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Abstract

Model‐based prediction of fractional flow reserve (FFR) in the context of stable

coronary artery disease (CAD) diagnosis requires a number of modelling

assumptions. One of these assumptions is the definition of a baseline coronary

flow, ie, total coronary flow at rest prior to the administration of drugs needed

to perform invasive measurements. Here we explore the impact of several

methods available in the literature to estimate and distribute baseline coronary

flow on FFR predictions obtained with a reduced‐order model. We consider 63

patients with suspected stable CAD, for a total of 105 invasive FFR measure-

ments. First, we improve a reduced‐order model with respect to previous

results and validate its performance versus results obtained with a 3D model.

Next, we assess the impact of a wide range of methods to impose and distribute

baseline coronary flow on FFR prediction, which proved to have a significant

impact on diagnostic performance. However, none of the proposed methods

resulted in a significant improvement of prediction error standard deviation.

Finally, we show that intrinsic uncertainties related to stenosis geometry and

the effect of hyperemic inducing drugs have to be addressed in order to

improve FFR prediction accuracy.
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1 | INTRODUCTION

Fractional flow reserve (FFR) is an index to characterise the functional significance of coronary artery stenoses.1,2

Although FFR is computed as the ratio between invasively measured post‐stenotic and central aortic pressures, this
index was originally derived to represent the ratio between the actual transtenotic flow over the hypothetical flow that
would be observed in the absence of the stenosis under examination.3 The theoretical derivation of FFR assumes con-
stant peripheral resistance, which in turn is considered to be achieved under maximal vasodilation.3 As a consequence,
FFR is measured in hyperemic conditions, normally caused by the administration of a drug, such as adenosine, that
selectively vasodilates the coronary peripheral vasculature.4 A key advantage of FFR over more conventional methods,
such as quantitative coronary angiography (QCA), is that, in addition to taking into account the geometry of a given
lesion, it implies considering information about flow (under hyperemic conditions). In fact, after having been tested
in large trials,5-7 FFR is nowadays recommended to guide revascularization strategy in patients with stable coronary
artery disease (CAD) without evidence of ischemia in non‐invasive testing.8 In practice, if a lesion is below a certain
threshold, FFR≤FFRthreshold, with FFRthreshold=0.8, the recommendation is to intervene by performing percutaneous
coronary intervention (PCI) or in some instances bypass surgery, while a negative outcome, ie, FFR>FFRthreshold, results
in treating the patient with optimal medical therapy.8 Besides the proven validity of FFR as a a tool for functional
assessment of stenosis severity, it remains an invasive procedure with associated risks. Moreover, in a study comprising
almost 400 000 patients with suspected CAD from 663 US hospitals, almost two‐thirds of the patients who underwent
elective cardiac catheterisation proved to have non‐obstructive CAD as determined by invasive angiography.9 These
considerations have motivated the search for non‐invasive tests to reduce the number of invasive procedures. One of
the most promising methods so far is coronary computed tomography angiography (CCTA). CCTA is a non‐invasive
anatomical imaging modality that allows to quantify the geometrical significance of a lesion and has a high diagnostic
accuracy when compared with invasive coronary angiography‐based diagnosis. A recent randomised trial suggested that
CCTA improves patient outcome compared with standard care,10 and guidelines currently suggest considering CCTA as
a first‐line test in all patients with suspected stable CAD.11 CCTA has shown to be very selective in terms of correctly
identifying CAD (FFR≤FFRthreshold), while its performance to exclude CAD (FFR>FFRthreshold) is not as satisfactory,
resulting in many false positive recommendations, ie, many patients undergo an invasive procedure for FFR measure-
ment that could have been avoided if a more selective non‐invasive method would have been used.12

In this scenario, CCTA‐derived FFR has emerged as a possible response to the need for reducing false positive CCTA
recommendations. Over the last decade, a significant number of methods for non‐invasive computation of FFR based on
CCTA have been proposed.13 Such methods aim at predicting FFR for a given patient by using non‐invasive information
only and have already shown potential to be used as a screening tool on top of CCTA assessment.14 These methods,
based on reproducing the fluid mechanics in coronary vessels, share some common general steps that must be followed
to deliver FFR predictions: (i) define the computational domain of coronary vessels; (ii) define a mathematical model for
fluid mechanics valid in the domain defined in (i); (iii) define boundary conditions; (iv) solve the mathematical model;
and (v) evaluate predicted FFR at desired locations. Although such steps can be found in any model‐based FFR
prediction method, the way in which each of these steps is performed varies greatly. In this paper, we address two
aspects of this pipeline. First, we consider steps (ii) and (iv), working on the improvement and validation of a
reduced‐order model for the coronary circulation that allows for fast and accurate FFR prediction. Then, we focus on
step (iii), investigating the impact of several methods for baseline coronary flow estimation and flow distribution
proposed so far in the literature on FFR prediction.

Step (ii) of the general modelling strategy defined above requires making a choice on the mathematical model to be
used for describing blood flow in coronary arteries. While in principle, many options are available, the most frequent
choices found in the literature are 3D incompressible Navier‐Stokes in rigid domains and 1D blood flow models in
deformable vessels or fully lumped‐parameter models. In general, 1D or lumped‐parameter models are called
reduced‐order models. Several reduced‐order models for FFR prediction have been proposed previously.15-19 However,
validation by comparison of predicted FFR with respect to results obtained by using more complex models was under-
taken only in.17-19 In Boileau et al,18 a virtual population constructed from a single patient was used, while in Blanco
et al,17 a population of 20 patients was considered. Here, we modify the method proposed in Fossan et al19 and validate
it on a set of 63 patients (105 FFR measurements). For each patient, we perform simulations using a 3D model for the
coronary vessels' domain and use those results as reference. To the best of our knowledge, such an extensive validation
of the capacity of a reduced‐order model to reproduce fluid mechanical aspects of model‐based FFR prediction has not
been performed so far.
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The definition of boundary conditions for model‐based FFR prediction is an unavoidable step. The sensitivity of pre-
dicted FFR to these boundary conditions was explored in previous studies19-21 and was shown to be extremely relevant.
In particular, Fossan et al19 and Morris et al21 showed that parameters that determine the hyperemic coronary flow have
the highest influence on predicted FFR, for realistic ranges of other parameters. Motivated by this fact, we consider two
aspects related to the definition of coronary flow, namely, baseline coronary flow and its distribution among the vessels
of the network. In fact, virtually all methods for FFR prediction proposed so far require a baseline flow to be imposed
and a criterion to distribute it among vessels in the network. Here, we have selected a set of representative methods for
the definition of baseline coronary flow from published works, as well as three alternative methods to distribute such flow
among coronary vessels, in order to assess the impact of these modelling choices on FFR prediction. Finally, we perform a
sensitivity analysis where we compare the influence of baseline coronary flow to other parameters that are known to be
important, namely, the stenosis geometry and the reduction in coronary peripheral resistance from baseline to hyperemic
conditions.

The rest of this paper is structured as follows. In Section 2, we describe the acquisition of patient‐specific data
(Section 2.1), a reduced‐order model for FFR prediction (Section 2.2), the 3D modelling framework used for validation
purposes (Section 2.3), the overall modelling strategy for FFR prediction (Section 2.4), several methods to determine
baseline coronary flow (Section 2.5) and its distribution among coronary vessels (Section 2.6), and the method by which
a sensitivity analysis of predicted FFR to relevant model parameters was performed (Section 2.7). Section 3 provides a
summary of main characteristics of patients involved in the study (Section 3.1), results on the validation of the reduced‐
order model (Section 3.2), and results on the impact of explored modelling strategies on FFR prediction (Section 3.3).
Finally, Section 4 includes a detailed analysis of reported results, as well as considerations on the study limitations
and the steps to be taken to (a) improve the reduced‐order model description to better capture the fluid mechanical
aspects of the problem under consideration and (b) reduce uncertainty in FFR predictions.
2 | METHODS
2.1 | Patients and data acquisition

2.1.1 | Recruitment

Patients were recruited as part of an ongoing clinical trial at St. Olavs hospital, Trondheim, Norway.22 Patients included
in this study had undergone CCTA because of chest pain and suspicion of stable CAD. Patients were enrolled with the
findings of at least one coronary stenosis at CCTA examination and were further referred to invasive coronary
angiography (ICA) with invasive FFR measurements. Exclusion criteria included nondiagnostic quality of the CCTA,
previous percutaneous coronary intervention or bypass surgery, contraindications to adenosine, age (75 years or older),
obesity (body mass index greater than 40), and hospitalisation due to unstable CAD after CCTA.

2.1.2 | Medical data acquisition

CCTA
CCTA was performed using 2×128 detector row scanners (Siemens dual source Definition Flash) and 256 detector row
CT scanners (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US) with a standardised protocol.23 Left ventricle
mass (LVM) was quantified using a commercial software (Syngo.via, Siemens, Germany).

Ultrasound
Echocardiographic imaging was performed using a GE Vivid E95 scanner (GE Vingmed Ultrasound, Horten, Norway).
Cardiac output (CO) was calculated on the basis of the cross‐sectional area of the left ventricle outflow tract (measured
immediately proximal to the points of insertion of the aortic leaflets) and velocity time integral derived from PW
Doppler.

Fractional flow reserve
FFR was measured using Verrata Plus (Philips Volcano, San Diego, USA) pressure wires according to standard practice.
Intra‐coronary nitroglycerine (0.2 mg) was given to all patients before advancing the pressure wire into the coronary
arteries, and hyperemia was induced by continuous intravenous infusion of adenosine at a rate of at least 140μg/kg/
min. Pressure was measured over several cardiac cycles, and FFR measurements were taken during the nadir (lowest
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observed value). After measurement, the interventional cardiologist removed the pressure wire back to the equalisation
point at the tip of the guiding catheter to ensure that there was no drift. Invasive pressure tracings were recorded and
made available for further processing.

Clinical data
Standard non‐invasive diastolic/systolic pressure measurements were performed on both arms as part of clinical routine
before ICA using an automatic, digital blood pressure device, Welch Allyn ProBP 3400.
2.2 | Reduced‐order model

Here, we briefly describe the methodology presented in Fossan et al19 for the computation of FFR using a reduced‐order
model. FFR predictions obtained with the exact setting proposed in Fossan et al19 will be denoted as FFRRO* , while
predictions obtained using the improved version of the reduced‐order model introduced in this section will be denoted
as FFRRO* . This is valid throughout the rest of the paper unless otherwise specified.
2.2.1 | Vessels segmentation and computational domain meshing

Segmentation of coronary vessels is performed using the open‐source software ITK‐SNAP. 24 The output of ITK‐SNAP is
a labelled voxel volume identifying segmented vessels and a surface mesh of the segmented volume (in VTK format).
Coronary arteries are segmented until their presence is not distinguishable from surrounding tissue. With this, the
resulting average (±standard deviation) outlet radius of coronary arteries included in the computational domain is
0.9±0.23 mm. Surface mesh processing, addition of flow extensions, and 3D meshing are performed using the open‐
source library Vascular Modeling ToolKit (VMTK).25,26 The 3D volume meshes form the basis for both the reference
3D model and the reduced‐order model. For the latter, centerlines are extracted from 3D domains using a centerline
extraction algorithm available in VMTK.
2.2.2 | Domain definition

The resulting network of centerlines obtained by the processing steps briefly illustrated in Section 2.2.1 can be concep-
tually described as a directed graph G = (V, E), where

• V are the vertices of the graph, which in this application can represent junctions/bifurcations, a root node, and
terminal nodes of the network, hereafter called outlets.

• E is a set of ordered pairs of vertices, in this case representing vessels.

Graph G will have M edges (or vessels) and N vertices. vroot is the vertex at the root of the network, while

vjout; j ¼ 1; …; Nout, are outlets and vjb; j ¼ 0; …; Nb, are vertices representing coupling points among vessels, see
Figure 1. Vessel ej is described by a set of Kj nodes produced by the centerline extraction algorithm cited in Sec-

tion 2.2.1. Each node kjl; l ¼ 1; …; jKjj, is marked as belonging to a bifurcation region (Kj
b ∈ Kj), belonging to a ste-

nosis (Kj
s ∈ Kj), or belonging to a 1D domain (Kj

1D ∈ Kj). The masking of such regions is explained in detail in
Fossan et al.19

Here, we modify the domain definition reported in Fossan et al19 as follows:

• the spacing between nodes k is reduced from 0.5mm to 0.125mm;
• an additional criteria for masking stenotic regions on the basis of the gradient of the radius in the longitudinal direc-

tion is added. In Fossan et al,19 a detected stenosis was marked until the estimated stenosis degree (SD) was below
12%. Here, we require that SD > 12% ∨ jdr

dx
j < 0:05. In practice, even though the estimated stenosis degree is below

12%, we continue to mark the region as a stenosis if the location represents a compression
dr
dx

< 0:05 or an expansion

dr
dx

> 0:05.



FIGURE 1 Centerline extracted from

one subject of the study population. Graph

G structure is shown with white rectangles

representing vertices. In particular, root,

outlet vertices, and edges are evidenced.

Edges' regions marked as bifurcation areas

are shown in red, stenotic areas are shown

in green, and 1D domains are shown in

blue. The original 3D segmentation from

which centerlines are extracted is shown

as a transparent surface
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2.2.3 | Mathematical models

Let us consider a single vessel ej. In regions of ej labelled as 1D domain, ie, Kj
1D ∈ Kj, blood flow is modelled according

to a 1D steady state blood flow model, ie,

∂Q
∂x

¼ 0; (1a)
FIGURE 2 A, Vessels at a bifurcation

(graph vertex depicted as a hollow square)

with corresponding nodes (circles), nodes

masked as belonging to the bifurcation

region depicted as filled circles. B,

Bifurcation region, nodes are collapsed

into one node per vessel (filled circles), at

which vessels are coupled using (2b). C,

Single vessel with corresponding nodes

(circles), nodes masked as belonging to a

stenotic region are depicted as filled

circles. D, Vessel is split into two vessels,

stenosis region nodes collapsed into one

node per vessel (filled circles), at which

the resulting vessels are coupled using (2b)

and (3)
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∂
∂x

Q2

A

� �
¼ −

A
ρ
∂P
∂x

þ −2 ζ þ 2ð Þμπ
ρ

Q
A
; (1b)

where A is the cross‐sectional area of the vessel, Q is the blood flow rate, and P is the blood pressure. Moreover,
ζ=4.31,19 ρ=1.05g/cm3 is the blood density, and μ=0.035dyne/cm2s is the blood viscosity. The cross‐sectional area A
is assumed constant in time and equal to the area obtained from the segmentation of medical images. Then, the prob-
lem unknowns are pressure P and flow rate Q.

Regions masked as bifurcations and stenoses are not modelled using a continuous model. Nodes belonging to such
regions are collapsed into a single point, and coupling conditions apply. See Figure 2 for a graphical illustration of this
aspect. Coupling for both connection types (bifurcations and stenoses) is performed by enforcing the following relations
at the coupling point

∑
T

i¼1
Qi ¼ 0; (2a)

P1 þ λ
ρ
2
U2

1 ¼ Pi þ λ
ρ
2
U2

i þ ΔPi i ¼ 2; …; T; (2b)

where T is the number of vessels sharing a vertex with the bifurcation/stenosis. For stenoses, we have that T=2,
while in the case of bifurcations, we have T≥ 2. ΔP is an additional pressure loss, and λ is a coefficient that can assume
values between zero and one. At bifurcations, ΔP is set to zero and λ is set to one, so that Equation (2a) describes
continuity of total pressure. At coupling points representing stenoses, we set λ=0, and ΔP is computed as proposed in
Seeley and Young,27 namely

ΔP ¼ Kvμ
A0D0

Qþ Ktρ
2A2

0

A0

As
−1

� �2

QjQj; (3)

where A0 and As refer to cross‐sectional areas of the normal and stenotic segments, respectively. Similarly, D0 and Ds

represent the normal and stenotic diameters. Furthermore, Kv and Kt are empirical coefficients, with

Kv ¼ 32 0:83Ls þ 1:64Dsð Þ· A0=Asð Þ2=D0, Kt=1.52,
27 whereas Ls is the length of the stenosis.

2.2.4 | Boundary conditions

In this work, we consider two alternative sets of outlet boundary conditions: prescribed flow rate at outlets or resistive
elements coupled to outlets. See Section 2.4 for motivation on the two different setups introduced here.

Prescribed flow rates at outlets

Pressure is prescribed at vroot, namely Proot ¼ P̂root, where P̂root is the prescribed pressure. Then, we set

Qj
out ¼ Q̂j; j ¼ 1; …; Nout, where Q̂j; j ¼ 1; …; Nout, are the flows to be prescribed deriving from methods described

in Sections 2.5 and 2.6. Defining flow rate at outlets implies that flow rate over the entire network is fixed. Then, the
only remaining unknown is pressure along 1D domains, and pressure drops over stenotic regions. Such pressure is
obtained integrating (1) for Q given along the 1D domains and evaluating coupling relations (2b) and (3) where appro-
priate. A reasonable strategy is to start at vroot and traverse the entire tree, but other choices are possible.

Resistive elements coupled to outlets

As in the previous case, pressure is prescribed at vroot, namely Proot ¼ P̂root. Then, we consider resistive elements coupled

to outlets with resistances Rj
out; j ¼ 1; …; Nout. In this case, flow rate is unknown over the entire network, and a non-

linear algebraic system has to be solved to find the flow rates at outlets Qj
out; j ¼ 1; …; Nout, which solve (1), (2b), (3),

and Proot − P̂root ¼ 0. More details on the numerical treatment of the modelling setup strategies presented here are given
in Fossan et al.19
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2.3 | 3D modelling

3D simulations are used to validate the reduced‐order model proposed in Fossan et al19 and improved in this work.
These simulations are performed considering segmented coronary trees as rigid domains with a prescribed pressure
as inlet boundary condition and either prescribed flows (via prescribed parabolic velocity profile) or lumped‐parameter
models attached to each network outlet, according to the modelling pipeline described in Section 2.4. Furthermore, the
flow is assumed laminar, and blood is modelled as an incompressible Newtonian fluid. The open‐source library
CBCFLOW,28 based on FEniCS29 is used to solve the resulting mathematical model. The incompressible Navier‐Stokes
equations are solved using the incremental pressure correction scheme, described in Simo and Armero.30 Tetrahedral
elements compose the computational mesh where the velocity field is approximated using piecewise‐quadratic polyno-
mials, while linear polynomials are used for pressure. The solver implementation follows very closely the one reported
in Mortensen and Valen‐Sendstad.31 3D meshes were constructed using the open‐source library VMTK.25,26 The
meshing refinement level was determined by a meshing algorithm parameter called edge‐length factor lf, which was
set to lf=0.21 for all simulations. A mesh independence study showed that such discretisation provides mesh‐
independent FFR predictions for a set of four patient‐specific geometries. A full description of the underlying mathe-
matical models and their numerical treatment is provided in Fossan et al19 and references cited therein.

2.4 | Overall modelling strategy

FFR is normally measured at one or more points in the coronary tree. In the current computational context, we simulate
a hyperemic state for the entire coronary tree. Therefore, we refer to a hyperemic state as the condition under which
virtual FFR measurements are performed. Assuming that a network of coronary branches for a given patient with
related parameters is available (see Section 2.2), we proceed as follows in order to obtain a hyperemic state:

1. define total baseline coronary flow by one of the methods described in Section 2.5: q;
2. distribute flows among the network's Nout outlets according to one of the methods described in Section 2.6: Qout,l,

with l=1,…,Nout;
3. perform a simulation with prescribed inlet pressure Proot=Pproximal and prescribed outlet flows defined in previous

step to find Pbln
out;l; with l ¼ 1; …; Nout;

4. compute resistances at outlets as

Rbln
out;l ¼

Pbln
out;l − Pv

Qbln
out;l

; with l ¼ 1; …; Nout; (4)

where Pbln
out;l is the pressure at the l-th outlet resulting from the simulation performed in previous step and Pv is a

reference venous pressure, which is set to Pv=5mmHg throughout this work;
5. perform a simulation with prescribed inlet pressure Proot=Pproximal and prescribed resistances at outlets. Such resis-

tances are computed as

Rhyp
out;l ¼

Rbln
out;l

TCRI
; with l ¼ 1; …; Nout ; (5)

where TCRI is the so‐called total coronary resistance index, ie, the factor by which peripheral coronary resistance drops
from its value at baseline conditions to its value in hyperemia. In this work we use TCRI=4, unless otherwise stated.4
TABLE 1 Parameters needed to run a simulation using pipeline described in Section 2.4

Parameter/Data Symbol Source/Equation/Table

Coronary tree centerlines with radii ‐ post‐processed CCTA‐derived segmentation

Pressure at inlet Pproximal Clinical non‐invasive measurement

Baseline flow q Table 3

Branch split ‐ Table 4 or coupled branches (see Section 2.6)

Total coronary resistance index TCRI TCRI=4, as in Wilson et al4

aAbbreviation: CCTA, coronary computed tomography angiography.
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Simulation results from point 5 of the previous list represent the hyperemic state from which FFR can be evaluated at
any point of the network as

FFRj
RO ¼ Pj

Pproximal
; (6)

where Pj is the predicted pressure at the jth node of the network. We remind the reader about the fact that if predictions
are obtained with the setting proposed in Fossan et al,19 ie, without the modifications introduced in Section 2.2.2, then
those predictions will be denoted as FFRRO* . Table 1 summarises necessary data and parameters for prediction of FFR
with the reduced order model.

2.5 | Methods for baseline coronary flow estimation

In this work, we explore a number of methods to estimate baseline coronary flow, q. In selecting the methods to be
used, we sought to include methods that use different types of data. In particular, we included methods that rely on
CO estimation, as well as methods that use LVM and a method based on population studies. A description of such
methods follows.
2.5.1 | CO‐based methods for baseline coronary flow estimation

We consider two alternative methods to determine CO. The first method consists of simply using the CO derived from
patient‐specific ultrasound (US) measurements acquired as explained in Section 2.1.2. CO derived from US measure-
ments will be called COUS hereafter. The second method uses a formula to estimate stroke volume from patient‐specific
parameters.32 Such formula, originally proposed in de Simone et al,33 is given as

SV ¼ PP* × ð0:013 ×WÞ−ð0:007 × YÞ−ð0:004 × HRÞ þ 1:307½ � ; (7)

where W is weight in kilograms, Y is age in years, and HR is heart rate in beats per minute. Moreover, PP* is

PP* ¼ ð0:49 × PPÞ þ ð0:3 × YÞ þ 7:11 ; (8)

where PP is pulse pressure, PP=SBP−DBP, with SBP and DBP being systolic and diastolic blood pressure (in mmHg),
respectively. Then, CO is computed as

CODeSimone ¼ HR × SV : (9)

Once CO is estimated by either of the two methods, we compute baseline coronary flow as

qXGuyton ¼ γCOX ; (10)

where γ=0.045 is the fraction of CO that flows into the coronary branches,34 and X={US,DeSimone} are the two consid-
ered CO estimation methods.
2.5.2 | LVM‐based methods for baseline coronary flow estimation

Alternatively to the use of CO to determine total baseline coronary flow q, several investigators have used LVM to
perform such estimate. Here, we select two methods and propose modifications to them. In Kishi et al,35 q is com-
puted as

qKishi ¼ β × TMM ; (11)

where β=0.8mL/min/g is a reference value for myocardial tissue perfusion,36 and TMM stands for total myocardial
mass, computed as



TABLE 2 Baseline coronary flows from Sakamoto et al40

Branch Symbol Flow, mL/min (Right‐dominant) Flow, mL/min (Left‐dominant)

Left branch qSakamoto
LB 156.58 209.27

Right branch qSakamotoRB 113.42 57.73

Total qSakamoto 270.00 267.00
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TMM ¼ 3
2
× LVM : (12)

It is worth noting that no other patient‐specific information than LVM is used. A method that accounts for additional
patient‐specific information is the one used for FFR prediction in Sharma et al.37 In this case, the observed association
between the product SBP×HR is considered in the computation of baseline flow, which reads

qSharma ¼ ð0:08 × ð0:7 × HR × SBP × 0:001 − 0:4ÞÞ × TMM ; (13)

where TMM is computed with (12). Since, as it will be shown later in Section 3.1, Table 2, baseline coronary flows com-
puted using (11) and (13) are very low compared with reference values, we propose to modify both methods. The reason
for the underestimation of baseline coronary flow in these cases is related to the rather low TMM derived from the
hypothesis stated in (12). In both modified methods, we use

TMMMolina ¼ 2:4 × LVM : (14)

The constant value 2.4 was determined by considering that the ratio of reference TMM reported in Molina and
DiMaio38,39 over LVM for patients included in this study (2.39 (0.34) and 2.34 (0.42) for men and women, respectively).
Moreover, in the case of qSharma, the constant 0.08 was replaced by 0.14 in order to force average flow over the popula-
tion to be in accordance with reference values.40 See Table 2 for details. Modified baseline flow estimates are denoted asbqKishi and bqSharma for qKishi and qSharma, respectively.

2.5.3 | Population‐based methods for baseline flow estimation

Here, we simply specify flows to left and right coronary branches as specified in Sakamoto et al. 40 Average flows are
differentiated according to the dominance of the coronary vasculature. Table 2 summarises the different values for total
coronary flow, as well as for left and right branches.

Table 3 summarises the different methods used to determine coronary flow and how they are computed.
TABLE 3 Summary of baseline coronary flow estimation methods

Method Data Equations

qUSGuyton COUS (10)

qDeSimone
Guyton W, Y, HR, SBP, DBP (10)

qKishi LVM (11), (12)

q̂Kishi LVM (11), (14)

qSharma LVM, HR, SBP (13), (12)

q̂Sharma LVM, HR, SBP (13)‐mod, (14)

qSakamoto Table 2 ‐

Note. All data used was acquired non‐invasively in ambulatory conditions unless otherwise stated.

Abbreviation: CO, cardiac output; DBP, diastolic blood pressure; HR, heart rate; LVM, left ventricle mass; SBP, systolic blood pressure; US, ultrasound; W,
weight (in kilograms); Y, age (in years).
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2.6 | Flow distribution

There is a variety of methods used in the literature to distribute baseline coronary flow among the coronary vessels. A
major difference is given by the fact that some practitioners model a single branch (left or right), while others consider
both branches simultaneously. In order to account for this aspect, we have applied the methods described below in two
different settings, namely, applying the methods on single branches or on both coupled branches.

2.6.1 | Distal Murray

Murray's law41 is the most commonly used method to distribute coronary flow; see previous studies37,42 for example. It
expresses a proportionality between flow and vessel diameter

Q ∝ dξ ; (15)

with ξ=3 from theoretical considerations on minimum work. Distal Murray (DM) flow distribution implies that for a
given network with Nout outlets, flow is distributed among all outlets using (15) and outlets' diameters.
2.6.2 | Proximal Murray

In this case, one traverses a given network from its root, and flow is split at each bifurcation applying (15) among
daughter vessels. The diameter used here was taken as the average vessel diameter, computed over vessel nodes that
were not marked as belonging to stenoses or bifurcation areas. See Section 2.2 for an explanation and further references
on how these nodes are marked. This method was used in previous studies,35,43 in the context of FFR prediction.

2.6.3 | Transluminal Attenuation Gradient

Here, we implement the method proposed in Kishi et al,35 where authors hypothesise an inverse relation between flow
and transluminal attenuation gradient (TAG), ie, Q∝−1/TAG. The interesting feature of this approach is that it uses
information on flow distribution properties of a given patient by directly looking into how contrast is advected in the
coronary tree during CCTA acquisition. TAG is essentially the gradient of voxel intensities, quantified as Hounsfield
Units (HU) in the CCTA image averaged along a given vessel. TAG is computed for each terminal point of the vessel
network by computing HU along centerline nodes and fitting a first‐order polynomial to the resulting data points
(arc‐length versus HU: HU(x)=HU0+TAG·x, with x the centerline arc‐length). Intensities along the path are computed
by averaging CCTA voxel intensities around each centerline node. Candidate voxels are those in a volume of 5×5×5
voxels centred at a given centerline node. In order to be included, a candidate voxel has to fall within the segmented
vessel lumen and has to have a HU value that is below a threshold in order to exclude calcifications and artefacts. Such
threshold is set equal to the average plus two standard deviations of HU values for all voxels contained in the segmented
lumen volume. For a detailed definition of TAG and its computation in coronary trees; see Kishi et al35 and references
cited therein. TAG is computed for each patient considered in this study using CCTA images, segmented vessels lumen
volume, and extracted centerlines.

2.6.4 | Branch flow split for single branch distribution

In the case in which a single coronary branch is considered for simulation, a further assumption is necessary since we
depart from total baseline coronary flow, and a branch‐specific flow is needed. Two strategies are followed. One strategy
consists of splitting flow between left and right branches as observed in Sakamoto et al40 and reported in Table 4. The
second one regards simply imposing average coronary flows to left and right branches, specified in Table 2.
TABLE 4 Baseline coronary flow splits derived from Sakamoto et al40

Branch Right‐Dominant Percentage of Total Flow Left‐Dominant Percentage of Total Flow

Left branch 58.00 78.38

Right branch 42.00 21.62



TABLE 5 Summary of baseline coronary flow estimation and split methods

Branch Treatment Baseline Flow Branch Split Flow Distribution

Single branch qUS
Guyton Table 4 DM/PM/TAG

qDeSimone
Guyton Table 4 DM/PM/TAG

�qUS
Guyton

Table 4 DM/PM/TAG

qKishi Table 4 DM/PM/TAG

q̂Kishi Table 4 DM/PM/TAG

qSharma Table 4 DM/PM/TAG

q̂Sharma Table 4 DM/PM/TAG

qSakamoto Table 2, first and second rows DM/PM/TAG

Coupled branches qUS
Guyton ‐ DM/PM/TAG

qDeSimone
Guyton ‐ DM/PM/TAG

�qUS
Guyton

‐ DM/PM/TAG

qKishi ‐ DM/PM/TAG

q̂Kishi ‐ DM/PM/TAG

qSharma ‐ DM/PM/TAG

q̂Sharma ‐ DM/PM/TAG

qSakamoto Table 2, third row DM/PM/TAG

Abbreviation: DM, distal Murray; PM, proximal Murray; TAG, transluminal attenuation gradient.

MÜLLER ET AL. 11 of 25
Having defined the three flow distribution strategies that will be explored in this work, we can define a set of simu-
lation settings that will be used for each of the baseline flow estimation methods described in Section 2.5 and
summarised in Table 3. In fact, for each one of those baseline flows, we have YZ flow splits, with Y={PM,DM,TAG}
and Z={S,C}. S and C correspond to cases where flow distribution is applied to single and coupled branches,
respectively. Table 5, together with Table 3, provides the reader with a complete overview of all modelling assumption
combinations used in this study, so that the equations and parameters used for a specific simulation setup can be easily
retrieved.
2.7 | Sensitivity analysis

We conduct uncertainty quantification and sensitivity analysis (UQ&SA) to rank the influence of uncertain input
parameters on FFR prediction. In Fossan et al,19 a wide range of parameters were analysed in terms of UQ&SA; how-
ever, the most influential parameters were those related to coronary flow, TCRI, and minimum stenotic radius. Other
input parameters such as Pproximal, Murray coefficient, and rheological parameters (ρ, μ) were less influential. On the
basis of these considerations, we perform a sensitivity analysis on the uncertain input parameters q, TCRI, and SD, with
the uncertainty in SD affecting the minimum radius. q was modelled as a (truncated at ±3 std) normal distribution with
a mean and standard deviation deriving from the per patient mean and standard deviation obtained with four of the
patient‐specific baseline coronary flow estimates studied in this work, qUS

Guyton, q
DeSimone
Guyton , q̂ Kishi, and q̂ Sharma. We model

the hyperemic factor TCRI as a gamma distribution with shape parameter 3, scale factor 0.75, and shifted to 1.19 For our
dataset of 105 FFR measurements, clinically relevant stenoses were quantified in terms of SD using QCA and QCACT,
where QCACT denotes QCA evaluated on the basis of segmented geometries. The standard deviation of QCA−QCACT

was 20% SD. To account for the uncertainty in stenosis geometry, we introduce a global parameter ΔSD, to be applied
to all stenotic regions of a network such that the stenosis degree is given by SD=SDsegmented+ΔSD, where SDsegmented is
the stenosis degree obtained from the original segmentation. Since we adopt a conservative approach where all detected
stenoses are included in a global parameter, we model ΔSD as a normal distribution with a mean of 0 and with a stan-
dard deviation of 15%.
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Sobol sensitivity indices, first‐order (Si) and total (ST,i), are widely employed44 and defined as

Si ¼ V E Y jZi½ �½ �
V Y½ � ; (16a)

ST;i ¼ 1 −
V E Y jZ¬i½ �½ �

V Y½ � : (16b)

Here, E Y jZ¬i½ � represents the expected value of the output Y for a fixed value of the uncertain input, Zi, and V X½ � is the
variance of some variable, X. Z is a vector that represents the uncertain input variables, Z ¼ q; TCRI; SD½ �ð Þ, and Z¬i

contains all elements of Z except Zi. SA results (which are obtained on a per patient basis) are summarised by averaging
the first‐order and total Sobol sensitivity indices over the population. Moreover, we compute weighted first‐order
sensitivity indices

ASi ¼ ∑n
k¼1S

k
i V Yk½ �

∑n
k¼1V Yk½ � ; (17)

and total sensitivity indices
TABLE 6 Study population characteristics. If not specified, presented results are reported as “mean (standard deviation)”

Characteristic Units Mean(std)

Generic data

No. of patients ‐ 63

No. of male patients Datum (percentage) 35 (55.56)

Age y 59.87 (7.77)

Height cm 173.62 (10.03)

Weight kg 85.28 (15.02)

Body mass index kg/cm2 28.17 (3.69)

MAP mmHg 103.48 (10.70)

Cardiac output L per min 5.07 (0.97)

CAD risk factor Datum (percentage)

Diabetes 8 (12.70)

Hypertension 33 (52.38)

Dislipidemia 18 (28.57)

Smoking 11 (17.46)

Previous CAD events 0 (0)

Invasive FFR measurements

FFR ‐ 0.81 (0.14)

FFR per vessel prevalence Datum (percentage) 33/105 (31.43)

FFR per patient prevalence Datum (percentage) 25/63 (39.68)

Lesions location

LAD artery Datum (percentage) 45 (42.86)

RCA Datum (percentage) 22 (20.95)

LCX artery Datum (percentage) 13 (12.38)

Diagonals Datum (percentage) 12 (11.43)

Marginals Datum (percentage) 8 (7.62)

RPDA Datum (percentage) 4 (3.81)

aAbbreviation: CAD, coronary artery disease; FFR, fractional flow reserve; LAD, left anterior descending; LCX, left circumflex; MAP, mean arterial pressure;
RCA, right coronary artery; RPDA, right posterior descending artery.



TABLE 7 LVM and TMM quantification from CCTA. Reported values are average (standard deviation)

Sex LVM, g Reference LVM, g48 TMM (12) TMM (14) Reference TMM38,39

Male 141 (21) 116 (20) 211 (32) 338 (51) 331 (56)

Female 108 (19) 85 (14) 162 (28) 259 (45) 245 (52)

aAbbreviation: CCTA, coronary computed tomography angiography; LVM, left ventricle mass; TMM, total myocardial mass.

FIGURE 3 Scatter plot and Bland‐

Altman of FFRRO vs FFR3D (top row) and

FFRRO* vs FFR3D (bottom row). The rest of

the settings are single branch treatment,

qUSGuyton baseline flow, and DM flow

distribution. DM, distal Murray; FFR,

fractional flow reserve; RO, reduced‐order;

US, ultrasound
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AST;i ¼
∑n

k¼1S
k
T;iV Yk½ �

∑n
k¼1V Yk½ � ; (18)

where Sik and SkT;i are the sensitivities due to input i for FFR‐prediction k, and V Yk½ � is the variance of FFR‐prediction

k.19,45

Measures of uncertainty and sensitivity are estimated by the Monte Carlo method as described by Saltelli,46 and the
accuracy of UQ&SA results are assessed by evaluating the standard deviation of the estimates from 10 bootstrapped
samples47 until the standard deviation is below 0.033 (ie, 99% confident that obtained value is within ±0.1.).
TABLE 8 Comparison of FFRRO vs FFR3D and FFRRO* vs FFR3D for selected 1D settings. Settings are single branch treatment, qUSGuyton
baseline flow, and DM flow distribution

Terminal RO Model Version a b r FFRX−FFR3D Acc. Sen. Spe. PPV NPV

Resistive X=RO 1.06 −0.04 0.98 −0.01 (0.03) 97.14 95.65 97.56 91.67 98.77

X=RO* 0.89 0.12 0.96 −0.03 (0.04) 96.19 82.61 100 100 95.35

3D flows X=RO 1.05 −0.03 0.94 −0.013 (0.056) 96.19 95.65 96.34 88.00 98.75

X=RO* 0.77 0.24 0.90 −0.043 (0.061) 92.38 65.22 100.00 100.00 91.11

Note. a and b are coefficients for linear fitting: FFRX=a FFR3D+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; RO, reduced‐order; US, ultrasound.



FIGURE 4 Scatter plot and Bland‐

Altman of FFRRO vs FFR3D (top row) and

FFRRO* vs FFR3D (bottom row). The rest of

the settings are single branch treatment,

qUS
Guyton baseline flow, and DM flow

distribution. FFRRO and FFRRO* were

obtained by prescribing the hyperemic

outlet flows from the 3D solution instead

of running the FFR‐pipeline described in

Section 2.4. DM, distal Murray; FFR,

fractional flow reserve; RO, reduced‐order;

US, ultrasound
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3 | RESULTS
3.1 | Patient population and invasive measurements characteristics

A total of 63 patients that underwent invasive angiography and FFR measurements after clinical and CCTA examina-
tions indicated stable CAD were recruited. From these patients, a total of 105 FFR measurements were collected. FFR
measurements had a mean of 0.81 and a standard deviation of 0.14, with a per vessel positive FFR prevalence of 31.43%
and a per patient positive FFR prevalence of 39.68% for a cut‐off value of FFR≤ 0.8. See Table 6 for a summary of
population characteristics.

Table 7 shows a comparison of LVM for the study population versus reference values taken from a large CT study for
healthy young subjects.48
TABLE 9 Comparison of FFRA vs FFRB for selected cases where FFR3D was available. Other settings common to all simulations are single

branch treatment and qUS
Guyton baseline flow

Comparison Type
Flow
Distribution a b r FFRA−FFRB Acc. Sen. Spe. PPV NPV

RO vs 3D DM 1.06 −0.04 0.98 −0.01 (0.03) 97.14 95.65 97.56 91.67 98.77
PM 1.06 −0.04 0.98 −0.01 (0.03) 95.24 84.62 98.73 95.65 95.12
TAG 1.08 −0.05 0.98 −0.01 (0.04) 94.29 80.00 100.00 100.00 92.59

RO vs invasive
measurement

DM 0.64 0.34 0.58 −0.05 (0.13) 81.90 57.58 93.06 79.17 82.72
PM 0.63 0.34 0.57 −0.04 (0.14) 80.95 54.55 93.06 78.26 81.71
TAG 0.77 0.21 0.62 −0.03 (0.14) 83.81 60.61 94.44 83.33 83.95

3D vs invasive
measurement

DM 0.62 0.35 0.60 −0.04 (0.12) 80.95 54.55 93.06 78.26 81.71
PM 0.64 0.33 0.62 −0.03 (0.12) 81.90 60.61 91.67 76.92 83.54
TAG 0.75 0.22 0.66 −0.01 (0.12) 83.81 69.70 90.28 76.67 86.67

Note. a and b are coefficients for linear fitting: FFRA=a FFRB+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distalMurray; FFR, fractional flow reserve; PM, proximalMurray; RO, reduced‐order; TAG, transluminal attenuation gradient; US, ultrasound.



TABLE 10 Comparison of total baseline coronary flow, q, and coronary perfusion assuming TMM is 1.5 or 2.4 times LVM

qUS
Guyton qDeSimone

Guyton �qUS
Guyton qSakamoto qKishi q̂Kishi qSharma q̂Sharma

q, mL/min 227±42 278±53 229±0 270±1 151±32 241±52 93±27 261±77

q/(1.5×LVM), mL/g/min 1.2±0.3 1.5±0.5 1.3±0.3 1.5±0.3 0.8±0.0 1.3±0.0 0.5±0.1 1.4±0.3

q/(2.4×LVM), mL/g/min 0.8±0.2 1.0±0.3 0.8±0.2 0.9±0.2 0.5±0.0 0.8±0.0 0.3±0.1 0.9±0.2

Note. Reported values are averages (standard deviation) for all 63 patients.

Abbreviation: LVM, left ventricle mass; TMM, total myocardial mass.
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3.2 | Validation of reduced‐order model versus 3D

Figure 3 shows scatter plots and Bland‐Altman plots for a comparison of FFR predicted by 3D and reduced‐order
models, while a numerical characterisation of the comparison is given in Table 8. The modelling setup used to obtain
such results was described in Section 2.4, while the particular model parameter definition used included single branch
treatment, qUSGuyton baseline coronary flow, and DM flow distribution. Results are shown for the domain definition setup

described in Fossan et al19 and the modified version proposed here. Figure 4 and Table 8 show results for FFR predic-
tions obtained with current method and the one originally proposed in Fossan et al19 for the case in which the hyper-
emic simulation is performed replacing resistive elements at outlets with the flows extracted from 3D simulations.

Table 9 reports indexes on the agreement of predicted FFR by the reduced‐order model with respect to results
obtained using 3D simulations, as well as comparisons of reduced‐order model predicted FFR and 3D model predicted
FFR versus invasive measurements, for the three flow distribution strategies considered in this work.

3.3 | Baseline coronary flow and FFR prediction by different strategies

Table 10 shows resulting baseline coronary flows and perfusion indexes for strategies proposed in Section 2.5.
Table 11 shows accuracy indexes for predicted FFR with respect to invasive FFR for all possible combinations of

baseline flow estimation and flow distribution strategies. Only results using qKishi and qSharma are not reported, since
baseline flows obtained with these two methods resulted in values well below physiological ranges with 151±32mL/
min and 93±27mL/min for qKishi and qSharma, respectively (see Table 10). Moreover, Table 12 shows results for coupled

branches treatment and �qUSGuyton baseline flow on a per vessel basis, differentiating results among (major branches

departing from) left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA).

3.4 | UQ and SA

Figure 5 shows results from the sensitivity analysis described in Section 2.7 in terms of the averaged and uncertainty
weighted (see (17) and (18)) sensitivity indices. In the top panel, we have summarised the sensitivity indices when all
105 cases are considered, whereas in the bottom panel, only cases (N=37) where average predicted FFR is
0.7<FFRRO<0.9 are considered.
4 | DISCUSSION

4.1 | Patient population and derived measurements

The study population is considered representative for patients with suspected CAD being referred for CCTA.
Since two of the methods to determine baseline coronary flow introduced in Section 2.5 depend on TMM, it is impor-

tant to discuss results presented in Table 7. We observe that average LVM values for males and females are normally
larger than the ones reported as reference values for healthy subjects in Fuchs et al.48 The higher‐than‐reference LVM
values observed for the population under study are supported by reported left ventricle hypertrophy in patients with sta-
ble treated chest angina49 and by the fact that elevated LVM is a recognised marker for cardiovascular risk.50 Moreover,
TMM values obtained using relation (12) are well below reference values, while usage of relation (14) produces TMM
estimates slightly above TMM reference values, in line with what is observed for LVM values. This apparent underesti-
mation of TMM by relation (12) will have an impact in flow computations, as we will discuss later in Section 4.3.



TABLE 11 Comparison of FFRRO vs FFRm for all cases with exception of those obtained using qKishi and qSharma; see text for motivation

Branch Baseline Flow
Treatment Flow Distribution a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

Single qUSGuyton DM 0.64 0.34 0.58 −0.05 (0.13) 81.90 57.58 93.06 79.17 82.72

PM 0.63 0.34 0.57 −0.04 (0.14) 80.95 54.55 93.06 78.26 81.71

TAG 0.77 0.21 0.62 −0.03 (0.14) 83.81 60.61 94.44 83.33 83.95

qDeSimone
Guyton DM 0.72 0.25 0.57 −0.02 (0.15) 81.90 63.64 90.28 75.00 84.42

PM 0.71 0.25 0.57 −0.02 (0.15) 79.05 57.58 88.89 70.37 82.05

TAG 0.87 0.11 0.61 0.00 (0.15) 82.86 69.70 88.89 74.19 86.49

�qUS
Guyton

DM 0.66 0.32 0.57 −0.05 (0.14) 81.90 57.58 93.06 79.17 82.72

PM 0.65 0.33 0.56 −0.04 (0.14) 80.95 57.58 91.67 76.00 82.50

TAG 0.79 0.19 0.61 −0.02 (0.14) 86.67 69.70 94.44 85.19 87.18

qSakamoto DM 0.75 0.23 0.58 −0.03 (0.15) 84.76 69.70 91.67 79.31 86.84

PM 0.73 0.24 0.58 −0.02 (0.15) 82.86 69.70 88.89 74.19 86.49

TAG 0.88 0.10 0.62 0.00 (0.15) 84.76 72.73 90.28 77.42 87.84

q̂Kishi DM 0.64 0.33 0.57 −0.04 (0.14) 83.81 63.64 93.06 80.77 84.81

PM 0.63 0.34 0.55 −0.04 (0.14) 83.81 63.64 93.06 80.77 84.81

TAG 0.77 0.20 0.60 −0.02 (0.14) 85.71 66.67 94.44 84.62 86.08

q̂Sharma DM 0.67 0.31 0.56 −0.04 (0.14) 81.90 60.61 91.67 76.92 83.54

PM 0.65 0.32 0.56 −0.03 (0.14) 82.86 60.61 93.06 80.00 83.75

TAG 0.80 0.17 0.60 −0.01 (0.15) 83.81 60.61 94.44 83.33 83.95

Coupled qUSGuyton DM 0.67 0.31 0.55 −0.04 (0.15) 80.00 54.55 91.67 75.00 81.48

PM 0.63 0.34 0.53 −0.04 (0.15) 78.10 48.48 91.67 72.73 79.52

TAG 0.87 0.11 0.61 −0.01 (0.16) 86.67 78.79 90.28 78.79 90.28

qDeSimone
Guyton DM 0.76 0.22 0.54 −0.02 (0.17) 82.86 66.67 90.28 75.86 85.53

PM 0.70 0.26 0.52 −0.01 (0.16) 81.90 63.64 90.28 75.00 84.42

TAG 0.95 0.02 0.61 0.02 (0.17) 85.71 78.79 88.89 76.47 90.14

�qUS
Guyton

DM 0.70 0.29 0.54 −0.04 (0.15) 80.95 57.58 91.67 76.00 82.50

PM 0.65 0.32 0.53 −0.04 (0.15) 77.14 42.42 93.06 73.68 77.91

TAG 0.91 0.08 0.61 −0.00 (0.16) 88.57 78.79 93.06 83.87 90.54

qSakamoto DM 0.78 0.20 0.55 −0.02 (0.16) 82.86 66.67 90.28 75.86 85.53

PM 0.73 0.24 0.54 −0.01 (0.16) 80.95 60.61 90.28 74.07 83.33

TAG 0.98 0.00 0.63 0.02 (0.17) 83.81 78.79 86.11 72.22 89.86

q̂Kishi DM 0.68 0.30 0.55 −0.04 (0.15) 82.86 63.64 91.67 77.78 84.62

PM 0.63 0.34 0.51 −0.03 (0.15) 81.90 57.58 93.06 79.17 82.72

TAG 0.88 0.10 0.60 −0.00 (0.16) 87.62 78.79 91.67 81.25 90.41

q̂Sharma DM 0.70 0.28 0.54 −0.03 (0.15) 82.86 63.64 91.67 77.78 84.62

PM 0.64 0.32 0.51 −0.03 (0.16) 79.05 54.55 90.28 72.00 81.25

TAG 0.88 0.09 0.59 0.00 (0.16) 87.62 78.79 91.67 81.25 90.41

Note. For each column representing different accuracy measures, we have highlighted the best (green), second best (blue), and third best (red) measures. a and b

are coefficients for linear fitting: FFRRO=a FFRm+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; PM, proximal Murray; TAG, transluminal attenuation gradient.
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TABLE 12 Comparison of FFRRO vs FFRm for different coronary segments. The rest of the settings are: coupled branches treatment and

�qUS
Guyton baseline flow

Coronary
segments

Flow
Distribution a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

All DM 0.70 0.29 0.54 −0.04 (0.15) 80.95 57.58 91.67 76.00 82.50
PM 0.65 0.32 0.53 −0.04 (0.15) 77.14 42.42 93.06 73.68 77.91
TAG 0.91 0.08 0.61 −0.00 (0.16) 88.57 78.79 93.06 83.87 90.54

LAD DM 0.72 0.29 0.56 −0.06 (0.15) 80.70 57.14 94.44 85.71 79.07
PM 0.74 0.27 0.60 −0.06 (0.14) 77.19 38.10 100.00 100.00 73.47
TAG 1.02 −0.01 0.70 −0.01 (0.14) 91.23 80.95 97.22 94.44 89.74

LCX DM 0.58 0.34 0.44 −0.00 (0.21) 71.43 57.14 78.57 57.14 78.57
PM 0.38 0.51 0.32 −0.02 (0.22) 66.67 42.86 78.57 50.00 73.33
TAG 0.73 0.17 0.46 0.05 (0.25) 76.19 85.71 71.43 60.00 90.91

RCA DM 0.90 0.11 0.72 −0.03 (0.08) 88.46 60.00 95.24 75.00 90.91
PM 1.11 −0.10 0.75 0.01 (0.09) 84.62 60.00 90.48 60.00 90.48
TAG 0.54 0.43 0.55 −0.03 (0.08) 92.31 60.00 100.00 100.00 91.30

Note. For each column representing different accuracy measures, we have highlighted the best (green), second best (blue), and third best (red) measures. a and b

are coefficients for linear fitting: FFRRO=a FFRm+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; PM, proximal Murray; TAG, transluminal attenuation gradient.
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4.2 | Validation of reduced‐order model

Validation of the reduced‐order model using a 3D model as reference is significantly more extensive than previously
published results. In Fossan et al,19 an earlier version of the reduced‐order model described here was validated on a
population of 13 patients and 23 FFR measurements for a single flow configuration. Moreover, in Blanco et al,17 a
population of 20 patients and 32 FFR measurements for a single flow configuration was considered. Here, we consider
63 patients, 105 FFR measurements, and three different flow configurations.

Results depicted in Figure 3 show that the agreement between predicted FFR values by both models is satisfactory, as
confirmed by results reported in Table 8. It is worth noting that the presented results allow to make a two‐fold assess-
ment of the reduced‐order model results. On one hand, while using resistive elements at terminals, we can see how the
entire modelling pipeline described in Section 2.4 is affected by using a simpler and computationally cheaper model
with respect to using the 3D model. On the other hand, by imposing terminal flows from the results obtained using
FIGURE 5 The average first‐order and

total sensitivity indices. The top two bar

plots represent sensitivities when all 105

cases were considered, whereas in the

bottom two, only cases (N=37) where

fractional flow reserve (FFR) is in the

critical region 0.7<FFRRO<0.9 are

considered
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the 3D model, we can focus on how well the reduced‐order model reproduces pressure drops for fixed flows. As it can be
clearly seen, the mismatch between results obtained using both models are larger in the case of prescribed flows at out-
lets of the reduced‐order model. Consequently, this is the case where the benefits obtained by modifications to the orig-
inal model proposed in Fossan et al19 can be better observed. Furthermore, results reported in Table 9 show that
predicted FFR deviations of the reduced‐order model with respect to FFR predicted with the 3D model are small com-
pared with errors in FFR prediction versus invasive measurements with bias (standard deviation) of −0.01 (0.03) and
−0.05 (0.13) for FFR3D versus FFRRO and FFRm versus FFRRO, respectively. Importantly, when comparing diagnostic
accuracy indexes for reduced‐order and 3D model predicted FFR versus invasive measurements, one can see that these
are only marginally affected by the used model. These considerations allow us to conclude that results discussed in the
following sections are mostly affected by the different modelling hypotheses used (boundary conditions) and not by
errors in the description of the fluid mechanics introduced by the reduced‐order model. Nevertheless, we note that
the disagreement between reduced‐order model results and 3D model results leaves room for further reduced‐order
model improvement, as discussed in Section 4.5.
4.3 | Baseline coronary flow and FFR prediction by different strategies

4.3.1 | Predicted baseline coronary flow

When comparing FFR predictions by different model setups made in Section 3.3, we have excluded results obtained
using baseline coronary flows qSharma and qKishi. The reason for this choice can be inferred from average baseline cor-
onary flows reported in Table 10. In fact, predicted average flows for qSharma and qKishi, as well as average myocardium
perfusion rate for qSharma, are well below physiological values of 250 mL/min and 0.8 mL/g/min.34 Moreover, it is
remarkable how these quantities are in line with reference values for methods using relation (14) to compute TMM
and where flow is not derived from perfusion rates, ie, qUS

Guyton, q
DeSimone
Guyton , qSakamoto, and q̂Sharma.
4.3.2 | Effect of baseline coronary flow and its distribution on FFR prediction

Results presented in Table 11 clearly show that the flow distribution strategy for which our reduced‐order model
delivers better agreement with invasive measurements is the one based on TAG. In fact, linear fit coefficients and Pear-
son correlation coefficient are always better for TAG for fixed branch treatment and baseline flow estimation strategy. A
closer look into how flow distribution methods effect FFR prediction on a vessel basis can be done from data shown in
Table 12. Here, it becomes evident that TAG outperforms other flow distribution strategies for LAD and LCX but not for
RCA. The overall better performance is due to the fact that lesions located in LAD and LCX (and their branches)
account for almost 83 % of total lesion number, in combination with the fact that TAG systematically results in more
blood flowing into the LAD with respect to flows obtained with DM and Proximal Murray (PM). For example, for

coupled branches treatment and �qUSGuyton, average (standard deviation) flow in the LAD are 74 (26), 71 (26), and 89

(32)mL/min for DM, PM, and TAG flow distribution strategies, respectively. Such a pattern can be observed for all sim-
ulations reported in Table 11. The larger flow can compensate for underestimated stenosis severity or it can simply
mean that TAG is better reflecting the flow distribution among vessels. This last observation is supported by the fact
that TAG incorporates patient‐specific information about flow distribution (via intensity gradients along vessels), while
DM and PM are based on geometrical information alone.

The best performing method in terms of correlation to invasive measurements has the following setting: coupled
branches treatment, qSakamoto, and TAG flow distribution. On the other hand, the best method in terms of diagnostic

accuracy has the following setting: coupled branches treatment, �qUS
Guyton, and TAG flow distribution. Since this last

method ranks second in terms of linear fitting coefficients, we will denote it as FFROPT
RO throughout the rest of this work.

Diagnostic performance for different modelling choices can vary significantly. In particular, sensitivity among
explored model setups varies between 48.48% and 78.79%. It is interesting to observe that maximum sensitivity
(78.79%) is achieved for coupled branches treatment, TAG flow distribution, and all baseline coronary flow estimation
methods, pointing out to the fact that flow distribution is more determinant than baseline coronary flow estimation.

Although errors (FFRRO−FFRm) standard deviation varies for different model setups, such fluctuations are very
small with respect to standard deviation absolute values, with larger variations among results obtained using different
baseline flow definition methods rather than within single baseline flow definition methods. In other words, standard



IGURE 6 Left panel shows a scatter
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TABLE 13 Comparison of FFRRO vs FFRm for different ways of estimating the proximal boundary condition. The rest of the settings are

coupled branches treatment, �qUS
Guyton baseline flow, and TAG flow distribution

Inlet pressure a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

Clinic 1.03 −0.03 0.65 0.00 (0.16) 89.47 79.31 93.94 85.19 91.18

100 1.02 −0.02 0.65 0.00 (0.16) 88.42 79.31 92.42 82.14 91.04

Invasive 1.04 −0.04 0.66 0.00 (0.16) 88.42 79.31 92.42 82.14 91.04

a: FFR, fractional flow reserve; TAG, transluminal attenuation gradient.
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deviation changes seem to be mainly due to the use of different baseline flow estimation methods, rather than by flow
distribution strategies. Another conclusion that can be made from standard deviation variation across used modelling
setups is that none of the investigated methods seems to reduce error standard deviation significantly, although several
of them imply using patient‐specific information. This result is not surprising if one considers the origin of patient‐
specific information used by the different methods. In qUS

Guyton, we use ultrasound‐derived CO, for which measurement

errors of 690mL/min have been reported. Such errors propagate to baseline coronary flow, which, in this case, is com-
puted as 4.5 % of CO and imply an error in flow of approximately 31mL/min or 14 % of baseline coronary flow. The
standard deviation of qUSGuyton in our population is 42mL/min and is thus comparable with the measurement error.

Another method using CO estimates is qDeSimone
Guyton , where the formula for determining stroke volume (7) was obtained

by fitting experimental data, with a resulting Pearson correlation coefficient r=0.45, 33 denoting large uncertainty in pre-
dicted values. Moving forward among methods, we consider now q̂Sharma. In this case, (13) is used. This relation involves
a fitting of experimental data (on dogs) relating HR and SBP to oxygen consumption, with r=0.87, 51 combined then to
another fitting of experimental data on the relation between coronary flow and oxygen consumption.52 There are addi-
tional sources of errors for these patient‐specific baseline flow estimation methods. The fraction of CO that flows into
the coronaries, γ in (10), is assumed constant. Moreover, as already discussed, some methods make use of SBP and
HR. These quantities are known to vary for the same patient depending on many factors. For our patient population,
we observe that Pearson correlation coefficients for SBP and HR when comparing quantities acquired non‐invasively
and quantities measured during invasive FFR procedures are 0.09 and 0.29, for SBP and HR, respectively. All these
considerations support the results shown here that evidence no benefit in terms of error standard deviation reduction
by using patient‐specific baseline flow estimation methods. However, this conclusion does not preclude that a better,
currently nonreported baseline flow estimation method would result in improved FFR predictions.

Previously reported relative low impact of prescribed inlet pressure in FFR prediction frameworks19,21 was confirmed
in this study. Table 13 shows the completely neglectable impact of using different values for the prescribed inlet pres-
sure, including pressure measured non‐invasively, pressure acquired during invasive FFR measurement (the actual
value to compute invasive FFR), and a fixed value of 100 mmHg, demonstrating that this parameter is of little impor-
tance when predicting FFR.

Figure 6, left panel, shows a scatter plot of invasive FFR versus average predicted FFR (for all methods shown in
Table 11), including maximum variation ranges and standard deviation. Average standard deviation is 0.048, with larger
values for lower FFR values, as it can be seen in Figure 6, right panel. These results reinforce observations made while
analysing data reported in Table 11 on the fact that baseline coronary flow estimation and flow distribution strategies
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FIGURE 8 Histogram of TCRI, where
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distribution) and hyperemic resistance

corresponding to FFRbest. Measurement

locations which had errors (FFRRO,best
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have limited impact on overall performance of the FFR prediction framework: Average of predicted FFR standard devi-
ation to baseline flow and flow distribution methods is 0.048 while predicted FFR measurement error standard devia-
tion is 0.15. This fact indicates that the availability of better baseline flow estimation and flow distribution methods
will have a significant but limited impact on FFR prediction performance. Such impact can increase if one considers
that the precise definition of one of the parameters with larger impact on FFR predictions, the TCRI,19,21 depends on
a baseline condition. These findings are further supported by our sensitivity analysis, where we see that the effect of
the uncertainty in baseline coronary flow is rather low, compared with the influence of TCRI and SD. Results indicate
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that the uncertainty in the stenosis degree has the largest influence on FFR‐prediction uncertainty, with average first‐
order and total sensitivity indices of 0.71 and 0.74, and uncertainty weighted sensitivity indices of 0.87 and 0.89, respec-
tively. TCRI has a significant but much lower influence with average first‐order and total sensitivity indices of 0.22 and
0.27 and uncertainty weighted sensitivity indices of 0.08 and 0.11, respectively. Baseline coronary flow has a minor
influence in comparison, with average first order and total sensitivity indices of 0.04 and 0.07 and uncertainty weighted
sensitivity indices of 0.03 and 0.04, respectively. The influence of TCRI and q is slightly increased when only cases in the
critical region 0.7<FFRRO<0.9 are considered. The average standard deviation in predicted FFR is 0.12. However, we
note that the uncertainty in how the flow is distributed is not considered and may be seen in relation to the fact that
the average standard deviation resulting from the UQ&SA (0.12) is slightly lower than average predicted FFR measure-
ment error standard deviation (0.15).

The above made observations allow us to conclude that other parameters than the ones studied here have to be
addressed in order to improve FFR prediction accuracy. In particular, we consider now TCRI and make a post‐
processing experiment by:

• extracting best matching FFR predictions of all simulations shown in Table 11;
• considering FFROPT

RO as the setting for reference baseline conditions; and
• compute TCRI as the ratio of peripheral resistance (with respect to FFR measurement location) for best matching

simulation versus peripheral resistance for reference baseline setting.

Selected best matching predictions versus measurements are shown in Figure 7, while Figure 8 shows a histogram of
obtained TCRIs. Such results show that, for the given modelling framework, available segmentations and flows in phys-
iological ranges, rather accurate FFR predictions can be obtained, if a highly variable TCRI is considered. Correspond-
ing accuracy, sensitivity, and specificity are 94%, 85%, and 99% when all measurements are included and 97%, 90%, and
100% when outliers are excluded. Interestingly, TCRI distribution emerging from this analysis reflects the high variabil-
ity observed in coronary flow reserve, which has shown to display a gamma distribution shape when directly measured
on patients.53
4.4 | Use of reduced‐order models for the development of clinical decision support tools

The capacity of exploring a large number of modelling hypotheses, as well as parameter space via sensitivity analysis, is
facilitated by the fact that we use an accurate reduced‐order model of the problem under investigation. This fact points
to one of the strengths of reduced‐order models, which is that of being computationally cheaper and generally more
robust than more complex models in terms of numerical issues such as convergence and stability of the overall
algorithm. Advantages in terms of problem setup, preprocessing, and postprocessing over more complex models are also
relevant. Moreover, errors introduced by reduced‐order models can be compensated by the fact that one can explore a
larger portion of possible solutions. However, such errors must be acceptable, which in the context of this work means
that clinical decisions should not be affected by them.
4.5 | Limitations and future work

The present work has several limitations. The most relevant one is probably the fact that, although we explore certain
modelling hypotheses, other are kept fixed and are inherent to our FFR prediction framework (segmentation method,
modelling pipeline, etc). This fact is kept in mind throughout the text and only claims that we think are valid for any
model‐based FFR prediction framework are mentioned as such. The impact of patient‐specific TCRI on FFR prediction
diagnostic accuracy was only partially addressed. In fact, in Section 4.3.2 we show that a highly variable TCRI would
have a significant impact in the diagnostic accuracy of our FFR prediction method. Ideally, we should assess how a
patient‐specific TCRI computation would perform in comparison to other methods, but to the best of our knowledge,
no methodology to estimate TCRI non‐invasively and without the use of drugs or additional imaging is currently
available. Another component that can vary greatly among patients is total baseline coronary flow. In this case, we have
considered quantification methods that depend on patient‐specific information such as CO or LVM. However, one
should ideally use a direct total baseline coronary flow measurement method. Such methods are being developed in
the context of ultrasound imaging and magnetic resonance imaging and, once available, have the potential to provide
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highly valuable information for FFR prediction tools. See Fiorentini et al54 and Schwitter et al55 for recent developments
in ultrasound and magnetic‐resonance coronary flow estimation methods.

Another aspect to be considered is the fact that the reduced‐order model is not perfectly reproducing 3Dmodel results.
Therefore, results are influenced not only by boundary conditions but also by errors in solving fluid mechanics within the
computational domain representing epicardial vessels. This is common to any FFR prediction strategy based on reduced‐
order models. Here, we prefer to be aware of such errors and try to minimise them, rather than to embed them in the
modelling framework and lose control on error causes when comparing FFR prediction and invasive measurements.

The prevalence of positive FFR values is not optimal, and one would desire a more homogeneous distribution of
invasive FFR values to work with. However, we observe that this is an issue faced by virtually all published works
on FFR prediction methods and is probably related to the intrinsic dynamics of how FFR is used in the clinic, with
many measurements performed on lesions that reveal to be functionally nonsignificant.

Finally, the results from the UQ & SA depend on the assumed input uncertainties, and here we did not include
uncertainties/variability due to differences in how baseline coronary flow is distributed. More importantly, the way
in which the uncertainty of the stenosis geometry was modelled, via a global parameter effecting all stenotic regions,
may have synthetically increased the influence of this parameter and is not necessarily entirely realistic. Nevertheless,
results shown here should still be considered as valid for giving a clear indication to where attention should be focused
in order to reduce uncertainty in FFR‐prediction.
4.6 | Conclusions and future work

In this work, we have first improved and validated a reduced‐order model for FFR prediction and then tested the impact
of different methods proposed in the literature to estimate and distribute baseline coronary flow on FFR predictions.
Both tasks were performed on a dataset regarding 63 patients with stable CAD and 105 invasive FFR measurements.

The proposed reduced‐order model introduces errors with respect to the 3D model, which are significantly smaller
than errors observed for predicted FFR versus invasive measurements. Moreover, diagnostic performance was only
marginally affected by the use of the reduced‐order model for cases in which 3D simulation results were available
(63 patients, 105 invasive FFR measurements, 3 different setups for 3D simulations).

We have shown that methods for baseline coronary flow estimation and its distribution can affect the diagnostic
performance of an FFR‐prediction framework significantly. Moreover, the influence of methods for flow distribution
is greater than that of methods for baseline flow estimation, and we find that TAG flow distribution outperforms flow
distribution methods based on Murray's law for all tested setups. However, we observe that none of the investigated
methods for baseline coronary flow estimation and distribution results in a significant reduction in error standard
deviation for predicted FFR versus invasive FFR measurements. Finally, we see that for our modelling framework
the diagnostic accuracy on a per‐vessel basis can vary significantly.

In future work, we will regard the further improvement of our reduced‐order model in terms of its capacity to repro-
duce the physics of 3D models in a more accurate manner. Moreover, we will look into better ways of characterising
baseline coronary flow by means of, for example, non‐invasive determination of baseline flow at selected vessels.
Finally, we will consider how to better define a patient‐specific TCRI, since we think that this factor plays a crucial role
in representing patient‐specific variability in coronary physiology relevant for FFR prediction.
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