the Trondheim study; a population of 90
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pregnant women with anticipated normal pregnancies, all of them carefully selected 

regarding menstrual history. The women were included in a prospective, longitudinal 

study, and measurements were 

taken from each fetus 

approximately 10 times. Fourth-

order polynomial regression 

analysis was used to establish the 

curves.

In Katarina Tunón's thesis from 

1999, 5 studies on different 

aspects of ultrasound-based 

pregnancy dating were included 

(Tunón et al. 1996, Tunón et al. 

1998, Tunón et al. 1999b, Tunón 

et al. 1999a, Tunón et al. 2000), 

and Snurra was the dating method that was used as the ultrasound-based term 

prediction model in all the studies. Tunón et al. were able to prove that ultrasound 

dating should be the method of choice even when LMP-data were reliable (Tunón et 

al. 1996), and in pregnancies conceived after in vitro fertilization (Tunón et al. 2000). 

They also stated that there was a tendency towards less precise predictions if the 

ultrasound examination was carried out earlier than pregnancy week 17–18; the 

model then estimated the date of delivery too late (Tunón et al. 1998). The authors' 

assumption was that the term prediction model needed to be improved. To anticipate 

the course of events; this came about 9 years later (Gjessing et al. 2007). However, a 

general recommendation emerged that the second-trimester ultrasound examination 

in general should not take place until after week 18. Moreover, this recommendation 

has been so faithfully followed that most dating examinations in Norway for the last 

10 years have been performed closer to 19 weeks' gestation, rather than earlier. The 

women who proved to have received a ‘too early’ scanning appointment have, as a 
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Figure 9.  The pregnancy wheel ‘Snurra’



rule, had an offer to come back a couple of weeks later. Overall, this routine has 

resulted in quite reliable EDD estimations from Snurra in large populations. 

The Snurra model was one of the term prediction models evaluated in the studies 

that form the basis of this thesis — and thus the name ‘Trondheim–1984’ has been 

used. After having been the only ultrasound-based model used to date Norwegian 

pregnancies for 20 years, and one of two methods for almost 5 additional years, it 

has gradually been phased out of use during recent years, as a consequence of the 

introduction of a new population-based prediction model (Gjessing et al. 2007). The 

obvious advantages of 20 years of uniform dating across a country cannot be 

overemphasized when it comes to evaluating and comparing all kinds of perinatal 

outcome (Zeitlin et al. 2007, Salomon et al. 2005). 

Even though Snurra has been shown to have certain shortcomings, the fact that it 

was constructed with the sampling and statistical methods of the 1980s, but still able 

to keep its position through more than two decades of continuous progress in all 

technological fields, should indicate that its high quality was not just a coincidence.

Terminhjulet (‘Bergen–2004’)   

A new dating method, shown in 

Figure 10, was introduced in 2004. 

The occasion was in part the results 

of a study by Kiserud and 

Rasmussen (1999), that confirmed 

the findings by Tunón et al. (1998), 

that Snurra underestimated fetal age 

with BPD measurements before 

pregnancy week 17–18 (Figure 11). 

The studies by Johnsen and 

coworkers made up the basis for this 

new obstetric wheel (Johnsen et al. 
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2004, Johnsen et al. 2005), which in our studies was given the more international 

name ‘Bergen–2004’. In the same way as Snurra, this model is also based on the 

statistical methodology for traditional dating models described by Altman and Chitty 

(1993, Altman and Chitty 1997, 1994) and Royston and Wright (1998).

Fractional polynomial regression analysis was used to establish the prediction curves 

that provided the basis for Terminhjulet. EDD can be predicted from BPD 

measurements 14–60 mm, femur length (FL) 2–44 mm or head circumference (HC) 

50–134 mm. The model was constructed from a prospective, cross-sectional study of 

650 healthy women with regular menstrual periods and singleton, uncomplicated 
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Figure 11.  Results 
from the evaluation 
of Snurra on a 
population of 8029 
pregnancies in 
Bergen, shown with 
a figure by H.K. 
Gjessing.

(Kiserud and 
Rasmussen 1999)

Figure 12.  Results 
from the evaluation 
of Snurra on a 
population of 8029 
pregnancies in 
Bergen, shown with 
a figure and the 
additional data for 
Terminhjulet by H.K. 
Gjessing.

(Kiserud and 
Rasmussen 1999)
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pregnancies. The study population was included and examined at Haukeland 

University Hospital in Bergen, Norway, during the years 2001–2003.

Bergen–2004 was gradually adopted by some Norwegian hospitals in the years after 

2005. The impression was given that this new model would perform far better than 

the older model (Snurra), regarding both term prediction and fetal growth 

assessment. However, there were many skeptics who wondered whether 

Terminhjulet, indeed with a new data sample but with rather ‘old-fashioned’ statistical 

methods, could be the solution to Snurra's limitations.

An evaluation of the Bergen–2004 model comparing it with Trondheim–1984 was 

carried out on a population of 11 238 pregnancies from the Oppland County in 

Norway (Backe and Nakling 2006). This evaluation confirmed the underestimation of 

fetal age if Trondheim–1984 was used in early second-trimester predictions and they 

concluded that the new reference values more precisely assessed GA. However, 

there were some shortcomings i��the study; these concerned the inclusion of women 

with reliable LMP data only, the use of the mean instead of the median bias as an 

outcome measure and the complete lack of acknowledgment of the fact that Bergen–

2004 actually overestimated the pregnancy length and predicted the EDD too early 

(Eik-Nes et al. 2006), as shown in Figure 12.

Looking back, it is difficult to understand how the systematic prediction error of 

Bergen–2004 could appear undetected. In the study by two of the authors (Kiserud 

and Rasmussen 1999), where they evaluated Trondheim–1984 on 8029 ultrasound 

examinations, they also applied the prediction model by Altman and Chitty (1997) to 

BPD measurements from their own study population, for comparative purposes. They 

then concluded that the Altman and Chitty model was not a suitable dating model for 

Norwegian pregnancies, because of — as they emphasized — the systematic 

overestimation of pregnancy length and the prediction of EDD 3–4 days too early. 

However, 5 years later, when the new Bergen–2004 dating model was published 

(Johnsen et al. 2004), they compared their brand new dating curves with the one by 
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Altman and Chitty (1997), and apparently considered it an advantage that the curves 

were almost overlapping — with differences in EDD predictions of only 1 day or less. 

Hence, the predictions from the new Bergen–2004 model are more or less identical 

to the predictions from a model that some years earlier had been considered not 

suitable in Norway, due to erroneous predictions. 

The prediction model that was meant to answer the question in the title of the 1999-

study (Kiserud and Rasmussen 1999): ‘Assessment of gestational age using 

ultrasound — can the method be improved?’ turned out, unfortunately, not to be a 

convincing improvement (Figure 12).

eSnurra (‘Trondheim–2007’)

The study that is the basis for the new population-based term prediction model, 

eSnurra (Figure 13), was published in 2007 (Gjessing et al. 2007). This was a new 

cooperation project between Eik-Nes and Grøttum, now in alliance with the 

mathematician Håkon K. Gjessing. To base a term prediction model on fetal 

ultrasound measurements from a non-selected population of 36 982 pregnancies (41 

343 ultrasound examinations), was a new approach that seemed obvious to 

statisticians and mathematicians, but not equally obvious to obstetricians. The 

intrinsic difference is to use ultrasound measurements from a given point of time 

during the second trimester, and to combine the data from these with the actual time 

of the delivery. This makes it possible to calculate the median remaining time of 

pregnancy and the EDD. Conversely, the traditional, sample-based models use the 

fetal measurements to estimate the LMP — the EDD is then found by adding a 

specified number of days to the estimated LMP date. This contrast has been rather 

complicated to communicate, even though it is both evident and logical (Hutchon and 

Ahmed 2001, Salomon et al. 2010, Gjessing et al. 2007).

The huge amount of data being collected and processed with a population-based 

model, opens for the application of more advanced and robust statistics than was 

possible with the polynomial regression models that were used to develop the 
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traditional models (Altman 

and Chitty 1994). The 

obvious statistical approach 

to the population-based 

estimations is to use a non-

linear quantile regression 

model (Gjessing et al. 2010), 

of which many are available. 

The Norwegian model used 

a local linear quantile 

regression (LLQR) model 

(Gjessing et al. 2007), while 

a recent, corresponding 

French model used another 

variant, namely a spline-

smoothed quantile regression (Salomon et al. 2010). 

eSnurra predicts the EDD from BPD 25–60 mm or from FL 11–42 mm. The original 

data included fetal measurements from ultrasound examinations of unselected, 

singleton pregnant women. Pregnancies complicated by stillbirth, anomalies, possibly 
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Figure 14.  Results 
from the evaluation 
of Snurra on a 
population of 8029 
pregnancies in 
Bergen, shown 
with a figure and 
the additional data 
for Terminhjulet 
and eSnurra.

(Kiserud and 
Rasmussen 1999)

Figure 13.  ‘eSnurra’
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abnormal fetal growth or induction of labor for reasons other than post-term 

pregnancy, were excluded (Gjessing et al. 2007).

Traditional sample-based models that are based on limited sample sizes have to be 

evaluated on population data to assess prediction quality. With a population-based 

model, the performance of the method is evaluated directly from the reference 

material. However, if the aim is to get a measure of how the model's predictions suit 

other populations with possibly different examination routines, a validation on the 

actual population has to be carried out. Figure 14 shows how eSnurra suits the study 

population from Bergen.
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From Nägele to ultrasound

The rule not as valid as it seemed to be

First, every doctor and midwife who has tried to determine modern women's LMP, 

knows how difficult it is to achieve so-called ‘reliable’ data (Geirsson and Busby-Earle 

1991). In his study, Gibson (1955) had to exclude 1/6 of the 6000 interview cases by 

reasons such as: (1) A fabrication of the ‘dates’ to agree with a marriage (sic) early in 

pregnancy. (2) Uncertain estimate for different reasons, among them ‘lack of ordinary 

intelligence (sic) on the part of the patient’. We do not know how Nägele and 

Boerhaave solved this 2–300 years ago. Nevertheless, their algorithm was helpful — 

even with several inherent assumptions — so obviously the rule represented the 

method of choice for a very long time.

Regular menstrual cycle: Nägele's rule is based on ovulation and fertilization 

occurring on cycle day 14, and on a cycle length of 28 days. If ovulation occurs 

earlier or later or the periods are irregular, the rule becomes inaccurate.

Varying length of the follicular phase is not uncommon (Baird et al. 1997), neither are 

menstruation-like bleedings in early pregnancy, which can be mistaken for a 

period(Gjessing et al. 1999). Another confounding factor — at least for some women 

— is the varying time between coitus and the fertilization (Perloff and Steinberger 

1964, Wilcox et al. 1995, Robinson 1973).

Length of calendar months: If a rule like this should operate precisely, one must 

assume an equal number of days in all twelve months amounting to 30.42 days each 

(365 days/12), resulting in an average pregnancy length of 280.78 days according to 

Nägele ((30.42 days x 9) + 7). The fact that the months actually are of unequal length 

brings about a variation in the calculated pregnancy duration, depending on the 

month of the year the LMP takes place. For example, the LMPs in the first 3 weeks of 

May will include 6 ‘long’ months of 31 days; May, July, August, October, December 

and January, and will simultaneously avoid the short February month. A pregnancy 

with due date in the middle of February is therefore assumed to last for 283 days. 
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The ‘shortest’ pregnancies arise in years that are not leap years, for instance with 

LMPs in June or September — the estimated pregnancy length will then be 280 

days.

Studies indicating that a normal pregnancy probably lasts longer than 280 days from 

a reliable LMP (Mittendorf et al. 1990)(Bergsjø et al. 1990, Tunón et al. 1996, 

Gjessing et al. 2007) actualized speculations on whether Nägele really meant 

counting from the first or the last day of the LMP. Some authors have brought 

Nägele's rule back into the discussions on term prediction (Olsen and Aaroe Clausen 

1997, Nguyen et al. 1999, Baskett and Nagele 2000). However, at the moment it 

seems more reasonable to refine the ultrasound dating models than to resuscitate 

Nägele's rule by adding 10 days instead of 7, or counting from the last day rather 

than from the first. It appears evident that the LMP should be used only in the 

scheduling of the dating scan (Gardosi et al. 1997, Bottomley and Bourne 2009).

Ultrasound dating takes over

Throughout most of the 1990s, there were strong and differing opinions among 

obstetricians on how to reliably date pregnancies. The routine ultrasound 

examinations were fairly well established in most western countries, but there was 

less agreement on what to do if the ultrasound-based EDD differed from the LMP-

based date.

When Tunón et al. (1996) were able to show that ultrasound dating was superior to 

dating even from reliable LMPs in a large population, they indeed answered many 

questions on how to use the ultrasound dating methods. In Norway, this study 

supported the established policy of using the term according to ultrasound, ‘TUL’, 

independent of the LMP term date. Internationally, the more ‘conservative’ view still 

prevailed, claiming that the LMP-method was the most trustworthy (Rossavik and 

Fishburne 1989). Rossavik and Fishburne found no significant difference between 

the ultrasound-based and the LMP-based EDD. However, their findings were based 

on a comparison of only two very strictly selected small groups (28 women with IVF-
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pregnancies vs. 60 with highly reliable LMP-data). Nevertheless, this article remained 

a reference against routine ultrasound dating for a long time, not least because they 

introduced the principle of not necessarily changing the date of the EDD; ‘if a 

pregnant woman has fairly regular periods and knows her LMP within a time-frame of 

± 1 week, dates should not be changed unless the discrepancy between menstrual 

age and ultrasound age is 14 days or more’ (Rossavik and Fishburne 1989). 

The policy of not changing the EDD if the discrepancy was less than 4, 7, 10 or 14 

days was soon adopted and used for many years (Gardosi et al. 1997, Gardosi 1997, 

Blondel et al. 2002). This may be regarded as a kind of a compromise between 

dating with ultrasound or dating according to Nägele. In my opinion, similar to many 

other compromises it became a neither–nor solution, creating confusion and concern 

among the mothers-to-be, and making comparisons of perinatal outcome measures 

related to GA problematic.  

Little by little, agreement that the ultrasound dating models were superior to LMP-

dating in most situations emerged (Kieler et al. 1995, Mongelli et al. 1996, Mul et al. 

1996, Gardosi and Geirsson 1998, Nguyen et al. 1999, Tunón et al. 1996). Thus, 

during the last decade the discussion has been about when, what and how to 

measure (Persson 1999, Taipale and Hiilesmaa 2001, Källén 2002, Saltvedt et al. 

2004, Verburg et al. 2008b) — and which ultrasound-based dating model to use 

(Mongelli et al. 2003, Sladkevicius et al. 2005, Salomon et al. 2010). Moreover, at 

least in Europe, it became common practice to use the EDD determined at the 

ultrasound examination, no matter how ‘certain’ the reported LMP might be (Taipale 

and Hiilesmaa 2001, Bottomley and Bourne 2009, Verburg et al. 2008b).
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The ultrasound method

Immediate consequences

Ultrasound dating of pregnancies reduces the number of inductions of labor due to 

post-term pregnancy (Whitworth et al. 2010). This was originally shown in the 

Norwegian randomized controlled study addressing the routine use of ultrasound 

(Eik-Nes et al. 1984, Eik-Nes et al. 2000). The sample size of this study was based 

on an anticipated 50% reduction of inductions of labour in post-term pregnancies, 

resulting from the more reliable ultrasound dating. Reduced post-term rates, by up to 

70%, have later been repeated findings in studies comparing ultrasound and LMP-

dating (Persson and Kullander 1983)(Geirsson 1991, Tunón et al. 1996, Mongelli et 

al. 1996, Gardosi et al. 1997, Savitz et al. 2002, Blondel et al. 2002, Yang et al. 2002, 

Zeitlin et al. 2007).

The primary reason for the reduced post-term rate in pregnancies dated with 

ultrasound, is the varying interval between LMP and ovulation; the follicular phase 

(Baird et al. 1997). A delayed ovulation is much more common than an early one, 

therefore, the birth distribution curves with LMP-based EDDs are heavily skewed to 

the right and towards longer gestations when compared with the ultrasound EDD-

based curves (Tunón et al. 1996, Yang et al. 2002, Savitz et al. 2002). Thus, after an 

ultrasound dating examination, the EDD is more often set to a later date than an 

earlier one (Gardosi et al. 1997); 60% vs. 33%, according to Tunón et al. (1996). This 

is also shown in a study comparing LMP and basal body temperature-rise as starting 

points for onset of gestation (Boyce et al. 1976); most of the variation in those 

delivering post-term could be ascribed to the varying LMP-to-ovulation interval.

Yang and coworkers (2002) stated that the overall overestimation of pregnancy 

length according to a reliable LMP was in the range of 3.3 days of the ultrasound-

based estimate, and that this was a systematic, not a random error. In addition to 

showing the well-known decrease in post-term rates, they also studied the impact of 

ultrasound dating on the preterm birth rates. Because there are more downward 
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reclassifications of GA than there are upward, and because deliveries towards the 

pregnancy weeks 36–37 are frequent (the birth distribution curve is steeper towards 

term), dating with ultrasound not only reduces post-term rates, but also significantly 

increases the preterm ones (Goldenberg et al. 1989, Høgberg and Larsson 1997). 

These reclassifications have important public health and clinical implications (Yang et 

al. 2002), even though this fact is not being acknowledged among clinicians or 

researchers in perinatal epidemiology. 

 

Challenges to ultrasound-based dating

Traditionally, the dating examination has been performed in the second trimester, and 

one single routine examination around week 18 is still what the Norwegian public 

health system offers pregnant women. Originally, the purpose of first-trimester 

screening examinations was not primarily the assessment of GA (Snijders et al. 

1998), but later on, several studies indicating benefits from first- rather than second-

trimester dating have been published (Bennett et al. 2004, Caughey et al. 2008) 

(Saltvedt et al. 2004, Verburg et al. 2008b, Bottomley and Bourne 2009). First-

trimester dating recommendations are now also included in the NICE guidelines 

(2010). Probably, the potentially more accurate early dating is associated with the 

uniform fetal growth pattern throughout the first trimester, which is independent of 

ethnicity and other maternal/fetal factors (Pedersen et al. 2008b, Drooger et al. 

2005). However, it is not equally obvious that more precise estimation of the time of 

conception and of fetal age necessarily implies a more accurate prediction of date of 

delivery (Gjessing et al. 2010).

Inverting the ‘Pyramid of prenatal care’ as suggested by Kypros H. Nicolaides 

(Nicolaides 2011c, Nicolaides 2011b), precisely illustrates the progress of ultrasound 

both in predicting and defining the risks of a variety of adverse pregnancy outcome, 

as well as in assessing the GA already in the first trimester. An integrated first 

hospital visit at 11–13 weeks, where the ultrasound findings are combined with data 

from maternal history and characteristics, as well as with findings of biophysical and 
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biochemical tests, will move the emphasis of modern pregnancy care from the third 

to the first trimester, as shown in Figure 15.

The importance of an accurate EDD for the great majority of women who deliver 

within ±1 week of the estimated due date, is probably somewhat exaggerated in the 

minds of these mothers to-be. However, if complications arise at any point of time 

outside the around-term weeks, an exact knowledge of the correct GA/EDD may be 

essential for making the correct clinical decisions (Pexsters et al. 2010, Dias et al.

2011). 40 years after the first studies on ultrasound-based fetal age assessment, it 

remains a reality that ‘Accurate gestational dating is one of the most important 

assessments obstetrical providers make in pregnancy, given that all of the various 

management strategies are dependent on knowing where the patient is in 

gestation’ (Gottlieb and Galan 2008).

Apart from the significant reduction in post-term inductions of labor, pregnancy dating 

with ultrasound has additional advantages (Dias et al. 2011). The first-trimester 

screening tests, as well as the scheduling of routine examinations, invasive 

procedures and potential interventions up to a GA where the fetus is assumed to be 

capable of survival, have traditionally been based on GA estimates calculated from 

the LMP. After a gestation of 23–26 weeks the focus gradually becomes more 
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Figure 15.  The pyramid of traditional prenatal care (left) versus the proposed new pyramid 
(right) shifting the emphasis of pregnancy care and visits to the first trimester.

(With kind permission from Prof Kypros Nicolaides and the Fetal Medicine Foundation (2010a))



concentrated on the EDD, as typically demonstrated in discussions on post-term 

pregnancies, where the issue is how many days past the predicted EDD is the 

appropriate and acceptable time for induction of labor. Consequently, the terms 

‘assessment of GA’ and ‘estimation of date of delivery’ refer to totally different times 

in the course of a pregnancy — although they often appear to be considered 

synonyms. The contrasting aims of the sample-based term prediction models 

(calculate GA from a hypothetical LMP/conception) and the population-based models 

(direct prediction of EDD) is thus important to bear in mind in discussions of GA and 

EDD. With a traditional model, knowledge of the exact pregnancy length is needed to 

calculate the EDD (LMP + pregnancy length = EDD), while with a population-based 

model, knowledge of the exact pregnancy length is necessary in order to compute 

the actual GA (pregnancy length – remaining time of pregnancy = GA).

If the LMP date is used only for scheduling of the dating examination, all questions 

where the length of gestation influences the answer will relate to the ultrasound-

based GA/EDD after the examination is performed. Of course, the selection of a 

pregnancy dating model has an impact on the management of a pregnancy if 

complications arise in the weeks and months after the examination. The prenatal 

diagnostics and first-trimester examinations primarily relate to the GA, while the EDD 

concerns the follow-up of all kinds of complications in the second half of the 

pregnancy. For the extreme pre-term and post-term fetuses, a displacement of the 

EDD in the range of 2 days may have implications for both management and 

survival, in addition to the obvious effect on public health outcome measures (Lynch 

and Zhang 2007, Zeitlin et al. 2007).

Preterm deliveries: Preterm deliveries between completed pregnancy weeks 22 and 

27 are associated with an almost day-by-day reduction in perinatal mortality 

(Markestad et al. 2005). In a recent Swedish study (Fellman et al. 2009), the overall 

perinatal mortality in the study cohort is 45%; it was reduced from 93% at 22 weeks 

to 66% at 23 weeks, and further lowered to 24% at 26 completed weeks. Obviously, 

such figures are basic components of our information to the parents and may act as 

35



a strong motivation to maintain optimism and patience through very critical days. 

Moreover, the management schemes and clinical guidelines concerning threatening 

preterm deliveries (e.g. choice of tocolytic treatment, when to give antenatal 

corticosteroids, whether transfer to another hospital), delivery method (vaginal or 

Cesarean section) (Grant et al. 1996), and the neonatal management (decisions 

concerning the level of and the establishing and discontinuing of pediatric actions 

and operations), are all influenced by the knowledge of an exact GA (Miljeteig et al. 

2007, Saugstad 2005, Pignotti 2008). Consequently, a difference of one or two days 

around pregnancy week 23–24 may alter the activity level surrounding the extremely 

preterm delivery, and hence the prognosis for the preterm born infant, crucially.

Post-term pregnancy: While the preterm deliveries are mainly unavoidable even if 

occasionally scheduled, iatrogenic post-maturity may follow an erroneously predicted 

term date. In the same manner as guidelines for treatment of extremely preterm born 

infants assume a precise estimate of fetal GA, the post-term induction 

recommendations should have their basis in reliable predictions of due date 

(Gülmezoglu et al. 2009, Mandruzzato et al. 2010). Because the EDD is model-

dependent, recommendations on when to induce in post-term pregnancy is futile 

without a uniform system for pregnancy dating (Blondel et al. 2002, Zeitlin et al. 

2007, Lynch and Zhang 2007). Different definitions of standard pregnancy length and 

term prediction models that vary in predictive quality may add up to variations in 

EDDs of several days, which of course influences both the estimations of risk 

associated with post-term pregnancy and the numbers of women needed to treat, 

i.e.,  to induce.

While the World Health Organisation's definition of post-term pregnancy remains at 

294 days, most western countries that have evidence-based guidelines concerning 

this issue, now recommend induction at 41 completed weeks, i.e., 287 days 

(Gülmezoglu et al. 2009, Norwitz 2011). The NICE guidelines (2010) also state that 

‘women with uncomplicated pregnancies should be offered induction of labor beyond 

41 weeks’. 
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The incidence of post-term deliveries (≥294 days of gestation) varies in different 

studies, but with ultrasound dating it is generally below 4% (Hilder et al. 1998, Taipale 

and Hiilesmaa 2001, Wennerholm et al. 2009). Biased predictions of due date or 

adoption of a policy of earlier post-term induction may shift the deliveries from 

pregnancy week 42 to week 41, implying a 2–4 fold increase in induction rates, 

depending on the chosen cut-off. In addition to making comparisons of important 

perinatal quality indicators impossible (Zeitlin et al. 2007), ‘unnecessary’ inductions of 

labor in false positive post-term pregnant women put an extra strain on delivery units 

(Wennerholm et al. 2009), independent of the discussions on when to induce in post-

term pregnancy. Smaller randomized studies have not shown increased risks related 

to induction of labor in post-date pregnancies (Heimstad et al. 2007), however, large 

register-based studies reveal several risk factors associated with post-term 

inductions in, for example, primiparous women or in women with advanced age, 

unfavorable cervix or a high body mass index (Rossen et al. 2010, Roos et al. 2010). 

Consequently, an obvious condition in discussions on induction routines is unbiased 

and uniform EDD-predictions with comparable post-term rates.  

IUGR: Intrauterine growth restriction (IUGR) is another clinical pregnancy problem in 

which the diagnosis, the follow-up and finally the timing of the delivery, are based on 

a correctly predicted GA/EDD (Baschat 2004, Maršál 2009). The identification of a 

small for gestational age (SGA) fetus may follow from a significant discrepancy 

between a reliable LMP-based and the ultrasound-based EDD at the second-

trimester examination (Tunón et al. 1999a, Nguyen et al. 2000, Källén 2004, Morin et 

al. 2005). However, the postponing of an ultrasound-based EDD relative to the LMP-

predicted date is in most cases due to a late ovulation, and the majority of these 

pregnancies prove to be completely normal, with deliveries of normal infants close to 

the ultrasound-based due date (Tunón et al. 1999b, Larsen et al. 2000, Morin et al. 

2005, Fox et al. 2008, Thorsell et al. 2008). First-trimester examinations have 

become an option in most European countries, and there are studies showing that 

even a first-trimester discordance between GAs calculated from LMP and ultrasound 
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may indicate an imminent growth restriction, or an even more severe adverse 

outcome (Bukowski et al. 2007)(Pedersen et al. 2008a, Pedersen et al. 2008b, 

Bottomley and Bourne 2009, Kirkegaard et al. 2011). As these examinations become 

more widespread, repeated studies will most likely confirm that an increased risk of 

IUGR/SGA, preterm delivery or preeclampsia may be identified with first-trimester 

examinations. This is consistent with the inverted pyramid in Figure 15.

Since traditional, sample-based term prediction models are based on estimating the 

LMP, it has been implied that these methods would provide EDDs and GAs that 

correspond more closely to those computed from LMP, than do the population-based 

models. Unfortunately, one single ultrasound examination cannot in itself identify the 

possibly early IUGR fetuses, irrespective of prediction model. A measurement, for 

instance a BPD of 45 mm, taken at the ultrasound examination is seen in relation to a 

dating chart and results in a prediction of a corresponding due date without paying 

attention to the LMP or other factors. Of course, an IUGR fetus sometimes has 

associated findings, like Doppler abnormalities, reduced amniotic fluid volume and 

asymmetric head/abdominal measurements. However, the conclusion of an IUGR 

diagnosis as opposed to an average-sized fetus of a younger age than expected, 

takes at least two examinations. An awareness of a significant difference between 

reliable LMP-based and ultrasound-based EDD-dates is nevertheless sensible, and 

in such cases further evaluations of fetal growth are essential in order to reduce the 

risk of erroneous dating of fetuses with a deviating growth pattern. All the same, the 

EDD should be changed according to the ultrasound measurements. 

In addition to the benefits of the more accurate ultrasound dating, the ultrasound 

examinations in themselves have values that are considered essential and 

independent elements in modern pregnancy care; the anomaly screening with its 

panorama of results, dilemmas and treatment possibilities, the earlier diagnosis and 

follow-up of multiple pregnancies, the localization of the placenta, and the chances of 

collecting into specialist care mothers with risk factors indicating imminent maternal 

pregnancy complications, preterm labor, drug addiction or other social problems. 
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Drawbacks and disagreements

In a perfect world, a health system offering routine ultrasound examinations to whole 

populations of pregnant women should ensure that that the examinations met certain 

criteria related to standardization regarding the education of the sonographers, and 

the quality of ultrasound equipment and measurement charts. Regular assessments 

of quality should be carried out. Unfortunately, the real world is not perfect.

In Norway, the ultrasound examinations are for the most part performed at hospitals 

by specially trained midwives, who are educated at the National Center for Fetal 

Medicine in Trondheim. In addition, gynecologists and midwives in private practice 

and at hospitals carry out varying shares of the examinations, depending on 

geography and special interests. 

There is no official system of certification for performers of the second-trimester 

scans (Dudley and Chapman 2002, Salomon et al. 2008, Ville 2008), although these 

measurements may influence outcome and in some cases have an impact on 

considerations leading to interventions. This is in contrast to the standardized 

routines and certification system surrounding the 11–13 weeks scan in the Fetal 

Medicine Foundation system (2010b, Nicolaides 2011a), where quality control 

studies in prenatal sonography have long been based on detection rates of fetal 

abnormalities (Snijders et al. 1998); there are no analogues to this within the field of 

pregnancy dating and fetal biometry (Salomon et al. 2006a).

Ultrasound societies such as ISUOG (International Society of Ultrasound in 

Obstetrics and Gynecology) (Salomon et al. 2011), and BMUS (British Medical 

Ultrasound Society) (Loughna et al. 2009) have published practice guidelines for 

assessment of fetal size and dating, where structures recommended to be measured 

and the technique describing how to measure them, are specified. Unfortunately, 

such guidelines have a tendency to be released many years too late to really be 

implemented in common practice, because fulfilling these new standards would 

involve a rejection of the already established, and apparently well-functioning local 

practices. It takes strong evidence to change clinicians' minds.
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Fetal measurement charts

Strict selections versus population-based

Traditional reference charts for ultrasound dating of pregnancies are based on a 

calculation of GA from an estimated LMP, via a regression of gestational age (as a 

dependent variable) on the ultrasound measurements of fetal size (independent 

variable). The estimated LMP is derived by plotting a measurement value from a fetal 

examination on a standardized chart, which indicates the most likely fetal age-for-

size at any given time. The EDD is then determined by adding the assumed 

pregnancy length (in days) to the estimated LMP date. 

The normal range curves are based on menstrual data from selected women. 

Therefore, it is rightly claimed that these charts will never be more accurate than 

were the LMPs of the women in the study group, from whom the charts were 

computed (Campbell et al. 1985, Bergsjø et al. 1990, Hall 1990, Geirsson 1991, 

Hutchon 1998). (Interestingly, even inclusion criteria like ‘intelligent and well 

motivated women’ have been mentioned as selection criteria (Robinson 1973).) For 

most of the traditional models, selection was limited to only those women who were 

considered to have less uncertainty and variability related to their LMPs than what 

would be found in an unselected population. It is likely that their LMP data have a 

more narrow distribution around a ‘true’ mean, but nevertheless, the selection 

process in itself is a significant source of error.

In traditional charts for evaluation of fetal growth, it is of course the fetal size that is 

the dependent variable, being regressed on the GA as the independent variable.

The traditional approach to construction of reference charts results in a varying 

predictive quality (Mul et al. 1996, Tunón et al. 1998, Saltvedt et al. 2004), and the 

inherent weaknesses have been explained in various ways. Obviously, the selection 

of healthy, ‘hyper-normal’ women with reliable LMPs and normal pregnancies 

(Gjessing et al. 2007, Salomon et al. 2010) results in study groups that differ greatly 

from the populations of women who are being examined at the typical routine 
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examinations. The issue of representativeness will always be crucial in traditional, 

small prospective studies. 

Another source of error is the assumed pregnancy length that is added to the 

estimated LMP. As a fixed number of days is used in every single pregnancy, a 

systematic bias will appear if this number is not correct for the population concerned 

(Nguyen et al. 1999, Gjessing et al. 2007, Salomon et al. 2010). In addition, the 

traditional models are often based on measurements performed by only one or two 

dedicated sonographers, and many authors consider this an important cause of the 

systematic bias observed with these models (Kurmanavicius et al. 1999, Salomon et 

al. 2006b, Gjessing et al. 2007).

The false impression has been that the fetuses, the mothers, as well as the 

examiners had to be hyper-selected if a reliable dating model was to be constructed; 

for many years, this led researchers to avoid the much greater and unselected 

population-based materials (Gjessing et al. 2007). Attempts to solve the problems 

concerning the ‘never trust-worthy’ LMP information were tried being solved through 

comparisons with IVF pregnancies — thereby establishing IVF pregnancies as the 

gold standard for the timing of events in normal pregnancies (Rossavik and 

Fishburne 1989, Mul et al. 1996, Mongelli et al. 2003, Mongelli et al. 2005). Reports 

in later years have caused concern, showing that assisted fertilization is associated 

with increased risks of adverse outcome (Jackson et al. 2004). Probably, these 

complications can be attributed to the factors leading to the infertility, rather than to 

the IVF in itself (Romundstad et al. 2008). Consequently, it has not been confirmed 

that the IVF pregnancies can reasonably be regarded as representative of normally 

conceived pregnancies when it comes to assessment of dating or growth (Chalouhi 

et al. 2011).

As the sample-based studies exclude women with unreliable LMP data, a self-

contradictory consequence is that the considerable share of pregnant women for 

whom ultrasound dating is the only feasible alternative is excluded. With population-
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based data and direct estimation of date of delivery, independent of GA and LMP 

data, such problems are avoided. In addition, it also provides an estimate of the 

uncertainty of the prediction (Salomon et al. 2010).

Another advantage of population-based term prediction models, is that inductions of 

labor by reason of post-term pregnancy do not have to be excluded from the 

analyses. As these inductions seem to take place at yet earlier GAs, a larger share of 

them are normal pregnancies, which are just not approved waiting for spontaneous 

labor to occur. Using the median, the term predictions are not influenced by the 

inductions taking place at 41 or 42 weeks — and the impact of the left-skewed birth 

distribution curve caused by the spontaneous preterm deliveries are also avoided 

(Gjessing et al. 2007, Salomon et al. 2010). Whether delivery comes about 2 days or 

2 weeks before or after term does not affect the median, however, inductions of labor 

for all other reasons than post-term pregnancy, and all elective Cesarean sections 

must be excluded. The median effectively divides the population of births into two: 

half of them occurring before the actual median date and the other half after. A 

correct’ EDD should of course concur with the actual median date of delivery in the 

population.   

The population-based approach to prediction of EDD (Gjessing et al. 2007), and to 

establishment of other categories of fetal biometry charts (Sahota et al. 2008, Kagan 

et al. 2009, Verburg et al. 2008b, Pexsters et al. 2010) seems to be gradually 

replacing the smaller, conventional studies from earlier decades. Thus, taking 

advantage of huge databases, into which data of adequate quality from unselected 

and representative populations have been continuously collected, is an indisputable 

opportunity.
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The unavoidable problems with the traditional selections

In order to construct a traditional, sample-based pregnancy-dating model, it is 

necessary to recruit selected pregnant women with ‘certain’ LMP dates. In addition, 

there must be fetal measurements from each of the GA weeks in the intended range 

of the study, and in approximately equal numbers from every pregnancy week. To 

ensure a sufficient number of examinations in each week throughout the intended 

prediction range, the women must be given additional examinations outside the 

range of the routine examination. As a result, the selected women and resulting 

examinations are not very representative of the ‘typical’ expectant mother at a routine 

scan; moreover, the prediction model is still LMP-based. This may in part explain the 

biased predictions of the traditional models (Tunón et al. 1998, Salomon et al. 2010, 

Backe and Nakling 2006).  

To rectify this problem, a population-based model was developed (Gjessing et al. 

2007), predicting date of delivery directly. The population data will reflect the local 
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Figure 16.  Figure by H. K. Gjessing, illustrating the inherent difference in the distribution of 
the included examinations between the population-based model, with examinations 
concentrated around central weeks, versus the traditional models with a flat sample 
distribution.
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referral practice and the distribution of the scheduled examinations; with a routine 

second-trimester examination practice, the majority of the included examinations will 

be measurements from pregnancy week 17–19, as shown in Figure 16.  

The crucial point is that the traditional models were developed on samples with 

distributions that are different from the populations they are applied to. This causes 

suboptimal performance. The distribution of the population-based model has a strong 

concentration of examinations around the central weeks 17–19, similar to the 

population it is applied to (Figure 16). There are a considerable number of fetuses 

that are SGA and large for gestational age (LGA) in this central group, and their 

measurement values spill over to lower and higher values with fewer observations 

and pull their median remaining time of pregnancy toward the median for 17–19 

weeks. Hence, these medians constitute the optimal predictions, paying balanced 

attention to the average for gestational age (AGA) fetuses and to the spillover of the 

SGA and LGA fetuses. Being ‘trained’ on a population distribution, the models will 

operate in this fashion and produce predictions that are optimal for the population. 

In contrast, the sample-based models were developed on data with a flat distribution 

(Figure 16), effectively paying attention to only the AGA fetus. The significant number 

of SGA and LGA fetuses from more central dates are erroneously interpreted as too 

young or too old AGA fetuses, thus producing prediction biases when applied to 

unselected populations. The effect will be more pronounced the farther away from the 

central weeks the fetus is examined. In other words, the prediction bias for the 

sample-based models tends to vary with the fetal size at examination (Figure 11 and 

12) (Tunón et al. 1998, Backe and Nakling 2006), while the population-based models 

are aimed at the actual population and avoid these biases (Figure 14). 

To ensure lasting optimal predictions, the methods must be re-calibrated when the 

examination practice and the population distribution change, and future models are 

not likely to survive unadjusted for 20 years, as did the Trondheim–1984-model.
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Fetal biometry

The roles of different measurements

With improved ultrasound machines, fetal structures and organs can be measured at 

earlier fetal ages, and there is at least one normality curve for every structure 

(Snijders and Nicolaides 1994, Degani 2001). In first-trimester examinations, the 

crown-rump length (CRL) is measured and used as the most reliable dating 

parameter. In addition, the nuchal translucency and other structures may be 

assessed to evaluate risk of anomalies and chromosomal aberrations. At any GA, a 

suspected anomaly will trigger the initiation of a more detailed biometric measuring.

In assessment of fetal age during the second-trimester, the preferred measurements 

and the measurement techniques vary between and within countries, for the most 

part depending on the preferences of the ultrasound pioneers and on the interests 

and wishes of the ultrasound environments to achieve standardized fetal age charts. 

Nevertheless, measurements of the fetal skull (either BPD, or different variants of 

head circumference (HC)) are basically included, as are measurements of the femur 

(the FL) — and of the fetal trunk (diameters or circumference of abdomen).

Many investigators have studied the ratio between two different fetal measurements 

to determine whether a ratio may provide more reliable information about fetal age 

and growth than the two parameters by themselves (Gottlieb and Galan 2008). There 

are normality curves for such ratios as well. For example, if growth assessment is the 

issue, the abdominal circumference (AC) is the denominator (Campbell and Thoms 

1977), whereas FL often is included in ratios concerning age (Mul et al. 1996) or in 

the diagnosis of anomalies. More recently, it has been proposed that the ratio 

between the transverse cerebellar diameter and the AC is better in identifying IUGR 

than are the other ratios, but the sensitivity remains low (Gottlieb and Galan 2008). 

A ratio’s potential place is in the assessment of fetal growth — not in pregnancy 

dating. A ratio may identify asymmetric growth deviations, but of course, the ratio will 

be normal in a fetus with symmetric IUGR (Degani 2001).
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Attempts have been made to increase the accuracy of EDD predictions by combining 

different fetal measurements in the same regression formula. Hadlock et al. (1984) 

analyzed a number of combinations of 4 measurements and found many of the 

combinations to be better than using a single parameter (BPD) alone. Ott (1985) also 

combined the 4 parameters BPD, HC, AC and FL, and indicated that the simple 

arithmetic average of the GA predicted by each of them resulted in the lowest 

systematic and random error. Chervenak et al. (1998) found HC to be the best 

parameter, and the predictions were marginally improved by adding AC and FL into 

the equation. More recent studies have not demonstrated the same convincing effect 

of combined formulae (Taipale and Hiilesmaa 2001, Salomon et al. 2010), and with 

larger study populations such combinations have become somewhat pointless 

(Salomon et al. 2006b, Verburg et al. 2008b)   

Various approaches have been tried to evaluate fetal growth in the last half of the 

pregnancy. One method of evaluation is to repeat the measurements taken at the 

dating examination and, if indicated, to include additional measurements or ratios. 

Another method to evaluate growth is by using three-dimensional ultrasound to 

measure the volume of, for instance, the fetal thigh.

Crown-rump length — CRL

Robinson (1973) was the first to demonstrate that ultrasound measurements of first-

trimester fetuses were achievable, and 2 years later a CRL dating curve was 

published (Robinson and Fleming 1975). This curve has been widely used ever 

since, despite some inherent weaknesses. The selection criteria were strict and, 

obviously, the ultrasound machines were relatively old. The publishing of a ‘critical 

evaluation’ with both the observed CRL values, values derived from regression 

analysis, and a curve with CRL values after correction for the systematic errors have 

given rise to a certain confusion among clinicians. Interestingly, the existence of two 

different CRL curves by Robinson and Fleming is not well known (Koster et al. 2008), 

and hence they are being mixed up, making the measurements incomparable. 
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Among the systematic errors that were discussed in the second paper, the effect of 

the beam width in overestimating the CRL measurements was particularly pointed 

out (Robinson and Fleming 1975, Jago et al. 1994).

A recent CRL curve published by Verburg et al. (2008b), based on 2079 CRL 

measurements, gives consistently smaller CRL values than do the conventional 

curves. Pexsters et al. (2010), with 4387 ultrasound examinations, also observed this 

CRL shortening, particularly in the lower GAs. These findings indicate a significant 

underestimation of GA of up to 4 days according to Verburg et al., if pregnancies are 

dated with the old curves before 11 weeks' gestation.

The CRL is measured as the greatest length of the embryo, in a straight line from the 

cranial to the caudal end of the embryonic body, and in a midline sagittal section of 

the whole embryo, as shown in Figure 17. CRL may be measured either trans-

vaginally or trans-abdominally, and the fetus should typically be horizontal on the 

screen so that the CRL is 

measured in the lateral 

direction with the CRL line 

in a right angle to the 

ultrasound beam (Loughna 

et al. 2009). The CRL has 

been established as the 

gold standard 

measurement for fetal age 

assessment in the first 

trimester (Pexsters et al. 

2010, Degani 2001, Chalouhi et al. 2011). The 95% confidence interval (CI) of the 

assessed fetal age is reported to be in the range of only ± 2–3 days before 11 weeks 

(Degani 2001), while others indicate a wider range with a median error of around ± 6 

days (Salomon et al. 2010). With increasing fetal age, both flexion and fetal body 

movements increase, resulting in potential under- or overestimation of GA. 
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Figure 17.  Measurement of crown-rump length — CRL
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The prenatal risk assessment of a first-trimester examination is based on an accurate 

GA derived from a precise CRL measurement (Snijders et al. 1998, Nicolaides 

2011a). As a variation in the range of 1–2 days of GA can alter a Down's screening 

result significantly, it is essential that sonographers and laboratories use the same, 

standardized dating formula (Loughna et al. 2009).

Biparietal diameter — BPD

The potential relation between GA and BPD was described in 1969 (Campbell 1969). 

Later, the number of studies associated with this single and simple fetal ultrasound 

measurement have been countless, and it is undoubtedly the most frequently 

ultrasound-measured fetal parameter.

The BPD is measured in the axial direction, with the ultrasound beam perpendicular 

to the echoes from the midline brain structures (Figure 18), across the widest part of 

the skull. Therefore, improvements in ultrasound scanner technology and 

measurement variations over time influence the BPD to a lesser degree than 

structures measured in lateral or 

oblique directions and (Jago et 

al. 1994). The standard 

measurement plane for BPD is 

still the one described by 

Campbell and Thoms (1977), 

except for what they reported as 

‘echoes from the third ventricle’, 

which were later identified as 

being the cavum septi pellucidi 

(Hadlock et al. 1982a).

Both the intra- and inter-

observer measurement variation is low; <1 mm (Geirsson 1991), and its geometric 

features and accuracy makes the BPD measurement easy to obtain, even for rather 
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Figure 18.  The correct anatomical plane for 
measuring the biparietal diameter — BPD



unexperienced health workers (Rijken et al. 2009).  The prediction error of the BPD is 

described as being around ± 5–7 days, if measured before 20 weeks' gestation 

(Degani 2001, Taipale and Hiilesmaa 2001, Salomon et al. 2010). In fact, a BPD-

based prediction in the second-trimester is as accurate as a CRL-based prediction in 

the first trimester (Taipale and Hiilesmaa 2001, Verburg et al. 2008b), and recent 

studies even show predictive capacity for BPDs 15–30 mm on a par with CRL in late 

first-trimester (Salomon et al. 2010, Chalouhi et al. 2011). According to Verburg et al. 

(2008b) the dating of pregnancies could be optimized by using CRL from 20 to 65 

mm and BPD from 23 mm onwards. After week 24, ultrasound imaging is not found 

to give better estimates than the LMP (Verburg et al. 2008b).

A well-known drawback of the BPD measurement is that it may be influenced by an 

unusual fetal head shape — a ‘problem‘ detected more often in the third than in the 

second trimester, and therefore having more consequences for growth assessment 

than for dating. The fetal head is usually ovoid in the transaxial view. Brachycephaly 

means a more rounded head shape, while dolichocephaly is an elongated one. If 

indicated, the head shape can be objectively assessed by obtaining the occipito-

frontal diameter (OFD), representing the long axis, in order to compute the cephalic 

index (short axis (BPD) / long axis (OFD) x 100) (Hadlock et al. 1981). Normal range 

is said to be within ± 1 standard deviation; 74–83 (Degani 2001, Hadlock et al. 1981). 

The long axis might be used to calculate a ‘corrected’ BPD (Kurtz and Goldberg 

1988), but if the normality of one dating parameter is doubted, another should be 

chosen (Degani 2001, Kurtz and Goldberg 1988), and the FL then seems to be a 

reliable alternative (Geirsson 1991, Gjessing et al. 2007).

An additional remaining issue in an international standardization of the BPD 

measurements, is where to place the callipers. When the diameter is measured from 

the outer to the outer contour of the parietal bones, with sound velocity being set at 

1540 meter/second (m/s), the actual measurement reflects the true diameter of the 

fetal head. The outer to inner BPD measurements (leading edge to leading edge) is 

an inherited tradition from the A-scan time era, when the sound velocity was set at 
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1600 m/s and the leading edge to leading edge measurement reflected the true 

diameter. Today, all scanners have an internationally standardized sound velocity of 

1540 m/s, and the outer–outer measurement (true diameter) is 3–4 mm larger than 

the outer–inner. The confusion is increased by the fact that most of the countries that 

practice outer–inner measurements of isolated BPD measurements, use outer-outer 

when the BPD is included in a HC measurement (Loughna et al. 2009). In pregnancy 

dating, the same technique as that used to establish the measurement charts should 

of course be used (Salomon et al. 2011).

Head circumference — HC

In Norway, the HC was not used as a fetal measurement until the Bergen–2004 

model included a curve with this parameter. There have been discussions on what 

this measurement really adds to the accuracy of the assessment of fetal age and 

growth if the fetal head shape is normal (Gjessing and Grøttum 2007). The HC may 

be computed from a BPD and an OFD measurement, or by using ultrasound 

equipment with an ellipse measurement capacity. The mathematical problem is that 

the HC does not represent the circumference of a true ellipse, as the fetal head is 

rounded posteriorly — and its shape will never be similar to a ‘rugby football shape’, 

which has been described as giving a correct HC measurement image (Loughna et 

al. 2009). The ideal measurement plane is the same as the BPD plane shown in 

Figure 18 (Campbell and Thoms 1977). As with the BPD measurements, there is no 

international agreement on where to place the callipers to measure the HC (Salomon 

et al. 2011), nor on the formula for an elliptical circumference. The equation is BPD 

plus OFD multiplied with a factor of π/2 (1.57) according to the BMUS (Loughna et al. 

2009), or 1.62 according to the ISUOG guidelines (Salomon et al. 2011). This is an 

adaptation to the mean — not the mathematical formula for elliptical circumference. 

The section through the planum biparietale where we derive the BPD, OFD as well 

as make our HC measurement, does not have an elliptical shape. If the fetal head is 

deformed as a consequence of, for example, breech position or a certain pressure 
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imposed on the fetal head by the uterus, the shortening of the BPD is not necessarily 

compensated by a corresponding elongation of the OFD. The way we traditionally 

measure the HC certainly does not make it independent of the head shape.

HC should not be used until late in the first-trimester. Recent studies end up with 

equal conclusions (Verburg et al. 2008a, Chalouhi et al. 2011): In first-trimester 

dating the CRL is the best predictor, followed by the BPD. In second-trimester dating, 

the BPD seems to remain the measurement of choice (Saltvedt et al. 2004), also in 

newer dating models (Verburg et al. 2008b, Gjessing et al. 2007), and there are 

probably no systematic differences in EDD predictions from BPD or HC with 

examinations up to week 20. The important issue in the first half of the pregnancy is 

the reliability of the prediction method and the knowhow of the sonographer. Older 

studies comparing HC and BPD in the predictive capacity of assessing GA were 

chiefly carried out in the 1980s and compared third-trimester fetal age prediction 

(Kurtz and Goldberg 1988, Hadlock et al. 1982b). Dating examinations in the third-

trimester are obsolete and unnecessary when the more reliable first- or second-

trimester dating is performed as a routine, but HC measurements are often included 

in fetal growth formulae for use in third-trimester.

Effectively, the HC depends on 2 diameters where the long axis, the OFD, is 

measured in the lateral direction and is thus vulnerable to the inferior lateral 

resolution — and may over time be affected by the beam width factor.

Femur length — FL

The FL has been used for GA assessment since the early 1980s (Hadlock et al. 

1982c), and is considered almost as reliable as the BPD in second-trimester 

pregnancy dating (Geirsson 1991, Gjessing et al. 2007). However, its accuracy 

decreases with increasing GA (Degani 2001). Hadlock et al. found a variability of ± 

9.5 days in GA assessment with examinations between 12 and 23 weeks of 

pregnancy (1982c). As ossification of the femur diaphysis does not become clearly 

visible until a GA of approximately 12 weeks, the FL is not a useful parameter in the 
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first-trimester examinations (Verburg et al. 2008a). During the whole pregnancy, the 

ossification, and hence the FL-measuring, is limited to the femoral diaphysis. 

Therefore, femur diaphysis length (FDL) is perhaps an anatomically more correct 

designation (Deter et al. 1987), even though FL is by far the most used. The really 

correct designation would be ‘ossified femoral diaphysis length’.

The FL is usually measured 

with the femoral diaphysis in 

a longitudinal section, at an 

angle of less then 45° to the 

horizontal plane (Goldstein et 

al. 1987, Salomon et al. 

2011), as shown in Figure 19. 

The BMUS-guidelines 

recommend that the femur be 

imaged as horizontal as 

possible (Loughna et al. 2009). However, this actually increases measurement error, 

due to the poor lateral resolution and the beam width effect (Jago et al. 1994, 

Verburg et al. 2008a). There is reason to believe that the narrowed beam width over 

time has influenced FL measurements measured in the lateral direction, in the same 

way as CRLs that are measured shorter. Newer measurement charts report shorter 

FL measurements than older charts (Longo et al. 2004).

There is agreement that the distal femoral epiphysis should not be included in the 

measurement, but there is varying practice related to whether the measurement 

should be repeated and, if repeated, whether the mean or the longest of 3 

measurements should be recorded. It has been considered correct to generate 3 

independent screen images and use the longest measurement (Hadlock et al. 1982c, 

Kurmanavicius et al. 1999, Rosati et al. 2002), and we have preferred this technique. 

However, newer guidelines state that provided a technically good image, one single 

measurement is adequate (Loughna et al. 2009).
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Figure 19.  Measurement of fetal femur length — FL



The length of other long bones, such as the humerus, is considered less accurate 

than the FL for assessment of dates (Degani 2001). Apart from the dating, FL is also 

an important parameter in the evaluation of suspected skeletal dysplasia or 

aneuploidy (Nyberg 2008). However, the finding of an isolated short femur is 

considered more likely to be related to early fetal growth restriction than to 

aneuploidy. Whether ethnicity influences FL in second-trimester is still not clear, and 

the influence of individual maternal and paternal height may be more important than 

ethnicity (Nyberg 2008). 

Abdominal measurements

Measurements such as mean abdominal diameter (MAD) (the mean of the 

anteroposterior and the transverse abdominal diameter), or abdominal circumference 

(AC) are widely used in fetal growth equations. They are also routinely included in 

pregnancy dating examinations, being an important part of a fetal biometry, but they 

are not in themselves considered to be reliable dating parameters.

The abdominal measurements are measured on a transverse section through the 

fetal abdomen, with the outline of the abdomen as circular as possible. The spine 

and the descending aorta are identified posteriorly, the umbilical vein is in the anterior 

1/3 of the abdomen and the stomach bubble should be visible in the same plane. On 

this cross-sectional image, the transverse and the anteroposterior diameter are 

measured in right angles to each other, from the outer to the outer border of the body 

outline (Eik-Nes et al. 1982b). The AC is measured on the same level, also with the 

callipers on the outer borders (Loughna et al. 2009).

Mathematically, circumference measurements include two diameters that are 

orthogonal to each other, regardless of whether circumference is being calculated 

from these diameters or measured directly with ellipse callipers. Independent of the 

fetal position, such measurements will, in essence, be an approximately equal 

combination of measurements in the axial and lateral direction.
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Standardizing measurement routines on a national level

At the Norwegian consensus conference on obstetric ultrasound in 1986, there was 

an overall agreement that ‘ultrasound examinations in pregnancy must be conducted 

by personnel with specialized competence — preferably gynecologists and 

midwives’ (Backe and Buhaug 1986). In order to educate midwives in sonography, a 

formalized education was established in 1997 at the Norwegian University of Science 

and Technology, physically located at the National Center for Fetal Medicine (NCFM) 

in Trondheim. Until recently, this was the only teaching unit of its kind in Scandinavia, 

and it offers a comprehensive sonographic education in obstetric ultrasound. Newly, 

a similar education has been established in Helsinki, Finland, and a distant learning 

program is presently being developed at the medical university Karolinska Institute, 

Stockholm, Sverige.

The value of experienced sonographers and standardized routines to detect 

congenital anomalies at the second-trimester examination, is reported in several 

articles from the NCFM environment (Tegnander and Eik-Nes 2006, Brantberg et al. 

2007, Offerdal et al. 2008). The advantages of uniform measurement techniques for 

reliable pregnancy dating were shown in one of the studies by Tunón et al. (1998).

The midwives in Trondheim use internationally standardized measurement 

techniques for the measurements of the BPD, FL and MAD. Emphasis is on the 

respective anatomical measurement planes, the setting of the gain on the image and 

where to place the callipers. Such a practice is important to ensure that the 

sonographer students later obtain results at their home institution that are uniform on 

a national level.

Before introducing new measurement routines, a validation ought to be carried out to 

study if the new measurements actually increase the quality of the EDD predictions, 

as compared to the results with the established measurement routines.
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Technical improvements 

Resolution

In two-dimensional ultrasound imaging mode, we scan in a plane that the engineers 

refer to as the azimuth plane (a terminology adapted from radar), generating the 

image orientation that is presented on our screen image. In this scan plane, we may 

measure structures in all directions: axial, lateral or in various oblique directions, as 

shown in Figure 20. In three-dimensional imaging mode, the elevation direction may 

also be used for measurements.

Sonographic resolution is defined as the smallest possible distance between two 

echoes, still enabling us to distinguish them as two separate structures. The 

resolution in the various directions is dominated by differing physical features. An 

ultrasound beam that emerges from our transducer travels in the axial/radial direction 

(most often meaning vertical direction on the screen) into the tissue. This axial 

resolution is determined by the frequency and bandwidth of the transducer, implying 

that higher frequencies and shorter pulses give the best axial resolution, but only in 

the near field. There must be at least one pulse length between 2 echoes in the axial 
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Figure 20.  Measurement directions with 
two- and three-dimensional ultrasound.

The white arrows illustrate the various 
directions for measurements in the 
azimuth plane; axial, lateral or oblique.



direction to see them as separate. Deeper-penetrating low frequencies improve 

imaging in a larger field, but have less axial resolution (DuBose and Hill 1996). 

The axial resolution is superior to the lateral resolution. The lateral resolution is 

determined mainly by the beam width of the ultrasound system, and the wider the 

beam, the wider a single echo appears to be (Figure 21). There has to be at least 

one beam width between 2 echoes to see them as separate. (DuBose and Hill 1996).

The fundamental understanding of how axial and lateral resolution affect fetal 

measurements is extremely important, nevertheless, often neglected by clinicians. 

Structures measured in the axial direction (BPD) have the least measurement error, 

while measurements taken transversely to the beam, in directions influenced by the 

lateral resolution, have greater errors (FL, CRL, OFD), and the lateral demarcation of 

them often appear somewhat blurred. 

These fuzzy echoes make the art of measuring in the lateral direction a rather 

subjective exercise; the cursors must be placed at the edge of the most definite echo 

observed and should not include the beam-width artifact — which in fact, is exactly 

what causes the blurred lateral demarcations shown in Figure 21 b (DuBose and Hill 

1996). Therefore, particularly with the old ultrasound machines having wider beam 

widths, there was always greater inter-observer variation with measurements taken in
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Figure 21.  Ultrasound image of 
an infinitely small point also 
referred to as the point-spread 
function (PSF) of the ultrasound 
imaging system. 

(a) The point placed in a 
diagram 

(b) Simulated ultrasound screen 
image of the single point. 
The 25 dB width of the PSF 
is indicated.

a)

b)



the lateral resolution than in the axial resolution. As a consequence, the BPD early 

became the measurement of choice for reliable second-trimester ultrasound dating of 

pregnancies. In three-dimensional ultrasound mode, both measurements in the 

lateral and in the elevation direction will be taken transverse to the axial beam 

direction and will to equal extents be influenced by the beam-width artifact.

Beam-width narrowing 

A reduced beam width has been essential in the development of modern ultrasound 

machines and has resulted in improved image resolution and better measurement 

quality. Echoes that originate from the full width of an ultrasound beam are displayed 

along the centerline of the beam, whether they in reality are located close to it or 

further (up to half a beam width) away; consequently, up to one beam width may be 

added to measurements taken in the lateral resolution (Figure 22).
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Figure 22.  Echoes that are ‘picked up’ by an ultrasound beam are displayed along the 
imaginary beam centerline on our screen image.

(a)  Ultrasound beam captured with acoustic camera

(b)  Ultrasound beam with centerline

(c) Expanded dotted area from b), with centerline and 4 structures (round dots)

(d) Screen image of c) with 3 of the 4 structures picked up by the beam and displayed 
along the centerline 

a) b) c) d)



As shown with the small point in Figure 21, the echoes from fetal structures will also 

be extended laterally, thus influencing measurements in the lateral direction. For 

example, with a nearly horizontally measured femur, the echoes from each femoral 

end are ‘picked up’ by beams whose centerline is outside the actual ends. The lateral 

extension effect may amount to 0.5 beam width at each end — one beam width in 

total — in excess of the true measurement. This beam-width problem was given 

particular focus by Robinson and Fleming (1975), when they discussed errors in their 

CRL-curves, and it was raised again by Jago et al. (1994), in a study demonstrating 

that FL was measured significantly longer when measured with an old scanner than 

with a new one. They discussed how the beam-width narrowing over time might 

affect measurements in the lateral direction. In more recent years, several authors 

have mentioned that their new measurement charts included significantly shorter FL 

and CRL measurements than older curves (Verburg et al. 2008a, Verburg et al. 

2008b, Pexsters et al. 2010, Longo et al. 2004), but these observations have 

commonly been attributed to improved ultrasound machines in general, or to different 

population characteristics, other measurement techniques, or unreliable GAs. 

In assessment of fetal age and growth, as well as in anomaly scanning, unbiased 

fetal measurements are essential. Older dating curves (Robinson and Fleming 1975, 

Hadlock et al. 1982a, Hadlock et al. 1984) are still widely used (Saltvedt et al. 2004, 

Koster et al. 2008). Using an old measurement chart with a modern ultrasound 

machine may cause systematic errors in estimations (Jago et al. 1994); 

measurements will be found to be ‘too short’ and GA will be underestimated (EDD set 

too late). As discussed previously, such dating errors may have consequences for 

clinical management and risk assessment.
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Aims of the thesis

Correct fetal age assessment is an important part of modern pregnancy care. 

Ultrasound-based dating from fetal measurements is now the method of choice for 

reliable estimations of date of delivery. However, the prediction models are shown to 

vary in predictive quality. While traditional ultrasound-based dating models have been 

sample-based and the sampled women have been strictly selected, large databases 

and modern technology have introduced the option of using data from unselected 

populations as a basis for term prediction.

Moreover, there have been tremendous improvements in ultrasound technology over 

the last decades. The advances in digital hardware have enabled narrower 

ultrasound beams, which improves lateral resolution and image quality. Earlier 

measurement charts were computed from fetal measurements done with ultrasound 

scanners which are now outdated. One may question if measurements have been 

influenced by the technical improvements over time and whether the old charts are 

still reliable.

The aims of the studies were:

Study 1:

To evaluate three sample-based models for prediction of date of delivery on data 

from the large population-based registry in Trondheim, Norway. We evaluated the 

predictions from two Norwegian models on 41 343 ultrasound examinations and 

compared with an established German model (Økland et al. 2010).

Study 2:

To validate a new population-based term prediction model and compare the 

predictions from this model with predictions of date of delivery from the two traditional  

Norwegian regression models, using data from a clinical database with 9046 routine 

ultrasound examinations in Stavanger, Norway (Økland et al. 2011b).
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Study 3:

To confirm the results from the two previous studies of term prediction models in a 

third population of 23 020 ultrasound examinations performed in Oppland County, 

Norway. If the previously observed bias could be reproduced, an additional aim was 

to explore why such a bias occurs with sample-based prediction models (Økland et 

al. 2011c).

Study 4:

To assess the significance of narrowing beam width over time, by exploring potential 

changes in ultrasound measurements taken in the lateral direction, consequently 

being potentially influenced by improved lateral resolution. Moreover, to compare 

beam-width measurements in old and new ultrasound machines to evaluate the 

extent of the reduced beam-width in modern ultrasound scanners (Økland et al. 

2011a).
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Subjects and methods
Subjects

Studies 1 and 4:

The data for these two studies originated from second-trimester routine fetal 

ultrasound examinations at the National Center for Fetal Medicine, at St Olavs 

University Hospital in Trondheim, Norway. As the included women also subsequently 

delivered at this hospital, complete information about the date of the ultrasound scan 

and the date of delivery were available. The population was non-selected, coming 

from a geographically well-defined area. Data were prospectively collected over the 

period 1987–2005, and more than 30 experienced and formally trained midwives 

performed the examinations.

Complicated pregnancies related to stillbirths (n = 478), diagnosed anomalies (n = 

1935), multiple pregnancies (n = 696) and induction of labor for reasons other than 

post-term pregnancy (n = 4944) were excluded. There were 772 inductions of labor 

due to post-maturity, and these were not excluded.

In Study 1, we included examinations in which the fetal BPD was measured in the 

range 25–60 mm or the FL was in the range 11–42 mm. Thus, 41 343 examinations 

in 36 982 pregnancies were analyzed.

In Study 4, data from a total of 41 941 examinations in 38 725 pregnancies were 

included, each with a BPD in the range 35–55 mm, an MAD in the range 32–53 mm, 

or a GA in the range 113–152 days (corresponding to 16 + 1 to 21 + 5 weeks) at the 

time of the ultrasound examination. To assess the beam-width narrowing and its 

impact on measurements in the lateral plane, the data on the FL values from the 

ultrasound examinations were selected for evaluation. The study material was 

divided into three approximately equal time-periods; 1987–92 (n = 13 354), 1993–98 

(n = 13503) and 1999–2005 (n = 15 084). 
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Study 2:

The women included in this study had their routine fetal ultrasound examination and 

subsequent delivery at Stavanger University Hospital, Norway, between January 

2001 and November 2006. In accordance with the Norwegian practice of routine 

ultrasound examinations, the scan was scheduled to take place between 17 and 20 

completed weeks according to the LMP and/or an early clinical examination. We 

included all women with singleton pregnancies, whose fetus had a BPD in the range 

of 38-60 mm at the routine scan, and who gave birth to a live born child without 

anomalies after 23 completed weeks. 

A total of 10 193 women were initially included. Of these, 1147 were excluded: 704 

were excluded because of induction of labor for reasons other than post-term 

pregnancy, 442 had an elective Cesarean section prior to the start of labor, and one 

had missing information, leaving 9046 women in the study for analysis. Women 

induced for post-term pregnancy (n = 301) were not excluded.

Study 3:

The data in this study were collected over a period of 22 years, from 1988 to 2009. 

They comprise fetal ultrasound examinations performed in Oppland County, Norway, 

mostly from the two maternity wards in the county, at the Gjøvik and Lillehammer 

hospitals.

Pregnancies with a fetal BPD in the range of 38–60 mm or an FL in the range of 21–

42 mm at the routine ultrasound examination were included. Multiple pregnancies, 

pregnancies complicated by stillbirth, diagnosed anomalies, induction of labor for 

reasons other than post-term pregnancy, or elective Cesarean sections were not 

included. In total, fetal measurements from 23 020 second-trimester examinations 

were included. Data from women with an available date of LMP (n = 19 131) were 

used to assess the differences between the LMP-estimated GA at the actual time of 

the deliveries and the EDD predicted from the BPD measurements with each model.
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Methods

The evaluated prediction models and the ultrasound measurement technique are 

described in the Introduction of this thesis and in each of the papers. In all of the 

study populations, the Trondheim–1984 model was the dating model used during the 

study period, and all clinical problems were managed according to this model. As this 

model predicted date of delivery later than the other models for all BPD 

measurements, a potential bias in our analyses related to, for example, the post-term 

inductions, is avoided.

Statistical methods

Studies 1, 2 and 3:

The prediction models to be evaluated were applied to measurements from the 

ultrasound examinations and to data from the subsequent deliveries. 

To correct for the narrowed beam width in newer ultrasound scanners, a correction 

for the time period that applies to the FL measurements was included for the newer 

models in Study 1 and 3, where the data collection started in the late 1980s 

(Gjessing et al. 2007). Newer prediction models should not unrestrictedly be applied 

to older data. 

The resulting term predictions were compared with the actual time of delivery, and 

the disagreement was assessed in terms of the median bias for each model, which 

reflects the systematic error of the term predictions. Predicting term too early results 

in a positive bias and an increased rate of apparently post-term pregnancies, while 

predicting the EDD too late compared with the actual delivery date, gives a negative 

bias and an apparent decrease in the rate of post-term pregnancies. In addition to for 

the study population as a whole, the median biases were calculated for subgroups 

with different fetal ages, since a bias that varies with the fetal size at the time of the 

ultrasound examination may be missed if only the overall median bias is computed 

(Gjessing and Grøttum 2007). In Studies 1 and 2, also secondary measures were 
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computed, i.e., the proportion of births within ± 14 days of the EDD, and the rates of 

preterm (≥ 24 days before the EDD) and post-term (≥ 14 days after the EDD) 

deliveries. An altered median bias will affect the rate of deliveries defined as post-

term and the proportion of births within ± 14 days more than it will affect the rate of 

deliveries defined as preterm, due to the left-skewed birth distribution curve. The 

secondary measures are influenced by both bias and precision.

The bias indicates the systematic error of the predictions, i.e., the calibration of the 

model and is of relevance when comparing different models based on the same 

measurement. Consequently, a bias can be removed simply by calibrating the model 

(Gjessing and Grøttum 2007). Precision is the spread of the residual distribution — 

the random variation around the median prediction value — independent of the size 

of the bias. It is important to evaluate precision when assessing the predictive quality 

of different fetal measurements, for instance BPD versus FL or HC. A lack of 

precision is more problematic than a bias, because precision is not improved by 

calibrating the model — one has to improve measurement quality. As an example, 

even predictions made from LMPs can be made unbiased by using the correct 

average pregnancy duration, but this does not mean that LMP is as precise as 

ultrasound in predicting EDD (Gjessing and Grøttum 2007).  

The median is the most robust parameter to consider when evaluating pregnancy 

length and prediction models (Gjessing et al. 2007, Salomon et al. 2010), and in 

addition, it may be pedagogically and convincingly communicated as the day by 

which half of the births have taken place. The alternatives, the mean and the mode, 

are obviously less robust. The mean is too sensitive to the outliers, mostly 

represented by the preterm deliveries that skew all birth distribution curves heavily to 

the left. The earlier a delivery occurs, the more it influences the mean (Gjessing et al. 

2007). One may try to ‘solve’ this problem by excluding preterm deliveries from the 

analyses (Saltvedt et al. 2004, Chalouhi et al. 2011). Such exclusions may reduce 

the mean pregnancy length by many days (Saltvedt et al. 2004, Gjessing et al. 2007). 
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On the other hand, the mode is too insensitive. Only the very normal births, occurring 

within a day or two of the mode day, influence this parameter.

95% CI for the bias values, illustrating the uncertainty of the bias estimations, were 

computed using bootstrapping with 2000 replications. In Study 2, also P-values were 

included, indicating whether the median biases were statistically significantly different 

from zero.  All analyses were produced in the R statistical programming environment 

(2010).

Statistical methods, Study 4:

We carried out beam-width measurements on a tissue-mimicking phantom (Figure 

23) CIRS model 40, measuring at 6 different depths, using the caliper function of the 

scanners. The phantom consists of several reflective strings at different depths, 

enabling measurements of the point-spread function (PSF) of an ultrasound imaging 

system, as seen in Figure 21. The width of the PSF relates directly to the resolution, 

and hence the beam width of the scanner, at a specific depth. Thus, the term ‘beam 

width’ refers to the width of the system’s two-way beam, which is the effective beam 

resulting from the combination of the transmit and the receive focusing. The focus 

was optimized for the imaging range of 3–8 cm.

As in clinical measuring, the beam width was 

defined at the middle grey tone level of the PSF 

image. This level corresponds to the middle of 

the dynamic display range that is the range of 

echo intensities displayed on the screen. A 

simulated example of such a measurement is 

shown in Figure 21, where the referred width 

corresponds to a 25 dB drop in echo intensity 

compared with that of the white level. To enable 

comparison of beam widths across different 
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Figure 23.  A tissue-mimicking 
phantom



machines, the gain and dynamic display range were adjusted to be as similar as 

possible in old and new machines. 

One operator performed all the phantom measurements and was blinded for the 

results during the procedure. The sequence of six measurements (at depths 3, 4, 5, 

6, 7 and 8 cm) was repeated 25 times with each scanner. 

We analyzed the 41 941 FL measurements to evaluate the possible effect of a 

changing beam width over time. First, median FL values were computed for each day 

of GA in each of the three time-periods. Similarly, median FL values were computed 

for each BPD (in mm) and each MAD (in mm) in the three periods. This allowed an 

assessment of whether median FL values vary over time, independent of fetal size 

and age. We thus controlled for potential changes in fetal growth pattern or in the 

time of routine ultrasound examinations. Second, to obtain a summary of the change 

in median FL values over the three time periods, we analyzed the data with a quantile 

regression model, using FL as the dependent variable and time-period as the 

categorical variable. Three separate analyses were done, adjusting for GA, BPD, and 

MAD, respectively. Third, to obtain a more detailed picture of the change in FL over 

time, we did the same quantile regression analyses, replacing the three time-period 

categories with finer categories spanning one year each. Again adjusting linearly for 

GA, BPD, and MAD, we obtained median FL values for each one-year category, 

standardized for GA, BPD, and MAD separately.

To analyze the beam-width measurements from the phantom we used a linear mixed-

effects regression model. We regressed the measured beam width on the 

measurement depth and machine generation. Machine generation was used as a 

covariate with two levels: old and new. Since 25 measurement replications were 

made for each depth on each of the six ultrasound machines, we controlled for 

within-machine dependent measurements by adding machine to the regression 

model as a random effect with six levels. All analyses were produced in the R 

statistical programming environment (2010).
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Results and comments
Study 1

Biases of traditional term prediction models: results from different sample-

based models evaluated on 41 343 ultrasound examinations. 

Ultrasound Obstet Gynecol 2010; 36: 728–734.

Inherent weaknesses in the traditional models' predictions of date of delivery were 

found, with biases that varied over each model's measurement range. The predictive 

quality depended on the fetal size at the time of the ultrasound examination.

Results:

The median biases for the BPD-based predictions varied from -4 to +4 days. There 

were substantial variations in biases; these variations were found both within each 

model, varying with the fetal size, as well as between the models, as shown in Figure 

25 a–b. The disagreement between the two Norwegian models was mostly in the 

range of 3–4 days and always >2 days. The German model developed by Hansmann 

showed a varying bias very similar to Bergen–2004 in the main BPD prediction span.

The overall median biases for the two Norwegian models' BPD-based predictions 

were: Trondheim–1984, -1.43 days; Bergen–2004, 1.52 days.

The FL-based predictions from the Bergen–2004 model were also evaluated. The 

prediction bias showed the same variation as the bias of the BPD-based predictions 

from the same model: increasing bias with increasing fetal size. The within-model 

variation extended to 5 days, dependent only on the fetal size at the examination 

(Figure 25 c). The overall median bias was 2.61 days. 

Comments:

The traditional prediction models that were evaluated in this study were constructed 

from relatively small samples of selected women with anticipated normal pregnancies 

and reliable LMP-data. Such a selected study population differs greatly from the 

women in the population of routine examinations. The observed varying biases seem 
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unavoidable when the models were applied outside the normal time span for routine 

examinations or to women other than those who have been highly selected. For the 

Trondheim—1984 model, the bias following dating prior to pregnancy week 18 were 

known from earlier studies (Tunón et al. 1998, Kiserud and Rasmussen 1999, Backe 

and Nakling 2006). However, it was presumed, and by many clinicians taken for 

granted, that the ‘new’ Bergen–2004 model had escaped the bias problems, even 

though the model had not been satisfactorily evaluated. Our study showed that the 

bias problems were inherent, and indicated that the term predictions from Bergen–

2004 were even more biased than those from Trondheim—1984 (Figure 25 a–c). 

The selection criteria of the sample-based models are of great consequence in 

producing the biases, which are of clinical significance. To determine whether 

population-based prediction models might be more suitable, another population of 

routine examinations needed to be investigated.

Study 2

A new population-based term prediction model vs. two traditional sample-

based models: validation on 9046 ultrasound examinations. 

Ultrasound Obstet Gynecol 2011; 37: 207–213.

The overall biases, as well as the biases for the subgroups, were all smaller with the 

population-based model than with the traditional regression models.

Results:

The two sample-based models, Trondheim–1984 and Bergen–2004, exhibited largely 

the same biases in this study population, as in the population of Study 1. The biases 

had the same direction and were of equivalent size, and they showed the same 

tendency of variation with fetal size both for the BPD-based and the FL-based 

predictions (Figure 25 a–c). The median biases for these models varied between -3.2 

and +4.5 days over the inclusion range for the BPD-based predictions; Trondheim–

1984 generally estimated the date of delivery too late and Bergen–2004 too early 
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(Figure 25 a–b). For the same BPD-value, the difference in the EDD between the two 

models was in the range of 3–4 days. The secondary measures of our evaluation 

were, of course, directly influenced by the bias of each model. 

The population-based model, Trondheim–2007, also was validated and compared 

with the two traditional models. The bias of the BPD-based predictions was stable 

and negligible, essentially within ±1 day (Figure 25 d).

The overall median biases for the models' BPD-based predictions were: Trondheim–

1984, -1.57; Bergen–2004, 1.74; and Trondheim–2007, -0.15 days.

The FL-based predictions from Bergen–2004 were compared with those from 

Trondheim–2007. The bias of the predictions from the traditional model showed the 

same increasing offset with increasing fetal age as was found in Study 1; a bias 

amounting to almost 5 days when EDD was determined from longer FLs (Figure 25 

c). For the population-based model, the FL-based predictions were stable and with a 

minimal bias within ±1 day (Figure 25 e).

The overall median biases for the models' FL-based predictions were: Bergen–2004, 

1.91; and Trondheim–2007, -0.48 days.

Comments:

The finding of reproducible biases in the term predictions from the two traditional 

models in two different populations indicate that certain deficiencies are built into 

these models while they are being constructed. As discussed earlier, the biases are 

probably due to the selection of healthy women with ‘hyper-normal’ pregnancies, the 

primary estimation of an LMP implying only an indirect prediction of an EDD, few 

sonographers performing the measurements, the choice of a fixed and possibly 

incorrect pregnancy length, and most essential, that the traditional models were 

developed on other sample distributions than the ones they are being applied to.

The notably smaller biases following the use of the population-based model have 

several explanations. By estimating the remaining time of pregnancy through a direct 
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regression of time to delivery on fetal size, this model is independent of the LMP. 

Interestingly, since the model is calibrated to the correct median remaining time, 

knowledge of the total length of pregnancy is unnecessary for term prediction, but still 

essential for estimation of gestational age (Gjessing et al. 2010) — the exact opposite 

of the LMP-based models. This model was based on a large population and 

measurements were made by many sonographers. This makes the population-model 

robust against selection bias (Gjessing et al. 2007, Salomon et al. 2010, Hutchon and 

Ahmed 2001). Finally, the large sample sizes make it feasible to use, for instance, 

non-parametric quantile regression, which is more flexible and robust than 

polynomial regressions (Gjessing et al. 2010). 

Post-term induction routines should be based on reliable estimations of date of 

delivery; for a population, a few days of displacement in either direction will under- or 

overestimate the number of true post-terms, resulting in increased risk for post-

mature fetuses not being recognized as such, or iatrogenic, ‘unnecessary’ inductions 

of labor in women who have barely passed EDD. Post-term pregnancies are 

associated with a small, but not negligible increase in risk of mortality, probably after 

41 weeks (Hilder et al. 1998, Heimstad et al. 2006, Wennerholm et al. 2009). 

Therefore, a precise term prediction is an important factor for true age-related risk 

assessment (Norwitz et al. 2007). 

The incidence of post-term deliveries (≥294 days of gestation) varies in different 

studies, but is generally below 4–6% when EDD is calculated with ultrasound (Taipale 

and Hiilesmaa 2001, Wennerholm et al. 2009, Lynch and Zhang 2007, Mandruzzato 

et al. 2010). The gradually adopted policy of earlier post-term inductions (Gülmezoglu 

et al. 2009, Norwitz 2011) implies a two- to threefold increase in induction rates, 

depending on the chosen cut-off. The clinical problems associated with monitoring 

and/or inducing labor in false positive post-term pregnant women due to inadequate 

predictions, put an extra strain on delivery units (Wennerholm et al. 2009), 

independent of the discussions on when to induce in post-term pregnancy. 
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Study 3

Advantages of the population-based approach to pregnancy dating 

demonstrated with results from 23 020 ultrasound examinations 

Ultrasound Obstet Gynecol 2011. DOI: 10.1002/uog.10081.

The study confirmed the findings of negligible biases in the EDD predictions from the 

population-based model, while those from the traditional models varied substantially. 

The biases seem inevitable with the sample-based models, and a simple calibration 

of the models does not remove the bias problems.

Results:

For the traditional models, once again, the biases varied within and between the 

models and they were also of equal size and direction to what were found in Study 1 

and 2. The median biases for these models varied between -4.2 and +4.8 days over 

the inclusion range for the BPD-based predictions; Trondheim–1984 generally 

estimated the date of delivery too late and Bergen–2004 too early (Figure 25 a–b). 

The population-based model predicted EDD within ±1 day from the actual date of 

delivery also in this population (Figure 25 d).

The overall median biases for the models' BPD-based predictions were: Trondheim–

1984, -0.87; Bergen–2004, 2.22; and Trondheim–2007, 0.40 days.

The FL-based predictions from Bergen–2004 were compared with those from 

Trondheim–2007. The biases of the predictions from the traditional model showed an 

equally increasing offset with increasing fetal age as was found in Studies 1 and 2, 

and a bias of 4.5 days when fetal age was settled from longer FLs (Figure 25 c). For 

the population-based model, the FL-based predictions were stable and with a 

minimal bias within ±1 day (Figure 25 e).

The overall median biases for the models' FL-based predictions were: Bergen–2004, 

1.72; and Trondheim–2007, -0.40 days.
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We found a consistently lower discrepancy between the EDD predictions from the 

population-based model and the LMP-based GAs at the actual time of the delivery, 

than between the traditional models' EDD predictions and the LMP-based GAs, as 

shown in Figure 24.

Table 1 shows the percentage of ongoing pregnancies at 4, 7, 11 and 14 days past 

the EDD predicted by each model. Depending on the prediction model, there is a 

considerable difference in the percentage of pregnancies classified as post-term.
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Figure 24.  The differences between the GA at delivery as estimated from the last 
menstrual period, and the date of delivery as predicted from BPD measurements with the 
three ultrasound models (Trondheim–1984 (dashed line), Bergen–2004 (dotted line) and 
Trondheim–2007 (solid line)). The median difference is marked with vertical lines.

��������������!�����	
������
��
���������"����#"�

�
��

"�
�#

��� ��� ��� �� � � �� �� ��

����

����

����

����

����

����



Comments:

The findings of quite similar, but problematic biases for the traditional models when 

evaluated on two different populations, and the apparent finding that the population-

based model avoided these biases when validated on the Stavanger population, 

encouraged a study to verify that our results were reproducible. This third study of 

the term prediction models was on a population from Oppland County, Norway, 

where there were slightly different routines and other sonographers. 

Study 3, together with the two previous studies, comprises a total of 73 400 

examinations in three different populations. The studies demonstrate that both 

sample-based models give systematically biased EDD-predictions, as shown in 

Figure 25 a–c, while the population-based model does not (Figure 25 d–e).

The basic importance of accurate EDD-predictions in pregnancy care is obvious. The 

exact knowledge of the GA has an impact on the timing and follow-up of first- and 

second-trimester examinations and invasive procedures, and on the management of 

a pregnancy if complications such as IUGR, preterm labor and post-term pregnancy 

arise (Loughna et al. 2009, Dias et al. 2011). For the extreme pre-term and post-term 
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BPD-bbased predictionns (%) FL-based preddictions (%)
Days past 

EDD
Trondheim–

1984
Bergen–2004 Trondheim–

2007
Bergen–2004 Trondheim–

2007
–

4 31 44 37 42 33

7 20 31 24 28 21

11 9 17 12 15 10

14 4 9 6 8 4

Table 1.  The percentage of still ongoing pregnancies at 4, 7, 11 and 14 days past 
the date of delivery predicted by each model.



fetuses, a displacement of the EDD in the range of 2 days may have implications for 

management and survival (Gottlieb and Galan 2008, Pexsters et al. 2010).

Comparing the overall median biases of the BPD-based predictions and the BPD 

bias-curves in Figure 25 a–b for the traditional models, one may wonder why the 

Trondheim–1984 model has smaller overall median biases than Bergen–2004 in all 3 

populations, since both models undoubtedly have fetal size-dependent biases. The 

difference in median biases are particularly obvious in Study 3: -0.87 for Trondheim–

1984, vs 2.22 days for Bergen–2004. This illustrates the importance of considering 

the biases for different subgroups, not only the overall bias. Moreover, the bias of 

Trondheim–1984, when used early in the second trimester, has been known for a 

long time (Tunón et al. 1998, Kiserud and Rasmussen 1999, Backe and Nakling 

2006), and hence the routine examinations have been scheduled to avoid pregnancy 

dating until around week 18.

An essential problem is that the traditional models were developed on samples with 

distributions different from the populations they are applied to. The population-based 

model was constructed from observations of the actual date of delivery, in order to 

predict the remaining time of pregnancy and EDD from first- or second-trimester fetal 

measurements (Gjessing et al. 2007, Salomon et al. 2010). However, modern 

pregnancy care requires a precise EDD in the late stages of pregnancy, and 

knowledge of GA in the early stages. The traditional sample-based models were 

devised to estimate an LMP, to obtain the GA, from second-trimester fetal 

measurements and derive the EDD-prediction from this (Hutchon and Ahmed 2001, 

Gjessing et al. 2007) The population-based model estimates the GA as 283 days 

minus the predicted remaining time of pregnancy. In the reference population 

(Gjessing et al. 2007, Tunón et al. 1996), 283 days is the median time from LMP to 

birth. Since the traditional models are based on estimating the LMP, one might 

assume that these methods would provide EDDs and GAs that correspond more 

closely to those computed from the LMP. Interestingly, this is not the case (Figure 

24). The EDD predictions from the population-based method correspond more 
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closely to the GA at delivery as computed from the LMPs of women with reliable 

LMP-data; this can be seen from the narrower distribution curve of the discrepancy 

between the LMP- and the ultrasound-based estimates. An overall calibration to 

remove these median differences (the shifts of the curves away from zero) would not 

alter the shape of the curves. In other words, even with a recalibration, the 

population-based predictions would still agree better with the LMP-based predictions.

The better correspondence between ultrasound- and LMP-based estimates has 

immediate clinical consequences. First, it is beneficial for scheduling examinations 

and second, it reduces the pregnant women's concern, which sometimes appears if 

the ultrasound- and LMP-based EDDs differ substantially. Thirdly, it reduces the risk 

of erroneous dating for fetuses with growth velocity below or above the average 

(Verburg et al. 2008b). The new population-based method is thus better adapted to 

the actual target population than are the sample-based methods, and will better 

predict the date of delivery for fetuses with an early, true intrauterine growth 

restriction (IUGR). However, identifying early IUGR fetuses cannot be done from one 

single ultrasound examination, irrespective of prediction model. Any significant 

difference between reliable LMP-based and ultrasound-based EDD-dates indicates a 

need for further evaluations (Verburg et al. 2008b, Tunón et al. 1999b, Nguyen et al. 

2000).

As shown in Table 1, the choice of dating model has a strong impact on post-term 

induction rates, regardless of the number of days past EDD that are defined as the 

recommended time for post-term induction. A bias of 2 days in either direction has 

significant consequences and results in a varying post-term rate between the models. 

Too early prediction of EDD results in a substantial, yet often ignored, increase in 

pregnancies wrongly identified as post-term. A prerequisite for comparison of 

induction routines is unbiased and uniform EDD-predictions with comparable post-

term rates (Zeitlin et al. 2007). As also indicated in the table, the rates of still ongoing 

pregnancies are nearly halved for all the models from day 7 to day 11 after EDD.
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When considering Studies 1, 2 and 3 together, as has been done in Figure 25 a–e, 

there is a convincing correspondence between the results. The median biases for 

each model were calculated from BPD- and FL-based EDD predictions, respectively, 

in each of the 3 different populations and compared in the same figures. For the 

population-based model, an evaluation on the population from Trondheim is also 

included in Figure 25 d and 25 e for comparative purposes (Gjessing et al. 2007), 

although this model was not part of the evaluations in Study 1. The similarity of the 3 

individual BPD/FL bias curves for each of the models illustrates that the total 

population of 73,400 examinations from 3 different locations in Norway were more 

comparable than we first had reason to believe. 
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Figure 25 a. Bias curves from BPD-based predictions with Trondheim–1984

Figure 25.  The median biases for each model, calculated from BPD- and FL-based 
predictions in the study populations from Trondheim (Study 1), Stavanger (Study 2) 
and Oppland County (Study 3)



 �

77

BPD (mm)

B
ia

s 
(d

ay
s)

30 35 40 45 50 55

−5

−4

−3

−2

−1

0

1

2

3

4

5

�
�

�

�

�

�
�

�

�
�

�

�

�

�

��

Trondheim
Stavanger
Oppland county

FEMUR (mm)

B
ia

s 
(d

ay
s)

15 20 25 30 35 40

−5

−4

−3

−2

−1

0

1

2

3

4

5

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

Trondheim
Stavanger
Oppland county

Figure 25 b. Bias curves from BPD-based predictions with Bergen–2004

Figure 25 c. Bias curves from FL-based predictions with Bergen–2004
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Figure 25 e. Bias curves from FL-based predictions with Trondheim–2007



The midwives who performed the ultrasound examinations at the different hospitals 

in the presented studies, have all been trained at the NCFM in Trondheim. It is 

evident that they take their knowledge with them and carry on measuring in the same 

way when their training is finished. The bias curves in Figures 25 a–e show that there 

was practically no difference in the resulting median bias for each of the models, no 

matter where the dating examinations were performed. This is an obvious example of 

the benefits of education and standardization of routines on a national level. 

The fact that Bergen–2004 uses a pregnancy length of 282 days to predict EDD from 

the estimated LMP, while Trondheim–2007 uses a pregnancy length of 283 days to 

estimate the GA, has lead to a misunderstanding that this single day is the only 

difference between the two models, and that adding 1 day to the EDD predictions 

from Bergen–2004 would do away with the bias. The overall median bias of the 

predictions from Bergen–2004 are 1.52, 1.74 and 2.22 days for the BPD-based 

predictions in our 3 populations, and 2.61, 1.91 and 1.72 days for the FL-based. 

Thus, the needed correction factor is closer to 2 than to 1 day. Furthermore, as 

shown in Figure 25 and 26, a systematic adjustment is not sufficient. Provided that 

only the systematic bias resulting from an insufficient calibration of the traditional 

models was the problem, correcting with a constant value (e.g. reconsidering the 

standard pregnancy length) could potentially eliminate the overall bias (Gjessing and 

Grøttum 2007). This would correspond to shifting the bias curves in Figures 25 up or 

down along the y-axis until the median bias is zero. However, the slope of the curves 

would remain. Particularly for Bergen–2004, since both the BPD and the FL curves 

slope upward to the right, a correct overall calibration would result in EDD-predictions 

that are too late for the small fetuses and too early for the large ones. Thus, a simple 

calibration improving the overall bias would have unfortunate consequences.
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A tentative calibration trial of a biased prediction model is schematically illustrated in 

Figure 26 a-c. The fetal size-dependent biases and the sloping bias curves cannot be 

corrected with a single constant value, as illustrated in Figure 26 a. A calibration that 

only incorporates a parallel displacement of the sloping curves upwards or 

downwards, as shown in Figure 26 b, results in the same absolute error, and the 

prediction accuracy will still be deficient over the inclusion range. In fact, the optimal 

and essential calibration is to use population data in an overall calibration, in order to 

remove the biases over the whole range of measurement values, i.e., to apply a 

population-based approach to prediction of EDD (Figure 26 c).
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Figure 26; by H. K. Gjessing.  A schematic illustration of a potential trial of a calibration of a 
biased term prediction model. (a) Bias curve showing offset and a bias that varies with the 
size of the fetus (b) A tryout of calibration improves the overall median bias, but the sloping 
curve results in biases of different size and directions for the EDD predictions from the 
small and big fetuses (c) The essential calibration with the use of population data

Figure 26 a
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Figure 26 b
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Study 4

Narrowed beam width in newer ultrasound machines shortens measurements 

in the lateral direction: fetal measurement charts may be obsolete 

Ultrasound Obstet Gynecol 2011; 38: 82–87.

Technical improvements in modern ultrasound machines that have reduced the beam 

width affect fetal measurements in the lateral direction. 

Results:

Time was a significant covariate. At the same GA, the median FL measurement was 

1.15 mm (95% CI, 1.08–1.23) shorter (P < 0.005) in the third time-period (1999–

2005) than in the first (1987–92). The regressions of the FL measurements on the 

BPD measurements demonstrated that for the same BPD, the median FL 

measurement was also significantly shorter: 0.98 (95% CI, 0.93–1.04) mm (P < 

0.005) shorter in the third time-period than in the first. Regressions of the FL 

measurements on the MAD measurements showed corresponding shifts, but on a 

smaller scale: a minor shortening of 0.59 (95% CI, 0.54–0.63) mm (P < 0.005) from 

the first to the third time period. For all the measurements, there were only small 

differences between the first and the second (1993–98) time period.

Figure 27 shows the estimation of the changes in median FL for each year of the 

study period, adjusted linearly and standardized for GA, BPD and MAD, respectively. 

The figure illustrates the main trend and reflects the periods of major replacement of 

ultrasound machines in the department.

For the beam-width measurements on the phantom, the overall median beam width 

was 1.08 (95% CI, 0.50–1.65) mm (P = 0.006) mm narrower with the new machines 

than with the old machines. For both scanner generations the measurements 

increased significantly with increasing depths. Figure 28 shows the results for each of 

the six machines in box plots.
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Comments:

Over the years, various technical improvements have resulted in narrower ultrasound 

beams. In this study, the principal reason for obtaining a shorter FL measurement in 

the last time-period compared with the first and second time-periods, was probably a 

result of the transition from analog to digital beam formation hardware. In the middle/

late 1990’s, digital processing hardware (such as analog to digital converters, 

application specific integrated circuits (ASICs) and digital signal processors) was 

included in the scanners. This allowed for much more flexible and precise control of 

the beam formation process resulting in narrower beam width throughout the whole 

ultrasound imaging sector. Additionally, an increased system channel number 

enabled larger apertures, generating a narrower beam. The increased processing
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Figure 27.  Changes in median femur length for every one-year period between 1987 and 
2005 adjusted linearly and standardized for gestational age (unbroken line), biparietal 
diameter (broken line), and mean abdominal diameter (dotted line), respectively.
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Figure 28.  Box plots illustrating the results of the beam width measurements for each of 
the six ultrasound machines. The right panel shows the results for the new machines. 
The grey background curves represent the median beam widths at the various 
measurement depths for the new (lower curve) and the old (upper curve) scanners.



power also allowed a high scan line density. Spacing the scan lines too far apart 

decreases the lateral resolution by more than that determined by the beam width 

alone. 

As the echoes from the lateral ends of structures measured in a direction transverse 

to the direction of the beam will be extended further laterally, measurements in the 

lateral direction will be influenced. As shown schematically in Figure 29, with a nearly 

horizontally measured femur, the echoes from each femoral end are ‘picked up’ by 

beams whose centerline is outside the actual ends. Up to one beam width may be 

added to the true FL measurement when the femur is measured horizontally 

orientated — as is in fact the FL measurement technique recommended in both the 

ISUOG and the BMUS guidelines (Salomon et al. 2011, Loughna et al. 2009). For a 

femur at 45° the overestimation is reduced to one beam width multiplied by cosine 

45°; 0.7 beam width in total, that is 0.35 at each end (Jago et al. 1994). Therefore, 

one should aim at a diagonal rather than a horizontal measurement of the FL, in 

order to reduce the negative beam-width effect and the guidelines for the two 

ultrasound societies ought to be changed accordingly.

A potential variation in a certain fetal measurement, for instance FL or BPD for the 

same gestational age, might be regarded as resulting from a possibly altered fetal 

growth pattern over time. On the contrary, the relation between the various 

parameters, e.g. how FL relates to BPD/MAD over time indicates how the fetal 

geometry is being influenced; i.e., how the measurements vary over time, 

independent of fetal size and age.

Fetal measurements are essential for assessing fetal age and growth, and in fetal 

anomaly scanning. The measured parameter is related to a measurement chart that 

is optimized for the purpose of the examination. Curves from the 1980’s and 1990’s 

are still widely used as reference charts (Saltvedt et al. 2004), despite the fact that 

charts from the last decade typically are constructed from significantly shorter FL- 

and CRL-measurements (Pexsters et al. 2010, Longo et al. 2004, Verburg et al. 
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2008b). It is important to be aware of the technical development and the possible 

consequences it may have for ultrasound equipment in clinical use. Systematic 

errors, particularly in the first-trimester assessment of GA, may give dating errors of 

up to half a week (Pretorius et al. 1984, Pexsters et al. 2010, Loughna et al. 2009)

and result in erroneous risk estimations in prenatal screening (Loughna et al. 2009, 

Koster et al. 2008). With the use of a modern scanner and an old dating chart, 

measurements in the lateral direction, such as FL and CRL, will be considered ‘too 

short’ (Jago et al. 1994), fetal age is then underestimated and the predicted date of 

delivery is set too late, which of course may have clinical consequences.  
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Figure 29. Schematic illustration of the narrow beam width (BW) in new machines and of 
the wide BW in old machines, showing how the width of the ultrasound beam influences 
the lateral extension of an object.



Summary and conclusions
Correct fetal age assessment is essential in modern pregnancy care. Ultrasound-

based dating from fetal measurements is the method of choice for reliable 

estimations of date of delivery, and in Norway the dating takes place at the routine 

ultrasound examination around pregnancy weeks 17–19. The fetal BPD and FL have 

traditionally been used for term prediction. However, the models for ultrasound-based 

EDD predictions have been shown to vary in quality. While the traditional ultrasound-

based dating models have been sample-based and the women included in the 

samples have been strictly selected, large databases and modern technology have 

now introduced the option of using data from unselected populations.

There have been great improvements in ultrasound technology over the last 

decades. Narrower ultrasound beams have improved lateral resolution and image 

quality. As old measurement charts were computed from fetal measurements carried 

out on ultrasound scanners of completely different generations, one may question the 

measurements made over time and whether the old charts are still reliable when they  

are used with measurements from modern machines.

The aims of these studies were to evaluate 2 sample-based models for prediction of 

date of delivery (Study 1), and to compare the predictions from these models with 

predictions from a new population-based term prediction model (Studies 2 and 3), on 

data from 3 large Norwegian databases. Study 1 was done with data from 41 343 

routine examinations in Trondheim, Study 2 with 9046 examinations from Stavanger, 

and Study 3 with 23 020 ultrasound examinations performed in Oppland County.

In Study 4 we used the data from routine examinations in Trondheim to assess the 

significance of narrowing beam width over time. We explored potential changes in 

measurements of fetal structures (FL) that were measured in the lateral direction. 

These may be influenced by the improved lateral resolution in newer ultrasound 

machines. Moreover, we compared beam-width measurements in old and new 

scanners to evaluate the extent of the reduced beam width in modern machines.
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In Study 1, we found inherent weaknesses in the traditional models' EDD predictions 

with biases that varied over each model's measurement range. The predictive quality 

of the 2 models was dependent on the fetal size at the time of the examination.

The results in Study 1 were confirmed in Study 2 for the sample-based models' 

predictions of EDD. The overall biases, as well as the biases for the subgroups, were 

all smaller with the new population-based model than with the traditional sample-

based models. The predictions of the population-based model were stable 

throughout the inclusion range, and the median bias was largely within ± 1 day.

Study 3 confirmed the findings of negligible biases in the EDD predictions from the 

population-based model, while those from the traditional models varied substantially. 

For each of these 2 models, the biases were of similar size and direction to those 

found in Studies 1 and 2: One model predicted term too early and the other one too 

late. The biases seem inevitable with the sample-based models, even if tentatively 

calibrated. The EDD predictions from the population-based model were reliable also 

in this population, and hence, the population-based model should be preferred as the 

method of term prediction.

Study 4 showed that the technical improvements in modern ultrasound machines 

have resulted in a narrowed beam width that affects fetal measurements in the lateral 

direction. Consequently, the structures appear shorter. With the use of a modern 

scanner and an old dating chart, measurements in the lateral direction, such as FL 

and CRL, will be considered ‘too short’. This will underestimate fetal age.

Reliable dating is essential for adequate pregnancy care and is a prerequisite for 

assessment of potential fetal growth abnormalities, handling of extremely preterm 

deliveries and in discussions concerning when to induce labour in post-term 

pregnancies. There is need for a standardization to determine which fetal structures 

should be measured and which dating chart should be used. The education of 

sonographers is essential in order to maintain the quality of routine examinations.
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Future aspects

Although ultrasound-based pregnancy dating has been a basic part of the pregnancy 

care for the last decades, there is still a need to inquire whether the prediction 

models in use perform satisfactorily in the populations to which they are applied. 

Precise assessment of GA or estimations of date of delivery are obvious 

prerequisites when calculating the risk of chromosomal aberrations in the first 

trimester or discussing post-term induction guidelines in the third trimester. Between 

these extremities there are a variety of situations in which the date of delivery is 

essential to the management of the pregnancy or of the newborn infant.

An aim of this thesis has been to demonstrate that we should use population data, 

not only in predictions of date of delivery, but in the construction of all kinds of 

normality curves. We have the technology, and a systematic collection of data into 

electronic databases definitely represents the times to come.

These 4 studies are in themselves examples of the importance of a systematic 

collection of data. The enthusiasts who established the databases that were used in 

the studies, were ahead of their time; there are still birth departments in Norway that 

use pen and paper protocols to register ultrasound findings, EDDs and essential data 

surrounding the birth of a baby. 

The advantages of population-based models are their flexibility. They can be 

continuously updated with new data and if desirable, older data may equally easily be 

removed if examination routines, measurement techniques, or other time-dependent 

adaptations bring about reasonable obsoletion of the oldest data. The possibility of a 

constant quality assessment of the predictions, by immediate population evaluation, 

is another advantage.

In the near future, a first-trimester ultrasound examination will probably become a 

part of public health care, also in Norway. So far, this has not been a politically 

correct option, and consequently around half of the women seek such examinations 
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outside the public pregnancy care system. If first-trimester examinations are 

introduced and recommended in national guidelines, the future routine ultrasound 

dating will probably take place around week 12–14 instead of in week 17–19. The 

Norwegian dating models in use by now are aimed at second-trimester dating, but 

the population-based model may easily be expanded with first-trimester data.

Dating of multiple pregnancies is mostly done with dating models primarily 

constructed for singletons. There are often differences in fetal size between the 

fetuses, even as early as in the first trimester in spite of the fact that they are 

conceived simultaneously. It is therefore considered most reliable to date from the 

largest fetus. However, multiple pregnancies have different birth distribution than 

singletons. It is obviously difficult to obtain ‘populations’ of triplets and quadruplets, 

but a reliable dating and growth model for twins is needed.

Quality assessment is basic in all aspects of health care. If we do not evaluate what 

we do and how we do it, we cannot improve our achievements. When it comes to 

pregnancy dating models, other Nordic and European countries still use a variety of 

old prediction models. In fact, many of these models were constructed from 

measurements from fetuses in the same generation as the women who today are 

mothers-to-be — or even soon becoming grandmothers. Few medical facts and 

methods remain unchanged truths over such a long time, and probably several of 

these models have become obsolete. Therefore, there is a need for evaluations of 

predictive capacity in today's populations.

An overall standardization of methods, that is, which parameters to measure, the 

measurement charts, measurement techniques and not least the education of 

sonographers, is needed to maintain prediction quality. Obstetric quality indicators 

and important perinatal outcome measures can thus be compared across regions, 

and on national and international levels. 
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ABSTRACT

Objective To evaluate two Norwegian traditional,
sample-based term prediction models as applied to the
data from a large population-based registry. The two
models were also compared with an established German
model.

Methods Our database included information from
41 343 non-selected ultrasound scans registered over the
years 1987–2005. The prediction models were applied to
measurements from the ultrasound examinations, and the
resulting term predictions were compared with the actual
times of the deliveries. The median bias (the difference
between the true and the predicted date of delivery) was
calculated for each model, both for the study population
as a whole and for subgroups of measurements of bipari-
etal diameter (BPD) and femur length (FL). Secondary
measures, i.e. proportion of births within ± 14 days and
the rates of preterm and post-term deliveries, were also
assessed.

Results The analyses showed that the models had
significant biases, predicting delivery date either too late
or too early. For each model the size of the bias varied,
depending on the fetal size at the time of the examination;
the extremes were minus 4 and plus 4 days for the BPD-
based predictions. There were similar results with the
FL-based predictions.

Conclusion Term predictions made with traditional
sample-based models had significant biases that varied
over each method’s measurement range. These models
have important shortcomings, probably because of strict

selection criteria in the process of constructing the models,
and because the methods primarily aim at estimating the
last menstrual period-based day of conception, not the
day of birth. Copyright © 2010 ISUOG. Published by
John Wiley & Sons, Ltd.

INTRODUCTION

Correct fetal age assessment is an important part of
modern pregnancy care. The monitoring and management
of every pregnancy that does not progress normally
require detailed knowledge of the length of the pregnancy.
To give optimal care to a baby born preterm, the
midwife, obstetrician and pediatrician need to know
the true gestational age1. Closer to term and in
the post-term period an understanding of the risk
estimates for the fetus, related to its predicted term,
is fundamental2. Thus, information about the fetal age
affects management schemes throughout pregnancy, as
well as the organization surrounding the delivery. Also
for social reasons, the knowledge of the expected day of
delivery is important to the pregnant woman.

Ultrasound measurements of selected fetal parameters
for the estimation of gestational age were introduced
around 19703 and are now the method of choice for
dating a pregnancy4–6. However, the traditional sample-
based ultrasound models for predicting date of delivery
have been shown to vary in predictive quality7,8, as
has also been shown for one of the models in this
study9. Conventional dating charts are based mainly
on measurements from a carefully selected population
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of pregnant women, constituting a limited reference
sample. In addition, the models estimate a date of the
last menstrual period (LMP) from the fetal ultrasound
measurements; the subsequent prediction of day of
delivery is done simply by adding approximately 280 days
to the estimated, and therefore ‘artificial’, LMP date10.
The focus on determining the correct date of the LMP
significantly increases the risk of an inaccurate term
prediction. These factors are intrinsic weaknesses in
the design of sample-based models. Consequently, a
reappraisal of the traditional dating models is called for.

The aim of this study was to evaluate three sample-
based models for prediction of date of delivery on data
from the large population-based registry of approximately
40 000 pregnancies at the National Center for Fetal
Medicine (NCFM) in Norway.

SUBJECTS AND METHODS

Subjects

The women included in this study had their fetal ultra-
sound examinations at the NCFM at St Olavs University
Hospital in Trondheim, Norway, and subsequently were
delivered at the hospital. The study population was
non-selected, coming from a geographically well-defined
area consisting of the city of Trondheim and eight sur-
rounding municipalities. Within this population, approx-
imately 97% of the pregnant women were examined
and delivered in Trondheim. Data were collected over the
period 1987–2005 and included a total of 50 533 second-
trimester examinations of 45 343 pregnancies, each with
complete information about the date of the ultrasound
scan and the date of delivery, and with a fetal biparietal
diameter (BPD) in the range 25–60 mm or a femur length
(FL) in the range 11–42 mm at the time of the ultrasound
examination. In accordance with the Norwegian practice
of routine ultrasound examinations, the majority of the
examinations were from pregnancy weeks 17–19.

Complicated pregnancies related to stillbirths (n =
478), diagnosed anomalies (n = 1935), multiple pregnan-
cies (n = 696) and induction of labor for reasons other
than post-term pregnancy (n = 4944) were excluded. As
a conservative measure and irrespective of the result of
the examination, we additionally excluded 1137 scans
performed for various indications that could possibly
be related to abnormal fetal growth, e.g. maternal
concern about the growth of the fetus. Thus, 41 343
examinations in 36 982 pregnancies remained for analy-
sis. Women induced for post-term pregnancy (n = 772)
were not excluded. The median age of the women was
28 years, 44.1% were primiparous and 21.6% reported
daily smoking.

Prediction models

Three different models for predicting date of deliv-
ery – two Norwegian and one German – were evaluated
in this study. All three models were constructed from

limited reference samples, by regressing the LMP-based
gestational age on the measured fetal size. In clinical use,
the date of conception is predicted from the fetal size, and
the estimated date of delivery (EDD) is then predicted by
adding an assumed standard length of pregnancy.

The obstetric wheel ‘Snurra’ (Trondheim–1984)11 was
the only dating method in use in Norway from 1984
until recently. It predicts term from BPD measurements
between 38 and 60 mm only. The model was constructed
from a population of 90 women with anticipated normal
pregnancies, all of them carefully selected regarding
menstrual history. The women were included in a
prospective, longitudinal study, and measurements were
taken from each fetus approximately 10 times. Fourth-
order polynomial regression analysis was used to establish
the curves.

A more recently developed obstetric wheel ‘Termin-
hjulet’ (Bergen–2004)12,13 is based on the same principles
as Trondheim–198414, but uses a newer data sam-
ple and fractional polynomial regression analysis. This
model was constructed from a prospective, cross-sectional
study of 650 healthy women with regular menstrual
periods and singleton, uncomplicated pregnancies. From
Bergen–2004 the date of delivery may be predicted from
BPD (14–60 mm), FL (2–44 mm) or head circumference
(50–134 mm) measurements.

The third model, constructed by Hansmann in 197615

(Hansmann–1976), applied longitudinal data from 1348
selected singleton pregnancies with reliable LMP data
to construct the BPD-based dating model and a term
prediction wheel. Hansmann–1976 used a traditional
regression model.

The BPD prediction tables for Trondheim–1984
and Hansmann–1976 are available from the respective
prediction models11,15. For Bergen–2004, the BPD and
FL tables in the articles show the computed gestational
age, but the accompanying published formulae12,13 are in
error. The correct formulae, which we used in this study,
were:

logGA = 2.507 − 1.333 × (BPD)−1/2 + 0.01393 × BPD

GA = 8.625 + 1.395 × (FL)1/2 + 0.003684 × (FL)2,

where GA is gestational age in weeks. (S. L. Johnsen,
personal communication.)

For both Trondheim–1984 and Bergen–2004 the
predicted date of delivery is found by adding 282 days
to the deduced LMP date, while the Hansmann–1976
model assumes a pregnancy length of 280 days.

Ultrasound examinations

More than 30 experienced and formally trained midwives
performed the fetal ultrasound examinations, and the data
were prospectively registered in an electronic database.

In general, all clinical problems were primarily managed
according to the Trondheim–1984 prediction model;
post-term pregnant women were scheduled for induction

Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2010; 36: 728–734.
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of labor after 13 days past EDD (corresponding to
> 295 days), and induction for clinical problems possibly
related to post-term pregnancy was not acknowledged as
such until 12 days past EDD (≥ 294 days).

The BPD was measured as described by Campbell and
Thoms16, through a horizontal section of the fetal head at
the level of the cavum septi pellucidi, from outer to outer
contours of the parietal bones. The mean of three BPD
measurements was used for the calculation. The FL was
measured with the femoral diaphysis in a longitudinal
section, in accordance with the method described by
Goldstein et al.17 and Hadlock et al.18. The femur was
measured three times and the longest measurement was
used18–20. Both BPD and FL measurements were rounded
to the nearest millimeter.

The Bergen–2004 model used the mean of three
FL measurements rather than adhering to the inter-
national practice of using the longest of three FL
measurements18–20. To address this problem we car-
ried out a separate analysis to explore what impact the
Bergen–2004 measurement technique had on the FL-
based term predictions.

The following ultrasound scanners were used:
Hitachi EUB–410, EUB–415, EUB–6000 and EUB–6500
(Tokyo, Japan), Vingmed System Five (Vingmed Sound,
Horten, Norway) and Logic 500 (GE Healthcare, Milwau-
kee, WI, USA) with curvilinear 3.5–5-MHz transducers.
The sound velocity was calibrated to 1540 m/s.

Statistical methods

The prediction models were applied to measurements
from the ultrasound examinations. The 38 266 mea-
surements with a BPD in the range 38–60 mm were
used to predict the date of delivery according to Trond-
heim–1984, and the 40 248 measurements with a BPD
in the range 25–60 mm were used with Bergen–2004
and with Hansmann–1976. The 39 989 accessible FL
measurements from 11 to 42 mm were used with
Bergen–2004 and the resulting predictions were com-
pared with the actual times of the succeeding deliveries.

A correction for the time period21 was included for
Bergen–2004, as this model was developed in recent years
with modern ultrasound machines and there is reason to
believe that the narrower beam width of newer ultrasound
devices might influence some measurements22.

Our primary measure for assessing prediction quality
was the median bias, defined as the difference between
the true and the predicted date of delivery, thus reflecting
the systematic error in prediction. A positive bias means
that the birth took place later than predicted; a negative
bias means it took place before predicted. A systematic
positive bias will lead to an inflated number of births
defined as post-term and, similarly, a negative bias will
lead to an apparent decrease in the post-term group. To
measure this effect of misclassification, we also computed
secondary measures, i.e. the proportion of births within
± 14 days of the EDD, and the rates of preterm (24 days
or more before EDD) and post-term (14 days or more

after EDD) deliveries. For the Hansmann–1976 model,
only the median bias was analyzed.

Bias may vary over the range of inclusion, and a
variable bias, depending on the fetal size at the time of the
ultrasound examination, may be overlooked if only the
overall bias is calculated23. Therefore, for each method,
median bias and secondary measures were calculated for
the study population as a whole and for three subgroups
of BPD/FL measurements.

Confidence intervals for the bias values were computed
using bootstrapping with 2000 replications. All analyses
and graphics were produced in the R statistical
programming environment24.

RESULTS

BPD-based predictions

Table 1 shows the median biases and the values of
the secondary measures when the date of delivery was
predicted with each of the two Norwegian models for the
study group as a whole, and for different groups with
BPD ranges corresponding to a gestational age below
18 weeks (38–43 mm), 18 weeks (44–46 mm) and above
18 weeks (47–60 mm), respectively. For Bergen–2004 we
also analyzed the results for the BPD range 25–37 mm.

Figure 1 shows the birth distribution histograms
relative to the term predicted by the two Norwegian
sample-based models, with the optimized distribution
curve of birth as computed from the population-
based model21 (superimposed line). Figure 2 shows the
analyses of the median biases for all three models.
The median biases of the BPD-based predictions
varied between minus 4 and plus 4 days. Within each
model, there were substantial variations in median
biases over the inclusion range; Hansmann–1976 varied
between −2 and 4 days, Trondheim–1984 between
−4.5 and 1 day and Bergen–2004 between −0.5 and
4 days. Hansmann–1976 showed biases very similar to
Bergen–2004 in the main BPD-prediction span.

FL-based predictions

The Bergen–2004 model was applied to the FL
measurements. The birth distribution histogram relative
to the date of delivery predicted by this model, with the
optimized birth distribution curve as computed from the
population-based model21 as the superimposed line, is
shown in Figure 3.

In Table 2 the median biases, the proportion of
births within ± 14 days and rates of pre- and post-
term deliveries are presented for four different groups
with FL ranges corresponding to a gestational age of less
than 16 weeks (11–22 mm), 16–18 weeks (23–26 mm),
18 weeks (27–29 mm) and greater than 18 weeks
(30–42 mm), respectively, and for the study group as
a whole.

The median bias for Bergen–2004 increased with
increasing FL (Figure 4). Even using the same model

Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2010; 36: 728–734.
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Table 1 Prediction of date of delivery from biparietal diameter (BPD) with the two Norwegian models: median bias, proportion of births
within ± 14 days, and proportions of preterm and post-term deliveries for different BPD-range groups and for the study group as a whole

Primary measure Secondary measures

BPD (mm) n Method Median bias (95% CI) (days) ± 14 days (%) Preterm (%) Post-term (%)

25–37 1982 Bergen–2004 1.70 (1.34 to 2.26) 85.9 3.5 6.8

38–43 10 734 Trondheim–1984 −3.07 (−3.29 to −2.87) 85.6 4.7 2.3
Bergen–2004 0.17 (0.15 to 0.22) 87.1 3.3 5.1

44–46 13 821 Trondheim–1984 −1.28 (−1.46 to −1.12) 87.7 4.0 3.5
Bergen–2004 1.40 (1.40 to 1.52) 86.9 3.1 6.7

47–60 13 711 Trondheim–1984 −0.16 (−0.34 to 0.03) 87.0 3.7 4.9
Bergen–2004 3.07 (2.86 to 3.31) 84.4 2.7 10.0

38–60 38 266 Trondheim–1984 −1.43 (−1.54 to −1.33) 86.9 4.1 3.7
Bergen–2004 1.52 (1.40 to 1.68) 86.1 3.0 7.4
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Figure 1 Birth distribution histograms showing the median time of
birth (�) relative to the predicted term (0) from 38 266
measurements of biparietal diameter in the range of 38–60 mm for
(a) the Trondheim–1984 model and (b) the Bergen–2004 model,
with the optimized birth distribution curve superimposed
(continuous line). , Days of median bias; , preterm and
post-term deliveries.
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Figure 2 Median biases for the three models related to different
measurements of biparietal diameter (BPD): Trondheim–1984
( ); Bergen–2004 ( ); Hansmann–1976 ( ). , Central
BPD area (week 18).
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Figure 3 Birth distribution histogram showing the median time of
birth (�) relative to the predicted term (0) from 39 989
measurements of femur length for the Bergen–2004 model, with
the optimized birth distribution curve superimposed (continuous
line). , Days of median bias; , preterm and post-term deliveries.
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Table 2 Prediction of date of delivery from femur length (FL) with the Bergen–2004 model: median bias, proportion of births within ± 14
days, and proportions of preterm and post-term deliveries for four different FL-range groups and for the study group as a whole

Primary measure Secondary measures

FL (mm) n Median bias (95% CI) (days) ± 14 days (%) Preterm (%) Post-term (%)

11–22 1981 0.78 (0.07 to 0.90) 84.8 4.2 5.5
23–26 7402 0.49 (0.29 to 0.49) 86.6 3.5 5.4
27–29 14 524 2.28 (1.98 to 2.28) 86.2 3.1 7.2
30–42 16 082 3.98 (3.98 to 4.39) 83.0 2.5 11.8
11–42 39 989 2.61 (2.49 to 2.72) 84.9 3.0 8.6
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Figure 4 Median bias for the Bergen–2004 model related to
different measurements of femur length (FL). , Central FL area
(week 18).

the predicted date of delivery varied by up to 5 days,
depending solely on the fetal size at the time of the
examination.

In the analysis of the difference between applying the
mean of three or the longest of three FL measurements, we
found the overall disagreement to be 0.5 mm; the effect of
this amounts to approximately minus 0.8 days (data not
shown).

DISCUSSION

In a population of approximately 40 000 pregnancies,
we evaluated two sample-based Norwegian models for
term prediction and compared the results with predictions
from a corresponding German model. We found that
the models had a substantial variation in the quality of
their predictions resulting in a bias, the extent of which
depended on the fetal size at the time of the ultrasound
examination.

The median is a robust parameter for evaluating
the left-skewed birth residual distribution21,25. Our
primary evaluation measure was the median bias of each
prediction model. The bias measures how well a model is
calibrated to the evaluation population – the systematic
error in prediction. Therefore, the bias is appropriate
when comparing the different models in our population.
Precision is the spread of the residual distribution – the
random variation around the median prediction value,
regardless of bias. Precision is relevant when comparing

the predictive quality of different fetal measurements,
such as BPD versus FL, but not when comparing different
models based on the same measurement23. Thus, we did
not evaluate precision here, except through the secondary
measures, which are influenced by both bias and precision.

There are different reasons for the biases identified
in this study. The strict selection of relatively few
pregnant women with ‘certain’ LMP data, an assumed
pregnancy length of 282 days added to the ‘artificial’
LMP estimated from the fetal size, and the fact that only a
few sonographers took all the measurements, are factors
known to produce systematic biases in the traditional
models’ predictions21,25. In fact, these methods primarily
estimate a date for the LMP, with the EDD as a secondary
outcome.

The relatively small number of women included has
other effects. To obtain smooth prediction curves, a
(fractional) polynomial regression model is frequently
applied14. The downside of this method is the inherent
lack of flexibility, which may cause biases, particularly
at the endpoints. Additionally, a source of substantial
bias is the uniform selection of pregnancies over the
inclusion range, intended to ensure an even coverage of
all gestational weeks, resulting in a sample distribution
that differs greatly from the population of routine
examinations21.

The trend of a fetal size-dependent bias in the
Trondheim–1984 model was also observed by Tunón
et al.9 in 1998, who concluded that the model needed
adjustment. However, as also shown in the present
study, for predictions based on BPD measurements of
45–54 mm, corresponding to 18.5–21 weeks’ gestation,
the bias was negligible. This illustrates the problem of
selection bias when the method is applied outside the
normal time span for routine examinations or to women
other than those who have been highly selected. The
Bergen–2004 model was developed 20 years later, but
was based on the same principles as Trondheim–1984,
evidently generating many of the same problems14.
Bergen–2004 also performs satisfactorily in a restricted
scanning period: in weeks 16–18 for the BPD-based, and
in weeks 15–18 for the FL-based predictions. As shown
in Figure 4, the median bias of the FL-based predictions
after week 20 extends to as much as 5 days, expanding
the proportion of post-term pregnancies to nearly 12%.
Hansmann–1976 had the greatest span of median bias
(6 days), with both too early and too late predictions, but

Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2010; 36: 728–734.
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in the main BPD-prediction region the biases were quite
similar to those of Bergen–2004.

A system with high-quality term predictions is
a prerequisite for epidemiological surveillance and
evaluating various aspects of perinatal outcome. A bias
of the predictions in either direction has consequences,
especially regarding the management of post-term
pregnancies or threatening extremely preterm deliveries.
In particular, the scheduling of induction of labor in post-
term pregnancies should be based on a precise EDD to
avoid their under- or overestimation.

Irrespective of the applied prediction model, recogniz-
ing early intrauterine growth restriction is a challenge
when dating pregnancies with ultrasonography, because
the biological variation in growth is being ‘reset’ to a mean
level for all fetuses. Significant discrepancies between reli-
able LMP-based and ultrasound-based predicted dates
need to be acknowledged.

In this study we used data collected over a period
of 19 years. For the newer prediction model developed
in 2004 we therefore included a correction for time
period21, as the ultrasound measurements taken earlier
may have been influenced by beam width differences in
older ultrasound machines22,26. This correction for time
improves all the Bergen–2004 results, albeit marginally.
The axially measured BPD is less influenced by differences
in measurement technique and quality of the ultrasound
equipment than is the nearly horizontally measured FL.

During the years of data collection, Trondheim–1984
was the only dating method in use at the hospital and
was thus the basis for clinical pregnancy management. It
is reasonable to ask whether this might skew the results
in favor of one model. The post-term inductions are the
only relevant events to be considered, but because all
these inductions took place from 12 or more days past
the EDD predicted by both models, the median biases
were not affected. Bergen–2004 predicts term earlier than
does Trondheim–1984 for all BPD values; moreover,
elective Cesarean sections and all other inductions of labor
were excluded. It is therefore unlikely that pregnancy
management markedly influenced even the post-term
percentages.

The results and conclusions are closely related to the
composition of the study population, which in this case
reflects the Norwegian practice of routine ultrasound
examination at around 17–19 weeks’ gestation. Altering
the population distribution would, for purely statistical
reasons, produce different biases. Consequently, this study
does not provide information about the quality of first-
vs. second-trimester examinations.

In summary, this study has shown inherent weaknesses
in old models for term prediction, as they proved to
have varying biases that reduced the quality of the EDD-
predictions and over- or underestimated the rates of
preterm and post-term pregnancies. The selection criteria
of the sample-based models are important in producing
these biases. Therefore, the more robust population-
based approach to all categories of fetal biometry

charts21,25,27,28 should probably supersede the traditional
models.
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ABSTRACT

Objectives To compare results of predictions of date of
delivery from a new population-based model with those
from two traditional regression models.

Methods We included 9046 fetal biparietal diameter
(BPD) measurements and 8776 femur length (FL)
measurements from the routine ultrasound examinations
at Stavanger University Hospital between 2001 and 2007.
The prediction models to be validated were applied to the
data, and the resulting predictions were compared with
the actual time of the subsequent deliveries. The primary
measure was the median bias (the difference between the
true and the predicted date of delivery), calculated for each
method, for the study population as a whole and for three
subgroups of BPD/FL measurements. We also assessed
the proportion of births within ± 14 days of the predicted
day, and rates of preterm and post-term deliveries, which
were regarded as secondary measures.

Results For the population-based model, the median bias
was −0.15 days (95% confidence interval (CI), −0.43
to 0.12) for the BPD-based, and −0.48 days (95% CI,
−0.86 to −0.46) for the FL-based predictions, and both
biases were stable over the inclusion ranges. The biases
of the traditional regression models varied, depending on
the fetal size at the time of the examination; the extremes
were −3.2 and + 4.5 days for the BPD-based, and −1.0
and + 5.0 days for the FL-based predictions.

Conclusions The overall biases, as well as the biases
for the subgroups, were all smaller with the population-
based model than with the traditional regression models,

which exhibited substantial biases in some BPD and
FL subcategories. For the population-based model, the
FL-based predictions were in accordance with the BPD-
based predictions. Copyright © 2011 ISUOG. Published
by John Wiley & Sons, Ltd.

INTRODUCTION

Most pregnancies in western countries are dated by a first-
or second-trimester ultrasound examination. Since Camp-
bell introduced the first models for estimating fetal age
from biparietal diameter (BPD) measurements1, discus-
sion on how to predict the ‘correct’ date of confinement
has been incessant2,3. During the 1990s several studies
showed that dating by the last menstrual period (LMP)
was unreliable for a considerable proportion of pregnant
women4,5. An agreement emerged that ultrasound dat-
ing was superior to that based on Naegele’s rule6–8. In
recent years, the debate has been when, what and how to
measure8–10, and which prediction method to use11–13.
BPD-based and femur length (FL)-based estimates remain
standard in second-trimester pregnancy dating10.

Our clinical protocols concerning the management
of preterm and post-term deliveries are based on risk
estimates for fetuses at different gestational ages14,15.
Evaluations of protocols and comparisons of outcome
are inevitably linked to a uniform and correct pregnancy
dating, and the ongoing discussions about when to induce
labor in post-term pregnancies16,17 are meaningful only
when based on standardized ultrasound-based dating
methods2,18.
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Until recently, the methodological basis for obstetric
wheels for term prediction has been regression of the LMP-
based gestational age on fetal ultrasound measurements.
The models thus calculate an ‘artificial’ LMP19, and
280–282 days has to be added to obtain the estimated
date of delivery (EDD). These methods primarily estimate
an LMP and the subsequent conception, with the EDD as
a secondary objective. To construct such models, a highly
selected sample of pregnant women with ‘certain’ dates
of LMP must be recruited20. Consequently, the selected
women are not representative of the ‘typical’ expectant
mother at a routine examination, and the prediction model
is still influenced by the LMP19. Therefore, because the
traditional approach runs a risk of producing biased
predictions13,21,22, a population-based term prediction
model was developed23, predicting the day of delivery
directly. This model circumvents the LMP and uses data
from a population-based clinical registry.

The purpose of this study was to determine the validity
of three different methods for term prediction – two
traditional and the new population-based model – on data
from a clinical database.

SUBJECTS AND METHODS

Subjects

The women included in this study had their routine
fetal ultrasound examination and subsequent delivery
at Stavanger University Hospital between January 2001
and November 2006. In accordance with the Norwegian
practice of routine ultrasound examination, the scan was
scheduled to take place at between 17 and 20 completed
weeks according to the LMP and/or an early clinical
examination. The majority of the examinations were
carried out in weeks 17–19. We included all women
with singleton pregnancies whose fetus had a BPD in
the range of 38–60 mm at the routine scan, and who
gave birth to a liveborn child without anomalies after 23
completed weeks.

A total of 10 193 women were initially considered
for inclusion, of whom 1147 were excluded: 704 were
excluded because of induction of labor for reasons other
than post-term pregnancy, 442 had an elective Cesarean
section prior to the start of labor and one had missing
information, leaving 9046 women in the study. Women
induced for post-term pregnancy (n = 301) were not
excluded.

Prediction models

Three different models for prediction of the date of
delivery were validated in this study. From 1984 until
recently, the obstetric wheel ‘Snurra’ (referred to here as
‘Trondheim–1984’)24 has been the only dating method
in use in Norway, predicting the date of delivery
from second-trimester BPD measurements of between
38 and 60 mm only. The model was constructed from
a population of 90 women with anticipated normal

pregnancies, all of whom were carefully selected regarding
menstrual history. The women were included in a
prospective, longitudinal study, and measurements were
taken from each fetus approximately 10 times. Fourth-
order polynomial regression analysis was used to establish
the curves.

A newly developed obstetric wheel ‘Terminhjulet’
(‘Bergen–2004’)25,26 is based on the same principles20

as Trondheim–1984, but uses a newer data sample and
fractional polynomial regression analysis. This model
was constructed from a prospective, cross-sectional study
of 650 healthy women with regular menstrual periods
and singleton, uncomplicated pregnancies. With the
Bergen–2004 model the date of delivery may be predicted
from BPD (14–60 mm), FL (2–44 mm) or from head
circumference (50–134 mm) measurements.

Both of these models are traditional and sample
based, and based on limited reference material. The
prediction model ‘eSnurra’ (‘Trondheim–2007’)23 is an
implementation of the new population-based model for
direct prediction of the date of delivery, based on
second-trimester fetal measurements from an unselected
population of 37 000 singleton pregnancies. From these
measurements, the median remaining time of pregnancy
was computed, using a local linear quantile regression
model. Trondheim–2007 predicts date of delivery from
BPD (25–60 mm) or from FL (11–42 mm) measurements.

The BPD prediction tables for Trondheim–1984 are
available from this prediction model24. For Bergen–2004,
the BPD- and FL-tables in the articles show the com-
puted gestational age, but the accompanying published
formulae25,26 are in error. The intended formulae22 have
been provided by S. L. Johnsen (pers. comm.).

For both the Trondheim–1984 and the Bergen–2004
models, EDD is found by adding 282 days to the
inferred LMP-date. For Trondheim–2007, remaining time
is calculated from the published tables23. The model
advocates a correction for time periods, and the correction
values for the latest time period (1999–2004) have been
included.

Ultrasound examinations

The routine fetal ultrasound examinations were per-
formed by seven formally trained midwives, and the data
were prospectively registered in a computer database.

All clinical problems were primarily managed according
to the Trondheim–1984 prediction model; post-term
pregnant women were scheduled for induction of labor
after 13 days past EDD (corresponding to ≥ 295 days),
and induction for clinical problems possibly related to
post-term pregnancy was not acknowledged as such until
10 days past EDD (≥ 292 days).

BPD was measured as described by Campbell and
Thoms27, through a horizontal section of the fetal head
at the level of the cavum septi pellucidi, from the outer
to the outer contours of the parietal bones. The mean of
three BPD measurements was used for the calculation. FL
was measured in accordance with the method described

Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2011; 37: 207–213.
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by Goldstein et al.28, with the femoral diaphysis in a
longitudinal section. The ossified part of the femoral
diaphysis was measured three times and the longest
measurement was used29–31. Both BPD and FL were
rounded to the nearest millimeter.

The Bergen–2004 model used the mean of three
FL measurements, rather than adhering to the inter-
national practice of using the longest of three FL
measurements29–31; this consideration has been addressed
in a previous study22.

The following ultrasound scanners were used: Brüel &
Kjær Medical System 3535 and 2102 (Copenhagen, Den-
mark), Hitachi EUB–5500, EUB–6000 and EUB–6500
(Kashiwa, Japan) and Voluson 730 Expert (Zipf,
Austria) with 3.5–7.5-MHz multifrequency curvilinear
transducers.

Statistical methods

The three prediction models were applied to data from
the ultrasound examinations and from the subsequent
deliveries. The 9046 measurements with BPD in the range
38–60 mm were used to predict the date of delivery
according to all three models. The 8776 (of the 9046)
measurements where an FL measurement in the range
23–42 mm was available were used with Bergen–2004
and Trondheim–2007. Our primary measure for assessing
prediction quality was the median bias, defined as the
difference, in days, between the true and the predicted date
of delivery. A negative bias means that the birth occurred
before the predicted date, resulting in an apparent decrease
in the number of births defined as post-term. A positive
bias means that birth took place later than the day
predicted by the model. A systematic positive bias will lead
to a seemingly inflated post-term rate. To measure this
effect of misclassification, we also computed secondary
measures, i.e., the proportion of births within ± 14 days
of the EDD, and proportions of preterm (24 days or
more before EDD) and post-term (14 days or more after
EDD) deliveries. An altered median bias will affect the
rate of deliveries defined as post-term and the proportion
of births within ± 14 days more than it will the rate of
deliveries defined as preterm.

Bias may vary over the range of inclusion, and a
variable bias, depending on the fetal size at the time
of the examination, may be overlooked if only the overall
bias is calculated32. Therefore, for each method, median
bias and secondary measures were calculated for the
study population as a whole and for three subgroups
of BPD/FL measurements. The three models were used
with the same study population, therefore the secondary
measures merely indicate the effects of the size and shifting
of the bias.

P-values for testing a non-zero median bias were com-
puted using permutation tests with 2000 permutations33.
Confidence intervals for the secondary measures were
computed using the Wilson method in the ‘binom’ pack-
age in R34. All analyses and graphics were produced in
the R statistical programming environment35.

RESULTS

The median age of the women in the study population
was 29.3 years; 41.1% were primiparous and labor
was induced in 9.9%, not including inductions as a
result of prelabor rupture of membranes. There were
approximately 4000 births per year at the hospital, and
the Cesarean section rate was around 11% during the
study period.

BPD-based prediction

Table 1 shows the median biases and the values
of the secondary measures (the proportion of births
within ± 14 days and rates of preterm and post-term
deliveries), when date of delivery is predicted with
each of the three models, for three different groups
with BPD ranges corresponding to a gestational age
below 18 weeks (38–43 mm), week 18 (44–46 mm)
and above 18 weeks (47–60 mm), and for the study
group as a whole. The secondary measures demonstrate
how variations in the median bias among subgroups
and prediction models affect particularly the rate of
apparently post-term pregnancies, due to the left-skewed
birth distribution curves with the steep down-slope on
the right side (Figure 1). A median bias of −2.75 days for
Trondheim–1984 in one BPD-subgroup gives a post-term
rate of 2%, while a similar, but inverse, bias of 2.94 days
for Bergen–2004 in another subgroup results in 10.7%
of the pregnancies being classified as post-term.

Figure 1 shows the birth distribution histograms
relative to the date of delivery predicted by the three
different models for the study group as a whole, and it
illustrates the systematic shift of the distribution of birth
residuals resulting from the varying size of the median
biases. The median biases for the traditional models
(Trondheim–1984 and Bergen–2004) varied between
−3.2 and +4.5 days over the BPD inclusion range,
while it was stable for the new population-based model
(Trondheim–2007), essentially within ± 1 day, as shown
in Figure 2.

FL-based prediction

The two models Bergen–2004 and Trondheim–2007
were applied to the FL measurements. The overall
distribution curves of birth relative to the date of delivery
predicted by the two different models are shown in
Figure 3, which illustrates the systematic shift of the
distribution of birth residuals resulting from the varying
size of the median bias.

In Table 2 the median biases, the proportion of births
within ± 14 days and rates of preterm and post-term
deliveries are presented for three different groups with
FL ranges corresponding to a gestational age of less than
18 weeks (23–26 mm), week 18 (27–29 mm) and greater
than 18 weeks (30–42 mm), and for the study group as a
whole.

Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2011; 37: 207–213.
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Table 1 Term prediction from biparietal diameter (BPD) measurement with the three different models: median bias, proportion of births
within ± 14 days and proportion of preterm and post-term deliveries for the three BPD-range groups and for the study group as a whole

Secondary measures
Primary measure

Birth within Preterm Post-term
BPD
(mm) n Method

Median bias
(days (95% CI)) P

± 14 days
(% (95% CI))

delivery
(% (95% CI))

delivery
(% (95% CI))

38–43 1841 Trondheim–1984 −2.75 (−3.29 to −2.26) < 0.01 85.0 (83.2–86.5) 5.6 (4.7–6.8) 2.0 (1.4–2.7)
Bergen–2004 0.54 (0.43 to 1.43) < 0.01 85.7 (84.0–87.2) 4.1 (3.3–5.1) 5.9 (4.9–7.0)
Trondheim–2007 0.56 (−0.15 to 0.85) 0.02 85.5 (83.8–87.0) 4.2 (3.4–5.2) 5.6 (4.6–6.7)

44–46 3238 Trondheim–1984 −1.81 (−2.17 to −1.44) < 0.01 86.2 (84.9–87.3) 5.5 (4.8–6.4) 2.6 (2.1–3.2)
Bergen–2004 0.88 (0.74 to 1.74) < 0.01 85.2 (83.9–86.4) 4.4 (3.7–5.1) 5.8 (5.1–6.7)
Trondheim–2007 −0.43 (−0.74 to 0.26) 0.01 86.1 (84.9–87.3) 4.8 (4.1–5.6) 4.0 (3.3–4.7)

47–60 3967 Trondheim–1984 −0.77 (−1.11 to −0.41) < 0.01 86.5 (85.4–87.5) 4.9 (4.3–5.6) 4.4 (3.8–5.1)
Bergen–2004 2.94 (2.23 to 3.04) < 0.01 83.3 (82.1–84.4) 3.2 (2.7–3.8) 10.7 (9.8–11.7)
Trondheim–2007 −0.30 (−0.70 to 0.12) 0.11 86.2 (85.1–87.3) 4.2 (3.7–4.9) 4.8 (4.2–5.5)

38–60 9046 Trondheim–1984 −1.57 (−1.80 to −1.35) < 0.01 86.1 (85.3–86.8) 5.3 (4.8–5.8) 3.2 (2.9–3.6)
Bergen–2004 1.74 (1.54 to 2.04) < 0.01 84.4 (83.7–85.2) 3.8 (3.4–4.2) 8.0 (7.4–8.6)
Trondheim–2007 −0.15 (−0.43 to 0.12) 0.29 86.0 (85.3–86.7) 4.4 (4.0–4.9) 4.7 (4.2–5.1)

Table 2 Term prediction from femur length (FL) measurement with two different models: median bias, proportion of births within ± 14
days and proportion of preterm and post-term deliveries for three FL-range groups and for the study group as a whole

Secondary measures
Primary measure

Birth within Preterm Post-term
FL
(mm) n Method

Median bias
(days (95% CI)) P

± 14 days
(% (95% CI))

delivery
(% (95% CI))

delivery
(% (95% CI))

23–26 1802 Bergen–2004 0.60 (−0.16 to 0.84) < 0.01 84.8 (83.1–86.4) 5.1 (4.2–6.2) 5.0 (4.1–6.1)
Trondheim–2007 −0.27 (−0.54 to 0.47) 0.14 84.9 (83.1–86.4) 5.5 (4.6–6.7) 3.9 (3.1–4.9)

27–29 3463 Bergen–2004 1.26 (0.91 to 1.26) < 0.01 86.8 (85.7–87.9) 4.1 (3.5–4.8) 5.1 (4.4–5.9)
Trondheim–2007 −0.86 (−1.26 to −0.48) < 0.01 87.5 (86.3–88.5) 4.7 (4.1–5.5) 2.4 (2.0–3.0)

30–42 3511 Bergen–2004 3.52 (3.06 to 4.02) < 0.01 81.9 (80.5–83.1) 3.2 (2.7–3.9) 12.2 (11.1–13.3)
Trondheim–2007 −0.46 (−0.74 to −0.44) 0.04 85.3 (84.1–86.5) 4.4 (3.8–5.1) 4.1 (3.5–4.8)

23–42 8776 Bergen–2004 1.91 (1.60 to 2.06) < 0.01 84.4 (83.6–85.2) 3.9 (3.6–4.4) 7.9 (7.4–8.5)
Trondheim–2007 −0.48 (−0.86 to −0.46) < 0.01 86.1 (85.3–86.8) 4.8 (4.3–5.2) 3.4 (3.0–3.8)

The median bias for the traditional model, Bergen–
2004, increased with increasing FL, while for the
population-based model, Trondheim–2007, it was stable
within ± 1 day over the full inclusion range of FL, as
shown in Figure 4.

The study population of approximately 9000 pregnan-
cies resulted in significant P-values, indicating median
biases significantly different from zero, even for clinically
insignificant biases of less than 0.5 days (Tables 1 and 2).
Both Trondheim–1984 and Bergen–2004 had significant
median biases for all subgroups and for the study popula-
tion as a whole, while the biases of Trondheim–2007 were
for several groups not statistically significantly different
from zero.

DISCUSSION

In this study, two traditional sample-based models and
one new population-based model for the prediction of date
of delivery were validated in a population of 9046 preg-
nancies. We found that the new population-based model
made reliable predictions from second-trimester measure-
ments of BPD or FL. In contrast, both traditional models

had substantial variations in the quality of their predic-
tions, resulting in a bias. The extent of the bias depended
on the fetal size at the time of the ultrasound examina-
tion. The direction and size of the biases were equivalent
to those found for the same sample-based models in a
recent study of the models used with a sample of 41 343
ultrasound examinations22. These reproducible biases of
the sample-based models show that inherent weaknesses
are built into the traditional term prediction methods.

The median is a robust parameter for evaluating the
markedly left-skewed residual distribution of births13,23.
Our primary measure of predictive quality is the median
bias of each prediction model, which measures the sys-
tematic error in prediction: the calibration of the model to
the study population. Therefore, the bias is relevant when
comparing three different models in our population22.
The precision is the random variation around the median
prediction value, and is not appropriate for use when
comparing different models based on the same fetal
measurement32. The secondary measures of deviation,
shown in Tables 1 and 2, are influenced by both bias and
precision.

Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2011; 37: 207–213.
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Figure 1 Birth distribution histograms showing the median time of
birth (�) relative to the predicted term (0) from 9046
measurements of biparietal diameter for (a) the Trondheim–1984
model, (b) the Bergen–2004 model and (c) the Trondheim–2007
model. , Days of median bias; , preterm and post-term
deliveries.

There are a number of possible reasons for the biases
observed in the traditional models. The most ‘trivial’ is the
assumed total length of pregnancy in the population, in
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Figure 2 Median biases for the three models (Trondheim–1984
( ), Bergen–2004 ( ) and Trondheim–2007 ( ))
related to different biparietal diameter measurements.

our case 282 days. Since this number is used in every single
prediction, a systematic bias will appear if this number
does not correspond to the actual median length13.
Another problem is the careful selection of pregnant
women that leads to a prediction model based on a
‘hyper-normal’ population; when applied to a population
of women with unreliable or missing LMP data, biases
may appear. The traditional models are also often based
on measurements performed by only one or two dedicated
sonographers. Many authors regard this as an important
cause of the systematic bias seen in traditional prediction
models13,23,30.

The notably smaller biases following the use of the
population-based model have several explanations. By
estimating the remaining time of pregnancy through a
direct regression of time to delivery on fetal size, this
model is independent of the LMP. Interestingly, since the
model is calibrated to the correct median remaining time,
knowledge of the total length of pregnancy is unnecessary
for term prediction, but is still essential for the estimation
of gestational age36 – the exact opposite of the LMP-based
models. This model was based on a large population
and measurements were made by many sonographers.
This makes the population-model robust against selection
bias13,19,23. Finally, the large sample sizes make it feasible
to use, for instance, nonparametric quantile regression,
which is more flexible and robust than is polynomial
regression36.

The quality of the predictions for the traditional models
in our study was not uniform. Over the range of inclusion,
the median biases varied widely between the two models;
they generally predicted delivery date too early or too
late. Additionally, the bias for both models varied with
the time of the examination, producing a slope in the
median bias curve for both the BPD- and the FL-based
predictions, as seen in Figures 2 and 4. For the same value
of BPD, the difference in the EDD between the two models
amounted to as much as 4 days. The secondary measures
of our evaluation were, of course, directly influenced by
the bias of each model.

Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2011; 37: 207–213.
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Figure 3 Birth distribution histograms showing the median time of
birth (�) relative to the predicted term (0) from 8776
measurements of femur length for (a) the Bergen–2004 model and
(b) the Trondheim–2007 model. , Days of median bias; ,
preterm and post-term deliveries.

Post-term induction routines should be based on
reliable estimates of date of delivery; a few days
of displacement in either direction will under- or
overestimate the number of true post-term pregnancies,
resulting in increased risk for post-mature fetuses not
being recognized as such, or iatrogenic, ‘unnecessary’
inductions of labor in women who have barely passed
their EDD. Post-term pregnancies are associated with a
small, but not negligible increase in the risk of mortality,
probably after 41 weeks37. Therefore, a precise term
prediction is an important factor for true age-related
risk assessment18.

The incidence of post-term deliveries (≥ 294 days of
gestation) varies in different studies, but is generally
below 4% when EDD is calculated from ultrasound
parameters9,16,38. The gradually adopted policy of earlier
post-term induction16 implies a two- to three-fold increase
in induction rates, depending on the chosen cut-off.
The clinical problems associated with monitoring and/or
inducing labor in false positive post-term pregnant women
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Figure 4 Median biases for the two models (Bergen–2004 ( )
and Trondheim–2007 ( )) related to different femur length
measurements.

due to inadequate predictions, put an extra strain on
delivery units16, independent of the discussions on when
to induce in post-term pregnancy.

During the years of data collection, Trondheim–1984
was the only dating method in use at the hospital and
was thus the basis for all clinical pregnancy management.
Questions as to whether this might favor the results
of this model or increase the biases of the other two
models in the study may be raised. Such a bias could
be introduced by the fact that a pregnancy might be
considered overdue according to the standard dating
method, but not by the others. Trondheim–1984 predicts
term later than do the other models for all BPD measures.
Therefore, the post-term pregnancies in our study would
have been even more post-term according to Bergen–2004
and Trondheim–2007. The included post-term inductions
took place well beyond the date predicted by all three
models. All other inductions of labor and all elective
Cesarean sections performed prior to the start of labor
were excluded, because the scheduling of these events is
influenced by the EDD.

This study has shown that the new population-based
model had the most accurate term predictions, being
superior to the two traditional methods. The overall
biases, as well as the biases for the different subgroups,
were all smaller with this model, and the BPD- and
FL-based predictions were nearly equivalent. Population-
based term prediction may be the dating method of choice
for years to come.
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ABSTRACT

Objectives  To confirm the results from two previous evaluations of term prediction models in 
a third population, and to explore why biased predictions are unavoidable with sample-based 
models.  
Methods  In a study population of 23 020 second-trimester ultrasound examinations, data 
were prospectively collected and registered over the period 1988–2009. Three different 
models for ultrasonically estimated date of delivery were applied to the measurements of fetal 
biparietal diameter (BPD) and femur length (FL), and the resulting term estimations were 
compared with the actual time of the delivery. The difference between the actual and the 
predicted date of delivery (the median bias) was calculated for each of the models, for three 
BPD/FL-measurement subgroups and for the study population as a whole. 
Results  For the population-based model, the median bias was +0.4 days for the BPD-based, 
and –0.4 days for the FL-based predictions, and the biases were stable over the inclusion 
ranges. The biases of the traditional models varied with the size of the fetus at examination; 
median biases were –0.87 and +2.2 days, respectively, with extremes –4.2 and +4.8 days for 
the BPD-based, and +1.72 with range –0.8 to +4.5 days for the FL-based predictions. The 
disagreement between these two methods was never less than 2 days.
Conclusion  This study confirms the results from previous studies; median biases were 
negligible with term predictions from the population-based model, while those from the 
traditional models varied substantially. The biases, which have clinical implications, seem 
inevitable with the sample-based models, which, even when tentatively calibrated, will 
perform unsatisfactorily.
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INTRODUCTION

In modern pregnancy care, it is 
recommended to date pregnancies by 
ultrasound in the first or second trimester1, 2. 
Thus, it is imperative that the dating models 
are reliable. To assess prediction quality and 
reveal potential systematic biases the models 
must be evaluated in large populations. In 
earlier studies, we evaluated two traditional, 
sample-based models for term prediction and 
demonstrated significant and nearly identical 
biases when the models were applied to 
different populations3, 4. We also validated a 
population-based model that avoided the 
biases4, which generally appear to be model-
dependent.

The terms ‘assessment of gestational 
age (GA)’ and ‘estimation of date of 
delivery’ are considered almost synonymous. 
However, the calculations in fact concern 
totally different times in a pregnancy. 
Traditional models primarily estimate a last 
menstrual period (LMP) from second-
trimester fetal measurements, thus, the 
estimated date of delivery (EDD) is actually 
an indirect and secondary issue3, 5, 6. 
Conversely, the new population-based 
models are constructed from observations of 
the verified date of delivery, predicting 
remaining time of pregnancy and EDD 
directly from first- or second-trimester fetal 
measurements5, 7. 

The first-trimester screening tests8, 9 
and the management of extremely preterm 
deliveries close to the limits of viability10, 11 
relate to an accurately calculated GA, while 
the scheduling of invasive procedures and 
interventions in later pregnancy and 
determining when to induce in post-term 
pregnancies12, 13, depend on knowledge of a 
reliable EDD. Therefore, it is still relevant to 
demonstrate prediction biases in the range of 
2–5 days. 

Because the EDD is model-
dependent, recommending post-term 
induction practices without a uniform system 
for pregnancy dating is futile12, 14, 15. 
Moreover, different term prediction routines 
and induction practices make it impossible to 
compare important perinatal quality 
indicators. This has major consequences for 
comparison of data between countries, 
regions and even hospitals12.

The significantly biased term 
predictions that resulted from applying the 
sample-based models3, 4 were avoided with a 
direct, LMP-independent model4. In this 
study, we extend previous findings to a 
population examined with slightly different 
routines and different sonographers. We also 
explore the mechanisms that make 
systematic biases almost inevitable with the 
sample-based models.

SUBJECTS AND METHODS

Subjects

The data were collected over a period of 22 
years, from 1988 to 2009. They comprise 
routine fetal ultrasound examinations 
performed in Oppland County, Norway, on 
an unselected population of pregnant women. 
There are two maternity wards in the county, 
at the Gjøvik and Lillehammer hospitals, 
each contributing from 800 to 1100 births 
every year. Most of the women in the study 
were examined prenatally and subsequently 
gave birth at these hospitals. In addition, data 
were collected from two smaller midwifery 
units at other locations in the same county.

Pregnancies with a fetal biparietal 
diameter (BPD) in the range of 38–60 mm or 
a femur length (FL) in the range of 21–42 
mm at the routine ultrasound examination 
were included. Multiple pregnancies, 
pregnancies complicated by stillbirth, 
diagnosed anomalies, induction of labor for 

126



reasons other than post-term pregnancy, or 
elective Cesarean sections were not included. 
In accordance with the post-term managing 
scheme of the maternity wards during the 
study period, inductions at eleven or more 
days past the EDD were defined as post-term 
inductions. 

In total, fetal measurements from 
23,020 second-trimester routine ultrasound 
examinations were included.

Prediction models

Three different models for estimating the 
date of delivery were evaluated in this study. 
The obstetric wheel ‘Snurra’ (referred to here 
as ‘Trondheim–1984’)16 predicted GA from 
second-trimester BPD measurements 
between 38 and 60 mm only, and derived 
EDD by using a pregnancy duration of 282 
days. The model was developed from 
ultrasound examinations of 90 carefully 
selected females with reliable menstrual data 
and anticipated normal pregnancies, included 
in a prospective, longitudinal study. A fourth-
order polynomial regression analysis was 
used to establish the curves. This was the 
only dating method in use in Norway from 
1984 until 2005. 

The second sample-based method, 
‘Terminhjulet’ (‘Bergen–2004’)17, 18, used a 
similar statistical model based on fractional 
polynomial regression analysis19, with a 
newer data sample. It predicts GA from 
either BPD (14–60 mm), FL (2–44 mm) or 
head circumference (50–134 mm) 
measurements, and derives EDD by using 
pregnancy duration of 282 days. The model 
was constructed from a cross-sectional study 
of 650 highly selected, healthy women with 
reliable menstrual data, assumed 
uncomplicated, singleton pregnancies, and 
with less than 14 days' disagreement between 
the LMP-based and the ultrasound-based 
EDD.

� The third prediction model 
‘eSnurra’ (‘Trondheim–2007’)5 employs the 
new population-based approach with direct 
prediction of date of delivery. It is based on 
second-trimester fetal measurements from an 
unselected population of approximately 
37,000 singleton pregnancies. The median 
remaining time of pregnancy was estimated, 
using a local linear quantile regression 
model. Trondheim–2007 predicts date of 
delivery from BPD (25–60 mm) or from FL 
(11–42 mm) measurements.
� The application of each model’s 
prediction table is described elsewhere3, 4. 
For the Trondheim–1984 and the Bergen–
2004 models, the date of delivery is 
estimated by adding 282 days to the 
estimated LMP-date. For Trondheim–2007, 
predicted remaining time of pregnancy is 
found from the published tables5.  

Ultrasound examinations

The ultrasound examinations were for the 
most part performed by specially trained 
midwives at the hospitals or at the midwifery 
units, and the remaining (10–15% per year) 
by doctors at the hospitals or in private 
practice. There were 23 different examiners 
altogether. Four of the midwives each 
performed between 3200 and 7000 of the 
included ultrasound examinations. The data 
were prospectively registered in a database. 
A large proportion of the included data were 
measurements from pregnancy weeks 17–19. 
In general, all clinical problems were 
managed according to the EDD predicted by 
the Trondheim–1984-model.
� The management of post-term 
pregnancies in the departments was modified 
during the study period. In the first years, 
induction of labor was scheduled around 14 
days past the estimated date of delivery 
(≥296 days), while in later years the post-
term inductions have gradually been 
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scheduled earlier — from 7–11 days past 
term. 
� The BPD and the FL were measured 
according to the standard method for fetal 
ultrasound biometry in Norway3, 4: BPD was 
measured from the outer to the outer contour 
of the parietal bones, and the mean of three 
BPD measurements was used. The FL was 
measured as the length of the ossified part of 
the femoral diaphysis in a longitudinal 
section, using the longest of three 
measurements20. The Bergen–2004 model 

used the mean of three FL measurements: 
this issue has been addressed previously3.

Statistical methods

The three models for ultrasound-based 
prediction of date of delivery were applied to 
data collected from the ultrasound 
examinations and the subsequent deliveries. 
The 22,815 measurements with a BPD in the 
range 38–60 mm were used for EDD-
calculations with all the three models. The 
22,553 FL measurements between 21 and 42 
mm were used with Bergen–2004 and 
Trondheim–2007.

To correct for the narrowed beam 
width in newer ultrasound scanners, which is 
demonstrated to shorten measurements in the 
lateral plane21, a correction for the time- 
period5 that applies to the FL measurements 
was included for the two newer models. The 
collection of the data in this study started in 
1988, and newer prediction models should 
not be unrestrictedly applied to older data. 

The resulting term predictions were 
compared with the actual time of delivery, 
and the disagreement was assessed in terms 
of the median bias for each model. The 
median bias reflects the systematic error of 
the term predictions and indicates the 
calibration level of the model as related to 
the study population. Predicting term too 
early results in a positive bias and an 

increased rate of apparently post-term 
pregnancies3. The median biases were 
calculated for subgroups with different fetal 
ages, in addition to the study population as a 
whole, since a varying bias may be missed if 
only the overall median bias is computed22.

To assess the differences between the 
LMP-estimated GA at the actual time of the 
deliveries and the EDD as predicted from the 
BPD-measurements with each model, data 
from women with available LMP information 
were used. From 1999 onwards, the registry 
included information on whether the LMP 
information was certain or not; in this period 
only women with certain LMP data were 
included in the sub-analysis. As a result, 
19,131 measurements were available. LMP 
was defined reliable when the woman was 
certain about the exact LMP date.

P-values for testing a non-zero 
median bias were computed using 
permutation tests with 2000 permutations. 
All analyses and graphics were produced in 
the R statistical programming environment23. 

RESULTS

Table 1 shows the percentage of ongoing 
pregnancies at 4, 7, 11 and 14 days past the 
EDD predicted from BPD and FL 
measurements by each model. Depending on 
the prediction model, there is a considerable 
difference in the percentage of pregnancies 
classified as post-term. This shows that the 
choice of dating model has a strong impact 
on post-term induction rates, regardless of 
which day past EDD that is recommended 
for post-term induction. As also indicated in 
the table, the rates of still ongoing 
pregnancies are nearly halved for all the 
models from day 7 to day 11 after EDD.
The study population of 23 020 pregnancies, 
with large numbers even in the subgroups, 
resulted in only one median bias in one 
subgroup having  non-significant P-value; 
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the bias of 0.13 days in the FL subgroup 21–
26 mm for the Bergen–2004 model (P=0.18). 
All the other P-values were zero or < 0.01, 
indicating biases different from zero (results 
not shown). Hence, considering the large 
sample size, P-values were not very useful in 
deciding whether a bias was large enough to 
be clinically meaningful or not.

BPD-based predictions

Table 2 shows the median biases with 95% 
confidence intervals (CI) for the study group 
as a whole and for three different subgroups 
with BPD ranges corresponding to a GA of 
less than 18 weeks (38–43 mm), around 18 
weeks (44–46 mm) and more than 18 weeks 
(47–60 mm). Figure 1 shows the median 
biases of the three models for each BPD 
value in the span of the study. The biases of 
the two sample-based models varied 
substantially, both within and between the 
models; the bias within a model was related 
to different BPD values. The bias for the 
population-based model was stable, 
essentially within ±1 day.
� Figure 2 shows the GA at the actual 
time of the delivery as estimated from the 
LMP of the women with reliable LMP-data, 
compared with the EDDs predicted from 
BPD measurements with the three ultrasound 
models, in the same pregnancies. There is a 
consistently lower discrepancy between the 
EDD predictions from the population-based 
ultrasound model and the LMP-based GAs, 
than there is between the traditional 
ultrasound models’ EDD predictions and the 
LMP-based GAs. 

FL-based predictions

The two models, Bergen–2004 and 
Trondheim–2007, were applied to the FL 
measurements. Figure 3 shows the median 
biases of the two models for each FL value in 
the inclusion range. The bias of the sample-

based model varied substantially with the 
size of the fetus at the time of the ultrasound 
examination, while it was essentially stable 
for the population-based model. The extent 
of the biases was similar to that observed 
with the BPD-based predictions for the same 
models, and also to the biases found for the 
same models when evaluated on another 
population4. 

The median biases with 95% CI for 
the study group as a whole and for three 
different subgroups with FL-ranges 
corresponding to a GA of less than 18 weeks 
(21–26 mm), around 18 weeks (27–29 mm) 
and above 18 weeks (30–42 mm) are shown 
in Table 3. 

DISCUSSION

The present evaluation of a population-based 
model for prediction of date of delivery and 
the comparison of its predictions with those 
from two traditional models emphasizes the 
importance of continuous quality assessment. 
In this sample of 23 020 second-trimester 
examinations, the EDD-predictions from the 
BPD and FL measurements of the 
population-based model were reliable; the 
median bias was on the whole within ±1 day, 
confirming earlier findings4. The biases of the 
sample-based models were considerable in 
the study population as a whole and in the 
subgroups, both for BPD-based and FL-
based predictions. The median biases varied 
substantially both with the fetal size at the 
time of the examination and between the two 
models, one generally predicting too early 
and the other too late (Figures 1 and 3). This 
also agrees with previous findings3, 4. Both 
models performed adequately for a restricted 
span of fetal measurements. The EDD-
discrepancy between them was consistently 
great, and never <2 days for the BPD-based 
predictions. For the late FL-based predictions 
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from Bergen–2004 the bias amounted to >4 
days.
� In 2006, data collected from the same 
study population during 1989–1999 were 
used to evaluate the two sample-based 
models’ BPD-based predictions24. That study 
included only women with reliable LMP-
dates; all inductions of labor were excluded, 
negatively affecting the mean bias25. An 
updated study was thus needed to evaluate 
the population-based model and the FL 
measurements using the more stable median 
bias as outcome.
� To remove the overall median bias of 
the sample-based models one could add or 
subtract a constant value to all predictions22; 
this would correspond to shifting the curves 
in Figure 1 and 3 up or down along the y-axis 
until the median bias is zero. However, the 
slope of the curves would remain. 
Particularly for Bergen–2004, since both 
curves slope upward to the right, a correct 
overall calibration would result in EDD-
predictions that are too late for the small 
fetuses and too early for the large ones. Thus, 
a simple calibration improving the overall 
bias would have unfortunate consequences. 
An optimal calibration should remove the 
bias over the whole range of measurement 
values; the population-based model achieves 
precisely that4.
� The population-based model was 
constructed from observations of the actual 
date of delivery to predict the remaining time 
of pregnancy and EDD from first- or second-
trimester fetal measurements5, 7. However, 
modern pregnancy care requires a reliable 
EDD in the late stages of pregnancy, and 
knowledge of GA in the early stages. The 
traditional sample-based models were 
devised to estimate a hypothetical LMP, i.e., 
GA, from second-trimester fetal 
measurements, and derive the EDD-
prediction from this3, 5, 6. The population-
based model estimates the GA as 283 minus 

the predicted remaining time of pregnancy. In 
the reference population5, 26, 283 days is the 
median time from LMP to birth. Since the 
traditional models are based on estimating 
the LMP, one might assume that these 
methods would provide EDDs and GAs that 
correspond more closely to those computed 
from the LMP. Interestingly, this is not the 
case (Figure 2). The EDD-predictions from 
the population-based method correspond 
more closely to GA at delivery computed 
from the LMPs of women with reliable 
LMP-data, as seen from the narrower 
distribution curve of the discrepancy between 
the LMP- and ultrasound-based estimates. An 
overall calibration to remove these median 
differences (the shifts of the curves away 
from zero) would not alter the shape of the 
curves. Thus, the population-based 
predictions would still agree better with the 
LMP-based predictions.
� The better corresponding ultrasound- 
and LMP-based estimates have immediate 
clinical consequences. First, it is beneficial 
both for scheduling examinations and 
reducing concern. Second, it reduces the risk 
of erroneous dating for fetuses that are small 
or large at the routine examination27. The 
new population-based method is thus better 
adapted to the actual target population than 
are the sample-based methods. 
� The present analysis, together with 
two previous studies3, 4, comprises a total of 
73 400 examinations in three different 
populations. These studies demonstrate that 
both sample-based models give 
systematically biased EDD-predictions and 
GA-calculations. The essential problem is 
that the traditional models were developed on 
samples with distributions different from the 
populations they are applied to. The 
population distribution has a strong 
concentration of examinations around 17–19 
weeks. The considerable number of fetuses 
being small- and large-for-GA (SGA and 

130



LGA) in this central group spill over to lower 
and higher BPD and FL values with fewer 
observations and pull their medians toward 
17–18 weeks. These medians constitute the 
optimal predictions, paying attention to the 
average-for-GA (AGA) fetuses and to the 
spillover of the SGA/LGA fetuses. The 
sample-based models were developed on 
data with a flat GA-distribution, thus only 
paying attention to the AGA fetus. The SGA/
LGA fetuses from more central dates will be 
erroneously interpreted as AGA fetuses and 
given a wrong age, producing the reported 
prediction biases. Conversely, since it is 
aimed at the actual population, the new 
method corrects for this effect. 
�  The population-based model will 
better predict the date of delivery for fetuses 
with intrauterine growth restriction (IUGR). 

However, identifying early IUGR fetuses 
cannot be done from one single ultrasound 
examination, irrespective of prediction 
model27. Any significant difference between 
reliable LMP-based and ultrasound-based 
EDD-dates indicates a need for further 
evaluations27-29.�
� In uncomplicated pregnancies with 
spontaneous deliveries close to the EDD, 
inaccurate dating is of less clinical 
importance, yet of interest in assessing 
perinatal outcome or evaluating management 
protocols. While the preterm deliveries 
mainly are unavoidable even if occasionally 
scheduled, iatrogenic post-maturity may 
follow a biased EDD, leading to unnecessary 
induction of labor shortly past term4. The 
resulting increase in wrongly identified post-
term pregnancies is substantial (Table 2), yet 
often ignored. A prerequisite for comparison 
of induction routines is unbiased and uniform 
EDD-predictions with comparable post-term 
rates12.
� In conclusion, to obtain reliable EDD-
predictions, the distribution of the population 
used to develop a model must correspond to 

the population to which the model is applied. 
The model must also answer dating questions 
both in early and late pregnancy. Including 
this sample of 23 020 examinations we now 
have confirmed our findings in a population 
totaling 73 400 examinations3, 4. The 
population-based model is the method of 
choice for assessing GA and EDD. 
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Figure 1  Median biases for the three models (Trondheim–1984 (dashed line), Bergen–2004 (dotted 
line) and Trondheim–2007 (solid line)) related to different biparietal diameter measurements.

Figure 3  Median biases for the two models (Bergen–2004 (dotted line) and Trondheim–2007 (solid 
line)) related to different femur length measurements.



 

n Method
Median bias 

(days (95% CI))

38 – 43 6074 Trondheim–1984 –2.75 (–3.01 to –2.48)

Bergen–2004 0.22 (0.17 to 1.14)

Trondheim–2007 0.38 (0.16 to 0.56)

44 – 46 8682 Trondheim–1984 –0.75 (–0.95 to –0.54)

Bergen–2004 2.29 (1.52 to 2.29)

Trondheim–2007 0.57 (0.26 to 0.73)

47 – 60 8059 Trondheim–1984 0.35 (0.11 to 0.58)

Bergen–2004 3.68 (3.31 to 3.86)

Trondheim–2007 0.40 (0.30 to 0.72)

38 – 60 22815 Trondheim–1984 –0.87 (–1.01 to –0.74)

Bergen–2004 2.22 (2.14 to 2.29)

Trondheim–2007 0.40 (0.30 to 0.57)
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Table 2  Term prediction from biparietal diameter (BPD) measurements with the three different 

models: Median bias for the three BPD-range groups and for the study group as a whole

Table 1  The percentage of still ongoing pregnancies at 4, 7, 11 and 14 days past the date of 

delivery predicted by each model.  

BPDD-based predictiions FL-based prredictions

Days past 
EDD

Trondheim–
1984

Bergen–2004 Trondheim–
2007

Bergen–2004 Trondheim–
2007

–

4 30.7 43.6 36.6 41.5 32.9

7 19.9 30.6 24.4 28.4 21.4

11 9.2 16.6 11.9 15.2 9.9

14 4.0 9.2 5.8 7.8 4.4
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Table 3  Term prediction from femur length (FL) measurements with two different models: 

Median bias for the three FL-range groups and for the study group as a whole

FL  
(mm) n Method

Median bias 
(days (95% CI))

21 – 26 5753 Bergen–2004 0.13 (–0.10 to 0.29)

Trondheim–2007 –0.27 (–0.74 to –0.08)

27 – 29 9315 Bergen–2004 1.72 (1.28 to 1.72)

Trondheim–2007 –0.26  (–0.48 to –0.16)

30 – 42 7485 Bergen–2004 3.39 (2.98 to 3.61)

Trondheim–2007 –0.46 (–0.63 to –0.41)

21 – 42 22553 Bergen–2004 1.72 (1.49 to 1.90)

Trondheim–2007 –0.40 (–0.48 to –0.26)

Figure 2  The difference between the term date computed from the last menstrual period and from biparietal 
diameter measurements with the three ultrasound models ((Trondheim–1984 (dashed line), Bergen–2004 
(dotted line) and Trondheim–2007 (solid line)). The median difference is marked with vertical lines.
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Narrowed beam width in newer ultrasound machines
shortens measurements in the lateral direction: fetal
measurement charts may be obsolete
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ABSTRACT

Objectives Fetal ultrasound measurements are made in
axial, lateral and oblique directions. Lateral resolution is
influenced by the beam width of the ultrasound system.
To improve lateral resolution and image quality, the
beam width has been made narrower; consequently,
measurements in the lateral direction are affected and
apparently made shorter, approaching the true length. The
aims of this study were to explore our database to reveal
time-dependent shortening of ultrasound measurements
made in the lateral direction, and to assess the
extent of beam-width changes by comparing beam-width
measurements made on old and new ultrasound machines.

Methods A total of 41 941 femur length measurements,
collected during the time-period 1987–2005, were
analyzed, with time as a covariate. Using three ultrasound
machines from the 1990s and three newer machines from
2007, we performed 25 series of blinded beam-width
measurements on a tissue-mimicking phantom, measuring
at depths of 3–8 cm with a 5-MHz transducer.

Results Regression analysis showed time to be a
significant covariate. At the same gestational age, femur
length measurement was 1.15 (95% CI, 1.08–1.23)
mm shorter in the time-period 1999–2005 than in the
time-period 1987–1992. Overall, the beam width was
1.08 (95% CI, 0.50–1.65) mm narrower with the new
machines than with the old machines.

Conclusions Technical improvements in modern ultra-
sound machines that have reduced the beam width affect

fetal measurements in the lateral direction. This has clini-
cal implications and new measurement charts are needed.
Copyright © 2011 ISUOG. Published by John Wiley &
Sons, Ltd.

INTRODUCTION

Fetal biometry is an important part of obstetric ultrasound
examination. An increasing number of fetal structures
are being measured to assess fetal age and growth, risk
of chromosomal aberrations and date of delivery1,2. As
measurement deviations may lead to interventions, the
correctness of each measurement is critical.

In two-dimensional imaging mode, fetal structures are
measured in axial, lateral or varying oblique directions; in
three-dimensional mode, the elevation plane may also
be used. The measurement resolution in the various
directions is dominated by differing physical features.
The axial resolution is determined by the frequency and
bandwidth of the transducer, and the lateral resolution is
determined mainly by the beam width of the ultrasound
system3. The axial resolution is superior to the lateral
resolution4.

In recent years, there have been several observations
of apparently ‘shorter’ fetal parameters in newer
measurement charts5–9, the findings being attributed to
improved machines and technical development in general,
and to different populations and measuring techniques, as
well as to unreliable pregnancy dating.

A reduced beam width has been essential in the
development of modern ultrasound machines, resulting

Correspondence to: Dr I. Økland, Department of Obstetrics and Gynecology, Stavanger University Hospital, PO Box 8100, N-4068
Stavanger, Norway (e-mail: iok@lyse.net)
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in improved image resolution and better measurement
quality4. Because of this narrowing in beam width,
however, measurements of fetal structures in the
lateral/oblique direction, such as femur length (FL),
crown–rump length (CRL) and occipitofrontal diameter,
have become shorter10. The beam-narrowing process
causes the ultrasound-based measurements to approach
the true length of the structure10,11.

As fetal measurements are important predictors, poten-
tial sources of error should be analyzed4. Measurements
of length must be reproducible, and they ought to be inde-
pendent of scanner, transducer and measurement depth
and orientation to be valid12. Being based on studies
performed using ultrasound machines of a completely dif-
ferent generation, the use of old measurement charts may
be in potential conflict with measurements from modern
scanners from the last decade10–12.

The aims of this study were to assess the significance
of narrowing beam width over time, by exploring
potential changes in laterally assessed measurements in
a population-based database. In addition, we wanted
to compare beam-width measurements in old and new
scanners to evaluate the extent of the reduced beam width
in modern ultrasound machines.

MATERIALS AND METHODS

Ultrasound examinations

The clinical measurements in this study originated
from the second-trimester routine fetal ultrasound
examinations at the National Center for Fetal Medicine at
St Olavs University Hospital in Trondheim, Norway, and
the data were prospectively registered in an electronic
database over the period 1987–2005. In accordance
with the Norwegian practice of routine ultrasound
examinations, the majority of the data included were
measurements from pregnancy weeks 17–19 (Table S1
online). The study population was non-selected and came
from a geographically well-defined area. More than 30
experienced and formally trained midwives performed
the ultrasound examinations. In this study, data from a
total of 41 941 examinations in 38 725 pregnancies were
included; for each, complete information about the date
of the ultrasound scan and the date of delivery were
available, and each had a fetal biparietal diameter (BPD)
of 35–55 mm, a mean abdominal diameter (MAD) of
32–53 mm or a gestational age (GA) of 113–152 days
(corresponding to 16 + 1 to 21 + 5 weeks) at the time of
the ultrasound examination.

To assess the beam-width narrowing and its impact on
measurements in the lateral direction, the data on the FL
values from the ultrasound examinations were selected
for evaluation.

Pregnancies with suspected manifold complications
were not included in our data file13. However, pregnancies
were included in which labor had been induced for post-
term pregnancy13. The study material was divided into
three, approximately equal, time-periods: 1987–1992

(n = 13 354), 1993–1998 (n = 13 503) and 1999–2005
(n = 15 084). The GA was computed as described for
the recently developed population-based term-prediction
model14.

The FL was measured with the femoral diaphysis in
a longitudinal section, in accordance with the method
described by Goldstein et al.15. At an angle of < 45◦ to
the horizontal plane, the ossified part of the diaphysis was
measured three times on independently generated screen
images, and the longest measurement was used, rounded
to the nearest millimeter.

Ultrasound examinations were performed using Hitachi
EUB-410, Hitachi EUB-415, Hitachi EUB-6000 and
Hitachi EUB-6500 (Hitachi, Tokyo, Japan), Vingmed
System Five (Vingmed Sound, Horten, Norway) and Logic
500 (GE Healthcare, Milwaukee, WI, USA) machines, all
of which had curvilinear transducers with a frequency
range of 3.5–5 MHz. From June 1988 to May 1989, 3.5-
or 5-MHz transducers were used for the examinations.
From June 1989 onwards, 5-MHz transducers were
generally preferred16.

Technical examinations

The ultrasound beam width was measured in three old
and three new machines. The technically old machines
were two Hitachi EUB-415 ultrasound scanners from
1993, and one Hitachi EUB-405 ultrasound scanner from
1996 (Hitachi, Tokyo, Japan), all with a 5-MHz probe
of the type EUP C-324. The three new machines, which
were produced in 2007, were a Siemens Acuson Antares
(Siemens, Seattle, WA, USA) with a CH6-2 probe and two
Hitachi HiVision 900E ultrasound scanners, both with a
EUP-C524 probe; all of these probes operated at 5 MHz.

With each ultrasound machine, we carried out beam-
width measurements on a tissue-mimicking phantom:
CIRS model 40 (CIRS Tissue Simulation & Phantom
Technology, Norfolk, VA, USA), measuring at six
different depths, using the caliper function of the scanners.
The phantom consists of several reflective strings at
different depths, and enables measurements of the point-
spread function (PSF) of an ultrasound imaging system,
as seen in Figure S1 online. The width of the PSF relates
directly to the resolution17, and hence the beam width
of the scanner, at a specific depth. Thus, the term ‘beam
width’ refers to the width of the system’s two-way beam,
which is the effective beam resulting from the combination
of the transmit and the receive focusing.

The focus was optimized for the imaging range of
3–8 cm. We were limited to two transmit focal zones with
the old scanners and used the default of three transmit
focal zones with the new ones. The screen images were
zoomed to a depth of 3–8 cm before measuring.

As in clinical measuring, the beam width was defined
at the middle gray tone level of the PSF image3. This
level corresponds to the middle of the dynamic display
range that is the range of echo intensities displayed on
the screen. A simulated example of such a measurement is
shown in Figure S1, where the referred width corresponds

Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2011; 38: 82–87.
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to a 25-dB drop in echo intensity compared with that of
the white level. To enable comparison of beam widths
among different machines, the gain and dynamic display
range were adjusted to be as similar as possible in old and
new machines. The gain was adjusted until an equally
bright perceived background speckle pattern at all depths
of the phantom was obtained. The dynamic display range
in the new scanners was reduced in order to resemble the
dynamic display range of the old ones.

The probe was positioned perpendicular to the
phantom surface and fixed using a mechanical arm. One
operator performed all measurements on the phantom.
The sequence of six measurements (at depths 3, 4, 5, 6, 7
and 8 cm) was repeated 25 times with each scanner. The
operator was blinded to the beam-width measurements
during the procedure. Between each series, the phantom
was shifted slightly in the lateral direction to obtain
a minor alteration in the ultrasound image. Thus, we
eliminated the effect of caliper inaccuracy and included
the possible effect of shift variance, that is, a spatial
increase and variation in the PSF width caused by a too
low scan-line density.

Statistical methods

We analyzed the 41 941 FL measurements to evaluate the
possible effect of a changing beam width over time. First,
median FL values were computed for each day of GA
in each of the three time-periods. Similarly, median FL
values were computed for each BPD (in mm) and each
MAD (in mm) in the three time-periods. This allowed an
assessment of whether median FL values vary over time,
independently of fetal size and age. We thus controlled for
potential changes in fetal growth pattern or in the time
of routine ultrasound examinations. As FL measurements
are given as integer values we computed the median as
a linear interpolation between the two closest integer
values. Second, to obtain a summary of the change
in median FL values over the three time-periods, we
analyzed the data using a quantile regression model, with
FL as the dependent variable and time-period as the
categorical variable. Three separate analyses were carried
out, adjusting for GA, BPD and MAD, respectively.
As the effects of GA, BPD and MAD on FL are very
close to linear in the relevant range, the variables were
included as linear covariates in the models. Third, to
obtain a more detailed picture of the change in FL over
time, we performed the same quantile regression analyses,
replacing the three time-period categories with narrower
time-period categories spanning one year each (i.e. every
year from 1987 to 2005 as a single-year category). Again
adjusting linearly for GA, BPD and MAD, we obtained
median FL values for each 1-year category, standardized
for GA, BPD and MAD separately.

To analyze the beam-width measurements from the
phantom we used a linear mixed-effects regression model.
We regressed the measured beam width on the measure-
ment depth and machine generation. Measurement depth
had a close to linear effect on beam width and was thus

included as a linear covariate. Machine generation was
used as a covariate with two levels: old and new. As
25 measurement replications were made for each depth
on each of the six ultrasound machines, we controlled
for within-machine dependent measurements by adding
machine to the model as a random effect with six levels.

All analyses and graphs were produced in the
R statistical programming environment18. Quantile
regression was carried out with the rq function in the
quantreg library19, and the linear mixed-effects model
was estimated using lme from the nlme library20.

RESULTS

The regression analyses showed that time was a significant
covariate. At the same GA, the median FL measured 1.15
(95% CI, 1.08–1.23) mm shorter (P < 0.005) in the third
time-period (1999–2005) than in the first (1987–1992),
as shown in Figure S2 online. As the curves indicate, there
was a smaller difference, of only −0.16 mm (P < 0.005),
between the first and the second (1993–1998) time-
periods.

The regressions of the FL measurements on the BPD
measurements demonstrated that for the same BPD, the
median FL was also significantly shorter; 0.98 (95% CI,
0.93–1.04) mm (P < 0.005) shorter in the third time-
period than in the first, as shown in Figure S3 online.
Between the first and the second time-periods, the change
in FL measurements was −0.37 mm (P < 0.005).

Regressions of the FL measurements on the MAD
measurements showed corresponding shifts, but on a
smaller scale: a minor shortening of 0.59 (95% CI,
0.54–0.63) mm (P < 0.005) from the first to the third
time-period, and an insignificant median FL difference of
−0.01 mm from the first to the second time-period.
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Figure 1 Changes in median femur length for every 1-year period
between 1987 and 2005, adjusted linearly and standardized for
gestational age ( ), biparietal diameter ( ) and mean
abdominal diameter ( ).
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Figure 2 Box-plots of beam-width measurements for each of the six ultrasound machines. New machines are presented on the right. The
gray background curves represent the median beam widths at the various measurement depths for the new (lower curve) and the old (upper
curve) scanners. Median, interquartile range, range and outliers are shown.

Figure 1 shows the estimation of the changes in median
FL for each year of the study period, adjusted linearly
and standardized for GA, BPD and MAD, respectively.
The figure illustrates the main trend and reflects the peri-
ods of major replacement of ultrasound machines in our
department.

For the beam-width measurements on the phantom,
the overall median beam width was 1.08 (95% CI,
0.50–1.65) mm narrower with the new machines than
with the old machines (P = 0.006). For both scanner
generations the measurements increased significantly with
increasing depths. Figure 2 shows the results, as box-plots,
for each of the six machines.

DISCUSSION

In this study we explored our database for time-
dependent changes in measurements made in lateral
directions and found that FL measured approximately
1 mm shorter at the same GA in the third time-period
than in the first. We therefore carried out beam-
width measurements on a tissue-mimicking phantom and
compared the measurements from old and new ultrasound
scanners. The beam width was narrower with the new
machines. Technical improvements, particularly those
which have reduced beam width in modern ultrasound
machines, affect certain ultrasound measurements10, and
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the non-axial measurements are typically influenced the
most. This effect may have clinical implications for
ultrasound-based fetal age assessment.

In 1975, Robinson and Fleming published a critical
evaluation11 of a 2-year-old preliminary communication
on sonar CRL measurements21. The beam-width effect
was given particular focus in the analysis of random and
systematic measurement errors, resulting in a ‘corrected’
CRL table11. The corrected curve had systematically
shorter CRL values, resulting in a difference of 1–2 days
of calculated GA for a given CRL22. Interestingly, the
existence of two different Robinson and Fleming reference
curves is not well known. The beam-width problem was
hardly raised again until 20 years later, when Jago et al.,
in a small-scale study, found that the FL was significantly
longer when measured with an old scanner than with
a new one10. They indicated the effect of beam-width
narrowing over time and its potential consequences for
measurements in the lateral direction. In a population-
based database with 41 941 clinical measurements,
our results confirmed their suggestion. Moreover, our
alternative beam-width measurement approach, which
included more than two scanners and the effect of large
scan-line spacing, also confirmed their findings.

A potential variation in a certain fetal measurement, for
instance FL or BPD for the same GA, might be regarded as
resulting from a possible alteration in fetal growth pattern
over time. On the contrary, the relationship between the
various parameters (e.g. how FL relates to BPD/MAD over
time) indicates how the fetal geometry is being influenced,
in other words, how the measurements vary over time,
independently of fetal size and age.

Fetal measurements are made in axial, lateral and
oblique directions. The BPD is a standard axial measure-
ment, while the occipitofrontal diameter is measured later-
ally, and FL, CRL and many other biometric structures are
measured more or less obliquely23. In our database, FL,
BPD and MAD measurements were available for analysis.
Circumference measurements (and MAD) are, in essence,
an approximately equal combination of an axial and a lat-
eral diameter measurement, and are thus correspondingly
affected by the reduced beam width. Therefore, the FL
was shortened less when related to MAD measurements
than to BPD measurements (Figure 1).

Echoes originating from the full width of an ultrasound
beam will be displayed along the centerline of the beam.
Consequently, in the same way as the single point in
Figure S1, the femur will be extended laterally on an
ultrasound screen image. The addition of a fixed beam-
width dimension will affect shorter structures relatively
more than longer structures. When imaging a nearly
horizontally oriented femur, the echoes from each femoral
end are ‘picked up’ by beams whose centerline is outside
the actual ends. For all horizontally measured structures
the image extends sideways up to 0.5 beam width at
each end – one beam width in total – in excess of the true
measurement, as shown schematically in Figure 3. For a
femur at 45◦ the overestimation is reduced to one beam
width multiplied by cosine 45◦; 0.7 beam width in total,

Femur

δ = ½ BW

Femur

δ = ½ BW

Screen images

Figure 3 Schematic illustration of the narrow beam-width (BW) in
new machines and the wide BW in old machines, showing how the
width of the ultrasound beam influences the lateral extension of an
object.

that is 0.35 at each end10. Therefore, one should measure
the FL diagonally rather than horizontally, in order to
reduce the negative beam-width effect.

Over the years, various technical improvements have
resulted in narrower ultrasound beams. The principal
reason for obtaining a shorter FL measurement in the
third time-period compared with the first and second time-
periods (Figure 1) was probably a result of the transition
from analog to digital beam-formation hardware. In
the middle/late 1990s, digital processing hardware (such
as analog to digital converters, application-specific
integrated circuits (ASICs) and digital signal processors)
was included in the scanners. This allowed for much
more flexible and precise control of the beam-formation
process, resulting in a narrower beam width throughout
the whole ultrasound imaging sector24–26. Additionally,
an increased system channel number enabled the use of
larger apertures, generating a narrower beam width. The
increased processing power also allowed a high scan-line
density. Spacing the scan lines too far apart decreases the
lateral resolution by more than that determined by the
beam width alone.

Fetal measurements are essential for assessing fetal
age11,14 and growth8,27, and in fetal anomaly scanning2,7.
The measured parameter is related to a measurement
chart, optimized for the purpose of the examination.
Curves from the 1980s and 1990s are still widely
used as reference charts28, despite the fact that charts
from the last decade typically are constructed from
significantly shorter FL and CRL measurements6–8. The
lack of knowledge of technical development and its
consequences for ultrasound equipment in clinical use
cause systematic errors, particularly in first-trimester
assessment of GA, giving dating errors of up to half
a week4,6 and erroneous risk estimations in prenatal
screening22. With the use of a modern scanner and an old
dating chart, the FL/CRL will be considered ‘too short’10;
fetal age is then underestimated and the predicted date
of delivery is set too late, which of course may have
clinical consequences29. Once again, this underlines the
importance of continuous quality assurance30 and general
guidelines23 to standardize fetal biometric assessment.
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In conclusion, measurements on a phantom confirmed
the narrowing of beam width in newer ultrasound
machines. Over time, measurements in the lateral
direction have been affected, as verified by the shortening
of FL measurements over an 18-year period in a large
population. The lack of standardization in determining
fetal age is challenging and has significant consequences,
as clinical management may depend on a CRL/FL-based
fetal age. Older reference charts have become obsolete,
and new curves from recent studies using modern scanners
are preferable.
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Table S1 and Figures S1–S3 may be found in the online version of this article.

Gestational age 
(days)

Examinations
(n)

113–116 1730
117–120 3012
121–124 4516
125–128 5818
129–132 6091
133–136 5671
137–140 4316
141–144 3179
145–148 2101
149–152 1496

Total 37 930

Table S1 The distribution of examinations over the days of gestational age included in the 
study, corresponding to the range of 113 days (16 + 1 weeks) to 152 days (21 + 5 weeks).

Figure S1  Ultrasound image of an infinitely small point also referred to as the point spread 
function (PSF) of the ultrasound imaging system. (a) The point placed in a diagram. (b) 
Simulated ultrasound screen image of the single point. The 25 dB width of the PSF is 
indicated.
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Figure S2 The median femur length measurements in the three different time periods related 
to days of gestational age. 1987–92 (unbroken line), 1993–98 (broken line), 1999–2005 
(dotted line).
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Figure S3 The median femur length measurements in the three time periods related to 
different measurements of biparietal diameter. 1987–92 (unbroken line), 1993–98 (broken 
line), 1999–2005 (dotted line).
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340.Roger Almvik:  ASSESSING THE RISK OF VIOLENCE:  DEVELOPMENT AND 
VALIDATION OF THE BRØSET VIOLENCE CHECKLIST 

341.Ottar Sundheim:  STRUCTURE-FUNCTION ANALYSIS OF HUMAN ENZYMES 
INITIATING NUCLEOBASE REPAIR IN DNA AND RNA 

342.Anne Mari Undheim:  SHORT AND LONG-TERM OUTCOME OF EMOTIONAL AND 
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357.Ismail Cüneyt Güzey:  DOPAMINE AND SEROTONIN RECEPTOR AND TRANSPORTER 

GENE POLYMORPHISMS AND EXTRAPYRAMIDAL SYMPTOMS. STUDIES IN 
PARKINSON’S DISEASE AND IN PATIENTS TREATED WITH ANTIPSYCHOTIC OR 
ANTIDEPRESSANT DRUGS 

358.Brit Dybdahl:  EXTRA-CELLULAR INDUCIBLE HEAT-SHOCK PROTEIN 70 (Hsp70) – A 
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