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Abstract

This thesis studies fracture phenomena with the fiber bundle model, a heavily
simplified model used to analyze various aspects of fracture processes. In the equal
load sharing variant of the model, energy concepts are introduced and an exact
result and asymptotic series expansion of the burst size distribution is calculated.
In the local load sharing variant of the model, we investigate two different effects
related to the stability of the model.

In addition, I present a generalization of an earlier result for the first burst
in the equal load sharing model, and a possible generalization of the local load
sharing model. Both of these results are previously unpublished.

Article I: We consider the Equal-Load-Sharing Fiber Bundle Model as a model
for composite materials under stress and derive elastic energy and damage energy
as a function of strain. With gradual increase of stress (or strain) the bundle
approaches a catastrophic failure point where the elastic energy is always larger
than the damage energy. We observe that elastic energy has a maximum that
appears after the catastrophic failure point is passed, i.e., in the unstable phase
of the system. However, the slope of elastic energy vs. strain curve has a maxi-
mum which always appears before the catastrophic failure point and therefore this
can be used as a reliable signal of upcoming catastrophic failure. We study this
behavior analytically for power-law type and Weibull type distributions of fiber
thresholds and compare the results with numerical simulations on a single bundle
with large number of fibers.

Article II: We derive an asymptotic series expansion for the burst size distri-
bution in the equal load sharing fiber bundle model, a predominant model for
breakdown in disordered media. Earlier calculations give expressions with correct
asymptotic behavior for large bursts, but low accuracy for small bursts, up to an
order of magnitude off. The approximations from the expansion we present here
give relative errors of only a few percent when compared with results for infinite
system sizes. We also solve the burst size distribution exactly for the Weibull
threshold distributions.



Article III: By comparing the evolution of the local and equal load sharing fiber
bundle models, we point out the paradoxical result that stresses seem to make
the local load sharing model stable when the equal load sharing model is not. We
explain this behavior by demonstrating that it is only an apparent stability in the
local load sharing model, which originates from a statistical effect due to sample
averaging. Even though we use the fiber bundle model to demonstrate the appar-
ent stability, we argue that it is a more general feature of fracture processes.

Article IV: We use the local load sharing fiber bundle model to demonstrate a
shielding effect where strong fibers protect weaker ones. This effect exists due to
the local stress enhancement around broken fibers in the local load sharing model,
and it is therefore not present in the equal load sharing model. The shielding effect
is only prominent after the initial disorder-driven part of the fracture process has
finished, and if the fiber bundle has not reached catastrophic failure by this point,
then the shielding increases the critical damage of the system, compared to equal
load sharing. In this sense, the local stress enhancement may make the fracture
process more stable, but at the cost of reduced critical force.
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1 Introduction

“A metaphorical model does not attempt to precisely describe reality, nor
does it necessarily rely on very plausible assumptions. Rather, it aims to
illustrate a non-trivial mechanism, the scope of which goes much beyond
the specifics of the model itself.” 2]

JEAN-PHILIPPE BOUCHAUD

The fiber bundle model is not realistic, but it is incredibly useful. This may
sound contradictory to some. How can a model be both unrealistic and useful?
Because its purpose is to help us understand behavior qualitatively, not to give
exact results.

1.1 The importance of simplified models

The archetypical example of a metaphorical model is the Ising model [3], which
describes magnetism. The simplest version of the model, with no external magnetic
field, isotropic interaction strength, and interactions between neighboring pairs of
spins only, manages to capture the essence of the phase transition that magnetic
materials undergo as the temperature changes.

Is it a realistic model for a real magnet? Not really. But that is precisely why
it is so useful.

The model is simple enough to be solved analytically, and we can study the
influence of its parameters without having to infer it from numerical solutions or
experiments.

By removing complicating factors, we can see what behavior stems from the
bare-bones mechanics of the model. This serves as both an expected qualitative
behavior of magnetic systems, and a reference that more complex models can be
compared with. It is reasonably simple to determine the influence of new mechan-
ics (e.g. an external magnetic field) when we know how the model behaves without
them. Conversely, inferring the general behavior of the bare-bones mechanics from
hundreds or thousands of different results from more complex models is much more

difficult.



Hence the Ising model contributes with an important understanding of why
magnetism behaves the way it does, and provides a framework and key concepts
that can be used to analyze experiments and more realistic models.

This use of simplified models to understand the general principles of a highly
complex field is ubiquitous in physics [4], and is not limited to the Ising model in
condensed matter physics. Thermodynamics has the ideal gas [5] and quantum
mechanics uses the particle in a box [6]. And fracture has (among other models)
the fiber bundle model.

1.2 Fracture

Humanity uses a huge variety of different materials, and the field of fracture is
therefore correspondingly broad. It comprises engineering, materials science, geol-
ogy, and physics. It covers rocks |7], metals [8], concrete |9], snow avalanches [10],
earthquakes [11], glasses, and ceramics [12]. A review of the field is far outside the
scope of this brief introduction; if you want to learn more, you should consult one
of the numerous books on the subject, e.g. Ref. [13, 14].

But precisely because fracture is a wide and complicated field, simplified mod-
els are important for serving as references for experiments and more elaborate
models, and for understanding universal behavior in fracture processes. This is
where the fiber bundle model excels; with only the bare minimum of mechanics,
it is able to describe some of the characteristic features of fracture.

1.3 Outline

Chapter 2 gives a short introduction to the fiber bundle model, both equal and
local load sharing. Chapter 3 introduces energy concepts in the equal load sharing
model and describes how they can potentially be used to predict failure. Chapter 4
presents several results about the burst size distribution in the equal load sharing
model, with some of the lengthy proofs relegated to Appendix A. Chapter 5 deals
with stability in the local load sharing model, while Chapter 6 describes a way to
generalize the model.



2 The Fiber Bundle Model

This chapter is by no means a complete account of the fiber bundle model, but
rather a brief introduction that covers some history and details of interest for this
thesis. For a more thorough historical perspective and more detailed descriptions
of the model and its applications, see e.g. Ref. [15, 16].

2.1 History

The fiber bundle model (FBM) began when Peirce made it to describe yarns as
bundles of smaller fibers with individual strengths [17]. The next big step was the
statistical treatment of the FBM done by Daniels in 1945 [18], where the effects
of probability distributions of fiber strengths were analyzed. These inital works
described the equal load sharing version of the model.

The fiber bundle model continued to be used by the materials science commu-
nity, and in 1978 the local load sharing model was introduced to describe fibrous
composite materials [19].

In 1989 the fiber bundle model was introduced to the physics community by
Sornette [20]. Since then much research has been done on both the equal and
local load sharing FBMs, and several models — like the 7-model [21] and the soft
clamp model [22] — have been suggested as more realistic FBMs with intermediate
interaction ranges.

2.2 The basics

A fiber bundle consists of IV elastic fibers connected in parallel between two plates,
see Figure 2.1. Each fiber ¢ behaves as a Hookean spring until its elongation x
reaches a threshold ¢;, where it breaks. The stress-strain relation of a single fiber

is hence
KT for x < t;
B 2.1
Ji {0 for x > t;, 21)

where f; is the force acting on the fiber and « is the fiber’s elastic constant. The
fibers are usually assumed to have identical elastic constants, which is commonly
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Figure 2.1: A fiber bundle: N elastic fibers are connected in parallel between two
plates, and an external force F' elongates the bundle a distance .

set to k = 1 for simplicity.

The fiber thresholds ¢; are drawn from a probability distribution, denoted by
the probability density p(t) or the corresponding cumulative distribution P(t) =
fydt p(t).

This threshold distribution needs experimental data to be determined for a
particular application, otherwise it must be chosen somewhat arbitrarily. However,
we are generally interested in studying properties and behaviors that are universal
in the sense that they are common to large groups of threshold distributions.
These universal properties are much more likely to be general features of fracture
processes, which is what simplified models like the FBM excel at describing.

A fiber bundle is exposed to an externally applied force F', which is distributed
on the intact fibers of the bundle. When no fibers are broken, the load is equal
for all fibers, but what happens when fibers break? To determine this internal
distribution of forces, a load sharing rule is needed.

2.3 Equal load sharing

In the equal load sharing (ELS) model, the force F' is distributed equally on all
intact fibers. This means that fibers fail in order of increasing thresholds ¢; when
the force is increased, which makes this version of the fiber bundle model amenable
to analytic calculations.
The load curve — the macroscopic stress-strain relation for the entire fiber
bundle — for the ELS model is
c=—=k(1-P(x))x, (2.2)
where o is the applied force per fiber and x is the elongation of the bundle.
Equivalently, this can be formulated in terms of the number of broken fibers k
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or the damage d = k/N as
o=r(l1—d)P1(d), (2.3)

since d = P(x) — with an elongation z, all fibers with ¢; < = have broken, which
gives a damage equal to the cumulative threshold distribution evaluated at x.
Equations (2.2) and (2.3) represent the behavior in the thermodynamic limit
N — oo; for finite system sizes N there are fluctuations around this average
behavior.
From Eq. (2.2) we can find the critical elongation x. and the critical damage
d. = P(x.) where the bundle collapses by setting do/dx|,—,. = 0, which gives the
condition
P () 4+ zcp (zc) = 1. (2.4)

Once z. is known, it is simple to calculate the critical strength o. of the fiber
bundle via Eq. (2.2).

2.3.1 Burst size distribution

When a fiber breaks because the applied load elongates it past its threshold, the
load it carried is redistributed onto other intact fibers. These additional loads
can push other fibers past their breaking points, triggering an avalanche of fiber
failures under a constant external force F.

The burst size distribution describes the distribution of these bursts of fiber
ruptures. If A is the number of fibers that fail in a burst, we say that it is a burst
of size A. The burst size distribution D(A) is the average number of bursts of
size A that occurs when a fiber bundle breaks. Since this measure scales with the
system size N, it is more convenient to work with D(A) = D(A)/N, with the
physical interpretation that AD(A) is the fraction of fibers that break in bursts
of size A.

It has been shown [23] that

D(A) ~ CA™/2 (1 - e_A/AC>
A2 for A< A, (2.5)
0.8
A732 for A> A,

in the limit A — oo, where

xcp(:(}c)Q
V27 [2p(ze) + wep! (26)]
ArC?

p(xc)2 (mc - tU)z’

and tg > 0 is the lower limit of the threshold distribution.

A=
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Figure 2.2: A one-dimensional fiber bundle with three broken fibers under a load
F', shown with ELS (left) and LLS (right). With LLS, fibers that neighbor holes
receive higher loads, but the other fibers receive smaller loads than they would
have in the ELS model.

2.4 Local load sharing

In the local load sharing (LLS) model, the load that is redistributed when a fiber
breaks is given to ounly its nearest neighbors. Since this means that fibers no longer
carry the same loads (and hence no longer have the same elongations), the load
curve of the LLS model cannot be represented by o(z) as in Eq. (2.2), and must
instead be represented by o(d) as in Eq. (2.3).

The fact that fibers have different elongations also means that fibers no longer
fail in order of increasing thresholds. This lack of orderly behavior makes the LLS
model much more difficult to work with analytically than the ELS model. Most
LLS results are therefore based on simulations rather than analytic calculations.

The LLS model was originally [19] defined on a one-dimensional lattice with
periodic boundary conditions, see Figure 2.2 for an example. The burst distribu-
tion of this model is not a power law [24], unlike the ELS model. More importantly,
the critical damage is d. = 0 in the thermodynamic limit [16, 25]. However, the
model can be generalized to an arbitrary lattice [26]:

Let a hole j be a set of h; broken fibers joined by nearest neighbor connections
of the underlying lattice. The hole has a perimeter of p; intact fibers that are
nearest neighbors of the hole. Every hole redistributes load — the load its fibers
would have carried had they been intact — equally on the fibers in its perimeter.
The force f; on an intact fiber ¢ is then

h,
fi=o 14> 2], (2.7)
~ Dj

where the sum goes over all holes j that neighbor the fiber.
To figure out which fiber will break under the smallest load o, we define an



effective threshold ter; for each fiber i
t;
1+ 2
— Py

By combining this expression with Eqgs. (2.1) and (2.7) and the breaking criterion
fi > wt; for a single fiber, we find the breaking criterion ¢ > ktefr;, which means
that fibers break in order of increasing effective thresholds as the force increases.
Unfortunately, the effective thresholds depend on the local hole structure of the
fiber bundle, so the order of effective thresholds is dynamic amd changes as fibers
break.

Importantly, the generalization of LLS to higher dimensions in Eq. (2.7) is
stable in the sense that the critical damage is nonzero in the thermodynamic
limit, which makes dimensions D > 1 much more interesting to study than the
one-dimensional case.

This generalization of LLS to higher dimensions is not the only one possible
— the soft membrane FBM [27] also reduces to LLS in one dimension — but it is
the simplest one that ensures history independence of the distribution of forces.

2.4.1 History dependence

The original LLS model was history independent in the sense that the breaking
order of the fibers doesn’t affect the distribution of forces f; on intact fibers,
but not everyone has implemented LLS in this way. When a fiber breaks, some
implementations (e.g. Ref. [28]) simply redistribute its load equally on its nearest
intact neighbors. This is very efficient computationally, but leads to a model where
the breaking order of the fibers affects how forces are distributed within the fiber
bundle — the model is history dependent. (See e.g. Ref. [16, 29] for examples of
how redistributing the forces in this way leads to history dependence.) Contrast
this with the force distribution in Eq. (2.7), where the breaking order of fibers is
irrelevant.

These two implementations of LLS give very different behavior for lattices with
dimension D > 1. Compare, for instance, the results for the square lattice from
Ref. |29] and [30], where e.g. o differs greatly between the two implementations.
I am not aware of any direct comparisons of history dependent and independent
LLS in one dimension, but I expect the qualitative behavior to be the same, as
the model has zero critical damage in both cases.






3 Energy and Predicting Failure

One of the holy grails of fracture is to predict when catastrophic failure is going
to happen. For it to be useful, a prediction method must work with the limited
information that is available from the system before the failure happens.

As such, Eq. (2.4) for finding z. in the ELS model is not a useful prediction
method because it requires information about the threshold distribution that can-
not be measured before failure. To determine P(t), we would need to measure
both the force o and the elongation x and then use Eq. (2.2). But to get the rele-
vant information (P(z.)) we would have to reach the critical point, and predicting
it would be pointless.

But are there methods that can actually be used to predict when failure is
going to happen in the ELS model? It turns out that the elastic energy of the
fiber bundle may give a semi-accurate prediction method.

3.1 Elastic energy, damage energy, and work

The elastic energy E€ of a fiber bundle is simply the total elastic energy of all its
constituent fibers. In the ELS model, they all share the same elongation z, and
hence it can be written B
K
— = —(1—d)a? 3.1

where d is the damage the fiber bundle has sustained. If x is the largest elongation
so far during the fracture process, the damage and elongation are connected via
d = P(x), and we can express the elastic energy as a function of either x or d
alone.

The damage energy E< is the dissipated energy from fiber failures, and can be
calculated as

P-1(d)
E? K

N =3 / da’ p(z')z". (3.2)
0

This dissipated energy could be measured via acoustic emissions, like in rock frac-
turing experiments [31, 32].



The total work W done on the fiber bundle by the force F' when the bundle is
stretched from 0 to = can be found via Eq. (2.2):

T

% = jdx’ o(z') = /i/dx’ /(1 - P()), (3:3)
0

0

which clearly separates into Eq. (3.1) and Eq. (3.2), i.e., W = E¢ + E4. This
relation can be used to calculate the elastic energy if the work and damage energy
are measured.

3.2 Elastic energy maximum

As seen from Eq. (3.1), the elastic energy must have a well-defined maximum at
an elongation z,, > 0. By differentiation of Eq. (3.1) and some rewriting, we find

that x,, must satisfy
1-P 1
1-Plam) _ - (3.4)
l'mp(wm) 2
The left-hand side of this equation defines a function of the elongation, which
can be rewritten as

1-P(x)  1-Px)
zp(r) — 1-Pz) -4
_{>1 for 42 >0

(3.5)

<1 for <0

by differentiation of Eq. (2.2).

If the load curve has only a single local maximum, then do/dz > 0 in the
stable phase (z < z.) and do/dz < 0 in the unstable phase (z > z.). From the
above equations we can then conclude that x,, must be in the unstable phase, i.e.,
Tm > x.. Continuous measurements of the elastic energy to look for its maximum
is hence not a suitable prediction method for failure of the fiber bundle.

3.3 Elastic energy inflection point

The maximum of E€ is not suitable for predicting failure, but what about the
maximum of its derivative, located at the inflection point x;?7 We know that
T; < Xy, but is it also smaller than x.? If it is, and a relation between z;
and z. can be found, then continuously measuring the elastic energy of the fiber
bundle during the fracture process to look for its inflection point could be a useful
prediction method for failure of the bundle.

10



Differentiating Eq. (3.1) twice and setting the derivative d2E¢/dz? = 0 at x;
leads to the condition

0=2(1— P(x;)) — 4zip(z;) — :c?p'(xi), (3.6)
or, equivalently,
do x; d?c
— === — 3.7
dz|,, 2 dx? 2 (3.7)

We have not found a general proof that z; < z. from this condition, but it is
true for all Weibull distributions P(t) = 1 —exp (—tﬁ ) and power law distributions
P(t) = t**1 regardless of the shape parameters 8 > 0 and « > 0. This indicates
that z; is commonly smaller than z..

Does this mean that the inflection point z; can be used to predict failure?
Unfortunately, trying to express the critical point as

z. = Cux; (3.8)

leads to a constant C that depends on the threshold distribution. However, the
window C' € [1.2,1.5] covers a wide range of threshold distributions, and detecting
x; via elastic energy measurements can be seen as a precursor to failure, which is
most likely to happen in the region [1.2z;, 1.5x;].

So far we have discussed only the ELS model, but what about LLS? Here we
must rely on simulations, since analytic calculations are impossible. The results
so far indicate that the behavior of the LLS model depends more on the threshold
distribution than the ELS model, which makes it harder to draw general conclu-
sions.

11






4 Bursts

Bursts (also called avalanches) are an important part of the study of fiber bundles.
They represent events of several fibers that break successively, and these events can
be measured by acoustic emissions in experiments [31, 32|. Also, the distribution
of these events changes when the ELS fiber bundle approaches the critical point,
as shown by Egs. (2.5) and (2.6). This transition has therefore been suggested as
a possble way to predict failure of the bundle [33].

But Eq. (2.5) does not tell the whole story. It is only an asymptotic relation
that is valid for very large (and hence rare) bursts. For smaller bursts, it can be
very inaccurate. This is easily seen by calculating

oo

> AD(A). (4.1)

A=1

Since AD(A) is the fraction of fibers that break in bursts of size A (excluding
the fatal burst when the bundle collapses), this sum should equal P(z.). For
a uniform threshold distribution P(t) = ¢, we find that the sum is ~ 0.246 via
Eq. (2.5), whereas P(z.) = 1/2. This discrepancy is a result of Eq. (2.5) being
inaccurate for small A, which contribute the most to the sum in Eq. (4.1).

If the burst distribution is to be used to predict failure, it is better to rely
on smaller and more common events, rather than the large and rare ones. This
chapter therefore focuses on calculating small bursts more accurately for the ELS
model. We do not investigate the LLS model, although it is possible to derive
some analytic results about its burst distribution [24].

4.1 Exact solution

One can show that (to first order in N, i.e., in the limit N — co) the ELS burst
distribution is 34|

A1
pa) = 2 N / dt [a(t)e—a@)ra(t)—l [1—a(t)]p(t), (4.2)

13



with a lower limit ¢g < x. of the threshold distribution, and

tp(t)

a(t) = - PO (4.3)

Can Eq. (4.2) be solved exactly for some threshold distributions? Surprisingly,
it can. For a Weibull distribution P(t) = 1 — e+ (t > t9) — which gives
a(t) = Bt® — integration by parts and induction yields

_ AA—l tg A
D(A) = A!(Til) {e—(AH/ﬁ) _ (ﬂtg) e—tg(BAﬂ)}
(BA)A—l o—BALy A1 {(BA + 1)tgr
+ A(,@A + 1)A+1 pr ’i! (4.4)

(BA)> T efo— (A1) X (BA 4 1)
A(BA + 1)A+1 il

1=0

This expression can easily be calculated for small A, which is what we want to
describe accurately. For large bursts it is impractical to use, but then Eq. (2.5) is a
good approximation and can be used instead. (Equation (4.4) reduces to Eq. (2.5)
in the limit A — o00.)

4.2 Asymptotic expansion

What about threshold distributions where the burst distribution cannot be solved
exactly? Equation (4.2) can be formulated as a Laplace integral [35] where one
can do an asymptotic series expansion in the limit A — oco. This approach was
used to derive Eq. (2.5), which is the first term of the series expansion.

But it is possible to derive a scheme for the full asymptotic expansion. The
resulting series has the form

AA—Qe—A

D& ~ =5

—1/2
(C1(a) + Ca(a)a ws)

+ C3(A)AT 4 Cy(A)AH2 4 ) .

Unfortunately, the “coefficients” C),, depend on A because of the lower limit of
integration in Eq. (4.2). Hence it is difficult to use this series to extract any
general behavior of D(A) as a function of A.

However, Eq. (4.5) can be used to calculate approximations to D(A) for small
A, where Eq. (2.5) is very inaccurate.
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4.2.1 Optimal asymptotic approximation

In general, asymptotic series like Eq. (4.5) diverge for finite A. But one can find
good approximations to the burst distribution for finite bursts by discarding the
divergent part of the series expansion. The procedure for doing this summation is
[35]:

Calculate the terms in the series and locate the smallest term in absolute value
— let us call it m. Then sum all terms up to, but not including, the smallest term.
The resulting approximation is

AA-2,-A m1 N
D(A) » = > Ci(A)ATED2, (4.6)

=1

which is optimal in the sense that it gives us the smallest estimate of the error.

Equation (4.6) can hence give us approximations of the burst distribution for
small bursts, even though Eq. (4.5) is valid only in the limit A — oo and (most
likely) diverges for finite A.

In practice, one cannot calculate the entire infinite series to find the smallest
term, so one must settle for calculating a certain number of terms and then finding
the smallest among those. This term is not necessarily the smallest one in the
entire series, in which case the accuracy of the approximation is reduced.

The exact result in Eq. (4.4) provides a perfect test case to assess the accuracy
of Eq. (4.6). Both results are derived in the thermodynamic limit, and therefore
do not contain finite size effects. The relative errors when using Eq. (4.6) (with
13 calculated terms for each value of A) to approximate the exact result is shown
in Figure 4.1 for a Weibull threshold distribution with shape parameter g = 1.
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Figure 4.1: Relative errors when using Eq. (4.6) with 13 calculated terms to ap-
proximate the exact result for the ELS burst distribution with the Weibull thresh-
old distribution. Left: 5 =1 and ¢ty = 0. Right: =1 and ¢t = 0.8.

When tg = 0.8, close to . = 1, the optimal approximation is very accurate.
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The largest relative errors — for the smallest A, as one would intuitively expect
— are of order 107!

When ty = 0, the accuracy is much lower, with the largest relative errors of
order 10%. The results indicate that the cause is that 13 terms is insufficient to
find the smallest terms in the asymptotic series. However, this approximation is
still much better than using Eq. (2.5), which is nearly an order of magnitude off
for A =1.

In conclusion, the asymptotic expansion in Eq. (4.5) and the optimal approxi-
mation in Eq. (4.6) provide a framework for estimating the ELS burst distribution
for small bursts when no exact results exist and Eq. (2.5) is not accurate enough.

4.3 The first burst

Instead of calculating the entire burst distribution during the breaking of a fiber
bundle, we can focus on only the first burst. What is the probability P;(A) that
the first burst that occurs is of size A? For the special case ty = x., this has been
shown [23] to be
—AANA-1
e A 1
Pi(A) = ~ A3/2 4.7

in the thermodynamic limit.

But this result can be generalized to an arbitrary lower limit 3. The proof of
this generalization is essentially identical to the original proof of Eq. (4.7), and is
shown in Appendix A. The general expression is

1 AJA efAAAfl
PU(B) = [1 = r(to)] oA/ 200 5
1 : (4.8)
V271 [1 —r(to)]
where ()
D
ty=1— ———,
) 1—P(t) (4.9)

1/Ao(t) =7r(t) +1In(1—r(t)).

For tg = x., we recover Eq. (4.7), since r(z.) = 0 and hence 1/Ap(x.) = 0. For
other values of tg, Ag(tg) < 0, and the power law observed when ¢y = . is modified
with an exponential decay. In Figure 4.2, Eq. (4.8) is compared with simulation
results for a Weibull threshold distribution, with excellent agreement between the
two.

Equation (4.8) should be properly normalized, and therefore one would intu-
itively expect that > X, Pi(A) = 1. This is indeed the case for ¢ty < z., but for
to > z. we find that

G ~ Wo ((r(tg) — 1)ertio)=1)
Az_lpl(A) = o) 1 <1, (4.10)
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Figure 4.2: Probability distribution P;(A) for the first burst with a Weibull thresh-
old distribution with 8 = 1 and ty > . = 1. Colored circles are simulation results
(N = 10, 2x 10° samples) and the black lines show Eq. (4.8) for the corresponding
threshold distributions.

where Wy is the principal branch of the Lambert W function, the inverse of the
function f(z) = ze*. When tg > x., we have r(tgp) — 1 < —1, and the principal
branch Wy provides the nontrivial, real solution of We" = (r(tg) — 1)e"(to)—1,
Calculating this normalization is rather lengthy, and the derivation is therefore
relegated to Appendix A.

Why is Pi(A) not normalized so that it sums to one in this case? Because
for tg > z., there is a nonzero probability that the first burst breaks the entire
bundle: P;(A = N) > 0. The derivation of Eq. (4.8) requires that A < N, which
means that it does not include cases where A = N.

This insight allows us to use Eq. (4.10) to calculate the probability of instant
rupture of the fiber bundle when ¢y > x.. This probability is simply the one that
is “missing” from Eq. (4.10):

when tg < z.

o 4.11
WO((T(t,?()t;)lzi o= 1) when ty > z.. ( )

0
H@—N%{L_
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Figure 4.3: Probability Pi(A = N) that the first burst breaks the entire fiber
bundle with a Weibull threshold distribution (8 =1, i.e., . = 1). Colored circles
are simulation results, and the black line shows Eq. (4.11).

Equation (4.11) is compared with simulations for a Weibull threshold distribution
in Figure 4.3. The agreement is excellent for large system sizes N, with clear
finite size effects for smaller N, which indicates that Eq. (4.11) is indeed the
correct expression in the thermodynamic limit.
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5 Stability

Stability is easily defined for the ELS model. We can use Eq. (2.4) to find the
critical elongation z.. There is then a stable phase x < x. where the load o must
be increased to continue the fracture process, and an unstable phase x > x. where
the load required to continue the fracture process decreases. (Some threshold
distributions can complicate this picture [16, 24|, but they are exceptions rather
than the typical case.)

This simplicity is due to the lack of fluctuations in the ELS model in the
thermodynamic limit. But what about the LLS model, where there are dynamics-
dependent fluctuations that do not disappear in the thermodynamic limit?

The answer — but not the calculations that lead there — is relatively simple
in one dimension [16, 25|, where d. = 0 in the thermodynamic limit. If to = 0,
Eq. (2.3) yields a critical strength o, = 0. The 1D LLS model is globally unstable
and collapses once the elongation reaches the thresholds of the weakest fibers. But
for dimensions D > 1 the LLS model can exhibit stable phases like the ELS model
[16, 28-30], and the issue of stability is more complicated than in one dimension.

5.1 Apparent stability

An example of how fluctuations in the LLS model can seemingly affect stability
is through the apparent stability where the LLS model looks locally stable even
though it isn’t. Figure 5.1 shows load curves for a Weibull threshold distribution
with 8 =ty = 1. The ELS model is in this case unstable everywhere, since tg = x..
The square lattice LLS model is also globally unstable, since the bundle breaks
once the load o reaches the thresholds of the weakest fibers. But it looks like there
is a region where the LLS model is locally stable, i.e., the (sample averaged) load
(o) required to continue the fracture process increases.

We have previously interpreted this as a sign that the LLS model is locally
stable in this region [29], and attributed this to the shielding effect [36] that is
described later in this chapter. But this is wrong, because the LLS model is not
locally stable in this case, it only appears to be due to how fluctuations affect the
sample averaged load.

The background of Figure 5.1 shows a color map of how the load curves of
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Figure 5.1: Load curves for the ELS and LLS models with a Weibull threshold
distribution P(t) = 1 —exp(—t+1), (8 = to = 1). The ELS curve is Eq. (2.3),
whereas the LLS curve is a sample average from simulations on a square lattice
(N = 128%). The background is a color map that shows the density p of single
sample LLS load curves for the 1.5 x 10° samples that the average is based on. The
color bar is capped at p = 0.0025 to highlight the fluctuations with the smallest
values of o.

individual samples are distributed for the LLS model, with big force differences
between samples for the same damage d. These fluctuations (in the ensemble
of individual samples) reveal that the increase in the averaged load (o) as the
damage increases does not happen because the LLS model is locally stable there;
the average increases in a small region because the lower end of the fluctuations
become much more rare there, but the upper end of the fluctuations still decreases.

The central issue is how one should define local stability in the LLS model.
Because of the large fluctuations (even for forces required to break consecutive
fibers in a single sample), we cannot use the approach of the ELS model. Instead,
we can define small damage intervals [d;, d;+1] for each sample, where Ad = d; 1 —
d; is any small, but finite, number. To break the fibers in a given interval, we must
break the strongest fiber there. Hence, we find the largest force omax; in each
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interval. If this sequence of forces increases somewhere — in the limit N — oo,
where we have sufficiently many fibers in each interval for the variance of omax i
to be irrelevant — there is a local stability in that region. Since the upper limit
of the color map in Figure 5.1, which can be used as a substitute for the sequence
of maximum forces, decreases everywhere, there is no local stability in the LLS
model either.

But if the LLS model is not stable, why is there an apparent stability where (o)
increases? The lower end of the force fluctuations happen because a fiber breaks,
and the hole that grew “encounters” a new fiber with a small threshold that is
added to its perimeter. The new fiber’s effective threshold becomes even smaller
(Eq. (2.8)), and the force required to break it is hence small. These events become
much rarer when the perimeters of holes cover most of the intact fibers, which
happens in a region around the percolation threshold! of the lattice. There is
nothing special about the square lattice in this regard, and the apparent stability
is visible for other lattices around their corresponding percolation thresholds, as
shown in Figure 5.2.

This underlying cause is always present in the LLS model, but it doesn’t nec-
essarily result in an apparent stability. For many threshold distributions, the
changing fluctuations aren’t enough to make (o) increase when the model is un-
stable.

5.2 The shielding effect

In the LLS model, intact fibers that neighbor holes carry larger forces than other
fibers. Intuitively, one might expect that this local stress enhancement would make
the LLS model less stable than the ELS model, but that is not always the case.

Stress enhancement somewhere also means stress reduction somewhere else.
Figure 2.2 illustrates this for the one-dimensional LLS model; fibers that neighbor
holes are loaded more than with ELS, but the other fibers are loaded slightly less.
The other fibers are shielded from some of the load by the fibers that neighbor
holes.

There are small pockets of weak fibers scattered throughout the fiber bundle,
surrounded by stronger fibers that shield them from some of the external load.
The shielding effect makes sure that these weak fibers survive longer in LLS than
in ELS; at the same damage, the weakest intact fibers are weaker in LLS than in
ELS, because slightly stronger fibers with smaller effective thresholds break in their
stead. The effect is more pronounced in less connected, i.e., lower-dimensional,
lattices, and its effects are therefore most easily noticed in two dimensions. (One
dimension is, as usual, exceptional in the LLS model.)

The effects of shielding are significant only when the fracture process is no
longer in the disorder-dominated regime — when Eq. (2.8) is dominated by the

'For more information about percolation theory, see e.g. Ref. [37].
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Figure 5.2: Sample averaged LLS load curves for lattices in two to four dimen-
sions with corresponding site percolation thresholds p. indicated. The threshold
distribution is P(t) = 1 —exp (1 — t), a Weibull distribution with g =ty = 1.

thresholds in the denominator — where ELS and LLS behave very similarly. In
cases where the LLS model is stable long enough for the fracture process to leave
the disorder-dominated regime, the shielding effect can actually make it more sta-
ble than the ELS model in terms of how much damage the fiber bundle can sustain
before collapsing. However, this comes at the expense of the critical strength o,
which is smaller in the LLS model than in the ELS model due to the local stress
enhancement.

With a uniform threshold distribution P(t) = ¢, the square lattice LLS model
has a critical damage d. that is roughly 5% larger than the corresponding ELS
value d. = 1/2. The critical strength is o, ~ 0.233, which is around 7% smaller
than the ELS result 0. = 1/4.

If the collapse happens in the disorder-dominated regime, then the local stress
enhancement of LLS makes both d. and o, smaller than in the ELS model. This is
the case when P(t) = 2, where the LLS model has d. < 0.2 in the thermodynamic
limit, whereas the ELS model is stable much longer, with d. = 1/3.
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6 Generalizing the LLS Model

The LLS model has been criticized for being unrealistic, because distributing forces
equally on all perimeter fibers independently of hole shapes is not how real ma-
terials behave. As mentioned in the introduction, models that are simplified and
sometimes unrealistic can be very useful, but we would like to compare them with
more realistic models. Hence we want to create a generalization of the LLS model
that can accomodate for more realistic ways of distributing forces on perimeter
fibers.

If we insist that the model should be history independent, there are only a
few things that the force distribution scheme can depend on: hole sizes, perimeter
sizes and hole shapes. The first two are necessary to define an LLS model, and
only the hole shapes can be used to generalize the model. But how? The shape
of a hole contains a wealth of information that could potentially be used. This
section will outline what I consider the simplest approach, which creates a model
that can be applied to any connected network, just like regular LLS.

6.1 Link-distributed local load sharing

Let us define the link-distributed LLS model. The basics of the model are identical
to regular LLS:

The model consists of IV elastic fibers between two plates. A fiber i behaves as

a Hookean spring with spring constant x until its elongation = reaches its threshold

t;, where the fiber breaks. The stress-strain relation of fiber 7 is hence

e {mz: while x < t; (6.1)

0  after z reaches t;

The set of thresholds {¢;} is drawn from a probability density p(t) with corre-
sponding cumulative probability distribution P(t) = fg du p(u). These thresholds
are individual for each fiber, and the threshold distribution P(t) is a parameter of
the model.

A total force F' can be exerted on the fiber bundle, and we define the force per
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fiber as 0 = F//N. The forces f; on individual fibers must of course satisfy
F=No=) f, (6.2)

where the sum can be restricted to intact fibers, since f; = 0 for broken fibers.

Fibers are placed on a lattice in D > 1 dimensions with well-defined nearest
neighbor connections. (This model will be identical to regular LLS in 1D, so D > 1
is the most interesting.) Let the connectivity — the number of nearest neighbors
for each site — of the lattice be c.

Let a hole j be a set of broken fibers that are connected by nearest neighbor
connections. The number of broken fibers that make up the hole is its size h;, and
the hole has a perimeter consisting of p; neighboring intact fibers.

Let a link be a nearest neighbor connection from a hole to an intact fiber. A
hole j then has L; total links connecting it to intact fibers. Each of these fibers —
which make up the perimeter of the hole — has at least one and at most (when it
is completely surrounded by the hole) ¢ links to the hole.

Denote the number of links between fiber 7 and hole j by [;;. These numbers
satisfy

> Ly =1Ly, (6.3)
(i,5)
where I have used the notation (i, j) for the set {intact fiber i|i neighbors hole j},
i.e., all intact fibers i that neighbor the hole j. Similarly, (j,7) will mean the set
of holes j that neighbor the intact fiber i.

With the above definitions we can now define a force distribution scheme. A
hole j with size h; has a total load oh; (from its broken fibers) to distribute on
its L; links. We let a link between hole j and fiber i receive a fraction g;(l;;) of
this total load. This means that the load distribution function g; must satisfy the

normalization condition
1= lig;(li;) (6.4)
(4,9
for all holes j. The function g; is another parameter of the link-distributed LLS
model, in addition to the threshold distribution P(t). For now we will keep g;
completely general, and investigate potential choices later.
A fiber i thus receives an additional load oh;l;jg;(l;;) from a hole j, and we
can write the total force acting on it as

fi=o |1+ Z hjlizgi(Lij) | (6.5)
(4%)

This equation is similar to Eq. (2.7) for regular LLS, but it is more versatile because
the function g; can take many different forms.
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With the force distribution from Eq. (6.5) in place, we define effective thresh-
olds tef; of the fibers as

t;
L+ 3700 hilisgs(lis)
analogous to Eq. (2.8) for regular LLS. Combining Eqgs. (6.1), (6.5) and (6.6) gives
the breaking criterion

teff; = (6.6)

0 = Ktoft,i (6.7)

where the fiber with the smallest effective threshold breaks under the smallest load
o.

6.2 The load distribution function

The function g; can take many different forms. Let us investigate a few possibili-
ties.

6.2.1 Reproducing 