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Abstract

This thesis studies fracture phenomena with the �ber bundle model, a heavily
simpli�ed model used to analyze various aspects of fracture processes. In the equal
load sharing variant of the model, energy concepts are introduced and an exact
result and asymptotic series expansion of the burst size distribution is calculated.
In the local load sharing variant of the model, we investigate two di�erent e�ects
related to the stability of the model.

In addition, I present a generalization of an earlier result for the �rst burst
in the equal load sharing model, and a possible generalization of the local load
sharing model. Both of these results are previously unpublished.

Article I: We consider the Equal-Load-Sharing Fiber Bundle Model as a model
for composite materials under stress and derive elastic energy and damage energy
as a function of strain. With gradual increase of stress (or strain) the bundle
approaches a catastrophic failure point where the elastic energy is always larger
than the damage energy. We observe that elastic energy has a maximum that
appears after the catastrophic failure point is passed, i.e., in the unstable phase
of the system. However, the slope of elastic energy vs. strain curve has a maxi-
mum which always appears before the catastrophic failure point and therefore this
can be used as a reliable signal of upcoming catastrophic failure. We study this
behavior analytically for power-law type and Weibull type distributions of �ber
thresholds and compare the results with numerical simulations on a single bundle
with large number of �bers.

Article II: We derive an asymptotic series expansion for the burst size distri-
bution in the equal load sharing �ber bundle model, a predominant model for
breakdown in disordered media. Earlier calculations give expressions with correct
asymptotic behavior for large bursts, but low accuracy for small bursts, up to an
order of magnitude o�. The approximations from the expansion we present here
give relative errors of only a few percent when compared with results for in�nite
system sizes. We also solve the burst size distribution exactly for the Weibull
threshold distributions.
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Article III: By comparing the evolution of the local and equal load sharing �ber
bundle models, we point out the paradoxical result that stresses seem to make
the local load sharing model stable when the equal load sharing model is not. We
explain this behavior by demonstrating that it is only an apparent stability in the
local load sharing model, which originates from a statistical e�ect due to sample
averaging. Even though we use the �ber bundle model to demonstrate the appar-
ent stability, we argue that it is a more general feature of fracture processes.

Article IV: We use the local load sharing �ber bundle model to demonstrate a
shielding e�ect where strong �bers protect weaker ones. This e�ect exists due to
the local stress enhancement around broken �bers in the local load sharing model,
and it is therefore not present in the equal load sharing model. The shielding e�ect
is only prominent after the initial disorder-driven part of the fracture process has
�nished, and if the �ber bundle has not reached catastrophic failure by this point,
then the shielding increases the critical damage of the system, compared to equal
load sharing. In this sense, the local stress enhancement may make the fracture
process more stable, but at the cost of reduced critical force.

ii



List of Articles

I. S. Pradhan, J. T. Kjellstadli, and A. Hansen,
Variation of Elastic Energy Shows Reliable Signal of Upcoming Catastrophic

Failure,
Frontiers in Physics 7:106 (2019).

II. J. T. Kjellstadli,
Burst Distribution for Small Bursts by Asymptotic Expansion in the Fiber

Bundle Model,
Submitted to Frontiers in Physics.

III. J. T. Kjellstadli, E. Bering, M. Hendrick, S. Pradhan, and A. Hansen,
Can Local Stress Enhancement Induce Stability in Fracture Processes?

Part I: Apparent Stability,
Frontiers in Physics 7:105 (2019).

IV. J. T. Kjellstadli, E. Bering, S. Pradhan, and A. Hansen,
Can Local Stress Enhancement Induce Stability in Fracture Processes?

Part II: The Shielding E�ect,
Accepted in Frontiers in Physics.

iii





Contribution to Articles

Article I: Variation of Elastic Energy Shows Reliable Signal of Upcoming Catas-

trophic Failure

I did the derivations for a general threshold distribution in the appendix, and
contributed to writing and editing of the article.

Article II: Burst Distribution for Small Bursts by Asymptotic Expansion in the

Fiber Bundle Model

I did the theoretical derivations, the simulations, and wrote the article. Alex
Hansen suggested to look for an exact solution and assisted me in writing the
abstract, introduction and conclusion.

Article III: Can Local Stress Enhancement Induce Stability in Fracture Processes?

Part I: Apparent Stability

I contributed to the original idea and interpretation of the results. I also did the
simulations and data analysis, and wrote the �rst draft of the manuscript.

Article IV: Can Local Stress Enhancement Induce Stability in Fracture Processes?

Part II: The Shielding E�ect

I contributed to the original idea and interpretation of the results. I also did the
simulations and data analysis, and wrote the �rst draft of the manuscript.

v





Acknowledgments

�Jo mer du vet, jo mer vet du at du ikke vet.�

Norwegian original

�The more you know, the more you realize how little you know.�

English translation

Torstein Ribe

The above quote from my former teacher has always fascinated me. The words
have rung true ever since I �rst heard them, through middle school, high school,
the university, and, most recently, throughout my time as a PhD student. They
eloquently encapsulate both the importance of acknowledging ignorance [1] and
how learning is a neverending process.

As a PhD student, my knowledge has grown, and my ignorance has seemingly
increased even more. For every explanation found, new (and hitherto unanswered)
questions have emerged. There are many I would like to thank for supporting me
through this journey of discovery:

My supervisor, Professor Alex Hansen, for embodying the scienti�c process.
Every idea is heavily scrutinized; the bad ones are swiftly and e�ciently weeded
out, while the good ones prevail. There have been many bad ideas � they don't
show up in this thesis � but only a few good ones. Without you I wouldn't have
gotten around to the good ideas.

Everyone in PoreLab, for providing a great environment in which to work and
learn. You've made me realize how little I know about �uid �ow and porous media.

The �ber bundle group � Alex Hansen, Srutarshi Pradhan, Eivind Bering,
Martin Hendrick, and Subhadeep Roy � for making science fun. Our meetings
were immensely motivating, because the most exciting part of my research was
discussing new (and sometimes old) ideas with you.

NTNUI Innebandy � my de facto family in Trondheim � for providing much-
needed relief via activities besides research. When nothing was working out, there
were always practices, matches and parties together with great people to look
forward to.

My family, for believing in me even when I didn't. When none of your ideas

vii



seem to work, it helps to know that someone thinks it's going to turn around soon.
You, dear reader, for spending your valuable time reading these words. Perhaps

this thesis helps you learn something new. Perhaps it helps you realize how little
we all know. If it does, I will consider it a success.

Jonas Tøgersen Kjellstadli
Trondheim, September 2019

viii



Contents

Abstract i

List of Articles iii

Contribution to Articles v

Acknowledgments vii

1 Introduction 1

1.1 The importance of simpli�ed models . . . . . . . . . . . . . . . . . 1
1.2 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Fiber Bundle Model 3

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Equal load sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Burst size distribution . . . . . . . . . . . . . . . . . . . . . 5
2.4 Local load sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 History dependence . . . . . . . . . . . . . . . . . . . . . . . 7

3 Energy and Predicting Failure 9

3.1 Elastic energy, damage energy, and work . . . . . . . . . . . . . . . 9
3.2 Elastic energy maximum . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Elastic energy in�ection point . . . . . . . . . . . . . . . . . . . . . 10

4 Bursts 13

4.1 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Optimal asymptotic approximation . . . . . . . . . . . . . . 15
4.3 The �rst burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



5 Stability 19

5.1 Apparent stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 The shielding e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Generalizing the LLS Model 23

6.1 Link-distributed local load sharing . . . . . . . . . . . . . . . . . . 23
6.2 The load distribution function . . . . . . . . . . . . . . . . . . . . . 25

6.2.1 Reproducing regular LLS . . . . . . . . . . . . . . . . . . . 25
6.2.2 Equal load for each link . . . . . . . . . . . . . . . . . . . . 25
6.2.3 Crack tip stress enhancement . . . . . . . . . . . . . . . . . 26

A First Burst Derivations 27

A.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.1.1 The Lagrange inversion theorem . . . . . . . . . . . . . . . 30
A.1.2 The contour condition . . . . . . . . . . . . . . . . . . . . . 30
A.1.3 Calculating the sum . . . . . . . . . . . . . . . . . . . . . . 32
A.1.4 The missing probability . . . . . . . . . . . . . . . . . . . . 32

References 33

Articles 37

x



1 Introduction

�A metaphorical model does not attempt to precisely describe reality, nor

does it necessarily rely on very plausible assumptions. Rather, it aims to

illustrate a non-trivial mechanism, the scope of which goes much beyond

the speci�cs of the model itself.� [2]

Jean-Philippe Bouchaud

The �ber bundle model is not realistic, but it is incredibly useful. This may
sound contradictory to some. How can a model be both unrealistic and useful?
Because its purpose is to help us understand behavior qualitatively, not to give
exact results.

1.1 The importance of simpli�ed models

The archetypical example of a metaphorical model is the Ising model [3], which
describes magnetism. The simplest version of the model, with no external magnetic
�eld, isotropic interaction strength, and interactions between neighboring pairs of
spins only, manages to capture the essence of the phase transition that magnetic
materials undergo as the temperature changes.

Is it a realistic model for a real magnet? Not really. But that is precisely why
it is so useful.

The model is simple enough to be solved analytically, and we can study the
in�uence of its parameters without having to infer it from numerical solutions or
experiments.

By removing complicating factors, we can see what behavior stems from the
bare-bones mechanics of the model. This serves as both an expected qualitative
behavior of magnetic systems, and a reference that more complex models can be
compared with. It is reasonably simple to determine the in�uence of new mechan-
ics (e.g. an external magnetic �eld) when we know how the model behaves without
them. Conversely, inferring the general behavior of the bare-bones mechanics from
hundreds or thousands of di�erent results from more complex models is much more
di�cult.
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Hence the Ising model contributes with an important understanding of why
magnetism behaves the way it does, and provides a framework and key concepts
that can be used to analyze experiments and more realistic models.

This use of simpli�ed models to understand the general principles of a highly
complex �eld is ubiquitous in physics [4], and is not limited to the Ising model in
condensed matter physics. Thermodynamics has the ideal gas [5] and quantum
mechanics uses the particle in a box [6]. And fracture has (among other models)
the �ber bundle model.

1.2 Fracture

Humanity uses a huge variety of di�erent materials, and the �eld of fracture is
therefore correspondingly broad. It comprises engineering, materials science, geol-
ogy, and physics. It covers rocks [7], metals [8], concrete [9], snow avalanches [10],
earthquakes [11], glasses, and ceramics [12]. A review of the �eld is far outside the
scope of this brief introduction; if you want to learn more, you should consult one
of the numerous books on the subject, e.g. Ref. [13, 14].

But precisely because fracture is a wide and complicated �eld, simpli�ed mod-
els are important for serving as references for experiments and more elaborate
models, and for understanding universal behavior in fracture processes. This is
where the �ber bundle model excels; with only the bare minimum of mechanics,
it is able to describe some of the characteristic features of fracture.

1.3 Outline

Chapter 2 gives a short introduction to the �ber bundle model, both equal and
local load sharing. Chapter 3 introduces energy concepts in the equal load sharing
model and describes how they can potentially be used to predict failure. Chapter 4
presents several results about the burst size distribution in the equal load sharing
model, with some of the lengthy proofs relegated to Appendix A. Chapter 5 deals
with stability in the local load sharing model, while Chapter 6 describes a way to
generalize the model.
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2 The Fiber Bundle Model

This chapter is by no means a complete account of the �ber bundle model, but
rather a brief introduction that covers some history and details of interest for this
thesis. For a more thorough historical perspective and more detailed descriptions
of the model and its applications, see e.g. Ref. [15, 16].

2.1 History

The �ber bundle model (FBM) began when Peirce made it to describe yarns as
bundles of smaller �bers with individual strengths [17]. The next big step was the
statistical treatment of the FBM done by Daniels in 1945 [18], where the e�ects
of probability distributions of �ber strengths were analyzed. These inital works
described the equal load sharing version of the model.

The �ber bundle model continued to be used by the materials science commu-
nity, and in 1978 the local load sharing model was introduced to describe �brous
composite materials [19].

In 1989 the �ber bundle model was introduced to the physics community by
Sornette [20]. Since then much research has been done on both the equal and
local load sharing FBMs, and several models � like the γ-model [21] and the soft
clamp model [22] � have been suggested as more realistic FBMs with intermediate
interaction ranges.

2.2 The basics

A �ber bundle consists of N elastic �bers connected in parallel between two plates,
see Figure 2.1. Each �ber i behaves as a Hookean spring until its elongation x
reaches a threshold ti, where it breaks. The stress-strain relation of a single �ber
is hence

fi =

{
κx for x < ti

0 for x ≥ ti,
(2.1)

where fi is the force acting on the �ber and κ is the �ber's elastic constant. The
�bers are usually assumed to have identical elastic constants, which is commonly
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F

x

Figure 2.1: A �ber bundle: N elastic �bers are connected in parallel between two
plates, and an external force F elongates the bundle a distance x.

set to κ = 1 for simplicity.
The �ber thresholds ti are drawn from a probability distribution, denoted by

the probability density p(t) or the corresponding cumulative distribution P (t) =∫ t
0 dt

′ p(t′).
This threshold distribution needs experimental data to be determined for a

particular application, otherwise it must be chosen somewhat arbitrarily. However,
we are generally interested in studying properties and behaviors that are universal
in the sense that they are common to large groups of threshold distributions.
These universal properties are much more likely to be general features of fracture
processes, which is what simpli�ed models like the FBM excel at describing.

A �ber bundle is exposed to an externally applied force F , which is distributed
on the intact �bers of the bundle. When no �bers are broken, the load is equal
for all �bers, but what happens when �bers break? To determine this internal
distribution of forces, a load sharing rule is needed.

2.3 Equal load sharing

In the equal load sharing (ELS) model, the force F is distributed equally on all
intact �bers. This means that �bers fail in order of increasing thresholds ti when
the force is increased, which makes this version of the �ber bundle model amenable
to analytic calculations.

The load curve � the macroscopic stress-strain relation for the entire �ber
bundle � for the ELS model is

σ ≡ F

N
= κ (1− P (x))x, (2.2)

where σ is the applied force per �ber and x is the elongation of the bundle.
Equivalently, this can be formulated in terms of the number of broken �bers k
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or the damage d = k/N as

σ = κ(1− d)P−1(d), (2.3)

since d = P (x) � with an elongation x, all �bers with ti < x have broken, which
gives a damage equal to the cumulative threshold distribution evaluated at x.

Equations (2.2) and (2.3) represent the behavior in the thermodynamic limit
N → ∞; for �nite system sizes N there are �uctuations around this average
behavior.

From Eq. (2.2) we can �nd the critical elongation xc and the critical damage
dc = P (xc) where the bundle collapses by setting dσ/dx|x=xc = 0, which gives the
condition

P (xc) + xcp (xc) = 1. (2.4)

Once xc is known, it is simple to calculate the critical strength σc of the �ber
bundle via Eq. (2.2).

2.3.1 Burst size distribution

When a �ber breaks because the applied load elongates it past its threshold, the
load it carried is redistributed onto other intact �bers. These additional loads
can push other �bers past their breaking points, triggering an avalanche of �ber
failures under a constant external force F .

The burst size distribution describes the distribution of these bursts of �ber
ruptures. If ∆ is the number of �bers that fail in a burst, we say that it is a burst
of size ∆. The burst size distribution D(∆) is the average number of bursts of
size ∆ that occurs when a �ber bundle breaks. Since this measure scales with the
system size N , it is more convenient to work with D̄(∆) = D(∆)/N , with the
physical interpretation that ∆D̄(∆) is the fraction of �bers that break in bursts
of size ∆.

It has been shown [23] that

D̄(∆) ∼ C∆−5/2
(
1− e−∆/∆c

)
∝

{
∆−3/2 for ∆ � ∆c

∆−5/2 for ∆ � ∆c

(2.5)

in the limit ∆ → ∞, where

C =
xcp(xc)

2

√
2π [2p(xc) + xcp′(xc)]

∆c =
4πC2

p(xc)2 (xc − t0)
2 ,

(2.6)

and t0 ≥ 0 is the lower limit of the threshold distribution.
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Figure 2.2: A one-dimensional �ber bundle with three broken �bers under a load
F , shown with ELS (left) and LLS (right). With LLS, �bers that neighbor holes
receive higher loads, but the other �bers receive smaller loads than they would
have in the ELS model.

2.4 Local load sharing

In the local load sharing (LLS) model, the load that is redistributed when a �ber
breaks is given to only its nearest neighbors. Since this means that �bers no longer
carry the same loads (and hence no longer have the same elongations), the load
curve of the LLS model cannot be represented by σ(x) as in Eq. (2.2), and must
instead be represented by σ(d) as in Eq. (2.3).

The fact that �bers have di�erent elongations also means that �bers no longer
fail in order of increasing thresholds. This lack of orderly behavior makes the LLS
model much more di�cult to work with analytically than the ELS model. Most
LLS results are therefore based on simulations rather than analytic calculations.

The LLS model was originally [19] de�ned on a one-dimensional lattice with
periodic boundary conditions, see Figure 2.2 for an example. The burst distribu-
tion of this model is not a power law [24], unlike the ELS model. More importantly,
the critical damage is dc = 0 in the thermodynamic limit [16, 25]. However, the
model can be generalized to an arbitrary lattice [26]:

Let a hole j be a set of hj broken �bers joined by nearest neighbor connections
of the underlying lattice. The hole has a perimeter of pj intact �bers that are
nearest neighbors of the hole. Every hole redistributes load � the load its �bers
would have carried had they been intact � equally on the �bers in its perimeter.
The force fi on an intact �ber i is then

fi = σ

1 +
∑
j

hj
pj

 , (2.7)

where the sum goes over all holes j that neighbor the �ber.
To �gure out which �ber will break under the smallest load σ, we de�ne an
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e�ective threshold te�,i for each �ber i:

te�,i =
ti

1 +
∑
j

hj
pj

. (2.8)

By combining this expression with Eqs. (2.1) and (2.7) and the breaking criterion
fi ≥ κti for a single �ber, we �nd the breaking criterion σ ≥ κte�,i, which means
that �bers break in order of increasing e�ective thresholds as the force increases.
Unfortunately, the e�ective thresholds depend on the local hole structure of the
�ber bundle, so the order of e�ective thresholds is dynamic amd changes as �bers
break.

Importantly, the generalization of LLS to higher dimensions in Eq. (2.7) is
stable in the sense that the critical damage is nonzero in the thermodynamic
limit, which makes dimensions D > 1 much more interesting to study than the
one-dimensional case.

This generalization of LLS to higher dimensions is not the only one possible
� the soft membrane FBM [27] also reduces to LLS in one dimension � but it is
the simplest one that ensures history independence of the distribution of forces.

2.4.1 History dependence

The original LLS model was history independent in the sense that the breaking
order of the �bers doesn't a�ect the distribution of forces fi on intact �bers,
but not everyone has implemented LLS in this way. When a �ber breaks, some
implementations (e.g. Ref. [28]) simply redistribute its load equally on its nearest
intact neighbors. This is very e�cient computationally, but leads to a model where
the breaking order of the �bers a�ects how forces are distributed within the �ber
bundle � the model is history dependent. (See e.g. Ref. [16, 29] for examples of
how redistributing the forces in this way leads to history dependence.) Contrast
this with the force distribution in Eq. (2.7), where the breaking order of �bers is
irrelevant.

These two implementations of LLS give very di�erent behavior for lattices with
dimension D > 1. Compare, for instance, the results for the square lattice from
Ref. [29] and [30], where e.g. σc di�ers greatly between the two implementations.
I am not aware of any direct comparisons of history dependent and independent
LLS in one dimension, but I expect the qualitative behavior to be the same, as
the model has zero critical damage in both cases.
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3 Energy and Predicting Failure

One of the holy grails of fracture is to predict when catastrophic failure is going
to happen. For it to be useful, a prediction method must work with the limited
information that is available from the system before the failure happens.

As such, Eq. (2.4) for �nding xc in the ELS model is not a useful prediction
method because it requires information about the threshold distribution that can-
not be measured before failure. To determine P (t), we would need to measure
both the force σ and the elongation x and then use Eq. (2.2). But to get the rele-
vant information (P (xc)) we would have to reach the critical point, and predicting
it would be pointless.

But are there methods that can actually be used to predict when failure is
going to happen in the ELS model? It turns out that the elastic energy of the
�ber bundle may give a semi-accurate prediction method.

3.1 Elastic energy, damage energy, and work

The elastic energy Ee of a �ber bundle is simply the total elastic energy of all its
constituent �bers. In the ELS model, they all share the same elongation x, and
hence it can be written

Ee

N
=

κ

2
(1− d)x2, (3.1)

where d is the damage the �ber bundle has sustained. If x is the largest elongation
so far during the fracture process, the damage and elongation are connected via
d = P (x), and we can express the elastic energy as a function of either x or d
alone.

The damage energy Ed is the dissipated energy from �ber failures, and can be
calculated as

Ed

N
=

κ

2

P−1(d)∫
0

dx′ p(x′)x′2. (3.2)

This dissipated energy could be measured via acoustic emissions, like in rock frac-
turing experiments [31, 32].
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The total work W done on the �ber bundle by the force F when the bundle is
stretched from 0 to x can be found via Eq. (2.2):

W

N
=

x∫
0

dx′ σ(x′) = κ

x∫
0

dx′ x′(1− P (x′)), (3.3)

which clearly separates into Eq. (3.1) and Eq. (3.2), i.e., W = Ee + Ed. This
relation can be used to calculate the elastic energy if the work and damage energy
are measured.

3.2 Elastic energy maximum

As seen from Eq. (3.1), the elastic energy must have a well-de�ned maximum at
an elongation xm > 0. By di�erentiation of Eq. (3.1) and some rewriting, we �nd
that xm must satisfy

1− P (xm)

xmp(xm)
=

1

2
. (3.4)

The left-hand side of this equation de�nes a function of the elongation, which
can be rewritten as

1− P (x)

xp(x)
=

1− P (x)

1− P (x)− dσ
dx

=

{
> 1 for dσ

dx > 0

< 1 for dσ
dx < 0

(3.5)

by di�erentiation of Eq. (2.2).
If the load curve has only a single local maximum, then dσ/dx > 0 in the

stable phase (x < xc) and dσ/dx < 0 in the unstable phase (x > xc). From the
above equations we can then conclude that xm must be in the unstable phase, i.e.,
xm > xc. Continuous measurements of the elastic energy to look for its maximum
is hence not a suitable prediction method for failure of the �ber bundle.

3.3 Elastic energy in�ection point

The maximum of Ee is not suitable for predicting failure, but what about the
maximum of its derivative, located at the in�ection point xi? We know that
xi < xm, but is it also smaller than xc? If it is, and a relation between xi
and xc can be found, then continuously measuring the elastic energy of the �ber
bundle during the fracture process to look for its in�ection point could be a useful
prediction method for failure of the bundle.
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Di�erentiating Eq. (3.1) twice and setting the derivative d2Ee/dx2 = 0 at xi
leads to the condition

0 = 2(1− P (xi))− 4xip(xi)− x2i p
′(xi), (3.6)

or, equivalently,
dσ
dx

∣∣∣∣
xi

= −xi
2

d2σ
dx2

∣∣∣∣
xi

. (3.7)

We have not found a general proof that xi < xc from this condition, but it is
true for all Weibull distributions P (t) = 1−exp

(
−tβ

)
and power law distributions

P (t) = tα+1, regardless of the shape parameters β > 0 and α ≥ 0. This indicates
that xi is commonly smaller than xc.

Does this mean that the in�ection point xi can be used to predict failure?
Unfortunately, trying to express the critical point as

xc = Cxi (3.8)

leads to a constant C that depends on the threshold distribution. However, the
window C ∈ [1.2, 1.5] covers a wide range of threshold distributions, and detecting
xi via elastic energy measurements can be seen as a precursor to failure, which is
most likely to happen in the region [1.2xi, 1.5xi].

So far we have discussed only the ELS model, but what about LLS? Here we
must rely on simulations, since analytic calculations are impossible. The results
so far indicate that the behavior of the LLS model depends more on the threshold
distribution than the ELS model, which makes it harder to draw general conclu-
sions.
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4 Bursts

Bursts (also called avalanches) are an important part of the study of �ber bundles.
They represent events of several �bers that break successively, and these events can
be measured by acoustic emissions in experiments [31, 32]. Also, the distribution
of these events changes when the ELS �ber bundle approaches the critical point,
as shown by Eqs. (2.5) and (2.6). This transition has therefore been suggested as
a possble way to predict failure of the bundle [33].

But Eq. (2.5) does not tell the whole story. It is only an asymptotic relation
that is valid for very large (and hence rare) bursts. For smaller bursts, it can be
very inaccurate. This is easily seen by calculating

∞∑
∆=1

∆D̄(∆). (4.1)

Since ∆D̄(∆) is the fraction of �bers that break in bursts of size ∆ (excluding
the fatal burst when the bundle collapses), this sum should equal P (xc). For
a uniform threshold distribution P (t) = t, we �nd that the sum is ≈ 0.246 via
Eq. (2.5), whereas P (xc) = 1/2. This discrepancy is a result of Eq. (2.5) being
inaccurate for small ∆, which contribute the most to the sum in Eq. (4.1).

If the burst distribution is to be used to predict failure, it is better to rely
on smaller and more common events, rather than the large and rare ones. This
chapter therefore focuses on calculating small bursts more accurately for the ELS
model. We do not investigate the LLS model, although it is possible to derive
some analytic results about its burst distribution [24].

4.1 Exact solution

One can show that (to �rst order in N , i.e., in the limit N → ∞) the ELS burst
distribution is [34]

D̄(∆) =
∆∆−1

∆!

xc∫
t0

dt
[
a(t)e−a(t)

]∆
a(t)−1 [1− a(t)] p(t), (4.2)
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with a lower limit t0 < xc of the threshold distribution, and

a(t) =
tp(t)

1− P (t)
. (4.3)

Can Eq. (4.2) be solved exactly for some threshold distributions? Surprisingly,

it can. For a Weibull distribution P (t) = 1 − e−tβ+tβ0 (t ≥ t0) � which gives
a(t) = βtβ � integration by parts and induction yields

D̄(∆) =
∆∆−1et

β
0

∆!(β∆+ 1)

[
e−(∆+1/β) −

(
βtβ0

)∆
e−tβ0 (β∆+1)

]

+
(β∆)∆−1 e−β∆tβ0

∆(β∆+ 1)∆+1

∆−1∑
i=0

[
(β∆+ 1)tβ0

]i
i!

− (β∆)∆−1 et
β
0−(∆+1/β)

∆(β∆+ 1)∆+1

∆−1∑
i=0

(β∆+ 1)i

i!βi
.

(4.4)

This expression can easily be calculated for small ∆, which is what we want to
describe accurately. For large bursts it is impractical to use, but then Eq. (2.5) is a
good approximation and can be used instead. (Equation (4.4) reduces to Eq. (2.5)
in the limit ∆ → ∞.)

4.2 Asymptotic expansion

What about threshold distributions where the burst distribution cannot be solved
exactly? Equation (4.2) can be formulated as a Laplace integral [35] where one
can do an asymptotic series expansion in the limit ∆ → ∞. This approach was
used to derive Eq. (2.5), which is the �rst term of the series expansion.

But it is possible to derive a scheme for the full asymptotic expansion. The
resulting series has the form

D̄(∆) ∼ ∆∆−2e−∆

∆!

(
C1(∆) + C2(∆)∆−1/2

+ C3(∆)∆−1 + C4(∆)∆−3/2 + · · ·
)
.

(4.5)

Unfortunately, the �coe�cients� Cn depend on ∆ because of the lower limit of
integration in Eq. (4.2). Hence it is di�cult to use this series to extract any
general behavior of D̄(∆) as a function of ∆.

However, Eq. (4.5) can be used to calculate approximations to D̄(∆) for small
∆, where Eq. (2.5) is very inaccurate.
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4.2.1 Optimal asymptotic approximation

In general, asymptotic series like Eq. (4.5) diverge for �nite ∆. But one can �nd
good approximations to the burst distribution for �nite bursts by discarding the
divergent part of the series expansion. The procedure for doing this summation is
[35]:

Calculate the terms in the series and locate the smallest term in absolute value
� let us call it m. Then sum all terms up to, but not including, the smallest term.
The resulting approximation is

D̄(∆) ≈ ∆∆−2e−∆

∆!

m−1∑
i=1

Ci(∆)∆−(i−1)/2, (4.6)

which is optimal in the sense that it gives us the smallest estimate of the error.
Equation (4.6) can hence give us approximations of the burst distribution for

small bursts, even though Eq. (4.5) is valid only in the limit ∆ → ∞ and (most
likely) diverges for �nite ∆.

In practice, one cannot calculate the entire in�nite series to �nd the smallest
term, so one must settle for calculating a certain number of terms and then �nding
the smallest among those. This term is not necessarily the smallest one in the
entire series, in which case the accuracy of the approximation is reduced.

The exact result in Eq. (4.4) provides a perfect test case to assess the accuracy
of Eq. (4.6). Both results are derived in the thermodynamic limit, and therefore
do not contain �nite size e�ects. The relative errors when using Eq. (4.6) (with
13 calculated terms for each value of ∆) to approximate the exact result is shown
in Figure 4.1 for a Weibull threshold distribution with shape parameter β = 1.
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Figure 4.1: Relative errors when using Eq. (4.6) with 13 calculated terms to ap-
proximate the exact result for the ELS burst distribution with the Weibull thresh-
old distribution. Left: β = 1 and t0 = 0. Right: β = 1 and t0 = 0.8.

When t0 = 0.8, close to xc = 1, the optimal approximation is very accurate.
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The largest relative errors � for the smallest ∆, as one would intuitively expect
� are of order 10−9!

When t0 = 0, the accuracy is much lower, with the largest relative errors of
order 10%. The results indicate that the cause is that 13 terms is insu�cient to
�nd the smallest terms in the asymptotic series. However, this approximation is
still much better than using Eq. (2.5), which is nearly an order of magnitude o�
for ∆ = 1.

In conclusion, the asymptotic expansion in Eq. (4.5) and the optimal approxi-
mation in Eq. (4.6) provide a framework for estimating the ELS burst distribution
for small bursts when no exact results exist and Eq. (2.5) is not accurate enough.

4.3 The �rst burst

Instead of calculating the entire burst distribution during the breaking of a �ber
bundle, we can focus on only the �rst burst. What is the probability P1(∆) that
the �rst burst that occurs is of size ∆? For the special case t0 = xc, this has been
shown [23] to be

P1(∆) =
e−∆∆∆−1

∆!
' 1√

2π
∆−3/2 (4.7)

in the thermodynamic limit.
But this result can be generalized to an arbitrary lower limit t0. The proof of

this generalization is essentially identical to the original proof of Eq. (4.7), and is
shown in Appendix A. The general expression is

P1(∆) = [1− r(t0)]
−1 e∆/∆0(t0) e

−∆∆∆−1

∆!

' 1√
2π [1− r(t0)]

∆−3/2e∆/∆0(t0),
(4.8)

where

r(t) = 1− tp(t)

1− P (t)
,

1/∆0(t) = r(t) + ln (1− r(t)) .

(4.9)

For t0 = xc, we recover Eq. (4.7), since r(xc) = 0 and hence 1/∆0(xc) = 0. For
other values of t0, ∆0(t0) < 0, and the power law observed when t0 = xc is modi�ed
with an exponential decay. In Figure 4.2, Eq. (4.8) is compared with simulation
results for a Weibull threshold distribution, with excellent agreement between the
two.

Equation (4.8) should be properly normalized, and therefore one would intu-
itively expect that

∑∞
∆=1 P1(∆) = 1. This is indeed the case for t0 ≤ xc, but for

t0 > xc we �nd that
∞∑

∆=1

P1(∆) =
W0

(
(r(t0)− 1)er(t0)−1

)
r(t0)− 1

< 1, (4.10)
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Figure 4.2: Probability distribution P1(∆) for the �rst burst with a Weibull thresh-
old distribution with β = 1 and t0 ≥ xc = 1. Colored circles are simulation results
(N = 106, 2×106 samples) and the black lines show Eq. (4.8) for the corresponding
threshold distributions.

where W0 is the principal branch of the Lambert W function, the inverse of the
function f(z) = zez. When t0 > xc, we have r(t0) − 1 < −1, and the principal
branch W0 provides the nontrivial, real solution of W eW = (r(t0) − 1)er(t0)−1.
Calculating this normalization is rather lengthy, and the derivation is therefore
relegated to Appendix A.

Why is P1(∆) not normalized so that it sums to one in this case? Because
for t0 > xc, there is a nonzero probability that the �rst burst breaks the entire
bundle: P1(∆ = N) > 0. The derivation of Eq. (4.8) requires that ∆ � N , which
means that it does not include cases where ∆ = N .

This insight allows us to use Eq. (4.10) to calculate the probability of instant
rupture of the �ber bundle when t0 > xc. This probability is simply the one that
is �missing� from Eq. (4.10):

P1(∆ = N) =

{
0 when t0 ≤ xc

1− W0

(
(r(t0)−1)er(t0)−1

)
r(t0)−1 when t0 > xc.

(4.11)
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Figure 4.3: Probability P1(∆ = N) that the �rst burst breaks the entire �ber
bundle with a Weibull threshold distribution (β = 1, i.e., xc = 1). Colored circles
are simulation results, and the black line shows Eq. (4.11).

Equation (4.11) is compared with simulations for a Weibull threshold distribution
in Figure 4.3. The agreement is excellent for large system sizes N , with clear
�nite size e�ects for smaller N , which indicates that Eq. (4.11) is indeed the
correct expression in the thermodynamic limit.
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5 Stability

Stability is easily de�ned for the ELS model. We can use Eq. (2.4) to �nd the
critical elongation xc. There is then a stable phase x < xc where the load σ must
be increased to continue the fracture process, and an unstable phase x > xc where
the load required to continue the fracture process decreases. (Some threshold
distributions can complicate this picture [16, 24], but they are exceptions rather
than the typical case.)

This simplicity is due to the lack of �uctuations in the ELS model in the
thermodynamic limit. But what about the LLS model, where there are dynamics-
dependent �uctuations that do not disappear in the thermodynamic limit?

The answer � but not the calculations that lead there � is relatively simple
in one dimension [16, 25], where dc = 0 in the thermodynamic limit. If t0 = 0,
Eq. (2.3) yields a critical strength σc = 0. The 1D LLS model is globally unstable
and collapses once the elongation reaches the thresholds of the weakest �bers. But
for dimensions D > 1 the LLS model can exhibit stable phases like the ELS model
[16, 28�30], and the issue of stability is more complicated than in one dimension.

5.1 Apparent stability

An example of how �uctuations in the LLS model can seemingly a�ect stability
is through the apparent stability where the LLS model looks locally stable even
though it isn't. Figure 5.1 shows load curves for a Weibull threshold distribution
with β = t0 = 1. The ELS model is in this case unstable everywhere, since t0 = xc.
The square lattice LLS model is also globally unstable, since the bundle breaks
once the load σ reaches the thresholds of the weakest �bers. But it looks like there
is a region where the LLS model is locally stable, i.e., the (sample averaged) load
〈σ〉 required to continue the fracture process increases.

We have previously interpreted this as a sign that the LLS model is locally
stable in this region [29], and attributed this to the shielding e�ect [36] that is
described later in this chapter. But this is wrong, because the LLS model is not
locally stable in this case, it only appears to be due to how �uctuations a�ect the
sample averaged load.

The background of Figure 5.1 shows a color map of how the load curves of
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Figure 5.1: Load curves for the ELS and LLS models with a Weibull threshold
distribution P (t) = 1 − exp (−t+ 1), (β = t0 = 1). The ELS curve is Eq. (2.3),
whereas the LLS curve is a sample average from simulations on a square lattice
(N = 1282). The background is a color map that shows the density ρ of single
sample LLS load curves for the 1.5×105 samples that the average is based on. The
color bar is capped at ρ = 0.0025 to highlight the �uctuations with the smallest
values of σ.

individual samples are distributed for the LLS model, with big force di�erences
between samples for the same damage d. These �uctuations (in the ensemble
of individual samples) reveal that the increase in the averaged load 〈σ〉 as the
damage increases does not happen because the LLS model is locally stable there;
the average increases in a small region because the lower end of the �uctuations
become much more rare there, but the upper end of the �uctuations still decreases.

The central issue is how one should de�ne local stability in the LLS model.
Because of the large �uctuations (even for forces required to break consecutive
�bers in a single sample), we cannot use the approach of the ELS model. Instead,
we can de�ne small damage intervals [di, di+1] for each sample, where ∆d = di+1−
di is any small, but �nite, number. To break the �bers in a given interval, we must
break the strongest �ber there. Hence, we �nd the largest force σmax,i in each

20



interval. If this sequence of forces increases somewhere � in the limit N → ∞,
where we have su�ciently many �bers in each interval for the variance of σmax,i
to be irrelevant � there is a local stability in that region. Since the upper limit
of the color map in Figure 5.1, which can be used as a substitute for the sequence
of maximum forces, decreases everywhere, there is no local stability in the LLS
model either.

But if the LLS model is not stable, why is there an apparent stability where 〈σ〉
increases? The lower end of the force �uctuations happen because a �ber breaks,
and the hole that grew �encounters� a new �ber with a small threshold that is
added to its perimeter. The new �ber's e�ective threshold becomes even smaller
(Eq. (2.8)), and the force required to break it is hence small. These events become
much rarer when the perimeters of holes cover most of the intact �bers, which
happens in a region around the percolation threshold1 of the lattice. There is
nothing special about the square lattice in this regard, and the apparent stability
is visible for other lattices around their corresponding percolation thresholds, as
shown in Figure 5.2.

This underlying cause is always present in the LLS model, but it doesn't nec-
essarily result in an apparent stability. For many threshold distributions, the
changing �uctuations aren't enough to make 〈σ〉 increase when the model is un-
stable.

5.2 The shielding e�ect

In the LLS model, intact �bers that neighbor holes carry larger forces than other
�bers. Intuitively, one might expect that this local stress enhancement would make
the LLS model less stable than the ELS model, but that is not always the case.

Stress enhancement somewhere also means stress reduction somewhere else.
Figure 2.2 illustrates this for the one-dimensional LLS model; �bers that neighbor
holes are loaded more than with ELS, but the other �bers are loaded slightly less.
The other �bers are shielded from some of the load by the �bers that neighbor
holes.

There are small pockets of weak �bers scattered throughout the �ber bundle,
surrounded by stronger �bers that shield them from some of the external load.
The shielding e�ect makes sure that these weak �bers survive longer in LLS than
in ELS; at the same damage, the weakest intact �bers are weaker in LLS than in
ELS, because slightly stronger �bers with smaller e�ective thresholds break in their
stead. The e�ect is more pronounced in less connected, i.e., lower-dimensional,
lattices, and its e�ects are therefore most easily noticed in two dimensions. (One
dimension is, as usual, exceptional in the LLS model.)

The e�ects of shielding are signi�cant only when the fracture process is no
longer in the disorder-dominated regime � when Eq. (2.8) is dominated by the

1For more information about percolation theory, see e.g. Ref. [37].
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Figure 5.2: Sample averaged LLS load curves for lattices in two to four dimen-
sions with corresponding site percolation thresholds pc indicated. The threshold
distribution is P (t) = 1− exp (1− t), a Weibull distribution with β = t0 = 1.

thresholds in the denominator � where ELS and LLS behave very similarly. In
cases where the LLS model is stable long enough for the fracture process to leave
the disorder-dominated regime, the shielding e�ect can actually make it more sta-
ble than the ELS model in terms of how much damage the �ber bundle can sustain
before collapsing. However, this comes at the expense of the critical strength σc,
which is smaller in the LLS model than in the ELS model due to the local stress
enhancement.

With a uniform threshold distribution P (t) = t, the square lattice LLS model
has a critical damage dc that is roughly 5% larger than the corresponding ELS
value dc = 1/2. The critical strength is σc ≈ 0.233, which is around 7% smaller
than the ELS result σc = 1/4.

If the collapse happens in the disorder-dominated regime, then the local stress
enhancement of LLS makes both dc and σc smaller than in the ELS model. This is
the case when P (t) = t2, where the LLS model has dc < 0.2 in the thermodynamic
limit, whereas the ELS model is stable much longer, with dc = 1/3.
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6 Generalizing the LLS Model

The LLS model has been criticized for being unrealistic, because distributing forces
equally on all perimeter �bers independently of hole shapes is not how real ma-
terials behave. As mentioned in the introduction, models that are simpli�ed and
sometimes unrealistic can be very useful, but we would like to compare them with
more realistic models. Hence we want to create a generalization of the LLS model
that can accomodate for more realistic ways of distributing forces on perimeter
�bers.

If we insist that the model should be history independent, there are only a
few things that the force distribution scheme can depend on: hole sizes, perimeter
sizes and hole shapes. The �rst two are necessary to de�ne an LLS model, and
only the hole shapes can be used to generalize the model. But how? The shape
of a hole contains a wealth of information that could potentially be used. This
section will outline what I consider the simplest approach, which creates a model
that can be applied to any connected network, just like regular LLS.

6.1 Link-distributed local load sharing

Let us de�ne the link-distributed LLS model. The basics of the model are identical
to regular LLS:

The model consists of N elastic �bers between two plates. A �ber i behaves as
a Hookean spring with spring constant κ until its elongation x reaches its threshold
ti, where the �ber breaks. The stress-strain relation of �ber i is hence

fi =

{
κx while x < ti

0 after x reaches ti
. (6.1)

The set of thresholds {ti} is drawn from a probability density p(t) with corre-
sponding cumulative probability distribution P (t) =

∫ t
0 du p(u). These thresholds

are individual for each �ber, and the threshold distribution P (t) is a parameter of
the model.

A total force F can be exerted on the �ber bundle, and we de�ne the force per
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�ber as σ = F/N . The forces fi on individual �bers must of course satisfy

F = Nσ =
∑
i

fi, (6.2)

where the sum can be restricted to intact �bers, since fi = 0 for broken �bers.
Fibers are placed on a lattice in D ≥ 1 dimensions with well-de�ned nearest

neighbor connections. (This model will be identical to regular LLS in 1D, so D > 1
is the most interesting.) Let the connectivity � the number of nearest neighbors
for each site � of the lattice be c.

Let a hole j be a set of broken �bers that are connected by nearest neighbor
connections. The number of broken �bers that make up the hole is its size hj , and
the hole has a perimeter consisting of pj neighboring intact �bers.

Let a link be a nearest neighbor connection from a hole to an intact �ber. A
hole j then has Lj total links connecting it to intact �bers. Each of these �bers �
which make up the perimeter of the hole � has at least one and at most (when it
is completely surrounded by the hole) c links to the hole.

Denote the number of links between �ber i and hole j by lij . These numbers
satisfy ∑

〈i,j〉

lij = Lj , (6.3)

where I have used the notation 〈i, j〉 for the set {intact �ber i|i neighbors hole j},
i.e., all intact �bers i that neighbor the hole j. Similarly, 〈j, i〉 will mean the set
of holes j that neighbor the intact �ber i.

With the above de�nitions we can now de�ne a force distribution scheme. A
hole j with size hj has a total load σhj (from its broken �bers) to distribute on
its Lj links. We let a link between hole j and �ber i receive a fraction gj(lij) of
this total load. This means that the load distribution function gj must satisfy the
normalization condition

1 =
∑
〈i,j〉

lijgj(lij) (6.4)

for all holes j. The function gj is another parameter of the link-distributed LLS
model, in addition to the threshold distribution P (t). For now we will keep gj
completely general, and investigate potential choices later.

A �ber i thus receives an additional load σhjlijgj(lij) from a hole j, and we
can write the total force acting on it as

fi = σ

1 +
∑
〈j,i〉

hjlijgj(lij)

 , (6.5)

This equation is similar to Eq. (2.7) for regular LLS, but it is more versatile because
the function gj can take many di�erent forms.

24



With the force distribution from Eq. (6.5) in place, we de�ne e�ective thresh-
olds te�,i of the �bers as

teff,i =
ti

1 +
∑

〈j,i〉 hjlijgj(lij)
, (6.6)

analogous to Eq. (2.8) for regular LLS. Combining Eqs. (6.1), (6.5) and (6.6) gives
the breaking criterion

σ = κte�,i (6.7)

where the �ber with the smallest e�ective threshold breaks under the smallest load
σ.

6.2 The load distribution function

The function gj can take many di�erent forms. Let us investigate a few possibili-
ties.

6.2.1 Reproducing regular LLS

Is link-distributed LLS a generalization of the regular LLS model, i.e., can we �nd
a function gj that makes Eqs. (2.7) and (6.5) identical? Consider the function

gj(lij) = (pjlij)
−1. (6.8)

which satis�es the normalization condition in Eq. (6.4). Now insert this expression
into Eq. (6.5). This yields

fi = σ

1 +
∑
〈j,i〉

hj
pj

 , (6.9)

which is exactly Eq. (2.7). It is therefore possible to reproduce regular LLS from
link-distributed LLS by choosing the proper load distribution function gj , and the
model can be categorized as a generalization of regular LLS.

6.2.2 Equal load for each link

The simplest approach for the load distribution function would be to let each link
get an equal share of the load that the hole redistributes. This would amount to
a constant function

gj =
1

Lj
. (6.10)

Inserting this function into Eq. (6.5) gives the force distribution

fi = σ

1 +
∑
〈j,i〉

hj
lij
Lj

 . (6.11)
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This model would incentivize the breaking of �bers with many links to holes, i.e.,
incentivize the creation of more compact holes than in regular LLS.

6.2.3 Crack tip stress enhancement

Can we use this model to mimic the stress enhancement that occurs around crack
tips in real materials? (See e.g. Ref. [38] for some illustrations of how this stress
enhancement can look for di�erent crack geometries.) The best we can do would
be to use a load distribution function

gj(lij) = Cjl
−α
ij , (6.12)

where Cj is a normalization constant and α > 1, so that the total load given to
a �ber is smaller the fewer links it has to a given hole. Inserting this into the
normalization condition of Eq. (6.4) yields

Cj =

∑
〈i,j〉

l−α+1
ij

−1

. (6.13)

However, this would account for the number of links only, and not the general
shape of holes. For instance, this model would not di�erentiate between a �ber at
the end of a long, narrow hole and a �ber at the long edge of the hole if both of
them have only one link to the hole.
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A First Burst Derivations

We study the ELS model with a threshold distribution P (t), t > t0, with N total
�bers. To derive the probability P1(∆) that the �rst burst that occurs is of size
∆, we follow the same procedure as Ref. [23], but with a general lower limit t0
instead of the special case t0 = xc.

Let {tk} be the ordered sequence of �ber thresholds, so that tk ≤ tk+1 for all
allowed values of k. The force required to break �ber number k is then

Fk = κtk (N − k + 1) , (A.1)

where we set κ = 1 for simplicity. From this equation we can calculate the di�er-
ence between the forces required to break to consecutive �bers:

fk ≡ Fk+1 − Fk = (N − k)(tk+1 − tk)− tk. (A.2)

Since the sequence {tk} is ordered, this force di�erence satis�es fk ≥ −tk. The
probability density ρ of these force di�erences is [16]

ρ (fk) =

{
1−r(tk)

tk
exp

[
−1−r(tk)

tk
(fk + tk)

]
for fk ≥ −tk

0 for fk < −tk,
(A.3)

in the limit N − k → ∞, where

r(t) = 1− tp(t)

1− P (t)
. (A.4)

For the �rst burst that happens to be of size∆, the forces Fk for k = 2, 3, · · · ,∆+1
must satisfy the following criteria: F1 ≥ Fk for 2 ≤ k ≤ ∆ and F1 < F∆+1. In
terms of the force di�erences fk, this forward condition [34] can be written as

j∑
k=1

fk ≤ 0 for j = 1, 2, · · · ,∆− 1

∆∑
k=1

fk > 0

(A.5)
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since
∑j

k=1 fk = Fj+1 − F1. This can be reformulated to

f1 ≤ 0

fj ≤−
j−1∑
k=1

fk for j = 2, 3, · · · ,∆− 1

f∆ >−
∆−1∑
k=1

fk ≥ 0.

(A.6)

Note that f∆ > 0, as it must be when F∆+1 > F1 ≥ F∆.
We can now express P1(∆) as

P1(∆) =

0∫
−∞

df1ρ(f1)

−f1∫
−∞

df2ρ(f2)

−f1−f2∫
−∞

df3ρ(f3) · · ·

×
−f1−f2−···−f∆−2∫

−∞

df∆−1ρ(f∆−1)

∞∫
−f1−f2−···−f∆−1

df∆ρ(f∆),

(A.7)

where the limits of the integrals come from the forward condition in Eq. (A.6).
Since ρ(f) = 0 for f < −t0, we can limit the integration limits even further,

P1(∆) =

0∫
−t0

df1ρ(f1)

−f1∫
−t0

df2ρ(f2)

−f1−f2∫
−t0

df3ρ(f3) · · ·

×
−f1−f2−···−f∆−2∫

−t0

df∆−1ρ(f∆−1)

∞∫
−f1−f2−···−f∆−1

df∆ρ(f∆).

(A.8)

Note that the innermost integral over f∆ is not a�ected by this since the lower
limit is positive, as shown in Eq. (A.6), and therefore larger than −t0 ≤ 0.

The probability densities for the force di�erences in these integrals are given
by Eq. (A.3) when N − k is su�ciently large. If we assume that ∆ � N , then the
∆+1 �bers with the smallest thresholds will all have thresholds very close to t0. It
is then a reasonable approximation to use Eq. (A.3) with tk = t0 as the probability
density for all the di�erences fk (with k = 1, 2, · · · ,∆) that are relevant for the
forward condition.

With this approximation, the innermost integral is straightforward to calculate:

∞∫
−f1−f2−···−f∆−1

df∆ρ(f∆) = exp [r(t0)− 1]

× exp

[
r(t0)− 1

t0
(−f1 − f2 − · · · − f∆−1)

]
.

(A.9)
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When we insert this and Eq. (A.3) into the expression for P1, we see that the
fk-dependence disappears from all the remaining integrands, the remainders of
which can then be moved outside the integrals as common factors:

P1(∆) = (1− r(t0))
∆−1e∆(r(t0)−1)

0∫
−t0

df1
t0

−f1∫
−t0

df2
t0

−f1−f2∫
−t0

df3
t0

· · ·

×
−f1−f2−···−f∆−2∫

−t0

df∆−1

t0
.

(A.10)

Now do the substitutions zk = fk/t0, which simpli�es the expression to

P1(∆) = (1− r(t0))
∆−1e∆(r(t0)−1)I, (A.11)

where we have designated the symbol I to represent the remaining integrals. In
the appendix of Ref. [23] it is shown that

I ≡
0∫

−1

dz1

−z1∫
−1

dz2

−z1−z2∫
−1

dz3 · · ·
−z1−z2−···−z∆−2∫

−1

dz∆−1

=
∆∆−1

∆!
,

(A.12)

which we use together with Stirling's approximation ∆! '
√
2π∆∆∆e−∆ to further

simplify our expression for P1(∆):

P1(∆) = [1− r(t0)]
−1 e∆/∆0(t0) e

−∆∆∆−1

∆!

' 1√
2π [1− r(t0)]

∆−3/2e∆/∆0(t0).
(A.13)

Here 1/∆0(t) ≡ r(t)+ln (1− r(t)). For t0 6= xc we have that∆0(t0) < 0, and hence
there is an exponential decay with ∆ that depends on the threshold distribution
and t0.

A.1 Normalization

Since P1 is a probability, it should be properly normalized. To check the normal-
ization, we calculate the sum

S =

∞∑
∆=1

P1(∆)

=

∞∑
∆=1

(1− r(t0))
∆−1e∆(r(t0)−1)∆

∆−1

∆!
.

(A.14)
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We should expect that S = 1, but if that is not the case, then the sum could
potentially depend on t0: S = S(t0).

A.1.1 The Lagrange inversion theorem

To calculate the normalization of P1 we will need the Lagrange inversion theorem.
A special case of the theorem [39] can be stated as:

Let g(z) and φ(z) be functions that are analytic on and inside a contour C in the
complex plane that surrounds a point a. If λ is a number such that |λφ(z)| < |z−a|
for all points z on C, then the equation

ξ = a+ λφ(ξ) (A.15)

has a single solution ξ inside C, and one can also write

g(ξ) = g(a) +

∞∑
k=1

λk

k!

[(
∂

∂z

)k−1 (
φ(z)kg′(z)

)]
z=a

. (A.16)

If g is chosen to be the identity function, i.e., g(z) = z, then the analyticity of g
is satis�ed and the previous equation simpli�es to

ξ = a+

∞∑
k=1

λk

k!

[(
∂

∂z

)k−1

φ(z)k

]
z=a

. (A.17)

If we can show that Eq. (A.14) can be written in the form of Eq. (A.17) and
that the conditions for the Lagrange theorem applies, then we can use the simpler
Eq. (A.15) to calculate the normalization of P1. We start by rewriting Eq. (A.14):

S =

∞∑
∆=1

(1− r(t0))
∆−1e∆(r(t0)−1)∆

∆−1

∆!

=

∞∑
∆=1

e∆(r(t0)−1)

∆!
[∆ (1− r(t0))]

∆−1

=
∞∑

∆=1

(
er(t0)−1

)∆
∆!

[(
∂

∂z

)∆−1 (
e(1−r(t0))z

)∆
]
z=0

.

(A.18)

This is exactly Eq. (A.17) with ξ = S, a = 0, λ = er(t0)−1, and φ(z) = e(1−r(t0))z.
Since φ is a simple exponential function, its analyticity is satis�ed, and the

only remaining criterion to satisfy is the contour C.

A.1.2 The contour condition

The contour condition from the Lagrange theorem is

e(1−r(t0))(Re(z)−1) < |z| (A.19)

30



1 Re

Im

S

C

1 Re

Im

C

Figure A.1: Sketches of contours C that can be used for the Lagrange theorem.
The two real solutions of Eq. (A.20) are indicated on the real axis. For t0 > xc
(left) the contour contains the solution S < 1 (red), while for t0 < xc (right) it
contains S = 1 (red).

in our case. There are three di�erent cases that we need to consider: t0 < xc,
t0 = xc, and t0 > xc.

For t0 < xc, 1 ≥ r(t0) > 0. The contour contition becomes exp(K(Re(z) −
1)) < |z|, where K is a constant that satis�es 0 ≤ K < 1. (Equality when t0 = 0,
i.e. r(t0) = 1.) For real z this is satis�ed when z is su�ciently negative and
slightly larger than 1. Hence, a contour C surrounding a = 0 can be found that
crosses the real line in�nitesimally higher than z = 1 and when z is su�ciently
negative, as sketched in Figure A.1.

For t0 > xc, r(t0) < 0. The contour condition becomes exp(K(Re(z)−1)) < |z|
where K > 1 is a constant. This is satis�ed for real z both when z is su�ciently
negative and slightly smaller than 1. We can hence construct a contour C sur-
rounding a = 0 as sketched in Figure A.1 that crosses the real line in�nitesimally
lower than z = 1 and when z is su�ciently negative.

For t0 = xc, r(t0) = 0. The contour condition becomes exp(Re(z) − 1) < |z|,
which is not valid for nonnegative, real z. It is therefore impossible to �nd a
contour C that encloses a = 0, and the Lagrange theorem cannot be applied to
this case. This means that the derivation in Appendix A of Ref. [16] is incorrect,
since it tries to use the Lagrange theorem in this case. However, the result is still
correct. If the sum S exists (i.e., converges) in this case, it must be given by the
limit S(t0 = xc) = S(t0 → x+c ) = S(t0 → x−c ).

We have shown that we can apply the Lagrange theorem to our problem, and
the remaining part is to solve Eq. (A.15) and �nd the solution that is enclosed in
the contour C.

31



A.1.3 Calculating the sum

In our case, Eq. (A.15) becomes

Se(r(t0)−1)S = er(t0)−1, (A.20)

whose solutions S are given by the Lambert W function as

S =
W

(
(r(t0)− 1)er(t0)−1

)
r(t0)− 1

. (A.21)

There are in�nitely many branches of W , but only two of them are real and
candidates for our sum S. The �rst is the trivial S = 1. The other gives S < 1
when t0 > xc and S > 1 when t0 < xc. These two branches are sketched in
Figure A.1, from which we can deduce which branch is the correct one to use
when calculating S.

For t0 < xc, the contour C encloses the trivial solution S = 1, and P1 is
properly normalized in this case.

For t0 > xc, the contour C encloses the nontrivial solution S < 1 given by the
principal branch W0 of the Lambert W function. Hence P1 is not normalized so
that it sums to one.

For t0 = xc we cannot use the Lagrange theorem, but we can �nd the sum as
the limit of the two previous cases: S(t0 = xc) = S(t0 → x+c ) = S(t0 → x−c ) = 1.

A.1.4 The missing probability

As we have shown, Eq. (A.13) for P1 is nicely normalized so that S = 1 for t0 ≤ xc.
But why is that not the case for t0 > xc?

The derivation of Eq. (A.13) requires ∆ � N , meaning that it cannot account
for cases where the �rst burst is of size N and breaks the entire �ber bundle. We
can therefore interpret the missing probability in the normalization of Eq. (A.13)
as the probability P1(∆ = N), and we can calculate this probability via Eq. (A.21):

P1(∆ = N) = 1− S =

{
0 when t0 ≤ xc

1− W0

(
(r(t0)−1)er(t0)−1

)
r(t0)−1 when t0 > xc.

(A.22)
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Variation of Elastic Energy Shows
Reliable Signal of Upcoming
Catastrophic Failure
Srutarshi Pradhan*, Jonas T. Kjellstadli and Alex Hansen

PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

We consider the Equal-Load-Sharing Fiber Bundle Model as a model for composite

materials under stress and derive elastic energy and damage energy as a function of

strain. With gradual increase of stress (or strain) the bundle approaches a catastrophic

failure point where the elastic energy is always larger than the damage energy. We

observe that elastic energy has a maximum that appears after the catastrophic failure

point is passed, i.e., in the unstable phase of the system. However, the slope of

elastic energy vs. strain curve has a maximum which always appears before the

catastrophic failure point and therefore this can be used as a reliable signal of upcoming

catastrophic failure. We study this behavior analytically for power-law type and Weibull

type distributions of fiber thresholds and compare the results with numerical simulations

on a single bundle with large number of fibers.

Keywords: material failure, fiber bundle model, elastic energy, damage energy, catastrophic failure, reliable signal

1. INTRODUCTION

Accurate prediction of upcoming catastrophic failure events has important and far-reaching
consequences. It is a central problem in material science in connection with the durability of
composite materials under external stress [1–5]. The same problem exists at a large scale (field-
scale) associated with mine and cave collapses, landslides, snow avalanches and the onset of
earthquakes due to plate movements [6, 7]. In medical science, understanding fracturing of human
bones exposed to a sudden stress is an important research area [8]. These phenomena belong
to the class of phenomena called stress-induced fracturing, where initially micro-fractures are
produced here and there in the system and at some point, due to gradual stress increase, a
major fracture develops through coalescence of micro-fractures and the whole system collapses
(catastrophic event). Such stress-induced failures occur also in very different domains—for
example, in breakdown of social relationships and mental health [9, 10].

The central question is—when does the catastrophic failure occur? Is there any prior signature
that can tell us whether catastrophic failure is imminent? The inherent heterogeneities of the
systems and the stress redistribution mechanisms (inhomogeneous in most cases) make things
complicated and a concrete theory of the prediction schemes, even inmodel systems, is still lacking.

In this article, we address this problem (prediction of catastrophic events) in the Fiber Bundle
Model (FBM) which has been used as a standard model [11–14] for fracturing in composite
materials under external stress. We will show theoretically that in the Equal-Load-Sharing (ELS)
model: (1) At the catastrophic failure point, the elastic energy is always larger than the damage
energy. (2) The elastic energy variation shows a distinct peak before the catastrophic failure point
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and this is a universal feature, i.e., it does not depend on the
threshold distribution of the elements in the system. (3) The
energy release during final catastrophic event is much bigger
than the elastic energy stored in the system at the failure
point. Our numerical results show perfect agreement with the
theoretical estimates.

We organize our article as follows: After the brief introduction
(section 1), we define the elastic energy and the damage energy
in the Fiber Bundle Model in section 2. In sections 3 and 4
we calculate the elastic and damage energies of the model in
terms of strain or extension. In several subsections of sections
3 and 4 we explore the theoretical calculations for power-law
type andWeibull type distribution of fiber thresholds. Simulation
results are presented and numerical results are compared with
the theoretical estimates in these sections. We present a general
analysis of elastic energy variations and existence of an elastic-
energy maximum in section 5. In section 6 we identify the
warning sign of catatrophic failure by locating the inflection
point. Here, in addition to uniform and Weibull distributions,
we choose a mixed threshold distribution and present the
numerical results, based on Monte Carlo simulation, to confirm
the universality of the behavior in the ELS models. Finally, we
keep some discussions in section 7.

2. THE FIBER BUNDLE MODEL

The fiber bundle model consists of N parallel fibers placed
between two solid clamps (Figure 1). Each fiber responds linearly
with a force f to a stretch or extension 1,

f = κ1 , (1)

where κ is the spring constant. κ is the same for all fibers. Each
fiber has a threshold x assigned to it. If the stretch 1 exceeds this
threshold, the fiber fails irreversibly. When the clamps are stiff,
load will be redistributed equally on the surviving fibers and this
is called the equal-load-sharing (ELS) scheme. Throughout this
article we work with ELS models only.

The fiber thresholds are drawn from a probability density p(x).
The corresponding cumulative probability is:

P(x) =
∫ x

0
dx′p(x′) . (2)

When the fiber bundle is loaded, the fibers fail according to their
thresholds, the weaker before the stronger. Suppose that n fibers
have failed. At a stretch 1, the fiber bundle carries a force:

F = κ(N − n)1 = Nκ(1− d)1 , (3)

where we have defined the damage:

d =
n

N
. (4)

When N is large enough, d may be treated as a
continuous parameter.

FIGURE 1 | The fiber bundle model.

We will now assume that the stretch 1 is our control
parameter. We can construct the energy budget according to
continuous damage mechanics [1, 15]. Clearly, when we stretch
the bundle with external force, work is done on the system. At a
stretch1 and damage d, the elastic energy stored by the surviving
fibers is:

Ee(1, d) =
Nκ

2
12

(

1− d
)

. (5)

The damage energy of the failed fibers is given by:

Ed(d) =
Nκ

2

∫ d

0
dδ

[

P−1(δ)
]2

. (6)

The total energy at stretch 1 and damage d is, then:

E(1, d) = Ee(1, d)+ Ed(d). (7)

3. ELASTIC ENERGY AND DAMAGE
ENERGY AT THE FAILURE POINT

We are going to analyze the energy relations when the bundle
is in equilibrium. We know that there is a certain value, 1 =
1c, beyond which catastrophic failure occurs and the system
collapses completely. We are particularly interested in what
happens at the failure point. Is there a universal relation between
elastic energy and damage energy at the failure point?

When N is large, we can reframe (Equations 5, 6) and express
the energies in terms of external stretch (or extension) 1 as:

Ee(1) =
Nκ

2
12

(

1− P(1)
)

. (8)
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and

Ed(1) =
Nκ

2

∫ 1

0
dx

[

p(x)x2
]

. (9)

The force on the bundle at a stretch 1 can be written as:

F = κ(N − n)1 = Nκ(1− P(1))1. (10)

The force must have amaximum at the failure point1c, therefore
setting dF(1)/d1 = 0 we get:

1− 1cp(1c)− P(1c) = 0. (11)

3.1. Uniform Threshold Distribution
We start with the simplest threshold distribution: the uniform
distribution, which is well-known in fiber bundle research [14].
For a uniform fiber threshold distribution within the range (0, 1),
p(x) = 1 and P(x) = x. Therefore we get, from Equation (11),

1c =
1

2
. (12)

Now putting 1c = 1/2 in Equations (8, 9), we get:

Ee(1c) =
Nκ

16
, (13)

and

Ed(1c) =
Nκ

2

∫ 1/2

0
dx

[

x2
]

=
Nκ

48
. (14)

Therefore, the ratio between damage energy and elastic energy at
the failure point (1c) is:

Ed(1c)

Ee(1c)
=

1

3
. (15)

3.2. Power-Law Type Threshold
Distribution
Now we move to a general power law type fiber threshold
distributions within the range (0, 1),

p(x) = (1+ α)xα . (16)

The cumulative distribution takes the form:

P(x) =
∫ x

0
p(y)dy = x1+α . (17)

We insert the expressions for p(x) and P(x) into Equation (11)
and find the critical extention:

1c =
(

1

2+ α

)
1

1+α

. (18)

We can calculate the elastic energy and damage energy at the
failure point 1c:

Ee(1c) =
Nκ

2
12

c

(

1− P(1c)
)

=
Nκ

2
12

c

(

1− 11+α
c

)

, (19)

FIGURE 2 | Ratio between damage energy and elastic energy at the failure

point 1c vs. power law exponent α. Single bundle with N = 107 fibers.

Dashed line is the theoretical estimate (Equation 21).

and

Ed(1c) =
Nκ

2

∫ 1c

0
dx

[

p(x)x2
]

=
Nκ

2

1+ α

3+ α
13+α

c . (20)

Plugging in the value of 1c (Equation 18) into the above
equations for elastic energy and damage energy we end up with
the following relation:

Ed(1c)

Ee(1c)
=

1

3+ α
. (21)

Clearly, the ratio depends on the power factor α (Figure 2).
When α = 0, the threshold distribution reduces to a uniform
distribution and we immediately go back to Equation (15).

3.3. Energy Balance
It is easy to show that the work done on the system up to the
failure point1c is equal to the sum of the energies Ee and Ed. The
total work done on the system can be calculated as:

W(1c) =
∫ 1c

0
d1F(1) . (22)

Inserting the expression for F(1) into the integral we get, for a
general power law type distribution,

W(1c) = Nk12
c

[

1

2
−

11+α
c

3+ α

]

, (23)

which is the total of elastic energy and damage energy, W =
Ee + Ed (see Equations 19, 20). In fact, the energy conservation
here is analogous to the one in thermodynamics.
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3.4. Energy Release During the Final
Catastrophic Avalanche
It is known that when the extension exceeds the critical value
1c, the whole bundle collapses via a single avalanche called the
final or catastrophic avalanche [14]. Can we calculate how much
energy will be released in this final avalanche? It must be equal to
the total damage energy of the fibers between threshold values
1c and the upper cutoff level of the fiber thresholds for the
distribution in question.

We calculate the damage energy of the final avalanche for
power-law type distributions as

Edfinal =
Nκ

2

∫ 1

1c

dδ
[

p(δ)δ2
]

=
Nκ

2

(1+ α)

(3+ α)

(

1− 13+α
c

)

. (24)

It is important to find out whether the damage energy for the
catastrophic avalanche has a universal relation with the elastic or
damage energies at the failure point. As already mentioned, the
bundle has stable (equilibrium) states up to 1 ≤ 1c. Therefore,
if we correlate the final avalanche energy with Ee or Ed values at
1c, we can predict the catastrophic power of the final avalanche.

Comparing the expressions for Ee1c
, Ed1c

and Ed
final

we can

write the following relation:

Ed
final

Ed1c

=
[

(2+ α)
3+α
1+α − 1

]

. (25)

As Ee1c
= (3+ α)Ed1c

, we can easily get the other relation:

Ed
final

Ee1c

=
1

3+ α

[

(2+ α)
3+α
1+α − 1

]

. (26)

We can get the last relation (Equation 26) by comparing
expressions (Equations 24 and 19) directly. These theoretical
estimates are compared with numerical simulation results in
Figures 3, 4.

Now, if we put α = 0, we get these energy relations for
uniform fiber threshold distribution:

Ed
final

Ed1c

=
[

(2)3 − 1
]

= 7. (27)

And

Ed
final

Ee1c

=
1

3

[

(2)3 − 1
]

=
7

3
. (28)

Thatmeans the energy release during final catastrophic avalanche
is much bigger than the the elastic energy stored in the system just
before failure (final stable state when 1 = 1c).

It is commonly believed that during catastrophic events like
earthquakes, landslides, dam collapses etc., the accumulated
elastic energy releases through avalanches [6, 7]. We observe a

FIGURE 3 | Ratio between damage energy of final catastrophic avalanche and

damage energy at the failure point 1c vs. power law exponent α. Single

bundle with N = 107 fibers. Solid line is the theoretical estimate (Equation 25).

FIGURE 4 | Ratio between damage energy of final catastrophic avalanche and

elastic energy at the failure point 1c vs. power law exponent α. Single bundle

with N = 107 fibers. The dashed line is the theoretical estimate (Equation 26).

different scenario in this simple fiber bundle model where the
system is doing work during the catastrophic failure phase as the
external force is still acting on the bundle. As a result, the energy
release (during catastrophic failure event) becomes much bigger
than the elastic energy stored at the final stable phase.

4. ENERGY-ANALYSIS FOR WEIBULL
DISTRIBUTION OF THRESHOLDS

We now consider the Weibull distribution, which has been
used widely in material science [14]. The cumulative Weibull
distribution has a form:

P(x) = 1− exp(−xk), (29)
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where k is the Weibull index. Therefore the probability density
takes the form:

p(x) = kxk−1 exp(−xk). (30)

As the force has amaximum at the failure point1c, inserting P(x)
and p(x) values in expression (Equation 11) we get:

exp(−1k
c )− 1ck1

k−1
c exp(−1k

c ) = 0. (31)

From the above equation we can easily calculate the critical
extension value as:

1c = k−1/k. (32)

The elastic energy at the critical extension 1c is:

Ee(1c) =
Nκ

2
12

c

(

1− P(1c)
)

=
Nκ

2
12

c exp(−1k
c ), (33)

and the damage energy is:

Ed(1c) =
Nκ

2

∫ 1c

0
dδ

[

p(δ)δ2
]

=
Nκ

2

∫ 1c

0
dδ k

[

exp(−δk)δk+1
]

. (34)

Putting,

δk = u, (35)

we get:

Ed(1c) =
Nκ

2

∫ 1k
c

0
du

[

exp(−u)u2/k
]

. (36)

This integral is exactly calculable for k = 1 and k = 2.

4.1. Weibull Distribution With k = 1
For Weibull index k = 1, 1c = 1 and the damage energy
expression at the failure point takes the form:

Ed(1c) =
Nκ

2

∫ 1

0
du exp(−u)u2. (37)

Using integration by parts we arrive at the result:

Ed(1c = 1) =
Nκ

2

(

2− 5e−1
)

. (38)

We get the elastic energy at the failure point directly by putting
k = 1 in Equation (33),

Ee(1c = 1) =
Nκ

2e
; (39)

Therefore, the ratio between damage and elastic energies at the
failure point for Weibull distribution with k = 1 is:

Ed(1c)

Ee(1c)
= 2e− 5 . (40)

FIGURE 5 | Damage energy and elastic energy vs. extension 1 (up to the

failure point 1c) for Weibull distribution of thresholds with Weibull index k = 1.

The simulation data (solid lines) are for a single bundle with N = 107 fibers.

FIGURE 6 | Ratio between damage energy and elastic energy vs. extension 1

(up to the failure point 1c) for a fiber bundle with Weibull distribution of

thresholds. In simulation, we used a single bundle with N = 107 fibers. Circle

and triangle are the theoretical estimates (Equations 40, 44) for the ratios at

the failure point 1c.

In Figure 5, we have shown numerical results of the variation of
elastic and damage energies with strain for Weibull distribution
(with k = 1). The theoretical estimates of the ratio between
damage and elastic energies at the failure point are compared
with numerical results in Figure 6.

4.2. Weibull Distribution With k = 2
For Weibull index k = 2, 1c = 1/

√
2 and the damage energy

expression at the failure point is:

Ed(1c) =
Nκ

2

∫ 1/2

0
du exp(−u)u. (41)
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Again, using integration by parts we arrive at the result:

Ed(1c = 1/
√
2) =

Nκ

2

(

1−
3

2
√
e

)

. (42)

We get the elastic energy at the failure point directly by putting
k = 2 in Equation (33):

Ee(1c = 1/
√
2) =

Nκ

2

1

2
√
e
. (43)

Therefore, the ratio between damage and elastic energies at the
failure point for Weibull distribution with k = 2 is:

Ed(1c)

Ee(1c)
= 2

(√
e−

3

2

)

. (44)

The theoretical estimates of the ratio between damage and elastic
energies at the failure point is compared with numerical results in
Figure 6. In Appendix A, we give a general argument that elastic
energy will be always bigger than damage energy at the critical
(failure) point.

5. ELASTIC ENERGY MAXIMUM

There are two distinct phases of the system: A stable phase for
0 < 1 ≤ 1c and an unstable phase for 1 > 1c. If we plot
the elastic energy and damage energy vs. 1, we see that damage
energy always increases with1 but elastic energy has a maximum
at a particular value of 1, let us call it 1m. Can we calculate
the exact value of 1m for a given threshold distribution? Is it
somehow connected to1c? In this section we are going to answer
these questions.

We recall the elastic energy expression (Equation 8). If we
differentiate the elastic energy with respect to the extension 1,
we get:

dEe(1)

d1
=

Nκ

2

[

21
(

1− P(1)
)

− 12p(1)
]

, (45)

Which is 0 at 1m, with:

1m =
2(1− P(1m))

p(1m)
. (46)

If we consider a general power law type distribution p(x) =
(1+ α)xα , within (0, 1), we can write:

1m =
[

2

3+ α

]
1

1+α

= 1c

[

2(2+ α)

3+ α

]
1

1+α

> 1c. (47)

For Weibull distribution P(x) = 1− exp(−xk), we can write:

1m =
[

2

k

]
1
k

= 1c2
1
k > 1c. (48)

Therefore we can conclude that 1m is bigger than 1c, i.e., elastic
energy shows a maximum in the unstable phase (Figures 7, 8).
A more general treatment for the relation between 1m and 1c is
given in the Appendix B.

FIGURE 7 | Force and elastic energies vs. extension 1 for fiber bundles with

uniform distribution of thresholds: Comparison with simulation data for a single

bundle with N = 107 fibers.

FIGURE 8 | Force and elastic energies vs. extension 1 for fiber bundles with

Weibull distribution of thresholds: Comparison with simulation data for a single

bundle with N = 107 fibers.

6. ELASTIC ENERGY INFLECTION POINT:
THE WARNING SIGN OF CATASTROPHIC
FAILURE

Are there any prior indications of the catastrophic failure
(complete failure) of a bundle under stress? In the fiber bundle
model, although the elastic energy has a maximum, it appears
after the critical extension value, i.e., in the unstable phase of the
system. Therefore it can not help us to predict the catastrophic
failure point of the system.

However, if we plot dEe/d1, the change of elastic energy
with the change of extension value 1, we see that dEe/d1 has a
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maximum and, most importantly, this maximum appears before
the critical extension value 1c (Figures 7, 8). In this section
we calculate the particular value of 1 at which dEe/d1 has a
maximum. Let us call this1 value1max. We will also see whether
there is a relation between 1max and 1c.

6.1. Theoretical Analysis
We recall the expression for the derivative of elastic energy with
respect to strain of extension (Equation 45). Taking derivative of
the equation, we get:

d2Ee(1)

d12
=

Nκ

2

[

2
(

1− P(1)
)

− 41p(1)− 12p′(1)
]

. (49)

Setting d2Ee(1)/d12 = 0 at 1 = 1max we get for a general
power law type distribution:

1max =
[

2

(3+ α)(2+ α)

]
1

1+α

= 1c

[

2

3+ α

]
1

1+α

. (50)

This expression confirms that 1max < 1c for α ≥ 0. For a
Weibull distribution with index k, we can write:

d2Ee(1)

d12
=

Nκ

2

[

k212k − (k2 + 3k)1k + 2
]

exp(−1k). (51)

The solution (of d2Ee(1)/d12 = 0) with (−) sign is the
acceptable solution for the maximum. Hence,

1max =

[

(k+ 3)−
√

(k+ 3)2 − 8

2k

]
1
k

= 1c

[

(k+ 3)−
√

(k+ 3)2 − 8

2

]
1
k

< 1c, (52)

since,

[

(k+ 3)−
√

(k+ 3)2 − 8

2

]1/k

< 1 ∀ k > 0. (53)

From Equations (50) and (52) we see that the relation between
1max and 1c depends on the threshold distributions and we can
express 1c in terms of 1max with a prefactor as:

1c = G(α)1max, (54)

for power-law type distributions and

1c = H(k)1max, (55)

for Weibull distributions. Now can we find a reasonable
approximation for the prefactor that is useful for more than one
threshold distributions? An intuitive first choice is the result for
the uniform distribution with α = 0 gives 1c = 1.51max.
This is a good approximation for α close to 0, as expected, but

FIGURE 9 | The prefactor (Equations 54, 55) vs. α, k values of the fiber

threshold distributions and the suggested prediction-window.

not for very large α values. This prediction is also exact for a
Weibull distribution with k ≃ 2. If k is noticeably smaller, then
the prediction 1.51max is smaller than the true failure point 1c.
In this case the estimate errs on the side of caution, and the
bundle can withstand more than the estimate predicts. A better
choice would be to set a prediction-window (1.2 to 1.5) for the
prefactor G(α), H(k). Then it can cover a wide range of α and k
values (see Figure 9). Overall, such a prediction-window for the
failure point works well when the threshold distribution does not
vary too much with 1. If we have prior information about the
threshold distribution in the system (i.e., range of k or α values),
it is possible to narrow down the prediction window and this
is consistent with the common philosophy—extra information
helps to develop a better prediction scheme.

A more general argument is given in Appendix C for the
relation between 1max and 1c.

6.2. Comparison With Simulation Data
In Figures 7, 8 we compare the simulation results with the
theoretical estimates. The simulations are done for a single
bundle with large number (N = 107) of fibers and the agreement
is convincing. We have used Monte Carlo technique to generate
uncorrelated fiber thresholds that follow a particular statistical
distributions (uniform and Weibull distributions). It is obvious
that in simulations we can measure energy values in the stable
phase only.

6.3. Simulation Results for a Mixed
Threshold Distribution
Now we choose a mixed fiber threshold distribution. Can we see
similar signature (maximum of dEe/d1 appears before 1c) as
we have seen in previous section? The chosen distribution is a
mixture of uniform distribution andWeibull distribution (k = 1)
which is shown in Figure 10. We assign strength thresholds to
N/2 fibers from a uniform distribution and to N/2 fibers from
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FIGURE 10 | A mixture of uniform and Weibull (k = 1) distributions.

a Weibull distribution. The simulation result (Figure 11) reveals
that dEe/d1 has a maximum which appears before the failure
point 1c and 1max is somewhere in between the respective
1max values for uniform and Weibull threshold distributions—
as expected intuitively. If we express the 1c value in terms of
1max, the prefactor is well inside the prediction-window, shown
in Figure 9.

7. DISCUSSIONS

The Fiber Bundle Model has been used as a standard model for
studying stress-induced fracturing in composite materials. In the
Equal-Load-Sharing version of the model, all intact fibers share
the load equally. In this work we have chosen the ELS models
and we have studied the energy budget of the model for the entire
failure process, starting from intact bundle up to the catastrophic
failure point where the bundle collapses completely. Following
the standard definition of elastic and damage energies from
continuous damage mechanics framework, we have calculated
the energy relations at the failure points for different types of
fiber threshold distributions (power law type and Weibull type).
At the critical or catastrophic failure point, the elastic energy is
always larger than the total damage energy. Another important
observation is that the elastic energy variation has a distinct peak
before the catastrophic failure point. Also, the energy-release
during final catastrophic event is much bigger than the elastic
energy stored in the system at the failure point (see section 3
and section 4). Our simulation results on a single bundle with
large numbers (107) of fibers, show perfect agreement with the
theoretical estimates. We have chosen a single bundle, keeping in
mind that for prediction purposes it is important and necessary
that the warning sign can be seen in a single sample.

These observations can form the basis of a prediction scheme
by finding the correlation between the position (strain or stretch
level) of elastic energy variation peak and the actual failure point.
The main concern is to find a direct relation between the elastic
energy inflection point (1max) and the failure point (1c). We

FIGURE 11 | Force and elastic energies vs. extension 1 for a fiber bundle

(107 fibers) with a mixed distribution of thresholds.

found that 1c and 1max are related through a prefactor that
depends on the exponent of the threshold distribution. Then we
tried to find a window of the prefactor (Equations 54 and 55) that
can cover a wide range of threshold distributions (Figure 9) so
that we can express the failure point in terms of energy inflection
point, i.e., 1c = prefactor · 1max and the approximate prefactor
window is 1.2 to 1.5 (Figure 9). Moreover, it is also possible to
predict the size (energy release) of the final catastrophic event
by measuring the stored elastic energy of the system at the
failure point.

Our observations in this work have already opened up some
scientific questions and challenges: what happens for Local-Load-
Sharing (LLS) models [16]? Does the elastic energy variation
show similar peaks before the catastrophic failure point? Can we
measure and analyze the elastic energy during a rock-fracturing
test in terms of the applied strain?

During rock-fracturing experiments [17–20], one canmeasure
axial stress (force), axial and radial strain directly through
strain gauges. Amount of damage can be recorded via acoustic
emissions (AE) in terms of number of events (micro cracks)
and the energy of the events. Clearly, total acoustic energy is
the amount of damage energy in the system. It is possible to
calculate the amount of work done on the system from applied
force and effective strain value. Therefore, the difference between
total work done and the damage energy (accumulated acoustic
energy) will be the elastic energy of the system. Once we plot the
elastic energy vs. strain curve, it is straight forward to estimate
the elastic energy growth rate by measuring the slope of the curve
at different strain points.

Our next article will resolve some of these issues –we are now
working on energy budget of LLS models.
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APPENDIX

As stated in section 2, the elastic energy in the system at extension
1 is:

Ee(1) =
Nκ

2
12(1− P(1)), (56)

where P(1) is the cumulative probability distribution of the fiber
thresholds. The force per fiber σ = F/N required to continue the
breaking process at a given extension 1 is:

σ (1) = κ1(1− P(1)) (57)

The critical extension 1c where the bundle collapses is hence
given by:

0 =
dσ

d1

∣

∣

∣

∣

1c

= κ(1− P(1c)− 1cp(1c)). (58)

A. Elastic vs. Damage Energy at the Critical
Point
Numerical data seems to suggest that Ee > Ed at the critical
point for most threshold distributions. Let us try to prove this
analytically by investigating the difference between elastic and
damage energy:

Ediff (1) = Ee(1)− Ed(1)

=
Nκ

2

[

12(1− P(1))−
∫ 1

0
dx x2p(x)

]

. (59)

The derivative of this energy difference is:

dEdiff

d1
=

Nκ

2

[

21(1− P(1))− 12p(1)− 12p(1)
]

= Nκ1
[

1− P(1)− 1p(1)
]

= N1
dσ

d1
.

(60)

We can now express the energy difference in terms of the forces
acting on the fiber bundle. We integrate this expression to find:

Ediff (1) =
∫ 1

0
dx

dEdiff

dx
= N

∫ 1

0
dx x

dσ

dx

= N

[

1σ (1)−
∫ 1

0
dx σ (x)

]
(61)

by partial integration. In particular, this gives the result:

Ediff (1c) = N

[

1cσc −
∫ 1c

0
dx σ (x)

]

(62)

at the critical point. Since σc = max σ (1), we see that
Ediff (1c) > 0 for all threshold distributions. The only exception
possible is a threshold distribution with a constant force σ (1) =
σc. But this results in a lower cut-off 10 = 1c > 0 (for the
threshold distribution to be normalizable), and then Ee(1c) >

Ed(1c) = 0.

B. Elastic Energy Maximum Point
First, rewrite (Equation 58) as:

1 = g(1c) ≡
1− P(1c)

1cp(1c)
. (63)

This definition of g(1) will be useful in the following derivations.
The maximum of the elastic energy is found at an extension 1m,
which is given by:

0 =
dEe

d1

∣

∣

∣

∣

1m

∝ 21m(1− P(1m))− 12
mp(1m), (64)

i.e.,

1

2
=

1− P(1m)

1mp(1m)
= g(1m). (65)

Comparing this expression to Equation (63) allows us to find a
relation between 1c and 1m. We investigate the function g(1):

g(1) =
1− P(1)

1p(1)
=

1− P(1)

1− P(1)− dσ
d1

=

{

< 1 for dσ
d1

< 0

> 1 for dσ
d1

> 0
.

(66)

It is clear from Equation (66) that for a threshold distribution
with only a single maximum in the load curve, g(1m) = 1/2
must occur in the unstable phase, i.e., 1m > 1c.

C. Elastic Energy Inflection Point
The elastic energy maximum occurs after the critical point and
is hence unsuitable as a predictor for failure. But what about the
maximum of the derivative of the elastic energy, the inflection
point 1max? As stated in the section 6:

d2Ee

d12
∝ 2(1− P(1))− 41p(1)− 12p′(1). (67)

Setting this second derivative to zero and rearranging terms gives
the equation:

2(1− P(1max))− 41maxp(1max) = 12
maxp

′(1max). (68)

To investigate the relation between 1max and 1c, we combine
this with the relations dσ/d1 = 1 − P(1) − 1p(1) and
d2σ/d12 = −2p(1)− 1p′(1) evaluated at 1max to get:

dσ

d1

∣

∣

∣

∣

1max

= −
1max

2

d2σ

d12

∣

∣

∣

∣

1max

. (69)

Let’s once again assume that we are working with a threshold
distribution that has only a single maximum in its load curve.
Then dσ/d1 > 0 corresponds to the stable phase and dσ/d1 <

0 corresponds to the unstable phase. We see that any threshold
distribution with d2σ/d12 < −2/1 · dσ/d1 everywhere
in the unstable phase must have 1max in the stable phase,
i.e., 1max < 1c.

This is a general (but weak) condition that is sufficient, but not
necessary, for 1max < 1c.
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We derive an asymptotic series expansion for the burst size distribution in the equal load sharing
fiber bundle model, a predominant model for breakdown in disordered media. Earlier calculations
give expressions with correct asymptotic behavior for large bursts, but low accuracy for small bursts,
up to an order of magnitude off. The approximations from the expansion we present here give relative
errors of only a few percent when compared with results for infinite system sizes. We also solve the
burst size distribution exactly for the Weibull threshold distributions.

I. INTRODUCTION

The fiber bundle model [1–4] is a prime example of
what Bouchaud calls a metaphorical model [5]; that is,
a model which reveals mechanisms that lie hidden be-
neath layers of complexity in realistic models and are
completely lost in phenomenological models. Even in its
simplest form, the equal load sharing model, the number
of papers written on the model may now be counted in
the thousands. This is evidence of great richness.

The distribution of bursts, or avalanches, is important
in the study of fiber bundle models. Its behavior can sig-
nal how close the bundle is to catastrophic failure, even
in single samples [6]. Hemmer and Hansen [7] demon-
strated in 1992 that the bursts follow a power law with
an exponent 5/2 for a wide class of disorder distribu-
tions. This work was followed up Pradhan et al. [6, 8],
who showed that the power law exponent changes to 3/2
as the bundle is approaching catastrophic failure. By fol-
lowing the development of the crossover burst size — that
is, the burst size that constitutes the water shed between
bursts following the 5/2 law and the bursts following the
3/2 law — it is possible to quantitatively measure of how
far the bundle is from collapse.

However, this approach has the problem that it re-
quires knowledge of large (and hence rare) bursts, which
have poor statistics. It would be better to predict failure
from the smallest bursts, which happen often and can be
measured with higher accuracy. This makes it important
to have access to accurate analytic estimates of these val-
ues to compare with. Hence, we provide in this article
a method to analytically calculate the burst distribution
accurately for small bursts.

II. THE EQUAL LOAD SHARING FIBER
BUNDLE MODEL

Consider an equal load sharing fiber bundle model with
N fibers [1, 2]. The externally applied force (or load) F is

∗ jonas.kjellstadli@outlook.com

distributed identically on all intact fibers, and a fiber acts
as Hookean spring until its elongation reaches a certain
threshold, where it breaks. Due to the equal load sharing,
fibers will always fail in order from smallest to largest
threshold as the load is increased.
The thresholds are drawn independently from a proba-

bility density p(t), with a corresponding cumulative dis-

tribution P (t) =
∫ t

−∞ p(u)du. Let {tk} be the ordered
sequence of thresholds, such that t1 ≤ t2 ≤ · · · ≤ tN .
Then the force Fk required to break the kth fiber is

Fk = (N + 1− k) tk. (1)

Equation (1) shows that Fk consists of two factors: the
decreasing number of intact fibers N +1− k, and the in-
creasing threshold tk of the kth fiber. Due to the irregu-
larities of {tk}, Fk doesn’t increase or decrease smoothly.
Instead, it fluctuates up and down around a general in-
creasing trend. (Or decreasing, depending on where in
the fracture process we are.)
If the force F is the control parameter during the

breaking process, this causes bursts (or avalanches) of
several fibers that break under the same load. We have
a burst of size ∆ beginning with the failure of the kth
fiber if Fk > Fj for j < k, Fk+j ≤ Fk for j < ∆, and
Fk+∆ > Fk. This simply means that when the force
reaches Fk, ∆ fibers break under that load with no fur-
ther load increase required, and the burst stops at the
∆ + 1th fiber, which is strong enough to withstand the
load.
The average of Equation (1) over samples is the load

curve [4]

σ(x) = x [1− P (x)] , (2)

which is also the limit of equation (1) as N → ∞. Here
σ = F/N is the applied force per fiber in the bundle, both
broken and intact, and x is the elongation of the fiber
bundle. For most threshold distributions σ has a single
parabolic maximum at elongation xc, where 1−P (xc) =
xcp(xc).
The burst distribution is usually defined as D(∆): the

expected number of bursts of size ∆ during the break-
ing of a single fiber bundle [3, 4, 7]. This definition
makes D(∆) ∝ N for large systems, and hence it di-
verges as N → ∞. We will instead use the notation



2

D̄(∆) = D(∆)/N , with the physical interpretation that
∆D̄(∆) is the fraction of fibers broken in bursts of size
∆ — which converges to a finite number as N → ∞.

Hemmer and Hansen [7] showed that for continuous
load increase, the burst distribution to first order in N
has the asymptotic behavior (as ∆ → ∞)

D̄(∆) ∼ C∆−5/2, (3)

where C = (2π)
−1/2

xcp(xc)
2 [2p(xc) + xcp

′(xc)]
−1

.
This result is universal for threshold distributions where
the load curve has a single parabolic maximum.

Pradhan et al. [6, 8] generalized this asymptotic behav-
ior to threshold distributions starting from a lower limit
t0 ≥ 0, and found that there is a crossover

D̄(∆) ∼ C∆−5/2
(
1− e−∆/∆c

)
∝

{
∆−3/2 for ∆ � ∆c

∆−5/2 for ∆ � ∆c,

(4)

with ∆c = 4πC2p(xc)
−2 (t0 − xc)

−2
and C as in Equa-

tion (3). This crossover to a different exponent as t0
increases has been proposed as a method to detect im-
minent failure [3, 6, 8].

Equation (4) is also an asymptotic behavior in the limit
∆ → ∞, and hence it also requires information about
large bursts (which are rare events) to predict failure.
Our goal is to find a way to calculate the burst distri-
bution accurately for small bursts, which the asymptotic
expressions in equations (3,4) cannot do. To this end,
we use a threshold distribution with a lower limit t0 ≥ 0.
The burst distribution is then, to first order in N [4],

D̄(∆) =
∆∆−1

∆!

xc∫
t0

[
a(t)e−a(t)

]∆
a(t)−1

× [1− a(t)] p(t)dt

(5)

for t0 < xc, where

a(t) =
tp(t)

1− P (t)
. (6)

At xc, the critical elongation of Equation (2), this func-
tion satisfies a(xc) = 1.

III. EXACT BURST DISTRIBUTION

Is it possible to solve the burst distribution exactly?
The deciding factor is always the function a(t). Instead
of first choosing a threshold distribution and then check
whether Equation (5) is solvable, we can instead do it in
the opposite order: choose a function a(t) for which the
integral can be solved, and then use Equation (6) to find
the corresponding threshold distribution.

A. Constant a(t)

The simplest expression would be a constant a(t),
which implies a(t) = 1 because a(xc) = 1. This gives
D̄(∆) = 0 when inserted into Equation (5). To see why,
set a(t) = 1 in Equation (6), which gives the differential
equation

p′(t)

p(t)
= −2

t
, (7)

with the normalized solution P (t) = 1 − t0/t for
t ∈ [t0,∞). This makes the load curve in Equation (2)
constant: σ(x) = t0, i.e., xc = t0. Thus there is no burst
distribution and D̄(∆) = 0.

B. Power law a(t)

Other than a(t) = 1, the most intuitive choice for a
solvable integral is a power law a(t) = C(k)tk with k >
0. Inserting this into Equation (6) gives the first-order
differential equation

p(t) + C(k)tk−1P (t) = C(k)tk−1 (8)

for P (t). It can be solved with the integrating fac-
tor method: multiplyting the equation with µ(t) =

exp
(∫ t

t0
dτ C(k)τk−1

)
= exp

[
C(k)

(
tk − tk0

)
/k

]
and in-

tegrating from t0 to t gives the solution

P (t) =
C(k)

k

[
1− e

C(k)
k

(
tk0−tk

)]
. (9)

Normalization on the interval [t0,∞), i.e., P (t = ∞) =
1, yields C(k)/k = 1. Thus

P (t) = 1− et
k
0−tk , (10)

which is a Weibull distribution with shape parameter
k and a lower limit t0. The lower limit corresponds to
breaking all fibers with thresholds t < t0 from a fiber

bundle with P (t) = 1 − e−tk . Hence the lower limit is

equivalent to studying a bunde with P (t) = 1−e−tk that

has already sustained a damage d = 1− e−tk0 .
The Weibull distribution in Equation (10) has a critical

extension xc = k−1/k, which gives a(xc) = 1, as required
for consistency. We can now solve the burst distribution
exactly for the Weibull distribution. Inserting a(t) = ktk

and p(t) = ktk−1et
k
0−tk into Equation (5) gives

D̄(∆) =
∆∆−1

∆!

k−1/k∫
t0

(
ktke−ktk

)∆ (
ktk

)−1

×
(
1− ktk

)
ktk−1et

k
0−tkdt.

(11)
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Use the substitution z = tk to get

D̄(∆) =
(k∆)

∆−1

∆!
et

k
0

 1/k∫
tk0

z∆−1e−z(k∆+1)dz

−k

1/k∫
tk0

z∆e−z(k∆+1)dz

 .

(12)

Combining integration by parts and induction yields

1/k∫
tk0

dz zne−αz =
n!

αn+1

[
e−αtk0

n∑
i=0

(
αtk0

)i
i!

−e−α/k
n∑

i=0

(α/k)
i

i!

]
,

(13)

which gives the exact burst distribution

D̄(∆) =
∆∆−1et

k
0

∆!(k∆+ 1)

[
e−(∆+1/k)

−
(
ktk0

)∆
e−tk0 (k∆+1)

]
+

(k∆)
∆−1

e−k∆tk0

∆(k∆+ 1)∆+1

∆−1∑
i=0

[
(k∆+ 1)tk0

]i
i!

− (k∆)
∆−1

et
k
0−(∆+1/k)

∆(k∆+ 1)∆+1

∆−1∑
i=0

(k∆+ 1)i

i!ki
.

(14)

This expression can easily be evaluated for small
bursts, which is what we are interested in. Equation
(14) for k = 2 and t0 = 0 is shown in Figure 1 together
with simulation results. The agreement is excellent, par-
ticularly for small ∆ where finite size effects from the
simulations are negligible.

For the special case ∆ = 1, Equation (14) becomes

D̄(∆ = 1) =
et

k
0

(k + 1)2

[
ke−(1+1/k)

+
(
1− (k + 1)ktk0

)
e−(k+1)tk0

]
.

(15)

For large bursts Equation (14) is impractical to use,
but for ∆ � ∆c the first term is dominant. The equation
then simplifies to

D̄(∆) ' ∆∆−1e−∆

∆!(k∆+ 1)
et

k
0−1/k ' et

k
0−1/k

√
2πk

∆−5/2, (16)

via Stirling’s approximation, ∆! '
√
2π∆∆∆e−∆.

This is the expected asymptotic power law from Equation
(3) for the Weibull distribution from Equation (10).

100 101 102 103

∆

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

D̄
(∆

)

Exact
Simulation

FIG. 1. Burst distribution D̄(∆) for a Weibull threshold dis-
tribution with k = 2 and t0 = 0. The exact result (black)
is Equation (14), and the simulation results (turquoise) were
done with N = 10242 and 106 samples.

IV. ASYMPTOTIC SERIES EXPANSION

The simplicity of the Weibull threshold distribution is
an exception, and for other threshold distributions we
cannot expect to find an exact result for the burst distri-
bution. We therefore return to Equation (5) to make an
asymptotic series expansion, and note that the equation
has the form of a Laplace integral [9]

I(∆) =

xc∫
t0

f(t)e∆φ(t)dt, (17)

with

f(t) = p(t)
1− a(t)

a(t)
(18)

φ(t) = −a(t) + ln(a(t)). (19)

For large ∆ the integral is dominated by a small inter-
val around the maximum of φ(t) in the interval [t0, xc]. In
our case φ has its maximum at a(t) = 1, i.e., at the crit-
ical extension xc, the upper limit of integration. Hence
the asymptotic behaviour of Equation (17) as ∆ → ∞ is

I(∆) ∼
xc∫

xc−ε

f(t)e∆φ(t)dt (20)

where ε is a small number. In the small interval [xc −
ε, xc] we can Taylor expand f(t) and φ(t) around xc,

f(t) = f1(t− xc) + f2(t− xc)
2

+ f3(t− xc)
3 + · · ·

φ(t) = φ0 + φ2(t− xc)
2 + φ3(t− xc)

3

+ φ4(t− xc)
4 + · · ·

(21)
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Note that fn and φn are not identical to the nth
derivatives of f(t) and φ(t) evaluated at xc, only pro-
portional to them. The exact expressions for these coef-
ficients in terms of a(t) are shown in Equations (34,36).
Also note that the vanishing terms f0 = f(xc) = 0 and
φ1 ∝ φ′(xc) = 0 (φ has its maximum at xc) are not
included here.

In the limit ∆ → ∞, when the interval [xc − ε, xc] can
be chosen arbitrarily small, the two first terms in the
expansion of φ will dominate the others. We therefore
separate these terms by factorizing the exponential in
the integrand of Equation (20) as

e∆φ(t) = exp
(
∆φ0 +∆φ2(t− xc)

2
)

× exp
(
∆
[
φ3(t− xc)

3 + φ4(t− xc)
4 + · · ·

])
,

(22)

and then Taylor expand the second factor

exp
(
∆

[
φ3(t− xc)

3 + φ4(t− xc)
4 + · · ·

])
= 1

+∆
[
ξ1,3(t− xc)

3 + ξ1,4(t− xc)
4 + · · ·

]
+∆2

[
ξ2,6(t− xc)

6 + ξ2,7(t− xc)
7 + · · ·

]
+ · · · ,

(23)

which defines ξn,m. Inserting these expansions into
Equation (20) and extending the lower integration limit
back down to t0 gives

I(∆) ∼ e∆φ0

xc∫
t0

e∆φ2(t−xc)
2

×
[
f1(t− xc) + f2(t− xc)

2 + · · ·
]

×
{
1 + ∆

[
ξ1,3(t− xc)

3 + · · ·
]

+∆2
[
ξ2,6(t− xc)

6 + · · ·
]
+ · · ·

}
dt.

(24)

The standard approach is to extend the lower limit of
integration to −∞ because the integral over [−∞, xc− ε]
is subdominant to the integral over [xc−ε, xc] in the limit
∆ → ∞ [9]. But our goal is to use the asymptotic series
to calculate an approximation for D̄(∆) for small ∆, and
we know that the lower limit t0 is important for small
bursts [6].

To solve this integral, multiply the Taylor expansions
and separate terms with even and odd powers of t − xc

into Ieven(∆) and Iodd(∆), respectively. The odd terms
are

Iodd(∆) = e∆φ0

xc∫
t0

e∆φ2(t−xc)
2

×
{[

f1(t− xc) + f3(t− xc)
3 + · · ·

]
+∆

[
ω1,5(t− xc)

5 + ω1,7(t− xc)
7 + · · ·

]
+∆2

[
ω2,7(t− xc)

5 + ω2,9(t− xc)
9 + · · ·

]
+ · · · } dt,

(25)

where ωn,m is defined in Equation (38). Then choose
u = ∆φ2(t− xc)

2, which yields

Iodd(∆) =
e∆φ0

2∆φ2

0∫
∆φ2(t0−xc)2

eu

×

{[
f1 + f3

u

∆φ2
+ · · ·

]

+∆

[
ω1,5

(
u

∆φ2

)2

+ ω1,7

(
u

∆φ2

)3

+ · · ·

]

+∆2

[
ω2,7

(
u

∆φ2

)3

+ ω2,9

(
u

∆φ2

)4

+ · · ·

]

+ · · ·

}
du,

(26)

We can now group these terms by the integrands’ de-
pendence on ∆:

Iodd(∆) =
e∆φ0

2∆φ2

(
Ω0(∆) + Ω1(∆)∆−1

+Ω2(∆)∆−2 + · · ·
)
,

(27)

where Ωn — see Equation (40) — depends on ∆ due
to the lower limit of integration.
The even terms in t− xc are

Ieven(∆) = e∆φ0

xc∫
t0

e∆φ2(t−xc)
2

×
{[

f2(t− xc)
2 + f4(t− xc)

4 + · · ·
]

+∆
[
ω1,4(t− xc)

4 + ω1,6(t− xc)
6 + · · ·

]
+∆2

[
ω2,8(t− xc)

8 + ω2,10(t− xc)
10 + · · ·

]
+ · · · } dt.

(28)

Since φ2 < 0, choose u =
√
−∆φ2(t− xc). Then

Ieven(∆) =
e∆φ0

√
−∆φ2

0∫
√
−∆φ2(t0−xc)

e−u2

×

{[
f2

(
u√

−∆φ2

)2

+ f4

(
u√

−∆φ2

)4

+ · · ·

]

+∆

[
ω1,4

(
u√

−∆φ2

)4

+ ω1,6

(
u√

−∆φ2

)6

+ · · ·

]

+∆2

[
ω2,8

(
u√

−∆φ2

)8

+ ω2,10

(
u√

−∆φ2

)10

+ · · ·

]

+ · · ·

}
du.

(29)
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Grouping these terms by the integrands’ dependence
on ∆ yields

Ieven(∆) =
e∆φ0

√
−∆φ2

(
Θ1(∆)∆−1 +Θ2(∆)∆−2

+Θ3(∆)∆−3 + · · ·
)
,

(30)

with Θn as shown in Equation (39).
Combining Equations (27,30) with φ0 = −1 (from

Equation (36)) and Equation (5) gives the full asymp-
totic series for the burst size distribution as

D̄(∆) ∼ ∆∆−1e−∆

∆!

[
1

2∆φ2

(
Ω0(∆) + Ω1(∆)∆−1 + · · ·

)
+

1√
−∆φ2

(
Θ1(∆)∆−1 +Θ2(∆)∆−2 + · · ·

)]
=

∆∆−2e−∆

∆!

(
C1(∆) + C2(∆)∆−1/2

+C3(∆)∆−1 + C4(∆)∆−3/2 + · · ·
)
.

(31)
Unfortunately, the “coefficients” Cn depend on ∆, and

the terms in the asymptotic series must therefore be eval-
uated separately for each value of ∆. To do this evalu-
tion, the relations between the various coefficients that
have been introduced in the series expansions are needed.

A. Coefficient expressions

To define the coefficients from the asymptotic series
expansion, use

An(∆, t0) ≡
0∫

∆φ2(t0−xc)2

du euun

Bn(∆, t0) ≡
0∫

√
−∆φ2(t0−xc)

du e−u2

u2n

(32)

for the integrals that will show up in the expressions.

1. Definition of f

To determine the coefficients fn, expand Equation (18)
around a = 1:

f(t) = p(t)
[
(1− a) + (1− a)2 + (1− a)3 + · · ·

]
. (33)

Then Taylor expand a(t) and p(t) around xc as a(t) =
1 + a1(t − xc) + a2(t − xc)

2/2 + · · · and p(t) = p0 +
p1(t−xc)+ p2(t−xc)

2/2+ · · · , where an ≡ a(n)(xc) and
pn ≡ p(n)(xc) are the nth derivatives of a(t) and p(t)
evaluated at xc. Comparison with Equation (21) gives

the relation

fn =
n−1∑
m=0

pm
m!

n−m∑
l=1

(−1)ll!

×
∑

∑∞
i=1 ki=l∑∞

i=1 iki=n−m

n−m−l+1∏
i=1

1

ki!

(ai
i!

)ki

,
(34)

where n ≥ 1 since f0 = 0, and ki ∈ N.

2. Definition of φ

To determine φn, expand Equation (19) around a = 1:

φ(t) = −1− (1− a)2

2
− (1− a)3

3
− (1− a)5

4
− · · · . (35)

Then expand a(t) = 1+a1(t−xc)+a2(t−xc)
2/2+ · · ·

in the above equation. Comparison with Equation (21)
gives

φ0 = −1

φ1 = 0

φn = −
n∑

m=2

(−1)m

m

∑
∑∞

i=1 ki=m∑∞
i=1 iki=n

m!

×
n−m+1∏

i=1

1

ki!

(a(i)
i!

)ki

,

(36)

where n ≥ 2 and ki ∈ N.

3. Definition of ξ

From Equation (23) we get

ξn,m =
∑

∑∞
i=3 ki=n∑∞
i=3 iki=m

m−3n+3∏
i=3

φki
i

ki!
, (37)

where n ≥ 1, m ≥ 3n, and ki ∈ N.

4. Definition of ω

Comparing Equation (24) with Equations (25,28)
yields

ωn,m =

m−1∑
i=3n

fm−iξn,i, (38)

where n ≥ 1 and m ≥ 3n+ 1.
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5. Definitions of Θ and Ω

By examining the expressions in Equations (29,30) we
see that the coefficients Θn(∆) are

Θn(∆) =
f2nBn(∆, t0)

(−φ2)n

+
2n−1∑
i=1

Bn+i(∆, t0)

(−φ2)n+i
ωi,2(n+i),

(39)

with n ≥ 1 and Bn from Equation (32). Similarly,
from Equations (26,27) we get

Ωn(∆) =
f2n+1An(∆, t0)

φn
2

+

2n∑
i=1

An+i(∆, t0)

φn+i
2

ωi,2(n+i)+1,

(40)

with n ≥ 0 and An from Equation (32).

6. Definition of C

From Equation (31), we get

C2n−1(∆) =
Ωn−1(∆)

2φ2

C2n(∆) =
Θn(∆)√
−φ2

,

(41)

where n ≥ 1.

B. Crossover

We know from Equation (4) that around ∆c, the burst
distribution contains a crossover from ∆−3/2 to ∆−5/2

behavior. Does Equation (31) reproduce this? The first
term in the series is

C1(∆)
∆∆−2e−∆

∆!
≈ Ω0(∆)

2
√
2πφ2

∆−5/2

=
f1A0(∆, t0)

2
√
2πφ2

∆−5/2.

(42)

Using the Stirling approximation ∆! ≈√
2π∆∆+1/2e−∆ and inserting for f1, A0(∆, t0),

and φ2 from Equations (32,34,36) gives

C1(∆)
∆∆−2e−∆

∆!
≈ −p0a1

2
√
2πφ2

∆−5/2

0∫
∆φ2(t0−xc)2

eudu

= C∆−5/2 (1− exp [−∆/∆c]) ,
(43)

where C = (2π)−1/2xcp0(2p0 + xcp1)
−1 is the same as

in Equation (3) and ∆c = 2a−2
1 (xc−t0)

−2 = 4πC2p20(xc−
t0)

−2 is the same as in Equation (4).

The first term of the asymptotic series is exactly Equa-
tion (4), and the asymptotic series therefore reproduces
the known crossover behavior in the limit ∆ → ∞.

V. APPROXIMATION FOR SMALL BURSTS

The asymptotic expansion in Equation (31) is done
in the limit of infinitely large bursts, and one should not
expect the series to give a perfect approximation of D̄(∆)
when ∆ is finite. In general, the infinite series might not
converge for finite ∆. However, one can still use the
asymptotic series to find an approximation for D̄(∆) for
small ∆.

A. Optimal approximation for finite burst size

For a finite ∆ we use the general procedure outlined
by Bender and Orzag [9]:

First chose a fixed value of ∆. Then locate the smallest
term (in absolute value) of the asymptotic series in Equa-
tion (31), Cm(∆)∆∆−2−(m−1)/2e−∆/∆!. When summing
the series up to (but not including) a certain term, then
that term gives a measure of the error from the exact
result [9]. Hence, we sum the asymptotic series up to
(but not including) the smallest term, so that we get the
smallest possible error estimate. If term number m is the
smallest one, the optimal approximation is

D̄(∆) ≈
m−1∑
i=1

Ci(∆)
∆∆−2−(i−1)/2e−∆

∆!
. (44)

Note that this method is applicable even when the in-
finite asymptotic series does not converge. The caveat
is that it has to be done separately for each value of ∆
where we wish to approximate the burst distribution.

There is a practical limit to how many terms from
Equation (31) one can calculate. The smallest term m
must be chosen among the terms that are calculated.
Hence we cannot guarantee that the smallest term we
find is the smallest one in the entire infinite series. If it
is not, then the accuracy of the approximation will be
reduced.

Truncating the series at the smallest term does not nec-
essarily give the best approximation. For certain values
of ∆ there will exist better choices of truncation. How-
ever, Equation (44) provides the method with the best
guaranteed error without a priori knowledge of the burst
distribution.
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B. Comparison with exact result

To test the accuracy of Equation (44) we compare it
with the exact result from Equation (14) for the Weibull
distribution. This is easier than relying on simulatons, as
both expressions are derived in the limit N → ∞ where
there are no finite size effects.

We have calculated the first 13 terms of Equation (31)
for ∆ ≤ 400. With this limitation of 13 terms, we use
Equation (44) to calculate the optimal approximation.
For a Weibull distribution with k = 1 and t0 = 0, Figure
2 shows this approximation and the exact result from
Equation (14), with the corresponding relative error in
Figure (3).

100 101 102

∆

10−5

10−4

10−3

10−2

10−1

D̄
(∆

)

Exact
Optimal approximation
First term

FIG. 2. Optimal approximation from Equation (44) with 13
available terms (turquoise) and exact result (black) for the
burst distribution. The first term of the asymptotic series
(red) is shown for comparison. The threshold distribution is
Weibull with k = 1 and t0 = 0.

The first term, which corresponds to Equation (4), is
almost an order of magnitude off for ∆ = 1, whereas
the optimal approximation gives a relative error smaller
than 10%. For most burst sizes, the relative error of the
optimal approximation is smaller than 1%. These errors
are mainly because 13 terms is not sufficient to give high
accuracy for the smallest values of ∆ for this threshold
distribution.

With 13 terms, we can achieve higher accuracy with
other parameters. For a Weibull distribution with k = 1
and t0 = 0.8 we show the exact solution and optimal
approximation in Figure 4, and the corresponding rel-
ative error in Figure 5. The optimal approximation is
again noticeably better than Equation (4); the accuracy
is excellent, with relative error smaller than 10−8 even
for ∆ = 1. In this case, the small relative error indicates
that 13 terms is sufficient to find the smallest term in the
asymptotic series.
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FIG. 3. Relative error for the optimal approximation from
Equation (44) (with 13 available terms) for a Weibull thresh-
old distribution with k = 1 and t0 = 0.

100 101 102

∆

10−5

10−4

10−3

10−2

D̄
(∆

)

Exact
Optimal approximation
First term

FIG. 4. Optimal approximation from Equation (44) with 13
available terms (turquoise) and exact result (black) for the
burst distribution. The first term of the asymptotic series
(red) is shown for comparison. The threshold distribution is
Weibull with k = 1 and t0 = 0.8.

VI. DISCUSSION AND CONCLUSION

In the equal load sharing fiber bundle model, we have
solved the burst size distribution analytically for all
Weibull threshold distributions, Equation (14). This is
a significant improvement over previous results, which
described the asymptotic behavior for infinite burst size.

The exact result is impractical to use for large burst
sizes ∆, but can easily be evaluated for small ∆. In
this sense it complements the existing asymptotic result;
Equation (14) can be used for small ∆, and for suffi-
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FIG. 5. Relative error for the optimal approximation from
Equation (44) (with 13 available terms) for a Weibull thresh-
old distribution with k = 1 and t0 = 0.8.

ciently large ∆ we can use Equation (4) instead. To-
gether, these results provide a highly accurate way to
calculate the burst size distribution for Weibull thresh-
old distributions.

For other threshold distributions where the burst dis-
tribution cannot be solved exactly, another method is
needed to calculate the burst distribution for small ∆.
We have therefore derived the full asymptotic series ex-
pansion for the burst size distribution, Equation (31).
Even if the full infinite series is valid only in the limit
∆ → ∞, it can still be used to find approximations for
small ∆ through Equation (44).
The accuracy of this optimal asymptotic approxima-

tion depends on the threshold distribution and the num-
ber of calculated terms used for the optimal approxima-
tion. With 13 terms, the relative error ranges from sev-
eral percent to ∼ 10−9 for the smallest bursts, but even
the worst case gives much better approximations than
Equation (4).
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Can Local Stress Enhancement
Induce Stability in Fracture
Processes? Part I: Apparent Stability
Jonas T. Kjellstadli*, Eivind Bering, Martin Hendrick, Srutarshi Pradhan and Alex Hansen

PoreLab, Department of Physics, NTNU – Norwegian University of Science and Technology, Trondheim, Norway

By comparing the evolution of the local and equal load sharing fiber bundle models,

we point out the paradoxical result that stresses seem to make the local load sharing

model stable when the equal load sharing model is not. We explain this behavior by

demonstrating that it is only an apparent stability in the local load sharing model, which

originates from a statistical effect due to sample averaging. Even though we use the fiber

bundle model to demonstrate the apparent stability, we argue that it is a more general

feature of fracture processes.

Keywords: fiber bundle model, material failure, crack growth, local load sharing, fracture localization

1. INTRODUCTION

The stability of materials against fracture is essential for our civilization. We need to be able to trust
that buildings, bridges, airplanes, ships, etc. do not collapse. To prevent the collapse of structures,
one needs to understand the processes that constitute fracture. Fracture has been studied by the
engineering and materials science communities for a very long time [1]. Only over the last 30 years,
it has also entered physics [2]. Within the physics approach to fracture, there has been an emphasis
on the role of disorder and fluctuations [3, 4].

We may summarize the physics of fracture in a heterogeneous brittle materials as follows: The
material heterogeneity implies that both the local strength of the material and the stress field it is
experiencing are themselves heterogeneous. Fractures may occur and develop as a result of either
the material being locally weak or locally under high stress. Applying a sufficiently large load to
a material, the fracture process will start by the material failing where it is weakest. The ensuing
microcracks will induce high stresses at the crack tips. If these are sufficiently high, the microcracks
will grow. Hence, a competition between stress enhancement due to developing microcracks and
local material weakness breaks out [3–5]. At some point, the stress intensity at the crack tips has
become so large that the local material weakness is no longer able to compete and catastrophic
failure sets in: a macroscopic crack develops.

Essential in this summary is the opposite roles played by heterogeneity and stress enhancement:
the heterogeneity stabilizes the fracture process whereas the stress enhancement destabilizes it. In
this paper we demonstrate that stress enhancement may seemingly have the opposite effect, i.e.,
it stabilizes the fracture process. This is a situation which essentially turns upside down common
wisdom within the physics community on how fracture processes proceed.

It turns out, however, that this paradoxical behavior is an apparent effect caused by the
fluctuations that occur during the fracture process. We use the fiber bundle model [6–8] to
demonstrate the apparent stability and its explanation. We consider two variants of the model:
the equal load sharing (ELS) model [9] where there is local heterogeneity but no local stress
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enhancement, and the local load sharing (LLS) model [10] where
there is a competition between local stress enhancement and local
heterogeneity. Even though we use the fiber bundle model as
a tool to demonstrate the apparent stability, we argue that the
effect is more general. The lesson to be learned is the following:
even though the average stress vs. strain curve may have a
positive slope, seemingly indicating stability, the positive slope
is not necessarily caused by stability, but by the evolution of
the fluctuations biasing the average in a way that makes the
slope positive.

However, there also exists a real effect where the local stress
enhancement of the LLS model can make it more stable than the
ELS model. This shielding effect—its origins and consequences—
is the subject of Part II [11].

There are two main sources of fluctuations in dynamical
systems such as materials failing under stress [12, 13]: one
comes from statistical fluctuations of the probability distributions
that define intrinsic properties of the system elements. Another
type of fluctuations arises as a result of the system dynamics
depending on the spatial structures. The first type of fluctuation
has a direct relation with the system size and it normally
disappears as the system size diverges due to self averaging. One
can minimize the effect of these fluctuations either by making
the system size larger or by increasing the number of samples.
On the other hand, the dynamics-dependent fluctuations do not
disappear with increasing size. It is therefore crucial to know the
nature of this second type of fluctuations and its role during the
entire evolution dynamics. It is this second type of fluctuations
that is the cause of the apparent stability.

2. THE FIBER BUNDLE MODEL

A fiber bundle consists of N fibers placed between two clamps.
The fibers act as Hookean springs with identical spring constants
κ up to an extension threshold ti, individual for each fiber i, where
they fail and cannot carry a load any more. Hence the connection
between the extension x of a fiber i and the force fi it carries is

fi =

{

κx if x < ti,

0 if x ≥ ti.
(1)

The thresholds ti are drawn from a probability density p(t), with

corresponding cumulative probability P(t) =
∫ t
0 p(u)du.

2.1. Equal Load Sharing
In the ELS model an externally applied force F is distributed
equally on all the intact fibers. This means that fibers fail in order
of increasing thresholds as the force F increases. The force per
fiber σ = F/N required to give the bundle an extension x is on
average [8]

σ (x) = κ
(

1− P(x)
)

x. (2)

Equivalently,

σ (k) = κ

(

1−
k

N

)

P−1

(

k

N

)

, (3)

since P(x) is the fraction of broken fibers k/N—also called
the damage d—at extension x [14]. The fluctuations around
this average are of the first type, and disappear as N−1/2

when N → ∞ [8].
The load curve is the smallest force per fiber σ required to

break the next fiber. Hence, we plot either this minimum σ as
a function of the extension x or the fraction of broken fibers k/N
(see Figure 1). When plotted against the extension x, the load
curve is the stress-strain curve. Equations (2) and (3) give the
average load curve for ELS. We will use the terminology that a
fiber bundle is locally stable if the load σ must be increased to
continue breaking more fibers, i.e., if the load curve is increasing.
FromEquation (2) we determine the critical extension xc at which
the ELS model becomes unstable by setting dσ/dx|xc = 0. For a
general Weibull threshold distribution

P(t) = 1− exp(−tβ + t
β
0 ) (4)

with shape parameter β and lower cut-off t0 (t ≥ t0), this gives
xc = β−1/β . This means that the ELS model is unstable from the
beginning of the failure process when t0 ≥ β−1/β .

2.2. Local Load Sharing
In the LLS model, the loads originally carried by broken fibers
are carried by their nearest intact neighbors only. Hence there
is a spatially dependent stress field. A hole is a cluster (in
the percolation sense) of h failed fibers joined through nearest
neighbor connections. The perimeter of a hole is the set of p
intact fibers that are nearest neighbors of the hole. With these
definitions the force acting on an intact fiber iwith the LLSmodel
is given by

fi = σ



1+
∑

j

hj

pj



 , (5)

where j runs over the set of holes that neighbor fiber i. The
first term is the force originally applied to every fiber, while the
second is the redistribution of forces due to failed fibers. Equation
(5) is completely general, and can be used for any lattice and
dimensionality, or even for random graphs.

To determine which fiber breaks next under an external load
we define the effective threshold teff,i of fiber i as

teff,i =
ti

1+
∑

j
hj
pj

. (6)

The breaking criterion of fiber i is then σ = κteff,i, and the fiber
with the smallest effective threshold will fail under the smallest
applied load σ .

3. DETERMINING STABILITY

The LLS model contains stress enhancement in that fibers
belonging to the perimeters of holes carry more load than
corresponding fibers in the ELS model. Therefore, the results
in Figure 1—where we show the load curves (σ vs. k/N) of the
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ELS and LLS model based on the Weibull threshold distribution
from Equation (4) with β = t0 = 1—are surprising. The ELS
load curve is unstable for all values of k/N (as indicated by the
negative slope) because t0 = xc, but there is a region for which
the sample averaged LLS load curve has a positive slope, which
seems to indicate local stability. This was first pointed out by
Sinha et al. [15].

Our explanation of this paradoxical behavior lies in the
difference between single samples and sample averages. Stability
is a property of individual samples, not the average behavior.
In the ELS model there is no difference between the two, since
fluctuations around the sample averaged load curve are of the
first type and disappear as N → ∞. But the LLS model has
fluctuations of the second type—they persist in the limit of
infinitely large systems—and we must therefore study individual
samples to determine when systems are stable.

We argue that in the LLSmodel, the stability of single samples,
both global and local, is determined by the upper bounding curve
of the force fluctuations. We show in Figure 1 how the density
ρ of these fluctuations are distributed around the averaged load
curve for the LLS model. In any finite, but small, damage interval
[k/N, k/N+1] there will be at least one strong fiber that requires
a load σ close to the upper bounding curve to break. For a system
to be locally stable, consecutive intervals must require higher
loads to break, i.e., the bounding curve of the fluctuations must
increase. We see in Figure 1 that it does not. Hence, there is no
local stability for the LLS model either, as expected.

Are other averages than the arithmetic mean more
representative of individual samples? In the field of Anderson
localization [16], the average conductance differs vastly between
different averaging procedures [17], and the arithmetic mean is

FIGURE 1 | Load curves for the ELS and LLS models with a Weibull threshold

distribution P(t) = 1− exp (−t+ 1), Equation (4) with β = t0 = 1. The ELS

curve is Equation (3), whereas the LLS curves are sample

averages—arithmetic mean 〈σ 〉A, geometric mean 〈σ 〉G, and harmonic mean

〈σ 〉H—from simulations on a square lattice (N = 1282). The background is a

color map that shows the density ρ of single sample LLS load curves for the

1.5× 105 samples that the averages are based on. The color bar is capped at

ρ = 0.0025 to highlight the fluctuations with the smallest values of σ .

not representative of typical single samples. We therefore show
both the arithmetic, geometric, and harmonic mean of the LLS
model in Figure 1. The three means all give qualitatively similar
behavior, and all of them fail to represent the behavior of single
samples. Hence we will from now on use 〈σ 〉 for the arithmetic
mean 〈σ 〉A, which is a suitable representative for the three means
when computing sample averages.

4. APPARENT STABILITY

The apparent local stability in Figure 1 is caused by the sharp
decline in fluctuations smaller than the average in a damage
region around the site percolation threshold pc ≈ 0.59 [18] of
the square lattice.

The fluctuations are initially heavily biased with a large
concentration below the average. Around the percolation
threshold, the bias in the fluctuations begins to shift rapidly
from small values of σ to the upper bounding curve, and this
shift is enough to make the average load curve increase even
though the upper bounding curve is decreasing. This is supported
by Figure 2, which shows the averaged LLS load curve and its
standard deviation.

We now consider a uniform threshold distribution on [t0, 1):

P(t) =
t − t0

1− t0
, (7)

which gives a critical extension xc = 1/2. The ELS model
with this distribution is hence unstable from the beginning of
the breaking process if t0 ≥ 1/2. We choose t0 = 1/2 for a
comparable situation to the Weibull distribution studied earlier.

The averaged load curves for LLS and ELS with the threshold
distribution from Equation (7) are shown in Figure 3, together
with the density of fluctuations around the LLS load curve.
The upper bounding curve of the LLS force fluctuations

FIGURE 2 | Sample averaged load curve for the LLS model (black, left axis)

and corresponding standard deviation (red, right axis) for a Weibull threshold

distribution with β = t0 = 1. Results are from simulations on a square lattice

(N = 1282) with 1.5× 105 samples.
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FIGURE 3 | Load curves for the ELS and LLS models with a uniform threshold

distribution on [0.5, 1), Equation (7) with t0 = 1/2. The ELS curve is Equation

(3), whereas the LLS curve is a sample average from simulations on a square

lattice (N = 1282). The background is a color map that shows the density ρ of

single sample LLS load curves for the 1.5× 105 samples that the average is

based on. The color bar is capped at ρ = 0.006 to highlight the fluctuations

with the smallest values of σ .

decreases for all damages k/N, indicating that the system is
unstable throughout the breaking process also for this uniform
threshold distribution.

In Figure 3 there is a region around the percolation threshold
where the fluctuations shift—similarly to how they change in
Figure 1 for theWeibull threshold distribution—corroborated by
the standard deviation in Figure 4. In this case the fluctuations
are not very biased to begin with, but distributed almost
uniformly around the average. This—and the fact that the
fluctuations span a smaller range of forces σ , as demonstrated
by a standard deviation an order of magnitude smaller in
Figure 4 than in Figure 2—makes the shift of the fluctuations
smaller than for the Weibull threshold distribution, and it is not
enough to make the averaged load curve increase as a function
of damage.

The averaged LLS load curve does not show any apparent
stability for the uniform distribution, but the underlying effect—
that the distribution of the force fluctuations changes rapidly
in a region around the percolation threshold—that causes the
apparent stability for the Weibull distribution is still present, as
shown by the color map in Figure 3.

The changing fluctuations around the percolation threshold
can be understood by examining the hole structure of the LLS
fiber bundle as the damage increases. When only a few fibers have
broken the breaking process localizes around a single hole, which
starts expanding and keeps growing until the entire fiber bundle
has broken [19]. This growth process is illustrated in Figure 5 for
the Weibull threshold distribution and Figure 6 for the uniform
threshold distribution.

Fibers that break after the localization sets in are in the
perimeter of the growing hole. Since there are almost no other
holes, (nearly all) perimeter fibers get the same contribution

FIGURE 4 | Sample averaged load curve for the LLS model (black, left axis)

and corresponding standard deviation (red, right axis) for a uniform threshold

distribution on [0.5, 1). Results are from simulations on a square lattice

(N = 1282) with 1.5× 105 samples.

to effective threshold from the hole structure (Equation 6),
and therefore the fiber that breaks next is the perimeter
fiber with the smallest threshold. This results in a breaking
process that is similar to invasion percolation where the
weakest neighboring fiber is “invaded” by the hole every time a
fiber breaks.

Hole and perimeter sizes of the growing hole are similar in
different samples. Hence the force fluctuations in Figures 1, 3
mainly represent the distribution (over samples) of the smallest
threshold in the perimeter of the hole. It follows that the
lower end of the fluctuations are due to the hole encountering
new fibers with small thresholds as it expands. These fibers
break quickly—they are likely to have the smallest threshold
among the perimeter fibers—while the stronger fibers in the
perimeter survive.

The lower end of the fluctuations disappear rapidly around the
percolation threshold because the growing hole has permeated
most of the lattice, and therefore has few new areas to expand
into, as shown in Figures 5, 6. As a result, there are few new
neighborhoods to expand into to find new neighbors with small
thresholds. This mechanism radically changes the distribution
of force fluctuations, so that the sample averaged load curve
increases in Figure 1 even though individual samples are all
locally unstable.

4.1. The Effect of the Lattice
The above reasoning does not hinge on the lattice being square,
and should be valid for any lattice. We therefore expect that
the same Weibull threshold distribution will give similar results
for the LLS model on other lattices: the sample averaged load
curve should increase around the site percolation threshold
due to the shift in bias as the lower end of the fluctuations
disappear. We show averaged LLS load curves for four lattices
in 2D, 3D, and 4D for the Weibull threshold distribution in
Figure 7. The figure shows positive slopes of the load curves for
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FIGURE 5 | Hole structure of a square lattice (N = 1282) LLS fiber bundle with the Weibull threshold distribution P(x) = 1− exp (−x + 1) at three different damages:

k/N = 0.1 (left), k/N = 0.3 (middle), and k/N = 0.59 (right). Intact fibers are light gray, the largest hole is blue, and other broken fibers are black. From early on in the

breaking process a single hole is growing continually.

FIGURE 6 | Hole structure of a square lattice (N = 1282) LLS fiber bundle with a uniform threshold distribution on [0.5, 1] at three different damages: k/N = 0.1 (left),

k/N = 0.3 (middle), and k/N = 0.59 (right). Intact fibers are light gray, the largest hole is blue, and other broken fibers are black. From early on in the breaking process

a single hole is growing continually.

all four lattices in a region around the corresponding percolation
threshold, in accordance with the above argument. In all of these
cases, individual samples are locally unstable, showing that the
sample averaged load curve cannot be trusted as an indicator of
local stability.

4.2. Apparent Stability in Globally Stable
Systems
From the examples presented so far, it could be argued that
the effect we describe is less relevant because it occurs in
systems that are unstable once the breaking process starts.
Let us therefore investigate a common threshold distribution
where the systems are stable to begin with: the uniform
distribution on [0, 1].

Figure 8 shows the density ρ of force fluctuations and the
corresponding sample averaged load curve for this uniform
threshold distribution with LLS on a square lattice. Again the
lower end of the fluctuations disappear in a region around the
percolation threshold, which makes the sample average increase.

Due to this effect, the averaged load curve has its maximum at
k/N ≃ 0.607, whereas the maxima of individual load curves
are distributed around a median damage k/N ≃ 0.533. The
difference between these two maxima is clearly seen in Figure 8.

In the intermediate region, the sample averaged load curve
indicates stability—via its positive slope—when the fiber bundles
are actually unstable. Hence, it cannot be trusted as an indicator
of global stability. In general, stability—both local and global—
is a property of individual samples that cannot be inferred from
sample averages.

4.3. The Shielding Effect
Note that the ELS model becomes unstable at k/N = 1/2 for
the uniform threshold distribution on [0, 1), which means that
the LLS model, surprisingly, collapses later than the ELS model.
This is due to a shielding effect that also has its origins in the
geometry of the underlying lattice, but is otherwise unrelated to
the statistical effect we have presented here. We discuss this at
length in Part II [11].
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FIGURE 7 | Sample averaged LLS load curves on lattices in two to four

dimensions with corresponding site percolation thresholds pc marked. The

threshold distribution is P(x) = 1− exp (1− x), Equation (4) with β = t0 = 1.

FIGURE 8 | The dashed, red line is the sample averaged load curve for the

LLS model with a uniform threshold distribution on [0, 1], Equation (7) with

t0 = 0. It is based on simulations on a square lattice (N = 1282). The

background is a color map that shows the density ρ of single sample LLS load

curves for the 1.5× 105 samples that the average is based on. The color bar

is capped at ρ = 0.0035 to highlight the fluctuations with the smallest

values of σ .

5. IMPLICATIONS FOR OTHER MODELS

The ELS and LLS models are the two extremes of load sharing,
and other models, like the γ -model [20] or the soft clamp fiber
bundle model [21], should exhibit behavior and phenomena
somewhere between ELS and LLS. Intermediate load sharing
rules can have infinite interaction ranges, but they should have
finite effective ranges of interaction. The longer this interaction
range, the more the model resembles ELS, and conversely, the
shorter it is, the more the model resembles LLS.

With an effective range of interaction significantly smaller
than the system size, a model is expected to contain the
apparent stability and its underlying cause. Instead of a narrow
perimeter where fibers break, there will be a boundary layerwhere
fibers break, with width equal to the effective interaction range.
Our argument for the disappearance of the lower end of the
force fluctuations remains the same for such a model, except
that it no longer happens around the percolation threshold.
Instead, this effect occurs when the boundary layer permeates
most of the lattice, and cannot expand into new areas to find
weak fibers.

Note that for intermediate effective interaction ranges,
this effect may be less pronounced than in the LLS model,
but it should still be present. Therefore, the apparent
stability presented here and its explanation should be
considered a general feature of brittle fracture processes in
disordered materials.

6. CONCLUSION

We have demonstrated a general mechanism resulting in the
average force not being a reliable indicator of stability during
fracture processes with local stress enhancement due to bias
in the fluctuations around the average. We find that for
several threshold distributions in the fiber bundle model, this
mechanism gives an apparent stability, the illusion of stability due
to an increasing average force even though individual systems
are not stable. This apparent stability occurs around the site
percolation threshold of the lattice for the systems we have
studied in two to four dimensions.
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Can Local Stress Enhancement Induce Stability in Fracture Processes? Part II: The
Shielding Effect

Jonas T. Kjellstadli,∗ Eivind Bering,† Srutarshi Pradhan,‡ and Alex Hansen§

PoreLab, Department of Physics, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
(Dated: September 3, 2019)

We use the local load sharing fiber bundle model to demonstrate a shielding effect where strong
fibers protect weaker ones. This effect exists due to the local stress enhancement around broken
fibers in the local load sharing model, and it is therefore not present in the equal load sharing model.
The shielding effect is prominent only after the initial disorder-driven part of the fracture process
has finished, and if the fiber bundle has not reached catastrophic failure by this point, then the
shielding increases the critical damage of the system, compared to equal load sharing. In this sense,
the local stress enhancement may make the fracture process more stable, but at the cost of reduced
critical force.

I. INTRODUCTION

When brittle materials fail mechanically under load-
ing, the failure is the end point of a competition between
local stress and local strength in the material. They pull
in opposite directions [1]. When there is a local failure
somewhere in the material, stresses increase at that loca-
tion, which increases the likelihood that the subsequent
failure happens in that neighborhood. One may say that
stresses make local failures attract each other. Disorder
in the strength of the material on the other hand, has the
opposite effect. This is a purely statistical effect: the fur-
ther away from the failure, the weaker the weakest spot
in the material will be. Hence, the disorder drives local
failures apart; they induce repulsion between the local
failures.

When the damaged zones grow, the stresses at their
edges increase and at some point, the repulsion induced
by the disorder in the local strength is no longer able to
counter this effect. When this occurs, catastrophic failure
ensues. But this picture is not the whole story. We show
in Figure 1 the stress σ as a function of the damage d for
two fracture models: The equal load sharing (ELS) fiber
bundle model (FBM) and the local load sharing (LLS)
FBM [2, 3], to be described in Section II. The LLS model
contains stress enhancement at the edge of the damaged
zones, i.e., clusters of broken fibers, whereas the ELS
model does not. As expected we see that the ELS model
is stronger than the LLS model since the maximum value
of σ is larger for this model than for the LLS model.
However, one curious feature stands out in this figure:
The LLS model reaches its maximum value of σ for a
higher damage d than the ELS model. In other words,
the LLS model where there is stress enhancement may
sustain higher damage than the ELS model where there
is no stress enhancement. We will show that this effect
is due to shielding [4] of weak areas by strong areas.

∗ jonas.kjellstadli@outlook.com
† eivind.bering@ntnu.no
‡ srutarshi.pradhan@ntnu.no
§ alex.hansen@ntnu.no
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FIG. 1. Stress σ vs. damage d in the equal load sharing (ELS)
fiber bundle model and the local load sharing (LLS) fiber
bundle model on a square lattice. The ELS curve has been
calculated analytically via equation (1), and the LLS result is
a simulation of a single sample (N = 20482). For clarity, the
LLS result shows only every 2500th data point. The threshold
distribution is uniform on the unit interval for both models.

We discussed in Part I [5] a different mechanism that
would lead to an apparent stability of the LLS model
when the ELS model is unstable. This turned out to
be a purely statistical effect coming from averaging over
many samples. In Figure 1, we show only a single sample
for the LLS model; there is no averaging. Hence, the
shielding effect is a real effect that can be observed in
single samples.

In Section II we describe the ELS and LLS fiber bundle
models. We then go on in Section III to give a detailed
explanation of the shielding effect in terms of the LLS
model in one dimension. In Section IV we demonstrate
that the shielding effect is sufficiently common to pro-
duce the effect already seen in Figure 1. In Section V we
demonstrate two effects in the LLS model compared to
the ELS model that we attribute to the shielding effect,
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and Section VI deals with determining when the shielding
effect is relevant. We end by summarizing and discussing
our results in Section VII.

II. THE FIBER BUNDLE MODEL

We start by defining the Fiber Bundle Model [2, 3]. N
elastic fibers with identical spring constants κ are placed
between two clamps. In the simulations and results we
will use κ = 1 for simplicity. The only effect of changing
κ is to rescale the forces. A fiber i acts like Hookean
spring, the force it carries given by fi = κx, for an elon-
gation x smaller than its threshold ti, which is individual
for each fiber. When the elongation reaches the thresh-
old, the fiber breaks irreversibly and cannot carry a force
anymore. The thresholds are drawn from a probabil-
ity distribution, denoted by the cumulative distribution
P (t), which is a parameter of the model. The number
of broken fibers is denoted by k. Thus k/N is the frac-
tion of broken fibers, also called the damage d. We use
quasistatic loading of the model, where the load is in-
creased until it is sufficient to break a single fiber, and
then immediately lowered.

A. Equal Load Sharing

To determine what happens when fibers break, a load
sharing rule is required. The simplest one is the ELS
scheme [6, 7], also known as global load sharing, where
every intact fiber shares the applied load equally. It cor-
responds to the clamps being infinitely stiff (as long as the
spring constant κ is identical for the fibers). This means
that there is no stress enhancement around the fibers
that fail. A further consequence is that the fibers break
in order of increasing thresholds as the applied force is in-
creased, regardless of whether quasistatic loading is used.

With k = NP (x) broken fibers at elongation x [8] and
a total external force F = Nσ, ELS results in the relation

σ = κx (1− P (x)) = κP−1(d) (1− d) (1)

between the force per fiber σ required to break the next
fiber and the elongation x (or the damage d) of the fiber
bundle. Note that equation (1) is exact in the limit
N → ∞, but for finite system sizes there are fluctua-
tions around this average behavior [3].

For nearly all choices of threshold distribution P (t),
equation (1) has a single maximum σc, the critical
strength of the bundle, at which the fiber bundle col-
lapses. There is a corresponding critical elongation xc

and critical damage dc = P (xc). These quantities are
also defined for local load sharing, which we will discuss
next, but there they are not available from simple ana-
lytical expressions.

B. Local Load Sharing

A different load sharing rule is the LLS one [9], where
the extra load from broken fibers is distributed equally
onto the nearest intact neighbors in the lattice the fibers
are placed on. As a consequence, LLS behaves differently
when the underlying lattice changes. This is different
from ELS, where fiber placement is irrelevant, since the
load is assumed to be evenly distributed.
For LLS one must choose a lattice for fiber placement.

A hole is then defined as a cluster of h broken fibers con-
nected by nearest neighbor connections. The perimeter
of a hole is the p intact fibers that are nearest neighbours
of the hole. With an applied force per fiber σ = F/N ,
the force acting on an intact fiber i can then be expressed
as

fi = σ

1 +
∑
j

hj

pj

 . (2)

Here j runs over holes neighboring the fiber. The two
terms can be interpreted as respectively the force orig-
inally applied to every fiber, and the redistribution of
forces due to broken fibers.
LLS was originally defined for a one-dimensional lat-

tice with periodic boundary conditions [9], but the for-
mulation in equation (2) is a generalization applicable to
any lattice. We mainly study LLS on a two-dimensional
square lattice in this paper. We also use periodic bound-
ary conditions for the lattices we study.
Equation (2) is history independent : the breaking or-

der of fibers does not affect the load redistribution. This
is the way LLS was defined originally [9], but some later
implementations have been history dependent, where the
load a fiber carries is simply divided among its nearest
neighbors when it breaks [10] making it impossible to de-
termine the load a fiber carries without knowing the order
in which the fibers up to that point have failed. In 1D
this approach does not give very different results from
the history independent model, since 1D LLS has zero
critical damage and collapses due to extreme loads on
fibers that neighbor large holes. However, in dimensions
D > 1, the history dependent model gives very different
results [11] from the history independent model [12].
To determine a failure criterion for individual fibers we

define the effective threshold teff,i of fiber i as

teff,i =
ti

1 +
∑

j
hj

pj

. (3)

The effective thresholds depend both on the original
thresholds ti of the fibers and the hole structure of the
bundle, meaning that they change as the fiber bundle
breaks down. By combining this expression with equa-
tion (2) we find the breaking criterion σ = κteff,i where
the fiber with the smallest effective threshold fails under
the smallest external load σ.
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Hence quasistatic loading results in a fracture process
where the next fiber to break is always the one with the
smallest effective threshold, given by equation (3). When
a fiber is broken, effective thresholds must be updated to
determine which fiber breaks next.

III. DEFINING SHIELDING

Let us investigate a simple example in 1D to demon-
strate what we mean by shielding. Consider N = 10
fibers with thresholds {ti} = {0.1, 0.2, ..., 1.0} arranged
as follows:

1.0 0.1 0.2 0.9 0.8 0.3 0.7 0.5 0.6 0.4. (4)

With ELS we find a critical strength σc,ELS = 0.3κ, but
what about LLS?

When all fibers are intact the effective thresholds are
identical to the original thresholds in equation (4). The
first fiber to break with LLS is the one with threshold t =
0.1, which happens at σ = 0.1κ. If we let × represent a
broken fiber, then the effective thresholds after breaking
the first fiber are

2

3
× 2

15
0.9 0.8 0.3 0.7 0.5 0.6 0.4.

The broken fiber constitutes a hole of size h = 1, with
p = 2 fibers in its perimeter. These two fibers are the
only ones whose effective thresholds change when the first
fiber breaks. From equation (3) we see that their new
effective thresholds are their original thresholds divided
by 1 + 1/2.

The effectively weakest fiber now breaks at σ = 2κ/15,
and the effective thresholds afterward are

0.5 × × 0.45 0.8 0.3 0.7 0.5 0.6 0.4,

since there is a single hole with h = p = 2. The third
fiber breaks at σ = 0.3κ = σc,ELS, which results in the
effective thresholds

0.5 × × 0.45
8

15
× 7

15
0.5 0.6 0.4.

The smallest effective threshold is 0.4, and once this fiber
breaks, the fiber bundle collapses. Hence the critical
strength is σc,LLS = 0.4κ > σc,ELS.

With ELS, 0.3κ is the critical strength because the
fibers with thresholds 0.4 and 0.5 receive some of the
redistributed load from the broken fibers. They break at
σ = 0.28κ and σ = 0.3κ, respectively.

With LLS, the four strongest fibers happen to neigh-
bor the three broken ones and receive all redistributed
load. In this sense, the other three intact fibers (the
three rightmost ones) are shielded from this additional
load, and their effective thresholds are unchanged from
the fully intact fiber bundle. In our example the result is
an increased critical strength and critical damage com-
pared to ELS, because the four strong fibers that receive

additional loads don’t have their effective thresholds low-
ered below 0.3.

But this example is contrived. A large system (N →
∞) will contain strong configurations like the one in our
example, but it will also contain weak configurations with
many adjacent fibers that all have small thresholds. In
1D, a hole can never have a larger perimeter than p = 2.
Therefore a sufficiently large hole (that originates at a
particularly weak configuration) will reduce the effective
thresholds of its neighboring fibers enough that they also
break, inducing a fatal rupture that opens the fiber bun-
dle like a ziplock. Strong configurations, where shielding
is important, are ripped open by this expanding hole.

The result is that in 1D, as N → ∞, the critical dam-
age of LLS goes to zero and the critical strength goes
to the lower limit of the threshold distribution [3]. Both
of which are much smaller than their corresponding ELS
values.

Still, our example highlights an interesting effect:
with localized force distribution, strong fibers can shield
weaker ones from some of the applied load. The question
of interest is whether there is a noticeable shielding effect
in the LLS model on lattices in D > 1, and, if so, with
what consequences?

IV. EVIDENCE OF SHIELDING

Let w be the intact fiber with the smallest threshold,
i.e., the weakest intact fiber. We then study be the prob-
ability pw that w is the first fiber to break when the
applied load σ is increased.

With ELS we get pw = 1, since all intact fibers share
the same load. With LLS this is not the case, because the
fiber with the smallest effective threshold breaks. Equa-
tion (3) shows that a small effective threshold results
from a combination of small threshold and large force
redistribution.

Figure 2 shows pw as a function of the damage d for
the LLS model with P (t) = t on a square lattice for dif-
ferent system sizes N . Throughout most of the fracture
process pw is small, i.e., it is unlikely that w will break
at any given step. This indicates that load redistribution
dominates the effective thresholds, and that at least some
of the fibers with small thresholds are partially shielded
from the applied load.

There are significant finite size effects for pw in Figure
2. Finite size scaling indicates that in the thermodynamic
limit N → ∞, there is a sharp transition from pw = 0 to
pw = 1 around d ≈ 0.98. When all intact fibers neighbor
a single hole, then pw = 1, and the damage at which
the transition happens should therefore be expected to
change with the lattice.

To study shielding further we define a load sharing fac-
tor σ/fi, the ratio between the applied load σ and the
force fi acting on fiber i. For ELS the force fi,ELS is iden-
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FIG. 2. Probability pw to break the intact fiber with the
smallest threshold in LLS simulations on a square lattice. The
threshold distribution is uniform: P (t) = t. The number of
samples is 8× 105, 2× 105, and 105 for system sizes N = 322,
642, and 1282, respectively.
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FIG. 3. Sample averaged load sharing factor 〈σ/fi〉 for LLS
with i = w and i being the broken fiber, and for ELS (equation
(5)). The threshold distribution is uniform (P (t) = t) and
the LLS results are from simulations on a square lattice (N =
1282) averaged over 105 samples.

tical for all intact fibers, and there is an exact expression

σ

fi,ELS
= 1− d (5)

in the limit N → ∞. For LLS the load sharing factor
depends on which fibers we follow through the breaking
process.

Figure 3 contrasts the load sharing factor for ELS and
LLS. The broken fibers in the LLS model are on average

more loaded than in the ELS model, which is expected;
highly loaded fibers are more likely to break since their ef-
fective thresholds are reduced significantly from the orig-
inal thresholds.
It is more interesting that w, the intact fiber with the

smallest threshold, on average recieves almost no extra
load from redistribution throughout most of the break-
ing process. In particular, the average fraction of the
load it receives is much smaller than fibers in the ELS
model. While one cannot in general trust averages in the
LLS model blindly [5], this does indicate that these weak
fibers are shielded from some of the applied load, and
that fibers with higher thresholds (but smaller effective
thresholds due to being highly loaded) break instead of
them.
That the average load sharing factor of the fiber w de-

creases rapidly from 1 (Figure 3) around the same dam-
age that pw increases quickly (Figure 2) is not a coinci-
dence. When the intact fiber with the smallest threshold
becomes more highly loaded, it is very likely to have the
smallest effective threshold, and hence the probability
that it breaks increases. The finite size effects of the load
sharing factor in Figure 3 for w therefore mirror the ones
for pw in Figure 2.

V. EFFECTS OF SHIELDING

Since the shielding effect protects the weakest intact
fibers, we intuitively expect that LLS will have more in-
tact weak fibers than ELS. To investigate this hypothesis,
Figure 4 shows the cumulative probability distribution
P (tintact) of fiber thresholds of intact fibers for a sin-
gle sample with N = 10242 fibers. The thresholds were
drawn from a uniform distribution P (t) = t.
With a damage of d = 0.2, there are some intact fibers

in LLS that have smaller threshold than the intact fibers
in ELS, but the difference between the two load sharing
rules is not large. This is because the LLS model be-
haves similarly to ELS in the early stages of the breaking
process. The disorder of the threshold distribution dom-
inates. Hence fibers fail because they have small thresh-
olds, rather than because they are highly loaded [12]. In
this regime there is little room for the shielding, which
is an effect of the LLS rule, to affect the fiber bundle
significantly.
This changes when the damage increases, as Figure

2 shows. When k/N = 0.5, slightly below the critical
damage of the sample for both LLS and ELS, there is a
significant difference between the threshold distributions
of intact fibers for the two load sharing rules. With LLS,
the weakest intact fibers have thresholds t < 0.25, while
with ELS the lower limit for thresholds is t = 0.5. Ap-
proximately 8.2% of intact fibers in LLS have thresholds
smaller than the lower limit for ELS. Thus the shielding
effect that emerges from LLS protects some fibers with
small thresholds, which survive longer than they would
have with ELS.
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FIG. 4. Cumulative distribution P (tintact) of fiber thresholds
of intact fibers at two different damages d for a single sample
(N = 10242). LLS results are from a simulation on a square
lattice, ELS results are calculated using the same thresholds
as in the LLS simulation. The threshold distribution of all
fibers is uniform: P (t) = t.

Note that only a small fraction of the weak fibers are
shielded by this effect. Out of the 523, 690 fibers with
thresholds smaller than 0.5 in the analyzed sample, only
approximately 8.2% are intact at damage d = 0.5.

Another effect of shielding is an increase in the crit-
ical damage dc, the fraction of fibers broken when the
fiber bundle collapses, compared to ELS. For a uniform
threshold distribution P (t) = t, ELS has dc = 1/2. Fig-
ure 5 shows the cumulative probability distribution of dc
for LLS on a square lattice, also for a uniform threshold
distribution. As N → ∞, the critical damage converges
to a value that is roughly 5% larger than the ELS value.

This means that shielding has the surprising effect of
making LLS more stable than ELS. An LLS fiber bun-
dle reaches catastrophic failure at a higher damage than
a corresponding ELS fiber bundle, and there is a region
with d slightly larger than 1/2 where ELS is unstable (it
has passed the greatest force it can sustain before break-
ing), while LLS is not (it has yet to reach this point).

However, this increased stability comes at the cost of
a reduced critical strength σc. ELS has σc = 1/4 for
P (t) = t, and Figure 6 shows the corresponding values
for LLS on a square lattice. As N → ∞ the LLS critical
strength converges toward σc ≈ 0.233, approximately 7%
smaller than the ELS value.

So far we have investigated LLS on a square lattice
only, but effects of the proposed shielding mechanism
should be present in all other lattices (except for 1D, as
explained earlier). Nothing about the proposed shield-
ing effect is specific to the square lattice, but we should
expect that the effects become smaller as the connectiv-
ity of the lattice increases; it is less likely that a weak
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N = 2562

FIG. 5. Cumulative distribution of critical damage P (dc) for
LLS on a square lattice. The number of samples is 8 × 105,
2× 105, 105, and 3× 104 for system sizes N = 322, 642, 1282,
and 2562, respectively. The threshold distribution is uniform:
P (t) = t.
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FIG. 6. Cumulative distribution of critical strength P (σc) for
LLS on a square lattice. The number of samples is 8 × 105,
2× 105, 105, and 3× 104 for system sizes N = 322, 642, 1282,
and 2562, respectively. The threshold distribution is uniform:
P (t) = t.

fiber is surrounded (and hence shielded) by strong fibers
in a higher-dimensional lattice or a lattice with higher
connectivity. To test this hypothesis, Figure 7 shows the
distribution of critical damage for LLS on four different
lattices.

As expected, the critical damage is highest for the
square lattice, because the shielding effect is the most
pronounced there. The square lattice has the lowest con-
nectivity and dimension of the four lattices that is tested
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FIG. 7. Cumulative distribution of critical damage P (dc) for
LLS on four lattices with similar number of fibers: square
(N = 1282), triangular (N = 1282), cubic (N = 253), and 4D
hypercubic (N = 114), all simulated with 105 samples. The
threshold distribution is uniform: P (t) = t.

here.
The triangular lattice has a smaller critical damage,

but still significantly greater than ELS. This is consistent
with a somewhat less pronounced shielding effect, which
is expected for a lattice that is also two-dimensional, but
with higher connectivity than the square lattice.

The cubic and 4D hypercubic lattices have much
smaller critical damages than the two-dimensional lat-
tices, and are comparable to ELS. This is consistent with
the proposed shielding effect, which should become much
weaker as the dimension increases; there are many more
possible paths for a hole to gain access to the inside of
a shielded region in higher dimensions, and shielding is
therefore much rarer.

VI. WHEN IS SHIELDING RELEVANT?

Early in the breaking process the LLS model behaves
ELS-like, as corroborated by Figures 1, 2, 3, and 4. The
disorder of the threshold distribution dominates the pro-
cess, i.e., the effective thresholds from equation (3) are
dominated by the original thresholds in the numerator,
not the hole structure in the denominator. What hap-
pens when the fiber bundle has a critical damage in
this disorder-dominated regime? If the increased crit-
ical damage of LLS compared to ELS for the uniform
distribution is indeed an effect of shielding, one would
expect that for threshold distributions where the critical
damage dc is in the disorder-dominated regime, LLS has
a smaller critical damage than ELS due to the local stress
enhancement.

To demonstrate this, we choose the threshold distribu-

0.0 0.2 0.4 0.6 0.8 1.0

d
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σ
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FIG. 8. Stress σ vs. damage d in the ELS model and the
LLS model on a square lattice. The ELS curve has been
calculated analytically via equation (1), and the LLS result is
a simulation of a single sample (N = 10242). For clarity, the
LLS result shows only every 800th data point. The threshold
distribution is P (t) = t2 for both models.

tion P (t) = t2. The ELS model then has a critical dam-
age dc = 1/3, close to the disorder-dominated regime.
What about the LLS model? Figure 8 compares the
stress σ vs. damage d for the ELS model and the LLS
model on a square lattice. As in Figure 1 for the uni-
form distribution, the LLS model has a smaller critical
strength σc than the ELS model, but in this case the crit-
ical damage dc also seems to be smaller, approximately
dc ≈ 0.2.

To determine the critical damage of the LLS model
more accurately we plot its cumulative probability dis-
tribution for different system sizes in Figure 9, like we
did in Figure 5 for the uniform distribution. It indicates
that, in the limit N → ∞, the critical damage is dc < 0.2,
i.e., much smaller than for the ELS model.

This is consistent with the expanation that the shield-
ing effect is responsible for the increased critical dam-
age of the LLS model for the uniform threshold distri-
bution. When catastrophic failure occurs early in the
breaking process, i.e., in the disorder-dominated regime,
the shielding effect hardly influences the fiber bundle
in the stable phase; shielding is stronger the more the
hole structure of the fiber bundle dominates the effec-
tive thresholds, and it is therefore weak in the disorder-
dominated regime, as corroborated by the results for
d = 0.2 in Figure 4. Hence, for this kind of threshold dis-
tribution, the local stress enhancement of LLS leads to
decreases in both critical strength σc and critical damage
dc compared to the ELS model, since shielding is not rele-
vant in the stable phase. However, if catastrophic failure
occurs late enough for the shielding effect to be relevant
in the stable phase — exactly what damages count as
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FIG. 9. Cumulative distribution of critical damage P (dc) for
LLS on a square lattice. The number of samples is 106, 1.5×
105, and 1.5× 104 for system sizes N = 642, 1282, and 2562,
respectively. The threshold distribution is P (t) = t2.

“late enough” will depend on the lattice — then it leads
to the LLS model having a higher critical damage than
the ELS model.

An example of a threshold distribution where the
shielding effect is relevant is the Weibull distribution
P (t) = 1−e−t. Figure 10 shows the stress σ vs. the dam-
age d for this threshold distribution with LLS on a square
lattice and ELS. For the ELS model, dc = 1 − e−1 ≈
0.632, which is smaller than the critical damage for the
LLS model, as evidenced by the cumulative distributions
of the critical damage in Figure 11.

VII. DISCUSSION

We have shown that the LLS fiber bundle model con-
tains a shielding effect where some of the fibers with the
smallest thresholds (i.e., the weakest fibers) among the
intact fibers are shielded from some of the applied load,
compared to ELS. Increased connectivity and dimension
of the lattice makes shielding less probable, and hence
the effects decrease as the dimension or connectivity in-
creases. The exception to this behavior is that the ef-
fect is not noticeable in 1D, where LLS has zero criti-
cal damage and strength. It is not clear if the shield-
ing effect is important for applications where a three-
dimensional model is appropriate. But for cases where
a two-dimensional model is correct, the shielding effect
can be expected to give important contributions to the
behavior of the fracture process.

Shielding has two major effects. The first is that two-
dimensional LLS models can be more stable than cor-
responding ELS models, in the sense that catastrophic
failure occurs at a higher damage. This is, however, ac-
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FIG. 10. Stress σ vs. damage d in the ELS model and the
LLS model on a square lattice. The ELS curve has been
calculated analytically via equation (1), and the LLS result is
a simulation of a single sample (N = 10242). For clarity, the
LLS result shows only every 800th data point. The threshold
distribution is P (t) = 1− e−t for both models.
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FIG. 11. Cumulative distribution of critical damage P (dc) for
LLS on a square lattice. The number of samples is 1.5× 105,
1.5 × 104, and 1.5 × 103 for system sizes N = 1282, 2562,
and 5122, respectively. The threshold distribution is P (t) =
1− e−t.

companied by a reduced critical strength. In total, LLS
can, surprisingly, be preferable to ELS in two dimensions
when stability is more important than strength for the
application in question.

The second effect is that weak fibers are better pro-
tected and survive longer in LLS than in ELS. This is in
some ways similar to how cars are built to protect the
people inside at the expense of the sturdiness of the car
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itself. Potential applications where it is more important
to have weak fibers survive than that the strength of the
entire fiber bundle is high will be better off using LLS
instead of ELS.

We have mainly studied the uniform threshold distri-
bution P (t) = t, but also shown that shielding is an im-
portant effect for other threshold distributions — like
the Weibull distribution P (t) = 1 − e−t — where catas-
trophic failure occurs after the initial disorder-dominated
regime. However, if failure does occur in the disorder-
dominated regime, before the shielding effect is strong
enough, shielding will not give significant contributions
to the behavior in the stable phase of the fracture process.
We therefore expect that the shielding effect is universal
in the sense that for the class of threshold distributions
where catastrophic failure happens sufficiently late, the
shielding effect will give significant contributions to the
behavior in the stable phase, including an increased crit-

ical damage when compared with ELS.
What happens in more realistic scenarios with inter-

mediate interaction ranges, like in e.g. the γ-model [13]
or soft clamp model [14], is still an open question. One
could speculate that such models should be somewhere
between the ELS and LLS models, and that they might
contain a weaker shielding effect than in the LLS model,
but a thorough analysis would be required to give definite
answers.
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