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Abstract

Ever since grid cells were discovered in the mammalian entorhinal cortex over

a decade ago, the striking representation of space generated by these neurons

has offered a peek at the inner workings of navigational processes and pos-

sibly other high-level cognitive tasks in the brain. The hexagonal, grid-like

patterns these neurons produce as the animal travels across space appear in-

triguingly algorithmic in their nature, raising the question of whether the same

general principles could successfully be applied in artificial neural networks,

potentially leading to new algorithms in artificial intelligence. Conversely,

while grid cells are believed to play an important role in spatial computation

and navigation, their specific role in the brain is not fully understood; build-

ing artificial navigational agents using the principles of grid cells could help

illuminate their role in biology. In this thesis, we investigate the possible role

of grid cells in “vector navigation”, where agents navigate by calculating goal

vectors using an internal coordinate system. We first develop a neural network

able to perform vector navigation by reading out spatial coordinate informa-

tion from grid cell populations. We then show that the proposed decoding

mechanism can work over long distances, and that it can be integrated with

other kinds of spatial information known from the hippocampal formation in

order to enable the agent to traverse obstacles in complex environments. This

demonstrates that grid cells can play the role of a coordinate system for vector

navigation within larger navigational architectures, either in artificial (simu-

lated or robotic) settings, or in the brain. We finally show that the proposed

decoding mechanism remains functioning in the face of noisy and distorted

grid cell signals, which is important for the model to be biologically plausi-

ble. Our results could inspire further neuroscientific investigation into grid

cells’ potential role in vector navigation. This shows that close interaction

between neuroscience and artificial intelligence, e.g. on the topic of neural

representations, might lead to valuable insights for both fields.
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Part I

Research Overview

1





What I cannot create,
I do not understand.

Richard Feynman
Chapter 1

Introduction

1.1 Understanding the role of grid cells for the

benefit of both neuroscience and AI

The fields of Artificial Intelligence (AI) and neuroscience have had fruitful

interactions throughout much of their histories [6–8]. Indeed, with a goal

of building artificially intelligent computer systems, one should pay heed to

the only known instance of real intelligence—the brain. Artificial neural net-

works were an early example of insights from neuroscience being applied for

the pursuit of artificial intelligence, and this link between neuroscience and

AI has now grown into a major field in its own right [9]. However, as neu-

roscience and AI over time have developed their separate traditions, goals,

methods and vocabularies [8], the fields have diverged. State-of-the-art deep

neural networks of today, although ostensibly based on principles from the

brain, should more be thought of as based on mathematical optimization of

cost functions than they are on specific architectures and algorithms grounded

in biology. Yet as we continually learn more about the brain, there remains a

large potential for putting those principles to use in artificial neural systems.

How do neurons store and transmit information, i.e. what are the neural rep-
resentations utilized by the brain? How does the collective activity of many

neurons combine to support useful behavior? Might the contours of an algo-

rithm be gleaned from the wealth of neuroscientific data [10]?

On the topic of neural representations, some of the most striking results from

neuroscience are found in the hippocampal formation of mammals [11]. Sig-

nals recorded from neurons in this part of the brain—far removed from the
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Chapter 1 Introduction

raw sensory inputs to the brain and thus deep into the information processing

hierarchy—offer a peek at the inner workings of high-level cognitive pro-

cesses. The hippocampus in humans has long been known to be crucial for

the formation of new long-term episodic memories [12]. Animal research on

the hippocampus has focused more on navigation, also seemingly dependent

on this area. It has even been argued that navigation and episodic memory

could be two manifestations of the same underlying cognitive principles [13].

It is through this research that a variety of neurons with clear links to nav-

igationally relevant variables have been discovered: place cells [14], border

cells [15], head-direction cells [16], speed cells [17] and grid cells [18], all

named for the various kinds of spatial information they convey. Of these,

grid cells stand out as particularly captivating. These neurons activate in a

clear relationship to the animal’s location in space, yet the patterns generated

are unlike any we would expect to see from the features of the external en-

vironment alone [19]. Specifically, these neurons are triggered whenever the

animal crosses the vertices of an imaginary hexagonal lattice laid out in the

two-dimensional plane—hence the name “grid cells”. Such a hexagonal pat-

tern might never have been experienced by the animal out in the real world,

yet the brain has, through some process, seen fit to use the hexagonal grid

structure to represent the animal’s position in space [19].

Although the hexagonal grid pattern itself already appears intriguingly algo-

rithmic, there is further evidence to stir our interest that these cells might

reveal parts of the inner workings of a navigational algorithm in the brain.

The grid pattern is always present, even in novel environments [18]. The pat-

tern is maintained in the dark, which suggests that grid cells are supported by

a path integration process that updates the representation based on internal

self-motion velocity information [18]. Different grid cells exhibit different

scalings and offsets of their grid patterns [20], which causes each individ-

ual location in the environment to have its own, unique combination of grid

cell activity [21]. Taken together, these findings suggest that grid cells might

implement a neural system for representing, updating and computing with

two-dimensional coordinates in an entirely generic fashion [22]. In short, grid

cells might embody a neural coordinate system for space.

Navigational circuits in the hippocampal formation are an active area of neu-

roscientific research, and there are vast numbers of questions yet unanswered

about these spatial neurons in general and about grid cells in particular. This

4



1.2 Research questions

does not preclude, however, starting to attempt to apply what is already known

about these neurons towards constructing artificial neural systems. The neuro-

scientific results so far have been sufficiently surprising to warrant an investi-

gation into whether we can build something with these principles [23], if only

from a high level of abstraction—such as neural representations—without any

detailed biophysical simulations of the cells involved. Can we design artifi-

cial agents that navigate using principles derived from grid cells? Such an

endeavor could bring new inspiration and insights into the design of artificial

neural networks, and might also prove beneficial to neuroscience in return.

By building a high-level model that utilizes the same spatial representations

as grid cells, we can provide proofs of principle that grid representations are

useful for solving certain tasks, and in such a way provide input to help guide

and validate the trajectory of neuroscientific research [7].

1.2 Research questions

This section describes the overarching objectives for the research project. An

overall Research Goal is stated first, whereafter this high-level goal is further

concretized into three more specific Research Questions (RQs). These RQs

are later used to organize the research content included in the thesis.

As outlined above, the starting point for this project was the neural represen-

tation known from grid cells, with its appealingly algorithmic nature. Are

these neurons already sufficiently well-understood that we can start to build

agents using these representations? Might we then learn new, useful principles

for artificial intelligence and artificial neural networks through building such

agents? Although an agent driven by such artificial neural networks will be a

high-level model, necessarily somewhat disconnected from important biolog-

ical details, it will provide a useful tool for exploring the possibilities enabled

by this neural representation discovered in the brain.

From the neuroscientific standpoint, this systems-level perspective of how grid

cells might be incorporated into a larger navigational circuit allows us to ex-

amine not just the mechanisms for generating these neural representations,

but also to hypothesize how the information conveyed by grid cells might be

interpreted and used by downstream neural networks (Fig. 1.1). Such models
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Chapter 1 Introduction

Figure 1.1: Grid cell research can proceed along many tracks. One simplified break-

down of the study of grid cells is to separate it into (a) characterizing the behavior of

grid cells, e.g. through electrophysiological recordings of grid cells as animals face

various navigational tasks and contingencies, (b) analyzing which inputs reach the

grid cell population and attempting to understand how grid patterns form from these

signals, and (c) exploring why grid cells should exist in the first place, by understand-

ing which computations and behaviors are supported in downstream areas by their

output signals—i.e. understanding which role grid cells play in the larger picture.

might better enable us to see where there are holes in our current understand-

ing of the biological system. This motivates the following research goal and

the several research questions that derive from it.

Research Goal (Understanding the role of grid cells):

Advancing our understanding of what grid cells

might be useful for, and under which circumstances

As phrased above, this research goal is understood to encompass both the util-

ity of grid cells to artificial agents and in the real brain—in general, what role

grid cells might play in any larger information processing system. While this

research goal encompasses and guides the whole research project, its scope

is much greater than what can realistically be addressed by any individual

project. However, it enables us to see how the project’s research questions,

more specific and focused, come about and fit into the larger picture.

The first research question investigated in this project was whether the co-

ordinate information represented by grid cells can somehow be extracted for

navigational purposes. If grid cells activate in a predictable, consistent fashion

as a function of the animal’s coordinates in the two-dimensional plane, might

6



1.2 Research questions

potentially the grid cell representation then also be “turned in reverse” to yield

distances and directions between pairs of locations as encoded by populations

of grid cells? Such a mechanism would then enable an agent to perform vector
navigation, by heading along the straight-line path toward its goal.

Research Question 1 (Decodability of grid cells):

Can grid cells be decoded by a downstream network, in

order to make full use of the embodied coordinate system?

Provided a positive answer to this research question—as will be seen later—

the remainder of the research project has been concerned with investigating

further the possibilities enabled by grid cell decoding, as well its biological

plausibility. After demonstrating that grid cells can indeed be decoded, the

next research question addressed was the following.

Research Question 2 (Foundation for a navigational system):

Can a grid cell decoder be the foundation for a

larger agent architecture for navigational tasks?

If grid cells turn out to be decodable, this research question thus asks whether

the decoded information would then be useful for navigation in practice. Even

though the grid cell decoder would enable the agent to calculate directions and

distances between locations, it remains to be shown that this information can

then be put to valuable use in complex environments by a larger navigational

architecture that can handle obstacles, etc. For this research question it be-

comes natural to look at the other cell types known to coexist alongside grid

cells in the hippocampal formation, such as place cells and border cells.

The final research question addresses the biological plausibility of the work.

Research Question 3 (Plausibility of the decoding approach):

Does grid cell decoding seem biologically plausible,

given our current understanding of real grid cells?

For grid cell-based vector navigation to be considered a viable hypothesis as

a possible role for biological grid cells, the decoding mechanism should not

7



Chapter 1 Introduction

Figure 1.2: Overview of the research conducted as part of this thesis. The individual

research papers are ordered roughly chronologically (according to when the bulk of

the research work was conducted), and shown grouped according to the main research

questions they address. The arrows from RQ1 to RQ2 and RQ3 indicate that they

build on the outcome from RQ1, while all of the questions have in common that they

support the overarching Research Goal for the entire thesis.

make any unrealistic assumptions about the nature of the grid patterns. Bio-

logical grid patterns are imperfect versions of the idealized hexagonal grids

often used in theoretical models. In particular, the grids experience various

sorts of geometric distortions [24], and other perturbations (e.g. due to path

integration-induced drift) should also be expected. Does grid cell decoding

remain viable in face of these challenges?

1.3 Overview of research conducted

This section gives an overview of the research papers included as part of this

thesis. Five papers, labeled Paper A–E, are included, all of which can be found

in their entirety in the second part of the thesis. Fig. 1.2 lists the research

questions and shows how the individual papers relate to them.

The first paper addresses Research Question 1, by describing and demonstrat-

ing a neural network that can perform vector navigation by decoding grid cells.
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1.3 Overview of research conducted

Paper A (Vegard Edvardsen, 2015):

Title:
A Passive Mechanism for Goal-Directed Navigation using Grid Cells

Published at conference:
2015 European Conference on Artificial Life (ECAL)

This conference publication, Paper A, was later invited for submission in ex-

tended form to a special issue of the journal Natural Computing. The extended

version, Paper B, includes most of the material from the original publication

as well as new background material on the ideas and principles behind the

model, and underwent new peer review prior to publication. Both versions

of the paper are included in the thesis for the sake of completeness, but for

expediency the reader may choose to only read Paper B.

Paper B (Vegard Edvardsen, 2016):

Title:
Goal-directed navigation based on path integration and decoding of

grid cells in an artificial neural network

Published in journal:
Natural Computing

The next paper addresses a shortcoming in the model presented in Papers A

and B, by enabling the agent to navigate over arbitrarily long distances. This

prepares the model for later integration into a larger navigational architecture,

and as such supports Research Question 2.

Paper C (Vegard Edvardsen, 2017):

Title:
Long-Range Navigation by Path Integration and Decoding of Grid

Cells in a Neural Network

Published at conference:
2017 International Joint Conference on Neural Networks (IJCNN)

Continuing the investigation under Research Question 2 (into whether a grid

cell decoder can be the basis for a more fully-featured navigational system),

9



Chapter 1 Introduction

the next paper presents a larger hippocampus-inspired navigation model with

grid cells, place cells and border cells integrated into the same architecture.

In contrast to the previous papers, this model is able to negotiate obstacles,

enabling the agent to navigate in more complex environments.

Paper D (Vegard Edvardsen, Andrej Bicanski and Neil Burgess, 2019):

Title:
Navigating with grid and place cells in cluttered environments

To appear in journal:
Hippocampus (in press; accepted on July 19th, 2019)

The final paper addresses Research Question 3, by investigating how the grid

cell decoder fares with distorted and otherwise imperfect grid patterns. This is

important to assert the biological plausibility of the model, and also relevant

for potential robotic implementations that must handle noisy conditions.

Paper E (Vegard Edvardsen, 2018):

Title:
Navigating with distorted grid cells

Published at conference:
2018 Conference on Artificial Life (ALIFE)

1.4 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 presents useful

background material on the motivation for this project and on the features of

grid cells and other spatial neurons that are relevant to this research. Chap-

ter 3 walks through each of the research questions and describes the main

outcomes of the conducted research as it relates to those questions. Chapter 4

summarizes and discusses these contributions, before concluding the thesis.

10



Chapter 2

Background

2.1 Building neural networks to understand the

brain, and vice versa

2.1.1 Neurons in brains and machines

Over a century ago, the idea took hold that the workings of the brain are the

result of the collective action of cells known as neurons [25]. The human brain

consists of on the order of one hundred billion neurons [25], which together

implement the human capacity for intelligence. Ever since the endeavor of

building artificial intelligence was initiated over half a century ago, artificial
neurons have thus been leveraged as one of the means toward that end [9].

Just as there is a vast diversity in the family of neurons found in the brain,

the pursuit of artificial neural networks has over the decades produced a great

variety of artificial neurons and models. The recent resurgence of interest in

artificial intelligence is underpinned by breakthroughs in the use of artificial

neural networks within problem domains of such wide variety as image under-

standing [26], speech recognition [27], machine translation [28] and beating

human intuition in challenging games such as Go [29]. This demonstrates the

clear value of taking inspiration from natural intelligence when attempting to

construct artificial intelligence in machines.

The converse is also true: given the right constraints and assumptions, re-

sults from artificial neural network models can help us understand the human

brain. In order to decipher such a complicated system as the human brain,

11



Chapter 2 Background

it is necessary to abstract whenever possible and to use simplified models

to explore brain functionality across various levels of detail and realism [7].

Neural models can help us explore hypothetical situations in the system in a

more detailed fashion than would be possible through mere thought experi-

ments alone. Through seeking artificial intelligence we might therefore also

better understand ourselves.

2.1.2 Biological neurons

Although biological neurons come highly varied, complicated and imper-

fectly understood, only a few main principles are needed in order to arrive

at the canonical example of an artificial neuron. Biological neurons perform

computation by receiving and transmitting signals with other neurons, and

this communication occurs in a unidirectional fashion across a given neuron

(Fig. 2.1a). That is, the neuron receives signals from upstream neurons, de-

cides based on these inputs whether to transmit a signal of its own, and if

so, conveys that signal to its downstream target neurons [25]. In this picture,

the computational contribution from each individual neuron is comparatively

modest, but, through communication, a large number of neurons can collec-

tively perform sophisticated functions.

Neurons communicate through impulses called “action potentials”, which are

waves of electrical release initiated at the cell body and propagated along the

axon toward downstream neurons. The axon makes contact with downstream

neurons at sites known as synapses, where the electrical impulse is converted

into the release of chemicals known as neurotransmitters. When neurotrans-

mitters diffuse across the gap between the two neurons at the synapse, the

chemicals trigger mechanisms at the downstream neuron’s dendrite that cause

the chemical to be converted back into an electrical signal. If the electrical

potential in the downstream neuron attains a sufficient strength, it will in turn

trigger a new action potential along its axon, and so on. The action potential

is characterized by a brief spike in the electrical potential of the neuron, and is

by itself not considered to convey any more information than that of its mere

occurrence. By looking at the rate at which a neuron emits multiple spikes,

however, we can speak of weakly or strongly activated neurons.

12



2.1 Building neural networks to understand the brain, and vice versa

Figure 2.1: (A) Main components of biological neurons: Dendrites receive inputs

from upstream neurons. Axon transmits action potentials (spikes) to downstream neu-

rons, connecting at synapses. (B) Main features of artificial neurons: Upstream neu-

rons are connected through weighted synapses. The input sum—passed through an

activation function—determines the neuron’s real-numbered activation value, which

is transmitted to downstream neurons. (C) Artificial neurons become powerful when

combined into networks, commonly arranged in fully connected layers. (D) Recur-

rent neural networks allow signals not only to flow between layers in a forward fash-

ion, but also to loop back into earlier layers. (E) Central to the recently renewed in-

terest in artificial neural networks is the newfound success in properly training deep

neural networks using machine learning methods (deep learning).

13



Chapter 2 Background

2.1.3 Artificial neurons

While the brief introduction above leaves out many important details of bio-

logical neurons, not least of which how they learn, it introduces several key

concepts we will recognize in their artificial counterparts [30]. The function

performed by an individual artificial neuron is usually a simple summation of

inputs combined with an activation function that performs a non-linear trans-

formation of the input sum (Fig. 2.1b). The signals communicated between

artificial neurons are usually real-numbered values interpreted as e.g. their

firing rates, although more complicated variants where neurons communicate

using individual spikes are also possible. Synapses are represented by con-

nections between pairs of neurons and have real-numbered weights associated

with them, representing the strength of the synapse.

Given the activation value in for upstream neuron n and synaptic weight wn

for the synapse corresponding to that input, the total input arriving at a given

neuron can be expressed as the sum of in ·wn across all its upstream neurons.

The spike-generating capacity of the cell body is represented by the activation

function; a common such function is to threshold negative values to zero and

otherwise let the values pass through unchanged, which can be represented as

f (x) = max(0, x). The total calculation performed by a given artificial neuron

can thus be expressed as simply as o = max(0, ∑n in ·wn).

2.1.4 Artificial neural networks

As in the brain, the true computational sophistication of an artificial neural

network arises from the collective activity of many individual units and their

interconnections. A typical configuration is to arrange neurons into layers,

passing signals from one layer to the next in a fully connected fashion so that

each neuron in a downstream layer receives connections from all neurons in

the upstream layer (Fig. 2.1c). The first layer receives the initial input values

for the computation, while the output values are read from the final layer of the

network. In these sequential networks, because of the “feed-forward” nature

in which each layer operates based only on the information provided from

the previous layer, the network itself does not maintain any internal dynamics

if the input is switched off: the network’s current output value is purely a

14



2.1 Building neural networks to understand the brain, and vice versa

function of its current inputs. However, by creating loops in the topology

of the network, activity dynamics can continue inside the network even if

the inputs are removed (Fig. 2.1d). These loop-back links, also known as

recurrent connections, allow a form of short-term working memory due to

how a signal can percolate through the network for many timesteps [31].

This accounts for how artificial neural networks (ANNs) can perform compu-

tation, but equally important is how these networks are obtained in the first

place. A most striking capacity of the brain is its ability to acquire new

skills and knowledge during the lifetime of an individual. This is also the

main reason for ANNs’ success, as these structures have proven amenable to

powerful machine learning (ML) methods that automatically tune the synap-

tic weights [32]. In the past decade, these methods have successfully been

applied to ever deeper networks, i.e. with many successive layers, due to

advances in hardware, datasets and algorithms [33]. These deep neural net-
works (Fig. 2.1e) are now state-of-the-art in a wide range of application do-

mains [33]; a common use-case is to recognize objects in images [26]. The

sophistication of these object recognition networks is attributed to how the

input is processed into ever more abstract representations as it propagates to

deeper layers. While a neuron in early layers of the network might be respon-

sible merely for representing an individual pixel or edge, neurons in deeper

layers can detect more complicated, composite patterns in the input data.

On this issue of learning in neural networks, ANNs diverge from current un-

derstanding of biology: today’s ML methods are based more on mathematical

optimization of network output than they are on biological learning processes,

themselves poorly understood. If ever we are to grasp how the brain imple-

ments true intelligence, understanding how the brain learns is essential. Any

progress deciphering learning in the brain is thus also fruitful for AI.

There are yet more areas where we can study biological neural processing and

apply our insights to artificial neural models. Such ANNs based on biological

principles could even be useful to the field of biology in return. The potential

reciprocal benefit between biology and AI becomes evident when we consider

that complicated systems should be broken down into abstraction layers. The

layers can then be studied separately, at levels of detail where the difference

between biological and engineered systems might no longer be important. As

discussed next, insights can then be shared between the two domains.
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2.1.5 Neural representations as a biology–AI bridge

The notion of decomposing large, complicated problems into multiple levels

of abstraction has many examples in both biology and engineering (Fig. 2.2a):

Computer networking is best understood as a stack of abstraction layers [34],

with lower layers responsible for, e.g., physical signal transmission, and higher

layers only depending on generic capabilities from below. The network layer

can thus handle traffic routing around the network without being concerned

with maintaining proper voltage levels in copper cables, while further up

the stack, an email client only depends on such high-level abstractions that

it can easily work across a vast range of networking technologies. The hard-

ware/software stack of today’s computers similarly depends on abstractions [35],

such that software developers can express their applications as code in a pro-

gramming language, without regularly needing to worry about how the un-

derlying hardware uses digital logic and transistors to make the computations

come to life in a physical substrate. Conversely, as long as interfaces are ad-

hered to, new hardware can be developed without changing any software.

The endeavor of understanding the brain also benefits from abstraction [36].

While the intelligent behavior produced by the human brain can ultimately be

traced back to the effects of neurotransmitters acting on channel proteins in

cell membranes, the macro-level behavior of a full neuron can be character-

ized independently of the lower-level molecular reality and thus be its own

focus of study. Provided a good abstraction of the underlying neurons, the

collective act of large numbers of neurons clustered into networks is then a

yet higher-level concern that can be tackled separately, and so on.

Here a potential reciprocal benefit between biology and AI emerges. Com-

putation in the brain depends on large groups of intercommunicating units,

and this is also the main characteristic of ANNs. The two fields thus have a

common interest in understanding how information is represented (at various

stages of processing) in a fashion amenable to distribution among large num-

bers of comparatively simple units. Thus, neural representations as a layer

of abstraction is relevant to both neuroscience and AI (Fig. 2.2b). Studying

how neurons represent information in the brain informs us how to better build

ANNs, and studying which representations emerge in trained neural networks

can also guide neuroscientific research [7]. Indeed, neural representations
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[34] [35] [36]

Figure 2.2: (A) In both biology and engineering, the study of complicated systems

benefits from abstracting across levels that can be treated independently from con-

cerns above/below in the hierarchy: In the OSI model for computer networks [34],

higher levels handle e.g. packet routing, unconcerned about lower-level details of sig-

nal transmission. A computer is physically based on digital logic in transistors, but

chip architectures and instruction sets gradually abstract this into programming lan-

guages that hide the hardware details and allow the same software to run on different

machines [35]. The study of the brain proceeds at multiple levels of organization [36].

While e.g. molecular processes in synapses are important, a higher-level treatment

of how groups of neurons together perform computation needs only an abstract un-

derstanding of lower-level processes. (B) Abstraction levels underlie the rationale for

studying grid cells in simplified models. Adapting the brain hierarchy above, neural
representations can be highlighted as a bridge between individual neurons and the

sophisticated behaviors of networks as the collective action of many simple units.

Suitable neural representations are key to enabling distributed computation across

neurons. This is also true in ANNs: while artificial neurons are much unlike biolog-

ical ones, the principle of computation as the result of intercommunicating neurons

remains. Studying how neural representations in the brain support sophisticated be-

haviors might yield new principles for ANNs. Computation in networks might be-

come an ever more important paradigm in the future; neural algorithms can run wher-

ever artificial neurons are implemented, whether this is a contemporary CPU/GPU

architecture or specialized hardware using current/emerging electronics.
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seen in early and late layers of deep neural networks trained for image recog-

nition appear to have parallels to neurons found in the visual cortex of real

brains [37, 38]. Hence, whether a neuron is implemented by biochemistry or

transistors, the issue of neural representation is a shared concern.

Computer applications can thus benefit from “neural algorithms” that run on

top of neural representations—e.g. obtained through ML methods. As a com-

putational paradigm, though, ANNs are a complete departure from traditional

software, and as such they also provide a promising roadmap toward new

kinds of hardware. Contemporary computers are largely based on serial, de-

terministic execution of reliable operations on digital, bit-based representa-

tions of information. ANNs, however, are inherently parallel in their execu-

tion, usually operate on real-numbered (i.e. “analog”) values, and, given their

biological roots, are often robust to stochasticity and noise.

Artificial neural networks are therefore suitable for execution on computa-

tional devices quite different from typical CPUs (Central Processing Units),

such as GPUs (Graphics Processing Units) [39], FPGAs (Field-Programmable

Gate Arrays) [40] and ASICs (Application-Specific Integrated Circuits) [41].

In the future they could potentially also run on emerging electronics not based

on digital logic in transistors, but e.g. using analog electronics such as mem-

ristors for components of the artificial neurons [42, 43]. These alternative

hardware paradigms open an avenue to lower-power, more scalable computa-

tion than that accessible in traditional programming models. In order to fully

utilize these hardware devices of the future, we might thus need inspiration

from the brain on how to program them.

2.2 Hippocampus essential to understanding

natural intelligence

2.2.1 The cerebral cortex—neocortex and hippocampus

There are many brain regions of interest, each with their separate responsi-

bilities and specialities, when trying to understand how natural intelligence is

implemented in the real brain. Of particular importance is the cerebral cortex,

which contains two of the structures most closely linked to cognition and other
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Figure 2.3: Simplified anatomical overview of some important brain areas in the hip-

pocampal formation/neocortex, along with important connections between these ar-

eas. Neither the overview of areas nor connections should be considered exhaus-

tive. Neocortex performs both low-level and high-level processing of sensory inputs

of different modalities (vision/hearing/touch), as well as motor outputs. Processed

information from the neocortex reaches the entorhinal cortex and eventually the hip-

pocampus, within which information processing primarily proceeds along DG–CA3–

CA1–subiculum and returns to the entorhinal cortex. Grid cells are found in the me-

dial entorhinal cortex as well as pre-/parasubiculum [44], while place cells are found

throughout the hippocampus. Schematic compiled from several sources [45, 46].
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high-level information processing: the neocortex and the hippocampus. Neo-

cortex, the prominent, wrinkled structure visible on the outside of the brain,

divides into many subregions [25]. These neocortical areas are characterized

as e.g. primary cortex or association cortex, depending on their particular in-

put/output connections and types of information they process (Fig. 2.3). Ini-

tial processing of raw sensory information occurs in the primary cortices, e.g.

primary visual cortex, primary auditory cortex and primary somatosensory

cortex. Other neocortical areas, in turn, process information from these pri-

mary sensory areas into higher, more abstract representations, and eventually,

information from multiple sensory modalities combine into association cor-

tices. Neocortex also generates motor outputs through the motor cortex, and

also on this motor-output side of the cortex there is a hierarchy of areas.

The neocortex is therefore a brain structure of major interest in trying to under-

stand intelligence; this part of the brain contains circuitry responsible for both

high-level and low-level processing of both sensory inputs and motor outputs,

and distinct neocortical areas have also been identified that seem specialized

for particular cognitive domains such as language processing, face recogni-

tion and planning [25]. Intriguingly, it has been suggested that these widely

disparate responsibilities of the neocortex might be underpinned by common

principles in their implementation [47], and that the neocortex might have a

unified objective e.g. in trying to predict future world states [10].

The hippocampus, although not as prominent as the neocortex (being smaller

in size and tucked away inside the temporal lobes), also plays an important

role in several aspects of cognitive processing. The predominant research

focus on human hippocampus has been its role in the formation of new mem-

ories. Patient H.M., after receiving bilateral hippocampal lesions as treat-

ment for severe epilepsy, was famously afflicted with anterograde amnesia:

the inability to form new memories [12, 25]. The prevailing view is that

the hippocampus is responsible for quickly forming neural representations of

episodic memories (i.e. episodes in an individual’s life that might be commit-

ted to long-term memory), and that over time, these episodic memories are

transferred into more permanent storage in the neocortex [48, 49].

This notion of a separate brain structure needed to quickly capture episodic

memories, for later, gradual training of more long-term representations in the

20



2.2 Hippocampus essential to understanding natural intelligence

neocortex, even has appealing parallels in artificial neural networks. Train-

ing of these networks can suffer from catastrophic interference if the train-

ing examples are not presented in a sufficiently gradual and interleaved fash-

ion [48, 49]. Understanding the hippocampus and its interactions with neo-

cortex could therefore be key to understanding how the brain learns, and, in

turn, essential to achieving true machine intelligence.

2.2.2 Role of hippocampus in navigation

Animal research on the hippocampus has focused more on spatial computation

and navigation than on episodic memory. In the 1970s, electrophysiological

recordings from rats revealed hippocampal neurons that primarily activated

when the animal was situated in particular locations of the environment; these

cells were thus named place cells [14]. Since that time, many other examples

of spatial information have been found encoded by neurons in the hippocam-

pus and adjacent areas, such as border cells [15], head-direction cells [16],

speed cells [17] and grid cells [18] (Fig. 2.3; see next section).

Navigational capabilities, such as being able to explore physical space and

then later return to an important location like the nest, should likely be consid-

ered a major reason for nervous systems—and eventually the brain—having

evolved in the first place. That is, navigation could be an early function to

appear in the brain, later to be supplemented by additional cognitive abilities.

Indeed, while neocortex and hippocampus are brain regions common to mam-

mals, there are homologues of the hippocampus in more distant species such

as reptiles and birds [50]. These homologous brain areas appear to have a

role in navigation in those species [51]. The hippocampus might thus have

its origins as a navigational system, while the neocortex, as implied by the

name, is a more recent development. The episodic memory capabilities of the

hippocampus have indeed been suggested to be an evolutionary adaption of

the earlier navigational system [13].

The reasons for wanting to study navigational processes in the hippocampal

formation are therefore numerous. Navigation uniquely represents a high-

level cognitive task where we nevertheless have access to neurons, in behav-

ing animals, that encode relevant information in an interpretable fashion that

is amenable to neuroscientific inquiry. Studying navigational processes in the
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hippocampal formation might thus give insights into memory, learning and

cognition in general, and by association also help us understand the neocor-

tex. Furthermore, changes in the entorhinal cortex (a “gateway” between the

hippocampus and the neocortex) are linked to the onset of Alzheimer’s Dis-

ease [52]. The potential impact from understanding the cognitive processes in

this part of the brain can therefore hardly be overstated.

2.3 Spatial neurons and computation in the

hippocampal formation

2.3.1 Place cells, environmental context and remapping

Fig. 2.4 illustrates some of the spatial neurons in the hippocampal formation.

First discovered were place cells (Fig. 2.4a), found throughout the hippocam-

pus itself (Fig. 2.3), which activate whenever the animal is situated in a partic-

ular location within the larger environment [14]. Each plot in Fig. 2.4a depicts

a top-down view of a hypothetical square enclosure, showing as a heatmap an

idealized example of where an individual place cell might be active. The cells

all have a particular spot in which they fire strongest, but the sizes of their

“place fields” might vary. Some place cells might activate in more than one

location within an individual environment (not shown here).

The specific firing location of each cell within a given enclosure will depend

on the particular global environment currently inhabited by the animal. That

is, a similarly-shaped box encountered in a novel setting, or environmental
context, will trigger global remapping. The firing characteristics of place cells

might then change completely: place field locations might move, some place

cells might go silent, and previously silent cells might become active in the

new context [53]. Thus, while a place cell can reliably recognize a previously

visited location and reactivate whenever that place is revisited, these neurons

do not provide a general way in which to relate distances and directions be-

tween given place fields. Place cells by themselves would therefore not be

sufficient if, for example, you wanted to calculate the correct direction to get

to a far-away goal (due to how these geometric relationships between pairs of

place cells change during global remapping).
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Least active Most active

a Place cells

Least active Most active

b Grid cells

c Head-direction cells d Border cells

Figure 2.4: Idealized illustrations of spatial neurons in the hippocampal formation.

(A) Four different place cells, each plot a top-down heatmap of where that cell might

activate within the same 2 m side square box. (B) Whereas individual place cells only

activate in a few spots per environment, grid cells activate in a multitude of locations.

The first three grid cells have a grid scale (see Fig. 2.5a) of 0.6 m, while the fourth cell

has a scale of 0.9 m. (C) Head-direction cells respond to the animal’s head direction,

irrespective of location, in an allocentric fashion (relative to a global reference frame).

(D) Border cells respond to obstacles in a given allocentric direction. The first two

heatmaps show a border cell tuned to eastern obstacles, first in an empty square box

and then with an extra obstacle protruding from the southern wall. The next two plots

similarly show a border cell tuned to southern obstacles.
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2.3.2 Grid cells and path integration

Even if place cells did not exhibit global remapping, they would still be un-

suitable for the goal vector calculations alluded to above, as the navigation

mechanism would essentially have to learn how to navigate between all pos-

sible pairs of known locations—an exceedingly expensive process. However,

place cells are not the only neurons to convey positional information, and in-

deed it is unclear whether the place cell system by itself would be able to

accurately track the animal’s current location. Place cells do receive sensory

inputs through the lateral entorhinal cortex [54], so they might be able to de-

termine the animal’s location based on sensory configuration alone. However,

place cells correctly reflect the animal’s position even in sensory deprived

conditions such as darkness [55]. The maintenance of these neurons therefore

likely involves a path integration process, where the animal uses its speed and

direction to update an internal representation of its total displacement from

the last known point of reference. This presumed path integrator is unlikely to

be implemented in place cells, due to global remapping as outlined above.

A different candidate for this hypothesized path integration system was found

a little over a decade ago, with the discovery of grid cells in the medial entorhi-

nal cortex [18]. These neurons activate not in single, individual spots, but in a

multitude of firing locations—distributed across the environment in a hexago-

nal pattern that extends throughout all available space (Fig. 2.4b). By this fact

alone, the grid cell system appears to represent spatial information in a more

general fashion than the more environment-dependent place cell system. Like

place cells, grid cells are able to maintain their firing patterns in the dark [18].

Grid cells are active in all environments, and grid patterns are expressed im-

mediately in novel environments [18]. Furthermore, whereas place cells expe-

rience global remapping across environments, the mutual spatial relationships

of grid cells’ firing patterns are maintained across environments [56]. That

is, while grid cells might shift and rotate their activity patterns between en-

vironments, they all do so in a coherent fashion (within modules, see next

section) [56]. Thus, downstream networks that utilize geometric information

from the grid cell system should retain proper function across all environ-

ments, without requiring any relearning of environment-specific relationships

(as might be needed if solely relying on place cells).
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2.3.3 A wealth of diverse spatial information

As the medial entorhinal cortex provides major inputs to the hippocampus,

and for the reasons outlined above, grid cells are a viable candidate for the

path integrator that supports the place cell system. If grid cells are indeed

involved in path integration, we require inputs to grid cells that encode the

direction in which the animal is headed and how fast it is moving. Reassur-

ingly, the hippocampal formation does in fact harbor so-called head-direction

cells: neurons that activate predominantly when the animal is facing a given

allocentric direction (i.e. relative to a global frame of reference, as opposed

to egocentric; Fig. 2.4c) [16]. Movement speed is also represented, e.g. in

the recently-reported speed cells in the medial entorhinal cortex [17]. All in-

formation necessary for path integration is therefore available within the hip-

pocampal formation. Neural representations for other kinds of spatial infor-

mation have also been found, such as in border cells, which respond to borders

in a particular allocentric direction in the environment (Fig. 2.4d) [15].

The discussion above only concerns patterns in neural firing rates within

the hippocampal formation, but the region harbors yet more richness in how

navigational information is encoded. Place cells notoriously exhibit a phe-

nomenon known as phase precession [57], where place cells that are ahead of

or behind the animal in its current path fire their spikes at different times rela-

tive to the background theta rhythm, thus encoding spatial information also in

the precise spike timing. Phase precession is also exhibited by grid cells [58].

Moreover, when an animal is at rest or asleep, sudden bursts of activity known

as replay might reactivate place cells to “play back” paths previously traveled

in the environment [59, 60]. This phenomenon could be involved in processes

of memory or planning [61], including a possible role in navigation [62].

In sum, the picture emerges of a hippocampal formation rich in both the dif-

ferent kinds of spatial information it encodes and how this information is rep-

resented. Even though the information involved is of a highly abstract and

deeply processed nature, these neurons produce such strikingly interpretable

neural representations. Spatial computation in the hippocampal formation is

therefore a good platform for exploring the implementation of high-level cog-

nitive algorithms in the brain.
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2.4 Grid cells as a neural coordinate system

2.4.1 A metric for space and a GPS in the brain

Grid cells thus appear to implement a path integrator that functions across all

environments, as outlined above. They are often said to provide a “metric for

space” [63], due to how they provide for geometric computations on spatial

position information, and in more popularized terms, grid cells have been said

to embody a “GPS” in the brain [64]. This all alludes to grid cells implement-

ing a spatial coordinate system, wherein grid cells (a) can represent arbitrary

two-dimensional coordinates with unique activation patterns, (b) can update

this representation through path integration, and (c) do all this with neural

representations conducive for geometric computations—such as calculating

vectors between locations—in downstream networks. To elucidate the basis

for these claims that grid cells provide a neural coordinate system for space,

we will next review some of the main properties of these neurons.

2.4.2 Grid patterns and grid modules

The pattern of an individual grid cell’s activity across space can be succinctly

described by three properties (Fig. 2.5a). The characteristic hexagonal pattern

has a scale (the distance from one location of peak activity to the next), an

orientation (the alignment of the grid pattern’s axes relative to a frame of

reference) and a phase (the two-dimensional offset of the pattern from a given

point of reference). Although there are other factors that can affect the grid

pattern, such as grid distortions (see Section 3.3), as a first approximation the

behavior of any grid cell can be described by these three parameters.

What is the utility of having such a neuron? Hypothetically, if an animal only

has one single grid cell, the animal will know whenever that neuron is active

that it is located in one of the hotspots of activity in the grid cell’s hexagonal

pattern: a highly ambiguous signal to begin with. Whenever the neuron is

not active, the animal will know even less about its current location, as it will

only know that it is not situated in one of the hotspots. It is clear that more

information is needed for the grid cell signal to be truly useful.
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Figure 2.5: (A) Scale, orientation and phase of grid patterns. (B) Cells in the same

grid module have the same scale and orientation. (C) Patterns in A and B over-

lap when one is shifted relative to the other; scale and orientation is thus the same.

(D) With enough cells in a module, all phases are covered without any inactive areas

(nine cells shown, one color each). Tiling the plane so each cell only has one field per

tile, the module can tell the location within the tile—but this is ambiguous unless the

correct tile is known. (E) A neural sheet organizes the cells of a module into a matrix

arranged by grid phase. Plotting each cell’s firing rate as a pixel reveals a snapshot of

all concurrent activity in the module. (F) Phases will repeat in large neural sheets, i.e.

some pixels are redundant. Non-redundant sheets contain exactly one activity packet.

Its position in the matrix tracks animal position within the unit tile. (G) The brain

has multiple modules of increasing scale, with a fixed ratio between modules [20].

Information from several modules can resolve ambiguity in a single module (in the

rightmost panel, the activity from all modules overlaps in only one location).
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However, individual grid cells do not operate in isolation, but participate in

groups with other grid cells. Out of multiple grid cells observed in the same

recording session, several of these co-recorded neurons might have activity

patterns that neatly complement each other [20]. For example, Fig. 2.5b

shows an illustration of a different grid cell that might coexist with the cell

in Fig. 2.5a. This second grid cell has the same scale and orientation, differ-

ing only in its phase. That is, the only difference in behavior between these

two grid cells is that their spatial activation patterns are offset from each other

(Fig. 2.5c). Such grid cells, with the same scale and orientation but potentially

different phases, are said to belong to a grid module [20].

The importance of grid modules is illustrated in Fig. 2.5d, which shows how

a module can cover all possible phases such that there is always an active

grid cell. The drawing depicts nine grid cells that might belong to the same

module, with each individual cell assigned a unique color. With only this few

number of grid cells, there is already sufficient “ground coverage” to ensure

that all of the areas of inactivity in the spatial firing patterns of the example

grid cells in Fig. 2.5a and Fig. 2.5b have been covered by other grid cells (with

different phases) from the same module. This means that there is always an

active subset of neurons from this grid module, no matter where the animal

might be located. Combined with the evidence that grid cells maintain their

activity patterns in darkness, are active in all environments and are immedi-

ately active even in novel environments without any advance familiarization,

the signs thus point toward grid cells implementing a general system for rep-

resenting and computing with spatial coordinate information in the brain.

2.4.3 Activity packets in twisted torus neural sheets

To visualize how grid cells in a particular grid module keep track of the

agent’s current location, we can plot the concurrent activity of all cells in

the module as a “neural sheet” [65]. The neural sheet is a two-dimensional

matrix where each cell is assigned a position (row/column) on the basis of

the two-dimensional phase parameter of its grid pattern. For example, a grid

cell whose spatial activity pattern is shifted east of another grid cell might be

located to its right in the neural sheet, while a different grid cell offset south

might be located down in the sheet. (Note that this does not correspond to any
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physical arrangement found in the brain. Neural sheets are merely a concep-

tual tool for understanding how grid modules operate in the abstract.)

By plotting the neural sheet so that each pixel shows the current firing rate

of one individual neuron, we might thus get a result as in Fig. 2.5e: Neurons

with similar phases, i.e. overlapping grid patterns, will be active at the same

time, and these neurons are located closely together in the neural sheet. The

activity in the network therefore clusters into packets of activity. When the

animal moves around the environment—causing different grid cells to turn on

and off—these packets will move across the neural sheet in a way that reflects

the actual displacement of the animal (e.g. the animal might have moved

slightly south-east between the left and the right neural sheets in Fig. 2.5e).

The neural sheets in Fig. 2.5e contain multiple activity packets, because some

of these grid cells, while ostensibly having different grid phases, are in prac-

tice equivalent. For example, if the grid scale is 60 cm and two grid cells have

the same parameters except for a difference in grid phase of 60 cm (along a

grid axis), then these two cells will in effect have the same grid pattern. The

matrices in Fig. 2.5e therefore contain redundant information, as multiple co-

active cells are included. We can trim the neural sheet to a smaller matrix and

still retain a representation for all possible grid phases (modulo the periodic-

ity of the grid scale). The white lines superimposed on the neural sheets in

Fig. 2.5e show how they can be subdivided into multiple identical copies of a

smaller, more parsimonious matrix. This smaller, non-redundant neural sheet

always contains exactly one packet of activity, and the location of this packet

within the matrix reflects the agent’s location within the environment.

Upon reaching an edge of the sheet, the packet re-emerges on another side,

so that in total, the full activity packet is always preserved within the matrix.

However, this “wrap-around” behavior does not adhere to the typical torus

topology often seen in various applications (where the north/south and the

east/west edges of the matrix are connected together). Rather, because grid

cells activate in a hexagonal pattern, the neural sheets are connected along the

edges according to a twisted torus topology [66]: the upper-left and upper-

right corners wrap around to the lower center of the matrix, and vice versa

(compare left and right matrices in Fig. 2.5f).
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2.4.4 Multiple grid modules resolve the ambiguous grids

A major caveat is that grid cells’ spatial activation patterns repeat—indeed,

that is their defining characteristic. The information obtained from grid cells

in a single grid module is thus ambiguous, as the behavior of each neuron in

the module repeats for every “unit tile” across the environment (Fig. 2.5d).

The position of the activity packet within the neural sheet corresponds one-to-

one with a physical position within the grid module’s unit tile, but if you do

not know which unit tile is the correct one, there is a multitude of locations

that the module might be interpreted to convey.

However, if we can assume that the correct unit tile is already known, then the

information from the grid module can help the animal further localize within

that tile. Evidence from the brain is that this information might in fact be

available. Not only do grid cells cluster into modules, but each successive

module has a larger grid scale than the previous one [20]. There appears to

be a constant ratio of grid scales between successive modules, suggested to

lie around the range of 1.4 to 1.7 by experimental data and theoretical con-

siderations [20, 67–69]. The sequence of grid scales in an individual animal

thus follows a geometric progression: as more grid modules are added to

the system, the scale of the largest module increases exponentially. Taking

information from all grid modules into account, the ambiguity in the smallest-

scaled grid modules could thus be resolved. Observe e.g. in Fig. 2.5g, how

the activity of grid cells from four successive modules overlaps in only one

part of the environment. See Section 3.2.1 for more details on the different

ways in which this resolution of ambiguity could conceivably happen.

2.5 Grid formation and the role of grid cells

After having introduced some of the main characteristics and properties of

grid cells above, we now turn to the mechanisms behind them and what the

purpose of these neurons could be (recall Fig. 1.1). How might these neurons

form their characteristic grid patterns across space, and what role might grid

cells play in the larger, overall function on the brain?
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Many models have been proposed to explain how grid cells might arise, and

two main classes of computational models emerged early on [70]. Both are

based on the assumption that path integration is an essential aspect of the grid

formation process: Oscillatory interference models [71] hypothesize that grid

cells receive inputs from other path integrators further upstream, that accumu-

late the animal’s displacement along three axes separated by 60°. The hexag-

onal pattern of grid cells is proposed to arise at the intersection of periodic

activity along these three axes. Continuous attractor networks [65, 72, 73]

propose that path integration occurs directly in the grid cell population. Grid

cells are assumed to participate in grid modules, so that they make up neu-

ral sheets carrying activity packets (Fig. 2.5e). These packets are made to

respond to velocity inputs by moving around the neural sheet, thus imple-

menting path integration. As long as the movement of these activity packets

in “neural space” exactly corresponds to the animal’s movement in real space,

the hexagonal pattern in the neural sheet will gradually be revealed through

the activity of individual neurons across space, hence behaving as grid cells.

Continuous attractor networks can thus account for how the hexagonal grid

pattern arises, assuming a similar pattern already exists in the neural sheet.

This, in turn, is explained as follows: The grid cell network is connected re-

currently, so that each grid cell in the network is inhibited by activity in neu-

rons in a certain radius around it in the neural sheet. The synapses of each cell

are assumed to be configured to reject activity from other grid cells with sim-

ilar phase offsets, i.e. located within a certain range of distances in the neural

sheet. The activity in the network will then spontaneously assemble into dis-

crete packets of activity, and these packets will push away from each other

until eventually they have distributed into a hexagonal pattern (e.g. Fig. 2.5e).

According to continuous attractor models, hexagonal grid patterns are thus the

result of a self-organizing process of activity packets repelling each other.

Later models have emphasized the fact that grid cells receive other classes of

inputs besides self-motion velocity information, such as spatially modulated

inputs from place cells. Simulations show that such inputs can be sufficient to

generate grid patterns, e.g. through adaptation processes in the grid cell net-

work [74] or learning processes related to Principal Component Analysis [75].

The issue of how grid cells are formed has thus not been settled, and represents

an area of research in which theoretical work, neural network simulations and

animal electrophysiological recordings go hand in hand.
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However, regardless of how grid cells are formed, the separate question of

how grid cells are used can be investigated independently.

Ever since the discovery of grid cells, a major line of interest concerning the

role of these neurons has been the recognition that they produce unique pop-

ulation activity patterns for all visited locations across space. Grid cells can

then e.g. provide coordinate inputs to place cells (through projections from en-

torhinal cortex to hippocampus; Fig. 2.3), enabling place cells to correctly ac-

tivate based only on the path integrated movement history of the animal. Place

cells would thus remain able to activate correctly in the absence of sensory in-

puts. However, even if sensory inputs were present, a coordinate-based input

from grid cells could be important. Novel locations that appeared similar to

previously visited locations would still be distinguishable by the coordinates

conveyed by the grid cells, and conversely, if a previously visited location had

changed since the last time the animal visited that place, it would still be able

to activate the correct place cell based on the coordinate information [22].

This view thus emphasizes a possible role for the grid cell system as a path

integrator. The required mechanism for reading out the grid cell signal for

this purpose could be relatively straight-forward. By forming synapses with

concurrently active grid cells across several modules of increasing scale, and

forming inhibitory connections with other place cells, a given place cell would

win the competition among place cells if and only if there were a good match

with the memorized grid cell activity. The place cell would thus activate in

the correct location, based on the grid cell inputs alone [21, 76].

However, might grid cells potentially be used for more than merely assigning

unique population codes to spatial locations? Grid cells exhibit mathemati-

cally appealing—almost algorithmic—patterns that can be described by sim-

ple formulae and extrapolated across unknown space. An exciting question is

whether this accessible structure in the grid cell signal can then be “turned in

reverse”: not only extrapolating how grid cells should update along a given

velocity vector, but, given the grid cell activity for the current location and the

goal, reversing that path integration process to extract the correct goal vec-

tor. This capability, of decoding the grid pattern to get the correct direction of

travel in order to reach a specific set of “grid coordinates”, could be used for

vector navigation [77]. That is the topic for this thesis: investigating how grid

cells might be decoded for vector navigation, and under which circumstances.
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Research results

3.1 Research Question 1 (RQ1):

Decodability of grid cells

3.1.1 Reading out goal vectors directly from grid cells

The first research question asks whether it is at all possible to extract goal

vector information from grid cells by decoding neural activity from the grid

cell population. Earlier work [78] had proposed that one option for navigating

with grid cells would be to use the grid cell system to simulate ahead from the

agent’s current location in various directions, using a mechanism that could

be thought of as “virtual path integration”. If one of the simulated paths for-

tuitously triggered the goal place cell, then the agent would know the correct

goal direction. However, given the mathematically structured way in which

grid patterns encode coordinate information, and the appealing interpretation

that grid cells perform path integration by shifting an activity packet around

in a neural sheet (Section 2.4.3), a prudent question was whether goal vec-

tor information could be extracted directly from grid cells without requiring

time-consuming path simulations as in the aforementioned work. We are thus

not merely interested in whether grid cells can support vector navigation, but

whether grid cells can be read out directly—i.e. decoded—toward that end.

This is the question investigated in Paper A (later extended into Paper B).

A positive answer to this research question subsequently lead to RQ2 and

RQ3, so the remaining papers of the thesis (Papers C–E) also build upon these

results. Papers C and D improve and extend the model to perform in a wider
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b Crosscorrelating while moving east c Possible “detectors”

Figure 3.1: (A) Finding the shift in position. Top center matrix shows initial state

of a neural sheet; when crosscorrelated with itself, the crosscorrelogram (top right)

has a peak in the center, thus the best fit is attained with no offset. Crosscorrelation

is performed against a tiled version, adhering to the twisted torus topology (left ma-

trix, tiling shown by white lines). Bottom center matrix shows state after agent moved

0.2 m east; when crosscorrelated with the tiled matrix, the result (bottom right) shows

the centermost peak off to the left, implying the agent should move west to reach the

goal. (B) Three more examples of neural sheets crosscorrelated against the tiled ma-

trix above, with the centermost correlation peak highlighted. First case is after agent

moved 0.2 m north of initial location, second case then shows 0.1 m eastward, and

third case shows yet 0.1 m further eastward. Centermost peak turns from south to

south-west, as expected. (C) The decoding mechanism is based on finding the direc-

tion of the centermost crosscorrelogram peak. This can be done without calculating

the full crosscorrelogram, but e.g. by calculating only a few of the correlation values

in a circle around the center pixel, using them as “detector” pixels.
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range of situations (RQ2; next section), and Paper E addresses the biological

plausibility of the navigation model, specifically as it relates to the challenge

of grid distortions known to occur biologically (RQ3; Section 3.3).

Although grid cell decoding was first addressed in Papers A and B, the model

evolved over the course of the project. Paper E, in its investigation of grid dis-

tortions, used a simplified version of the model previously developed through-

out Papers A–D. For example, rather than using continuous attractor networks

to generate grid cells (as in the earlier papers), the model in Paper E explic-

itly generates grid activity directly from the agent’s coordinates. It also uses

a simpler version of the decoding mechanism itself. For ease of presentation,

we will introduce the principles behind that final iteration of the decoding

mechanism, noting that it shares many similarities with the model from the

earlier papers. As the following account describes specific principles from the

decoder in Paper E, we refer to that paper for more details, and to Papers A

and B for the earlier version of the grid cell decoding model.

Finding the activity packet’s displacement in the neural sheet

As seen in Section 2.4.3, when neurons in a grid module are arranged in a neu-

ral sheet, there is a packet of activity that moves around the neural sheet in pro-

portion to the actual displacement of the animal out in the real environment.

The challenge of decoding a goal vector from one grid module is therefore

a question of finding the correct displacement of the activity packet between

the current state of the neural sheet and the desired goal state. Fig. 3.1a shows

such an example scenario in a given grid module, where the small, top center

neural sheet shows the initial state of the module at the outset of the navigation

trial. After the agent moved 0.2 m east, the neural sheet looks as in the bottom

center. Assuming the agent now wanted to return to the initial location, the

task would be to properly detect the direction of the displacement between the

initial/goal state (top center) and the current state (bottom center).

In order to determine the correct shift between these two matrices, we can

perform a crosscorrelation operation (indicated by star symbols in Fig. 3.1a),

which evaluates a correlation value for each possible shift between the two

operand matrices. However, in this process of crosscorrelating grid module

neural sheets, we need to properly account for the twisted torus wrap-around
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behavior at neural sheet boundaries (see Section 2.4.3). Therefore, the cross-

correlation is not simply performed against the “small version” of the original

neural sheet, but against a larger version where we have tiled the original neu-

ral sheet into a “brick wall” that reflects the twisted torus topology (large,

leftmost matrix in Fig. 3.1a; cf. Fig. 2.5e). With the original neural sheet

matrix thus correlated with itself, we get a result as in Fig. 3.1a, top right.

Each pixel in this matrix resulting from the crosscorrelation operation, shows

the correlation value for a particular offset location of the small sheet placed

atop the large tiled sheet (yellow and blue indicating high and low correlation,

respectively). As expected, there is a peak in the correlation values in the

center of the matrix, indicating that the small neural sheet has a maximum

correlation when overlaid in the center of the large neural sheet. Indeed, this

operation represents a comparison of the initial neural sheet matrix with itself,

so there should be no shift indicated between these two matrices. When the

current-situation neural sheet is crosscorrelated similarly (bottom right), the

peak correlation is no longer in the center, but has moved slightly to the left

of the center. Thus, to find the best fit for the current neural sheet, it should be

overlaid slightly to the left of the center in the large neural sheet. This signals

that the current neural sheet encodes a location to the right of the goal neural

sheet, and that the correct goal direction is therefore to the left.

Fig. 3.1b shows three more examples of neural sheets compared to the large

neural sheet from Fig. 3.1a. Superimposed on each crosscorrelation matrix is

also a visualization of which peak is closest to the center and thus indicative

of the likely goal direction. The first case shows the neural sheet with the

agent located slightly north of the initial goal location, so the peak correlation

should be found when the current-state matrix is shifted downward during

crosscorrelation. The crosscorrelogram does indeed show a centermost peak

that signals a southward goal direction. In the two successive matrices, the

agent progressively moved east, causing the goal direction indicated by the

crosscorrelogram peak to gradually turn westward as expected.

Detector neurons to determine the best matching direction

The introduction above describes the main idea behind our decoding approach,

namely finding the best matching offset between the current situation in the
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Figure 3.2: Each pixel in the crosscorrelograms in Fig. 3.1 is the result of an element-

wise multiplication of the current matrix with a slice of the original, tiled matrix,

where the offset of the slice corresponds to the pixel’s position in the crosscorrel-

ogram. To implement the 12 detectors illustrated in Fig. 3.1c, we therefore extract

12 slices from the tiled neural sheet, offset from the center by a fixed distance in

equally spaced directions. Each plot illustrates the slice sub-matrix for a particular

detector (pluses indicate the center of the tiled matrix, and circles the slice center).

neural sheet and the target state. The process can, however, be simplified:

While there are several peaks in the crosscorrelogram (due to the repeating na-

ture of the grid pattern), we are only interested in the one closest to the center.

Moreover, we do not need the exact offset value for that peak correlation, but

only its direction from the center. Finally, note that the correlation increases

gradually as you get closer to the peak pixel in the matrix. Consequently, we

do not need to perform the full crosscorrelation to extract the goal direction,

but only to monitor the values of a few strategically located “detector” pix-

els arranged in a ring surrounding the center point of the crosscorrelogram

(Fig. 3.1c). If we know the value at these pixels, we have sufficient informa-

tion to determine the direction of the centermost crosscorrelogram peak.

The peak correlation in Fig. 3.1c is in the center, thus all detectors will observe

the same correlation value—but, in cases with an off-center crosscorrelogram

peak, such as in Fig. 3.1b, the detectors on one side of the ring will be more

strongly activated than the other side. The detectors are thus able to sense the

proximity of the crosscorrelation peak in their respective directions away from
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the center of the matrix, and this is the basis for our decoding mechanism.

What, then, is the computation underlying these pixels? Each pixel shows the

correlation for a given offset between the current neural sheet matrix laid atop

the target matrix, with the correlation itself calculated simply as the element-

wise multiplication of the two matrices. Fig. 3.2 shows the 12 sub-matrices

that would thus be used to calculate the correlation value at the 12 different

detector locations in Fig. 3.1c. To calculate the ring of detector pixels, we can

then take the current neural sheet and compare it by element-wise multiplica-

tion to each of these 12 matrices. Each such matrix in Fig. 3.2 can be thought

of as a detector neuron, onto which converges a multiplicative synapse from

each pair of corresponding cells from the current and target neural sheet matri-

ces. Each detector neuron is thus responsible for comparing the current state

of the neural sheet to a “template state” signaling a particular goal direction.

In Fig. 3.3a, the 12 detectors have been arranged in a ring according to their re-

spective goal directions. The radiating bars each show the activation value of

a detector neuron, given the situation in the current neural sheet from Fig. 3.1a

(same matrix is also depicted in the middle of the figure). The detectors point-

ing west are evidently more strongly activated. To calculate the final goal

direction, we take the vector sum of unit vectors pointing in the direction of

each detector neuron, weighted by their respective activation values (i.e. a

form of population vector average). The black semi-circular notch in the fig-

ure shows that the final goal direction, calculated this way, correctly indicates

a goal direction west from the current location. Fig. 3.3b and Fig. 3.3c show

two more decoding examples, corresponding respectively to the first and sec-

ond situations in Fig. 3.1b. In the first example, the current location is north of

the goal, and the goal is indeed correctly decoded to be south. In the second

example the agent has moved east since the situation in the first example, and

we see that the decoded goal direction now has turned west, as expected.

Note that the detectors are not tied to any particular goal location. Although

they have been visualized in Fig. 3.2 and Fig. 3.3abc to consist of slices of

neural sheet activity for a particular goal location, the mechanism would work

the same if the underlying target neural sheet indicated another location. The

template matrices assigned to each detector are not static snapshots of neural

sheet activity, but represent a specific reconfiguration of the subset of active
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a Detectors when east of goal b . . . north of goal

c . . . northeast of goal

d Direction decoded from
40×40 different locations

e Navigational range
with multiple modules

Figure 3.3: (A) Detectors in Fig. 3.2 (set to navigate toward goal state in Fig. 3.1a top

center) tested against matrix in Fig. 3.1a bottom center. Western detectors are more

strongly activated, so the correct direction was found. Black notch shows final result

based on population vector average of all detectors. (B) Same detectors tested against

matrix in Fig. 3.1b, 1st column, correctly showing goal is south. (C) Detectors tested

against Fig. 3.1b, 2nd column. (D) Decoder tested at 402 locations, equally spaced

from −0.4 m to +0.4 m on each axis. Each line points in decoded direction, col-

ored by the deviation from true goal direction. Successful trials form a goal-centered

hexagon; outside, vectors point to erroneous targets (cf. Fig. 1d in Paper E, p. 215).

(E) Extra modules enable navigation beyond range of one module. Illustrated here is

the range of eight modules if scale is assumed to grow by a factor of 1.5 at each step.
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neurons within the sheet. Once a detector is appropriately configured to re-

ceive multiplicative synapses from the current and target state grid cell pop-

ulations, it does not require any changes to its mechanism to change the goal

location—this is simply a matter of updating the “goal grid cell” inputs.

Bounds for successful navigation with only one module

To assess how the outlined decoder works from many different starting loca-

tions, Fig. 3.3d plots the results from 40×40 = 1600 different trials arranged

in a grid of locations spaced from −0.4 m to +0.4 m along each axis and cen-

tered on the goal location. Each trial is drawn as a short line segment pointing

in the decoded goal direction, colored according to its deviation from the true

goal vector (blue indicating no deviation and red indicating 180° deviation

from the true goal vector). Among these trials, there is a clear domain within

which the decoder is able to successfully calculate the correct goal vector—

but, outside this region, the goal vectors lead the agent away from the correct

target. This is because of the ambiguity of the repeating grid cell pattern:

for excursions that exceed half of the grid scale, the activity packet may have

moved sufficiently far in the neural sheet for the closest crosscorrelation peak

to now indicate an erroneous goal direction.

At this point, when the grid pattern has started to repeat, navigation with only

one grid module will no longer succeed. A plausible solution from the brain is

then to integrate information from multiple grid modules of increasing scale.

As discussed in Section 2.4.4, grid modules in the brain appear to form a

geometric progression of grid scales. Such a progression of eight modules is

illustrated in Fig. 3.3e. Even though the smallest-scaled grid module might

have a short navigational range, the exponential growth in grid scale causes

the valid navigational range to rise quickly in the successive grid modules.

The approach taken here is to assume that you have a sufficiently large number

of modules, such that the largest module always covers the required naviga-

tional range of the agent. The largest-scaled module can then always provide

a rough indication of the correct goal direction, while the smaller-scaled mod-

ules can gradually refine this signal as the goal gets closer. This is one of the

possible interpretations of how the grid cell system might enable navigation

over very long distances, which biologically remains an open question. In the
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next section we give a more detailed treatment to this topic of combining in-

formation from multiple modules, when we summarize how Paper C improves

on the model from Papers A and B to function over long distances.

3.2 Research Question 2 (RQ2):

Foundation for a navigational system

3.2.1 Navigating over arbitrarily long distances

With the positive finding under RQ1 that grid cell populations can be decoded

for vector navigation, the next research question asks whether this principle

can be used as a foundation for a larger navigational system. Can a more

fully-featured navigational agent be built upon the concept of decoding grid

cells? Although merely investigated in artificial agents simulated under highly

simplified conditions, a positive outcome here could carry significance also

for the biological system—through providing a proof-of-concept for what an

overall role for grid cells might be in the real brain.

The investigation under RQ2 has mainly followed two tracks, correspond-

ing respectively to Papers C and D. The first track concerns whether the grid

cell-based navigation system can be applicable over long distances. For the

coordinate system and the decoder to be the most useful, they should be able

to work over distances greatly exceeding the range of the smaller-scaled mod-

ules. The second track concerns whether grid cell-based vector navigation can

be integrated into a larger neural navigation system that can negotiate more

complicated environments. A grid cell decoder will produce a goal vector

pointing along the shortest, straight-line path to the goal, but that path might

be blocked by obstacles. Can an agent overcome such obstacles, while still

benefitting from using grid cells as part of its navigational algorithm?

Multiple approaches to grid cell decoding

When attempting to use grid cells for navigation over long distances, a single

grid module is not enough. Due to the repeating nature of the grid pattern,
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a Nested vs. combinatorial grid cell decoding
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Figure 3.4: (A) Adapted from Fig. 5 in Paper C, p. 140. Two contrasting views on

how multiple grid modules together can support navigation. Three successive mod-

ules, scale ratio 1.5. Combinatorial: Exploits collective patterns across all modules,

which remain unique far beyond range of largest module. Largest module has several

peaks along spatial axis shown here, but all three modules are co-active only in the

center. Nested: Assumes largest module is larger than the desired navigational range.

Collective patterns across all modules not needed to navigate. Largest module offers

rough indication of goal direction, while smaller modules gradually refine this esti-

mate. (B) Adapted from Fig. 6 in Paper C, p. 142. Schematic of vector navigation

model in Papers A–D. Agent’s current coordinates maintained by a series of modules,

which update their representation by path integration of self-motion inputs. Upon de-

coding modules for vector navigation, larger modules get more influence on the final

direction (according to nested view). (C) Adapted from Fig. 13a in Paper C, p. 153.

Final version of navigation model in Paper C tested for its usable navigational range

with increasing numbers of grid modules. Thin line shows the usable range for two

modules extrapolated to larger numbers of modules, assuming an exponential growth

in range (note logarithmic y-axis). As expected, range increased exponentially.
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the information from the single module is ambiguous once the agent ven-

tures outside the unit tile corresponding to that module. This ambiguity can

be resolved by incorporating information from multiple modules of different

scales. However, how should this combination of information across modules

specifically be done? Two main standpoints have emerged, the combinatorial
view and the nested view (Fig. 3.4a), both briefly introduced next.

The combinatorial view emphasizes the fact that even a small number of grid

modules will generate unique conjunctive activity patterns potentially far be-

yond the range of the largest-scaled module. The large theoretical capacity

arises because periodic activity across modules does not repeat with the same

frequency. When a given module has started repeating its activation patterns,

this is not necessarily aligned with similar repetition of activity in other mod-

ules. Note for instance in Fig. 2.5g that all four modules overlap in only one

location, even though the size of the enclosure exceeds the grid scale of the

largest module. In the example in Fig. 3.4a (see also Fig. 5 in Paper B, p. 105),

observe that the three grid modules are all co-active only in the center. If the

animal travels to the next activity peak in the largest-scaled module, even

though that module is now ambiguous, the different pattern in the smaller-

scaled modules could still be used to discern that this is a different location.

Nested decoding of grid cells

While the combinatorial view offers long navigational ranges with only a few

modules, it might be highly susceptible to noise and require complex decod-

ing circuitry. The nested view, on the other hand, emphasizes the fact that grid

modules are arranged in a geometric progression, such that there is an expo-

nential growth in the range of successive modules. Given a sufficient number

of modules, the largest-scaled grid module should therefore exceed the re-

quired navigational range of the agent. With that assumption, the grid cell

decoding problem can be simplified greatly, as the agent no longer needs to

consider conjunctions of activity across all grid modules in order to success-

fully navigate. According to the nested view, the largest-scaled grid module

will always provide a rough indication of the goal direction. Because of the

presumably large scale at which that grid module represents space, though,

this estimate might be very noisy. However, as long as the agent gets guided
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into the valid domain of smaller-scaled modules, these modules can then take

over control and gradually refine the goal vector.

In this project we thus take the nested view of the grid cell system. A schematic

of the nested grid cell-based vector navigation model used in Papers A–D is

shown in Fig. 3.4b. The current position of the agent is represented by a set of

grid modules arranged in a geometric progression. This representation is up-

dated by a path integration process in the continuous attractor networks used

to model the grid cells. Separate continuous attractor networks are instanti-

ated for each module, with the velocity input attenuated for the larger-scaled

grid modules in order to achieve the larger grid scale in these modules (from

otherwise identical grid cell networks). When the modules are decoded to

produce the goal vector used to drive the agent, the larger-scaled modules are

given more influence on the output vector—according to the nested view.

Solving path integration for large-scaled modules

The question addressed by Paper C is whether a nested grid cell-decoding

agent can indeed navigate over long distances, which should be possible given

a sufficient number of grid modules. Papers A and B, our initial investigation

of grid cell decoding, ultimately only used four grid modules, with the small-

est and largest grid scale separated by a factor of twelve. This setup was thus

not suited for long-range navigation, so in Paper C we extended the model to

investigate whether the same type of model can also navigate over distances

on the order of hundreds of meters. To this end, the model was tested in a sys-

tematic way to determine the navigational range when using a given number

of grid modules, and that number of modules was then varied to see whether

the achieved navigational range indeed followed a geometric progression.

Initially, the navigational range turned out to cease increasing at around ten

grid modules (see Fig. 8 in Paper C, p. 144). This shortcoming was, however,

not due to any issues in the decoding network itself, but rather due to an inabil-

ity of the continuous attractor networks to correctly perform path integration

in the larger-scaled grid modules, as implemented. Because of the velocity-

based attenuation used to produce larger-scaled grids (simply scaling down

the strength of the velocity signal), the continuous attractor networks would

after a certain point simply stop responding to the weakened input signals.
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A number of possible fixes were proposed and evaluated (see Paper C for the

full details). As the ultimate solution was chosen a method where grid at-

tenuation is performed by using a probabilistic neural update rate rather than

by attenuating the velocity input. Large-scaled (as well as small-scaled) grid

modules were then able to correctly perform path integration, and the expected

exponential growth in navigational range was accordingly restored (Fig. 3.4c).

The valid navigational range with one module was determined to be around

1 meter with the setup in Paper C; this was successfully extended to 14 mod-

ules (with a scale ratio of 1.5 between successive modules), for a successful

navigational range on the order of 100 meters. This could expectedly be ex-

tended to even longer distances by simply adding more modules.

Furthermore, the computational requirements of the model grew at most lin-

early in the number of modules (Fig. 13 in Paper C, p. 153). As the achieved

navigational range is exponential in the number of modules, the computational

demand is thus logarithmic in the desired range. This shows that even with

the conceptually simpler approach of nested over combinatorial decoding, the

system is computationally scalable to long-distance scenarios. Paper C thus

demonstrates an important feature of the model were it to be applied within

a larger navigational system (e.g. in a bio-inspired robotics setting for long-

distance robot navigation using neural networks for path integration and vec-

tor navigation): a nested grid cell navigation model can indeed scale well to

long distances in both the path integration and the grid cell decoding aspects

of the model. The results also carry biological relevance, by demonstrating

that long-distance vector navigation does not depend on a combinatorial view

of the grid cell system. Nested grid cell decoding should also be considered

among the viable hypotheses for vector navigation processes in the brain.

3.2.2 Integrating grid cells with border cells and place cells

A fully-fledged navigational system requires more than a coordinate system

for long-range vector calculations as here provided by grid cells. Importantly,

an agent will need to handle obstacles that might arise on its way to the goal.

Will the goal vector information provided by grid cells then be of diminished

value, or is there still a place for grid cell-based vector decoding in a naviga-

tional circuit built to handle obstacles? In Paper D we investigate this question,
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proposing a larger navigational model where grid cells successfully participate

in a navigation process for obstacle-cluttered environments. The model in-

cludes other cell types known from the hippocampal formation, and provides a

biologically relevant proposal for how grid cell-based navigation might inter-

act with these other representations of space found in the hippocampal circuit

(see Fig. 1 in Paper D, p. 160; cf. anatomical overview in Fig. 2.3).

Border cell-based deflection around slanted obstacles

Our contributions in Paper D separate into dealing with two distinct classes

of obstacles, here termed slanted and perpendicular obstacles. Obstacles that

form an angle of less than 90° with the goal vector—slanted obstacles—are

easily negotiable by the agent, as the agent can continue its goal approach sim-

ply by deflecting its direction of motion away from the obstacle (Fig. 3.5a).

As long as the obstacle keeps presenting an angle of less than 90° with the

goal vector, the goal distance will keep decreasing as the agent follows the

deflected trajectory. Thus, in some situations, this deflection mechanism can

be sufficient to ultimately proceed all the way to the goal. In Paper D we de-

scribe a simple approach to implementing this border deflection strategy: Bor-

der cells, known to exist alongside grid cells in the medial entorhinal cortex,

provide the information needed to calculate the deflected movement direction.

By using information from borders cells to inhibit neural activity in a ring of

“motor cells”, the agent’s final direction of motion will gently steer away from

the obstacle as it is approached (see Fig. 2ab in Paper D, p. 164).

Note that this border deflection mechanism fundamentally depends on the

ability of grid cells to constantly update the goal vector as the agent makes

its way around obstacles. In the situation sketched in Fig. 3.5a, for instance,

after the agent has cleared the first obstacle, the goal is now found in a dif-

ferent direction. Grid cells can provide this updated goal direction, so border

deflection goes hand in hand with grid cell-based vector navigation.

Diverting to new subgoals to avoid perpendicular obstacles

Many obstacles are not this easily traversable. An obstacle might present a

perpendicular boundary to the goal vector (Fig. 3.5b), or initially be slanted
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Figure 3.5: (A) In Paper D the agent architecture was extended to handling obstacles

in the environment. Slanted obstacles—presenting an angle of less than 90° with the

goal vector—can be traversed by deflecting the direction of motion away from the

obstacle, e.g. as sketched in this illustration. At any point along the path from start to

goal the goal distance decreases, even as the agent had to deflect its trajectory around

an obstacle. Details in Paper D. (B) Obstacles perpendicular to the goal vector will

block the agent from making further progress using only the deflection mechanism

sketched out in A. The solution proposed in Paper D is to select a different subgoal for

vector navigation. We propose that place cells (grey circles) can provide candidates

for subgoals, and that a process similar to the biological phenomenon of hippocampal

replay events, where activity in remote place cells spontaneously plays back along

paths previously traveled, could be used to select the next subgoal (see Paper D).

but then gradually lead the agent into a basin of attraction where the deflected

trajectory terminates at a perpendicular point. When boundary deflection is

no longer sufficient to find a course for the agent, one possibility enabled by

grid cell decoding is to change the goal for vector navigation: the agent can

temporarily attempt to vector-navigate to a different destination as its subgoal.

Different subgoals produce different goal vectors, such that perpendicular ob-

stacles might become slanted and vice versa. If the agent can find a more

suitable subgoal, it could thus become unstuck from the current obstacle.

In Paper D we propose that place cells might serve the role of representing dif-

ferent subgoals. We further suggest that the subgoal reselection process could

be related to the phenomenon of replay known from the hippocampus, where
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hippocampal activity during rest or sleep has been observed to spontaneously

play back neural trajectories along paths previously traveled. We model the

place cell network as a topological graph of locations, and let the subgoal shift

through this network of locations along the shortest path between the agent’s

current location and the goal location. Whenever the agent gets stuck, the sub-

goal moves gradually closer to the agent until a more suitable destination has

been found, enabling vector navigation to resume—or, if none can be found,

eventually guiding the agent purely based on the topological information from

place cells. Our model in Paper D thus not only suggests a potential role for

replay in navigation, but also shows how grid cell-based vector navigation

can interact with other navigational strategies thought to be supported by the

hippocampal formation, such as place cell-based topological navigation.

Together, the two Papers C and D show how a grid cell-based vector nav-

igation model can serve as the foundation for a larger navigational system:

Paper C by demonstrating that the coordinate system can be used over long

distances with modest resource requirements, and Paper D by showing that

external sensory inputs such as border cells can be used to augment vector

navigation in more complicated environments. In Fig. 1 in Paper B, p. 99, we

sketched out a proposal for how grid cells might fit into a larger navigational

architecture. The model developed in Paper D largely adheres to this overall

framework, while also introducing border cells for local obstacle avoidance.

The model does not, however, use sensory inputs as suggested in Paper B

to generate place cells or to correct errors in the path integration process—

though it could later be extended also in that direction.

3.3 Research Question 3 (RQ3):

Plausibility of the decoding approach

3.3.1 Nested decoding of distorted grid modules

The final research question asks about the resilience of the proposed decod-

ing mechanism to various biological phenomena known from real grid cells.

Given our current knowledge of grid cells, and particularly their increasingly

evident variability, does it remain plausible that a nested grid cell decoder, as
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Module 1 Module 2 Module 3 Module 4
Sheared Sheared Sheared Stretched

Module 5 Module 6 Module 7 Module 8
Stretched Sheared Sheared Sheared

Figure 3.6: Adapted from Fig. 4a in Paper E, p. 224, where a nested grid cell decoder

is tested with populations of distorted grid cells. Example grid cell shown for each

of the eight modules part of an experiment in Paper E. Each module experiences

a given distortion to its grid patterns, all cells in a given module experiencing the

same distortion but with different distortions in different modules. Modules 4 and 5

experience stretch distortions along either the east–west or north–south axis, while the

other modules experience various forms of shearing distortions. The nested decoding

model was shown able to navigate despite these distortions (see Paper E for details).

investigated in the previous research questions, could work biologically? Real

grid cells have been found not to strictly adhere to the rigid hexagonal lattice

evoked by the three parameters of scale, orientation, and offset (Fig. 2.5a),

but to deviate from this idealized pattern in various ways. For example, grid

patterns might shear away from an axis of the environment with increased

exposure to that environment (e.g. Fig. 3.6, module 3), or they might stretch

or compress along an axis (e.g. Fig. 3.6, module 4). These distorted grids

challenge assumptions underlying grid cell decoding models, and must be ad-

equately addressed if these models are to be considered viable biologically.

Paper E addresses this challenge by testing the nested grid cell decoding ap-

proach with such distorted grid cells. As in the previous papers, the model

uses multiple grid modules, of increasing scale, to navigate longer distances

by decoding them in a nested fashion as described above. Paper E shows that
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the distortions considered here—stretching and shearing—do not constitute a

problem when decoding individual grid modules. Grid cells from the same

module are assumed to distort coherently, as this appears to be the case bio-

logically. Our proposed decoding mechanism, based on finding the offset of

activity packets in the neural sheet, will then still perform adequately when a

given grid module is affected by distortions. Furthermore, because the nested

grid cell decoder does not rely on precisely interlocked conjunctions of activ-

ity across all modules in order to navigate, it essentially only requires a good

goal direction signal from a single grid module at a time. Nested decoding

therefore remains functioning properly even when multiple grid modules are

distorted. This holds true also when different grid modules are distorted in a

non-coherent fashion (Fig. 3.6), which has been observed biologically.

The results in Paper E therefore defend the concept of nested grid cell decod-

ing against the challenge of distorted grids, by demonstrating that a nested

decoding strategy is fundamentally able to cope with these situations. This

is further underscored through separate simulations showing that nested grid

cell decoding works even when large amounts of noise are added to each grid

module. The smaller-scaled grid modules are “perturbed” to such a degree that

they no longer resemble grid cells when the agent is far away from the goal

location, yet the nested principle of grid cell decoding ensures that the agent

can still find its way back to the correct location. Paper E thus shows that the

nested decoding mechanism is highly resilient to imperfect, noisy grids, even

with no particular changes made to the decoder itself. This resilience and sim-

plicity of the nested decoding approach should encourage further investigation

into whether evidence of similar processes can be found in the brain.
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Discussion

4.1 Summary of research contributions

This section summarizes the main research contributions of this thesis, as they

pertain to the three Research Questions set out in the introduction (Section 1.2)

and as discussed in detail in the previous chapter. The summary below makes

brief references to several key related publications, but see also the next sec-

tion for a more detailed treatment of the related work.

Research Question 1 (Decodability of grid cells):

Can grid cells be decoded by a downstream network, in

order to make full use of the embodied coordinate system?

• In Paper A we demonstrated that goal vectors can be read out directly,

i.e. decoded, from grid modules by tracking the displacement of the

activity packet in the grid module’s neural sheet (Section 3.1.1).

• Distances beyond the range of one grid module can be navigated by

adding more grid modules to the system; biological grid modules are in-

deed known to be organized with a geometric progression of grid scales.

• Ours is the first demonstration of nested decoding by neural networks,

although two other papers from the same year as Paper A support the

notion that grid cells can be decoded for vector navigation: Bush et al. [79]

demonstrated neural decoding of grid cells in a combinatorial fashion

(as opposed to the nested decoding considered here), while Stemmler

et al. [69] analyzed the theoretical principles behind nested decoding.

51



Chapter 4 Discussion

Research Question 2 (Foundation for a navigational system):

Can a grid cell decoder be the foundation for a

larger agent architecture for navigational tasks?

• For the grid cell decoder to properly fulfill the role of a coordinate sys-

tem in a larger navigational architecture, it is important that arbitrarily

long distances can be represented and computed with. We demonstrated

that an agent controller integrating grid cell-based path integration with

vector navigation, can indeed be made able to function over arbitrar-

ily long distances (Section 3.2.1)—taking the nested view of the grid

cell system and ensuring that there is a sufficiently large number of grid

modules available (logarithmic in the desired navigational range).

• For grid cell-based vector navigation to be useful in realistic environ-

ments, obstacles in the environment must be dealt with. We showed

that grid cell-based vector navigation can usefully be integrated into

a larger architecture containing both border cells and place cells, that

respectively augment the agent’s vector navigation capabilities by de-

flecting away from nearby obstacles, and by diverting vector navigation

to different subgoals when the former is not possible (Section 3.2.2).

• This extended vector navigation architecture is based on spatial neurons

known from the hippocampal formation, and could therefore be viewed

as a hypothesis for how these spatial representations work together to

support navigation in complex environments. The model could also be

the starting point for a neuromorphic, bio-inspired robot controller.

• Erdem and Hasselmo [78] used grid cells to “search” for a goal direction

in complex environments, but our work shows that grid cells instead can

support such tasks through decoding (possibly a more efficient process).

Research Question 3 (Plausibility of the decoding approach):

Does grid cell decoding seem biologically plausible,

given our current understanding of real grid cells?

• One challenge raised against the plausibility of grid cell-based vector

navigation is that grid cells do not strictly adhere to perfectly hexagonal
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grids, but distort in various ways. We showed that the nested decoding

approach is highly resilient to distortions such as shearing/stretching,

even when different grid modules are distorted differently (Section 3.3.1).

• Nested grid cell decoding can even remain functioning despite severely

perturbed grid cell activity outside the goal vicinity. These findings all

stem from fundamental properties of the nested decoding approach.

• It remains unclear whether combinatorial decoding could similarly be

made able to handle distorted and perturbed grids. Further theoretical

and neurophysiological investigation might help distinguish between

these different proposals for grid cell-based vector navigation.

The overarching Research Goal for this thesis was to understand the potential

role of grid cells: advancing our understanding of what grid cells might be
useful for, and under which circumstances. Through our findings in this the-

sis, as summarized above, we hope to have advanced the notion that grid cells

could be used for vector navigation; that this can work over arbitrarily long

distances, given a sufficient number of grid modules; that grid cell-based vec-

tor navigation can be integrated with other navigational strategies known from

the hippocampal formation; that the proposed mechanism of nested grid cell

decoding is fundamentally resilient to challenges posed by biological grid pat-

terns; and finally, that the mechanism nevertheless remains resource efficient,

with only logarithmic requirements in the desired navigational range.

Our investigation of these questions has used highly simplified models of bi-

ological neurons, in the form of artificial neural networks. Though far from a

detailed biophysical account for how such processes might occur in the brain,

the models presented in this thesis nevertheless provide proofs of concept that

the neural representation of grid cells might hold the properties laid out above.

We thus hope that, beyond potentially being useful in bio-inspired robotic sce-

narios, our results might inspire further neuroscientific investigation into the

potential role of grid cells in vector navigation in the real brain.
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4.2 Related work on the possible role of grid cells

As this work forms part of an active area of research, several other viewpoints

and related models concerning the potential role of grid cells bear mentioning.

This section expands on the discussion of related work above (pertaining to the

specific Research Questions of the thesis), but also includes other perspectives

on the broader topic of the role of grid cells in the brain.

Grid cells for vector navigation: On the possible role of grid cells within

vector navigation, multiple models have been put forth in recent years. Erdem

and Hasselmo [78] proposed driving the grid cell system in an active way

along possible future trajectories, to test whether any of these virtual paths

might trigger the goal place cell and thus indicate the correct direction for-

ward. This is thus an approach where grid cells are used for vector navigation

not through any decoding process (which is the approach considered in this

thesis), but by using the grid cell system to actively search for the goal direc-

tion by virtual travel through space.

Bush et al. [79] proposed, around the time of Paper A’s publication, several in-

terrelated models for performing combinatorial decoding of grid cells, based

on instantiating arrays of detectors that look for each possible unique con-

junction of grid cell activity across all grid modules present in the system.

Closer to the approach taken in this thesis, Stemmler et al. [69] proposed a

mechanism for nested grid cell decoding based on recursive population vector

readout, where each grid module is iteratively decoded to successively adjust

the final readout vector. This ultimate, refined goal vector will then appropri-

ately reflect the coordinate information provided from all grid modules. Our

neural network-based model, however, suggests that you only need to read

out a single module at a time: far away from the goal it is only necessary to

decode the larger-scaled modules, and only upon approaching the goal do you

need to consider the information from the smaller-scaled modules.

Banino et al. [80] recently described a system where a neural navigation model

is trained using reinforcement learning based on self-motion and other sensory

inputs. A recurrent neural network was first successfully trained to generate

place cell and head-direction cell outputs based on path integration inputs, and
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units resembling grid cells were shown to emerge in late layers of the archi-

tecture. These units were then further used as inputs to a second recurrent

network that eventually learned to take shortcuts in the environment, puta-

tively by decoding the grid cell activity. It is encouraging to see such machine

learning methods arrive at solutions similar to the brain and those proposed

here, and it would be interesting to see whether this work in the next step could

help address, e.g., the question of nested versus combinatorial decoding.

Grid cells as inputs to downstream areas: Beyond the potential role of

grid cells in vector navigation, other possible roles for these neurons are also

actively being investigated. Grid cells were early on suggested to poten-

tially provide inputs to hippocampus sufficient for generating place cells [21,

76]. This view is complemented by recent findings that grid-like units might

emerge from learning processes related to Principal Component Analysis (PCA),

that seek to find an efficient encoding for representing place cell-activity [75].

Further work has suggested that certain grid distortions might be explained by

grid cells providing a PCA representation of reinforcement learning-related

signals in the hippocampus [81].

Both of these views, while providing a possible account for the formation of

grid cells (Fig. 1.1), also implicitly suggest that the role of grid cells might

primarily be to provide an efficient representation for supporting a desired

neural activity in the downstream hippocampus. However, while this might

be one possible account for the role of grid cells, that does not preclude the

same neural signal also supporting vector navigation processes as investigated

in this thesis. A neural representation evolved for one particular role might

later on have been adopted for other purposes.

Grid cells for non-navigational information: The entorhinal cortex, where

grid cells are primarily found, is a gateway between the hippocampus and

the neocortex. As such, it is expectedly also involved in other information

processing—beyond navigation—related to the hippocampus. Recent work

suggests that grid cells might encode several kinds of non-navigational infor-

mation, such as gaze position [82], task-related sound frequencies [83] and

continuous variables in conceptual space [84]; this raises the exciting notion

that grid cells might relate to more general principles for cognitive processing

in the brain. Modeling work on neocortical information processing has even
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led to the suggestion that grid cell representations might be useful as a gen-

eral computational principle throughout the neocortex [85]. Further modeling

could help elucidate these possible general computational properties of grid

cells, in biological or artificial neural networks.

4.3 Future directions and conclusion

A continued investigation into the potential role of grid cells in vector navi-

gation could proceed in many directions. As an interdisciplinary project, the

research questions opened by this work point into several fields. There are

thus both biological, theoretical and engineering tracks of future work.

Biological evidence of grid cell-based vector navigation: It is not yet known

whether biological grid cells in fact do participate in vector navigation. If they

do, then what—and where—is the biological mechanism? Cells in the CA1

area of the bat hippocampus have been reported to activate as a function of

goal direction [86]. Are these neurons part of a vector navigation mechanism?

If so, how do they work, and can they be found in other species as well?

Nested versus combinatorial decoding: Does biological vector navigation

follow the principles of combinatorial decoding, nested decoding, or some

other approach [87]? Both neurophysiological and theoretical work could ad-

vance our understanding of this question. Importantly, the nested approach

assumes a larger number of concurrent grid modules than have currently been

reported. Are the currently reported numbers the actual biological limit, or

have the remaining modules simply not yet been found? If so, the indica-

tions that larger-scaled modules consist of fewer neurons could help explain

why they have not yet been reported [88]. Biological recordings of grid cells

in much larger spaces than current laboratory environments could help illumi-

nate this issue [89], e.g. by recording bats in their natural environment [90].

Utility of grid cells for non-spatial information: The possibility that grid

cells also encode non-spatial information [82–84] suggests that there might

be circuitry in the brain for vector calculations involving these non-spatial

variables. As with navigation, this is a question that could be pursued both
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theoretically and physiologically. The intriguing results of grid-like neurons

emerging in models optimized for navigational tasks [75, 80, 81], also hint at a

more general role for grid cells in information processing. These interactions

between grid cells and machine learning methods represent an exciting direc-

tion for further research, both biologically and for artificial intelligence.

Robotic and neuromorphic hardware implementations: Bio-inspired navi-

gation methods have been successfully developed before, e.g. in “RatSLAM”:

a hippocampus-inspired architecture that uses continuous attractor networks

for path integration and place recognition, and which also in other ways is in-

spired by rat navigation [91]. This architecture has been successfully used in

several applications, such as mapping out the street layout of a suburb based

on camera inputs alone [92]. The navigation models developed in this the-

sis could potentially also have robotic applications, and might be developed

further to run on emerging neuromorphic hardware [42].

—

In conclusion, in this work we started out with a biological phenomenon and

ventured to build an artificial system using the same principles. As an inter-

disciplinary project, the models developed in this project operate on a high

level of abstraction above the biophysical realities. However, when trying to

understand such a complicated system as the brain, it is essential to be able to

work across multiple levels of abstraction. Our successful results, implement-

ing vector navigation using simulated grid cells, provide a proof of concept

that suggests that the biological system might harbor some of the same fea-

tures. The results also provide a platform for further development of artificial,

bio-inspired agents. This demonstrates how a close interaction between neu-

roscience and artificial intelligence can be fruitful, both in trying to understand

natural intelligence, and in endeavoring to develop machine intelligence.
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Abstract
As more is becoming understood about how the brain represents and

computes with high-level spatial information, the prospect of construct-

ing biologically-inspired robot controllers using these spatial represen-

tations has become apparent. Grid cells are particularly interesting in

this regard, as they provide a general coordinate system of space. Ar-

tificial neural network models of grid cells show the ability to perform

path integration, but important for a robot is also the ability to calculate

the direction from the current location, as indicated by the path integra-

tor, to a remembered goal. Present models for goal-directed navigation

using grid cells have used a simulating approach, where the networks

are required to actively test successive locations along linear trajecto-

ries emanating from the current location. This paper presents a passive
model, where differences between multi-scale grid cell representations

of the present location and the goal are used to calculate a goal-direction

signal directly. The model successfully guides a simulated agent to its

goal, showing promise for implementing the system on a real robot in

the future. Some possible implications for neuroscientific studies on

the goal-direction signal in the entorhinal/subicular region are briefly

discussed.

1 Introduction

Results from neuroscience are gradually uncovering the neural basis for nav-

igation, as cell types such as place cells and grid cells, first discovered in

71



the hippocampal region of rats, have been shown to represent high-level fea-

tures of the animal’s spatial environment. These findings offer the prospect of

beginning to understand how the brain computes and represents abstract cog-

nitive features. Inspired by these advances, the basis for this project has been

to devise and implement a neural model to enable a robot to find its way to

a previously visited goal location using these neural representations of space

known from the brain. Through crafting these models, we hope to gain in-

sights into how these spatial representations might be utilized for navigational

purposes by neural systems, artificial and real alike.

The first evidence of spatially responsive cells in the rat hippocampus came

with the discovery of place cells, which were seen to respond at distinct lo-

cations in the environment (O’Keefe and Dostrovsky, 1971). However, place

cells do not appear to encode any metric relations, such as distances and angles

(Spiers and Barry, 2015). The place cell representation by itself is thus not

sufficient to be able to navigate between arbitrary locations, because it does

not offer any means to calculate the direction of travel from one place cell’s

firing location to that of another. Grid cells, discovered later in the neighbor-

ing entorhinal cortex (Hafting et al., 2005), offer a possible solution, as the

grid cell system can be seen as a general spatial coordinate system. Given the

grid cell representations of two locations it is possible to compute the distance

and angle between them, thus providing the needed metric of space.

Grid cells are thought to update their firing activity based on self-motion in-

formation, in other words to perform path integration/dead reckoning (Mc-

Naughton et al., 2006). However, for a path integrator to be fully useful for

navigational tasks, an agent should be able to use this information to find its

way back to previously visited locations. In this paper we shall see how the

activity of path integrating grid cell networks can be used to guide a simulated

agent toward a remembered goal location.

2 Related Work

Path integration is the basis for several computational models of grid cells,

the collection of which can roughly be divided into two major categories;

oscillatory-interference models and attractor-network models (Giocomo et al.,
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2 Related Work

2011). Several biologically-inspired models for navigation have used such

models of grid cells (Milford and Schulz, 2014; Spiers and Barry, 2015). Of-

ten this has been for the purpose of position tracking, as in the bio-inspired

robot navigation system “RatSLAM” (Milford and Wyeth, 2010), but in some

cases grid cells have also been used for direction-finding.

Erdem and Hasselmo (2012) use a model with oscillatory interference-based

grid cells to find directions to remembered goal-locations. The mechanism

involves testing a number of “look-ahead probes” that trace out linear beams

radially from the current location of the agent. Each of these probes orches-

trate activity across the entire population of grid cells and place cells to make

it appear as if the agent were actually situated at the tested coordinates. If any

of the successive locations tested during a given look-ahead probe triggers

a reward-associated place cell, the agent is impelled to travel in the specific

direction of that probe. Kubie and Fenton (2012) show how a Hebbian learn-

ing mechanism between conjunctive grid cells can train the grid cell networks

to be able to generate look-ahead trajectories similar to those suggested by

Erdem and Hasselmo (2012). The authors propose that this is a “viable can-

didate for vector-based navigation”. Common to these two approaches is the

requirement for the model to explicitly test a wide range of different directions

emanating from the current position, in order to expectedly trigger the goal-

reward in some specific direction. In this sense, we can term these models

active mechanisms for goal-directed navigation.

The model proposed in this paper goes the other way about the problem, by

presuming that the grid cell-representation of the goal location is known be-

forehand. The current grid cell state and the goal grid cell state propagate

through a pre-wired network of neurons that calculate the offsets between the

two representations in order to generate a direction signal. This process can

be constantly ongoing in the background, without requiring exclusive use of

or otherwise interfering with any grid cell or place cell population for the pur-

pose of “simulating” forward locations. We thus consider our model a passive
mechanism for goal-directed navigation.
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Figure 1: Idealized illustration of the activity of two different grid cells, as a func-

tion of the 2D location of the agent, in a cylindrical enclosure of e.g. two meters in

diameter (top-down view). Red and blue colors indicate high and low firing rates,

respectively. The two grid cells belong to the same grid module, as per the identi-

cal scale and rotation of their respective grid patterns, but are seen to have different

phases, i.e. different offsets of these patterns, as indicated by the lines.

3 Background

3.1 Grid Cells are Organized in Modules

The name “grid cell” stems from the spatial activity patterns of these neurons;

the cells are not active only within single spatial fields in the environment as

the place cells are, but have a periodic pattern of activity that repeats at the ver-

tices of a triangular tiling of the plane. The result is a hexagonal grid pattern,

extending indefinitely throughout space, that can be characterized by the three

properties of scale, rotation and phase—respectively the distance between two

neighboring vertices of the grid pattern and the rotation and translation of the

grid pattern compared against a frame of reference. A grid cell does not oper-

ate in isolation, but participates in a module of grid cells that share the same

scale and rotation of their individual firing patterns (Stensola et al., 2012).

The only distinguishing property between neurons within the same grid cell

module is thus that of their phase (Figure 1).

Assuming that a sufficient number of grid cells belong to a given module, the

module as a whole has the ability to encode a given set of 2D coordinates

in a nearly continuous fashion. The limitation lies in the periodic nature of

the grid cell pattern, in that the information carried by a grid cell module

can only be interpreted relative to one specific hexagonal tile of the infinitely

repeating pattern. A possible solution comes from the fact that the entorhinal

cortex harbors grid cell modules of multiple different scales (Stensola et al.,

2012). It is conceivable that the smaller-scaled grid cell modules represent

space at a finer resolution than the larger-scaled ones, but with the sacrifice
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4 Model

Figure 2: Spontaneous formation of a grid-like activity pattern in the neural sheet

of an attractor-network grid cell module, due to random initial conditions and the

recurrent connectivity.

of having shorter “ranges of validity” due to the more rapid periodicity of the

grid pattern. The activity of all modules taken collectively, however, ought

to retain both the low-precision/long-range information of the larger-scaled

modules as well as the high-precision/short-range information of the smaller-

scaled modules. The utilization of this multi-scale mix of information is a key

idea behind the model presented in this paper.

3.2 Attractor-Network Models of Grid Cells

Attractor-network models of grid cells conceptualize their neurons as being

laid out in a 2D neural sheet. Proximity between neurons in this sheet im-

plies that the neurons should have similar phases of their grid patterns, not

necessarily that the neurons would be co-located in the brain. The neurons

are recurrently connected to each other, with a connectivity profile based on

distances in the neural sheet, in such a way that grid-like patterns of activity

will form in the network from random initial conditions (Figure 2).

These network patterns, which are the attractor states of the network, can

then be made to shift around in the network in response to self-motion sig-

nals in order to perform path integration. Assuming these shifts consistently

reflect the actual movements of the agent, the network pattern will over time

become visible in the spatial activity patterns of individual neurons in the net-

work. Attractor-models of grid cells thus have grid-like patterns both in their

time-averaged spatial activity plots (Figure 1) and in their momentary network

activity plots (Figure 2), and this is an important distinction to be aware of.
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Figure 3: A schematic overview of the model.

4 Model

The main part of the model comprises a configurable number of modules, seen

as the two rectangular blocks in the middle of Figure 3. Each module m con-

sists of (a) a grid cell module, (b) a target signal, and (c) a network of phase
offset detectors. The grid cell modules perform path integration on the incom-

ing self-motion signal (composed of speed and direction), and output vectors

of grid cell-activity sm that are passed on to the corresponding networks of

phase offset detectors. These phase offset detectors also receive a copy of the

intended grid cell-activity vector tm for the desired target location—the “target

signal”. The task of the phase offset detectors is to find the required direction

of travel to make up for the offset in the grid patterns between the path inte-

grator signal sm and the target signal tm. The intended outputs of the model

are a motor direction signal, giving the direction toward the target location,

and a motor strength signal, indicating whether the agent has arrived at the

target location or to keep going.

4.1 Multiple Modules with Different Spatial Scales

The model has these multiple parallel modules in order to utilize information

from a variety of grid cell modules representing space at different scales; this

will provide the direction-finding process with long-range/low-precision sig-

nals as well as short-range/high-precision signals. The different grid scales

are achieved by modulating the velocity inputs to each grid cell module. The

velocity signal to module m is multiplied by the gain factor gm before reach-

ing the grid cell network. Smaller gain factors will cause the path integrator
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to respond more slowly to the same velocity inputs, thus causing the grid to

appear larger, and vice versa.

The path integrator model used in these simulations was found to respond

acceptably to velocity inputs at least in the range from 0.1 m/s to 1.2 m/s.

As the actual speed of the simulated agent was fixed to 0.2 m/s, the range of

acceptable gain factors could then be determined to be [gmin,gmax] = [0.5,6.0].
The model uses a geometric progression from gmin to gmax for the gain factors.

Given a specific number of modules M to be used, the gm values can then be

calculated as

R = M−1
√

gmax/gmin, gm = gmin ·Rm−1. (1)

4.2 Path Integrating Grid Cell Modules

The path integrator modules are closely based on the attractor-network grid

cell model by Burak and Fiete (2009), and the following formulas are based

on their presentation of the model. Each grid cell module consists of a 2D

sheet of neurons of size n× n, where n = 40. The activation values of these

n2 = 402 = 1600 neurons are contained in a vector s, fully representing the

current state of the path integrator.

Each grid cell i receives recurrent inputs from all other neurons in s. Let xi be

the neural sheet coordinates of neuron i. The weight from afferent neuron i′

onto neuron i can then be calculated from the connectivity profile rec(d) by

letting d be the shortest distance between xi′ and xi in the neural sheet, taking

into consideration that connectivity may wrap around the N/S and W/E edges.

The recurrent connectivity profile rec(d) is a difference of Gaussians, seen as

the inhibitory “doughnut” in Figure 4, top left. Specifically,

rec(d) = e−γd2 − e−βd2

, (2)

where γ = 1.05 ·β , β = 3
λ 2 and λ = 15. λ approximately specifies the peri-

odicity of the grid cell network, i.e. the number of neurons from one peak of

activity to the next.

To express the update rule for grid cell i using vector notation, let wrec
c be the

weight vector derived from the distance-to-weight-profile rec(d) centered on
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the point c in the neural sheet. The update rule can then be described as

τ
dsi

dt
+ si = f

(
s ·wrec

xi−êθi
+Bi

)
, (3)

solved for dsi, where dt = 10 ms, τ = 100 ms, f (x) = max(0,x) and s is the

vector of the activation values at the end of the previous timestep.

The center point c of the connectivity profile for efferent neuron i is here given

as xi− êθi , i.e., there is an extra offset of êθi in addition to xi when positioning

the connectivity profile for neuron i. The offset êθi is the unit vector in the

direction of θi, which in turn is the directional preference of neuron i. The

directional preference is used to shift the activity pattern among the grid cells

in response to asymmetrical velocity inputs. Preferences for each of the four

cardinal directions are distributed among the neurons in each 2× 2 block of

neurons. Namely, the x,y coordinates of a neuron are used to calculate an in-

dex (2 · (y mod 2)+ x mod 2) into the list [W,N,S,E] to determine θi. In the

absence of velocity inputs, the four distinct preference-offsets counterbalance

each other to keep the activity pattern at rest in the network. During motion,

however, the external input Bi to each neuron becomes velocity-tuned accord-

ing to the directional preference of the neuron. This input is calculated as

Bi = 1+gmα êθi ·v, (4)

where v is the movement velocity and α = 0.10315 is a scaling constant spec-

ified by Burak and Fiete (2009).

4.3 Phase Offset Detectors

The vector of activation values s is passed on to a network of phase offset

detectors. In addition to receiving the input vector s from the path integrating

grid cell module, the phase offset detectors also receive a similarly-shaped

vector t that represents the grid cell activity of the target location, i.e. a grid

cell-encoding of the desired target coordinates.

Each phase offset detector j has an associated origin location x j and a pref-

erence direction θ j. The neuron is tuned to respond when an activity peak

is near the origin location x j in the neural sheet of the path integrator grid
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cell module (s) and there simultaneously is an activity peak near the location

z j = x j + δ êθ j in the grid cell-encoded target-location-input (t). Specifically,

the activation value of phase offset detector j is calculated as

p j = f
(

s ·win
x j

+ t ·wex
z j

)
, (5)

where w again refers to weight vectors derived from given connectivity pro-

files centered on given points in the neural sheet, but with new connectivity

profiles in and ex. The path integrator inputs s are fully connected using the

connectivity profile in(d) centered at x j, while the target location inputs t are

fully connected using the connectivity profile ex(d) centered at z j. These con-

nectivity profiles are defined as

in(d) = η ·
(

e−βd2 −1
)
, ex(d) = e−βd2

, (6)

where η = 0.25. The offset length δ is set to be δ = 7, in the neighborhood

of half of λ .

The effect is to respond the most strongly when there is an offset of length

δ in direction θ j between the activity patterns in s and t, given that the path

integrator currently has activity in the vicinity of x j. An example situation

is shown in Figure 4, where a phase offset detector with x j = (20,20) and

θ j = 45◦ receives inputs of favorable characteristics from s and t.

In order for the network of phase offset detectors to work independently of

the current location of network activity in the path integrator, there needs to

be a sufficient number of phase offset detectors that sample different origin

locations x j. Additionally, the network needs to sample a range of different

preference directions θ j. This is realized using two parameters Sθ and Sxy that

respectively specify the number of directions sampled in the interval [0,2π)
and the number of steps to use along each of the two dimensions of the neu-

ral sheet when sampling origin locations. The total number of phase offset

detectors will then be Sθ ·S2
xy per module.

4.4 Motor-Output Neurons

The activity from the phase offset detectors are aggregated in a set of motor-
output neurons. Whereas the grid modules and phase offset detectors are in-

stantiated separately for each module, the motor-output neurons comprise a
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Phase offset
detector pj :

xj = (20, 20)

θj = 45
◦

δ = 7

zj = xj + δêθj

= (24.9, 24.9)

Figure 4: Example of a phase offset detector, p j, showing the input networks s and

t and the connectivity profiles with which these two networks are connected to p j.

Depicted matrices are 40×40.

common network receiving inputs from all of the modules. The number of

motor-output neurons is the same as the number of sampled preference di-

rections Sθ in the phase offset detector networks. The motor-output neurons

sample the same directions as the phase offset detectors.

The activity in each motor-output neuron is essentially the sum of the activity

in all of the phase offset detectors that share preference direction with the

motor neuron. An important detail, however, is that these contributions are

weighted by the inverse of the gain factors of their respective modules. In

other words,

uk = ∑
m

[
g−1

m

θ j=θk

∑
j

pm, j

]
, (7)

where uk is the activity of motor-output neuron k and θk is the preference

direction of k. This weighting will give priority to the direction signals from

the modules with low gain factors gm, i.e. the modules where the quality of the

path integration information is long-range-applicable but with low precision.

As the agent gets closer to the target location, the intention is for these signals

to fade off to sufficiently weak strengths so that the shorter-range, higher-

Paper A A passive mechanism for goal-directed . . . (Edvardsen, 2015)

80



4 Model

precision signals will pick up in motor influence. The purpose is to achieve

the trade-off of a long-range and high-precision signal.

To calculate the final motor-output signal ΘΘΘ, the values of uk are considered as

vector contributions in the direction of θk, i.e. the vectors uk · êθk are summed

together, and this sum is then scaled to compensate for the variable number of

inputs and their weighting. The final calculation is thus

ΘΘΘ = ρ ·∑
k

uk · êθk , ρ =
1

Sθ ·S2
xy ·∑m g−1

m ,
(8)

whereafter the angle of ΘΘΘ makes up the motor direction signal and the vector

length becomes the motor strength signal.

4.5 Experiment Setup

Each experiment trial consists of a succession of stages, specifically (a) pattern

formation in grid cell modules, (b) capture of path integrator states into target

states, (c) the agent performing a random walk for T seconds, and (d) the

agent attempting to return “home” to the target location.

At the beginning of the simulation, in order for the grid cell networks to form

grid-like activity patterns, all si values are initialized randomly in the range

[0,10−4) before the networks are then allowed to settle for 1000 timesteps

(Figure 2). When this pattern formation process is done, the grid-like activity

patterns will have been initialized to essentially random starting-coordinates.

The model now copies these activity patterns sm into the target state vectors

tm. The m different target state vectors tm henceforth remain unchanged for

the rest of the trial, as a memory of the coordinates of the starting location

(“home”).

The agent then performs a random walk for a configurable duration of time

T seconds. The time duration for a single iteration of the model has been set

to be 10 ms, so there are 100 timesteps/s. During both the random-walk and

the return-home stages, the agent moves with a constant speed of 0.2 m/s with

only the movement direction changing. The random walk starts with a uni-

formly distributed random value from [0,2π) as the movement direction. At
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every timestep it is updated by adding a radian value from a normal distribu-

tion with μ = 0, σ = 1.

After T seconds have elapsed, the return-home stage begins. The motor-

direction output from the network is used to set the movement direction of

the agent, whereas the motor-strength output is used as a termination criterion

for determining when to end the trial. Three different termination criteria are

used; (a) the motor-strength signal is less than 10−6, (b) the return-home stage

has lasted for at least a second and the straight-line distance to the point tra-

versed one second ago is less than 0.01 m, or (c) the return-home stage has

lasted 2 ·T seconds. Whichever termination criteria ends the trial, the straight-

line distance to the starting location from the final stopping location is deemed

the error of the trial. The favorable outcome is a low overall error value.

4.6 Parameter Search

A parameter search was conducted to find the best values for M, Sθ and Sxy to

use for the rest of the experiments. An exhaustive test was performed on all

combinations of values in the intervals M ∈ [2,6], Sθ ∈ [4,32], Sxy ∈ [5,40].
However, to penalize expensive solutions and to place an upper bound on the

complexity of the solutions to be tested, a synapse cost C was calculated for

each parameter combination. This value provides an estimate on the number

of synapses in the model and consequently a rough estimate on the number

of floating-point operations required to update the model (without optimiza-

tion). C was calculated as C = M ·(n2
(
n2 +1

)
+2n2 ·Sθ ·S2

xy +Sθ ·S2
xy
)
, with

the three terms representing the synapse cost to operate respectively a grid

cell module, the phase offset detectors and the axons to the motor-output neu-

rons. Only the combinations with C < 108 were tested, leaving 2685 combi-

nations to test. For each combination, 100 trials with a random-walk duration

of T = 30 s were performed and the mean error was reported (Figure 5a). The

parameter combination M = 4, Sθ = 28, Sxy = 9 was selected for further use

(highlighted).

To get a sense for how the individual parameters affect the outcome, new sets

of runs were performed where each parameter in turn was changed within the

defined intervals and evaluated over 100 trials, while the two other parameters

were left unchanged (Figure 5b). M and Sxy seem to affect the results little
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Figure 5: (a) Scatter plot of parameter combinations tested during the parameter

search, with each dot showing the mean error over 100 runs for a given parameter

combination, plotted against the respective synapse cost. (b) For each of the three

parameters M, Sθ and Sxy, the effect of modifying that parameter from the chosen

parameter combination (M = 4, Sθ = 28, Sxy = 9; indicated by vertical lines) while

leaving the other parameters unchanged. Mean error over 100 runs. The combination

M = 4, Sθ = 28, Sxy = 9 is represented by the same set of trials in all three figures.
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Figure 6: Example of network operation at locations a fixed radius r = 0.5 m away

from the home location in given directions. Left: Momentary activity in the Sθ = 28

motor-output neurons. Right: Final motor direction calculated from the motor-output

neurons, plotted at the closest 2π period to the goal direction.

above thresholds of respectively M = 2 and Sxy = 8. Sθ , on the other hand,

appears to be more sensitive to the particular value to which it is assigned.

4.7 Implementation Details

All random values used by the implementation in this paper were gener-

ated using the Mersenne Twister pseudo-random number generator included

with the C++11 standard library. The model and the simulator used single-

precision floating-point values throughout.

5 Results

5.1 Direction-Finding Ability

Two different examples of how the system operates in practice are presented

in Figures 6 and 7. In the first example, the direction-finding ability of the

model is tested at multiple points along a circle centered on the goal location.

For each of the 18 uniformly spaced directions tested, the agent was driven a

distance of 0.5 m in the opposite direction of the intended “goal direction” and

allowed to settle for 250 timesteps before the motor outputs were examined.

For each trial, the figure shows the recorded activity from all Sθ motor-output
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neurons as well as the motor-direction signal from the model. As evidenced

by the figure, the model is able to accurately calculate the goal direction at

this specific distance of r = 0.5 m.

Figure 7 demonstrates a full trial with both random-walk and return-home

stages as described above. After a T = 30 s random walk, the agent success-

fully attempts a return to the home location. The figure includes the momen-

tary activity of all of the grid cell modules (sm) both at the beginning and

the end of the return-home stage. In each of these cases, the motor-neuron

activity is also shown. The plots of sm show possible interpretations of how

the activity patterns might have shifted from the target state tm, which was

also the initial state of the grid modules at T = 0 s. From the leftmost to the

rightmost columns, the grid modules progress from long-range/low-precision

to short-range/high-precision. The first, second and third modules show a cor-

rect assessment of the goal direction at T = 30 s, whereas the fourth module

is “out of range” and in this case has an ambiguous response.

At T = 37.1 s, we see that the grid modules have aligned closely with the

corresponding target states. The trial thus terminated because of the weak

motor-strength signal, bringing the agent to a halt at a distance of 4.74 cm

from the goal location, from an initial goal distance of 1.47 m at the end of

the random walk.

5.2 Effect of Multiple Grid Modules

The effect of using multiple grid modules is further demonstrated in Figure 8,

which shows, as a function of the distance to the goal, the strengths and errors

of each module’s contribution to the motor-output network when seen in isola-

tion. To illustrate their relative influences, the signal strength of each module

is also shown in terms of its ratio of the sum. Lastly, the final motor-direction

error is shown overlaid on the direction-error plots from the individual mod-

ules.

For each module, there is a distinctive bell-shape in the strength curve as the

tested radius approaches and recedes from the “optimal detection distance”

of the module’s offset detectors. The vicinity of the peak of the bell curve

is also where the module’s direction-error is at a minimum. Past this region,
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Figure 8: Behavior of the M = 4 different modules at increasing distances from the

goal. The model was tested as in Figure 6, but r was varied at 0.1 m increments

in the interval [0.1 m,10 m]. For each tested radius the motor-output strengths and

direction-signal errors are reported as the mean over 18 tested directions. In order

to report values individually for each module, extra motor-output networks were in-

stantiated such that each only received phase offset detector-inputs from one given

module. For these plots, ρ = 1 in order not to cancel out the scaling differences.
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the module abruptly becomes unreliable due to the periodicity of the grid cell

signal. Because of the gain-based weighting of module contributions, how-

ever, one of the larger-scaled modules is able to overpower the contributions

of the smaller-scaled modules and thus ensure that the final direction signal is

still valid. As seen by the red line in the lower diagram, the final direction-

output achieves a trade-off between range and precision not seen in any of the

individual modules.

Figure 9 demonstrates the importance of this combination of precision and

range information. The figure contains results from three different sets of

500 trials, each with T = 180 s. Whereas the rightmost diagram shows the

results from trials with the default parameters (M = 4, Sθ = 28, Sxy = 9), the

two other diagrams only use one module (M = 1). The leftmost diagram has

the gain factor set to g1 = gmax, for rapid periodicity and short-range/high-

precision signals, while the middle diagram has g1 = gmin, i.e. tuned for long-

range/low-precision signals.

The distributions of termination locations seen in the scatterplots confirm our

expectations from the known qualities of the grid module signals. With one

module tuned for precision (Figure 9a), the agent either precisely returns home

to the target location or it ends up in an attractor location that is part of a re-

peating pattern of possible attractors. This shows the periodic nature of the

grid cell encoding of space. With one module tuned for range (Figure 9b), all

but one of the 500 trials terminate in a cluster centered on the target location.

However, the improved range has carried a penalty of worse precision. This

penalty is seen to be mostly alleviated by integrating information from multi-

ple grid modules; in Figure 9c, where four grid modules are used, all but six

of the 500 trials end up within 0.5 m of the target, with only one ending up

more than 1 m away.

To get a sense for the trajectories the model follows during these attempts

to reach the target, Figure 10 contains traces of the 50 runs from Figure 9c

with the farthest goal distance at the end of the random walk. With some

exceptions, the paths taken are all largely straight lines toward the target. All

but one trajectory (seen near the top) end up within 0.5 m of the goal.
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Figure 10: Traces of the 50 runs from Figure 9c with the farthest distance from the

goal at the end of the random-walk stage.

6 Discussion

The basis for this project was to use neural representations of space for direction-

finding in a robot. The paper has presented a model that integrates an existing

model of path integrating grid cells with a novel mechanism that is able to

use the grid cell representation to direct the agent to a remembered goal. The

successful simulation results show promise for using the model in a physical

robot in the future. The translation into the physical world will bring with

it its own set of challenges, such as noisy self-motion inputs and imprecise

motor control. The integration of sensory information into the model is thus

one important area for further study, as has been done in other grid cell-based

robot controllers (Milford and Wyeth, 2010).

We consider the model at its current abstraction level to be biologically plau-

sible. The inputs and outputs of the model are geocentric direction and speed

signals, which is supported by the existence of head-direction cells. Attractor-

network models are considered viable candidates for understanding the oper-

ation of grid cells, and the phase offset detectors and motor-output neurons

are simple input-summing neurons. The target state signals are assumed to be

a grid cell-encoding of the target coordinates; this could be provided in the

form of backprojections from the hippocampus.
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Hasselmo (2012) as an example of how this mechanism could work.

This is not the only possible conclusion of these results, especially since the

model by Erdem and Hasselmo requires simulation of look-ahead trajecto-

ries in many different directions from the current location in order to discover

the goal location. A mechanism similar to the one presented in this paper

would allow the goal direction to be calculated directly from grid cell repre-

sentations of the current location and the goal, avoiding the need for extensive

simulations in multiple directions. The mixture representations reported by

Chadwick et al. could still conceivably be accounted for by oscillations in the

entorhinal/subicular region between encodings of the present and the future

spatial states. Experiments at finer spatial and temporal resolutions would

hopefully be able to distinguish the extents of these two types of contribu-

tions.
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Abstract

As neuroscience gradually uncovers how the brain represents and

computes with high-level spatial information, the endeavor of construct-

ing biologically-inspired robot controllers using these spatial represen-

tations has become viable. Grid cells are particularly interesting in this

regard, as they are thought to provide a general coordinate system of

space. Artificial neural network models of grid cells show the ability

to perform path integration, but important for a robot is also the abil-

ity to calculate the direction from the current location, as indicated by

the path integrator, to a remembered goal. This paper presents a neu-

ral system that integrates networks of path integrating grid cells with a

grid cell decoding mechanism. The decoding mechanism detects dif-

ferences between multi-scale grid cell representations of the present

location and the goal, in order to calculate a goal-direction signal for

the robot. The model successfully guides a simulated agent to its goal,

showing promise for implementing the system on a real robot in the

future.

1 Introduction

This paper presents a brain-inspired neural network capable of performing

goal-directed navigation in a simulated robot. The neural network receives

∗This paper is an extended version of a previously published conference paper (Edvardsen,

2015). Sections 5 and 6 in this paper report on the same data as the earlier conference paper.
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information about the robot’s self-motion velocity, and based on these inputs

performs path integration by updating an internal estimate of the robot’s cur-

rent coordinates. Later on, when given the coordinates of a goal location,

the network is able to calculate the direction toward the goal based on its in-

ternal estimate of the current coordinates from the path integration process.

This position estimate in the neural network is maintained using the spatial

representation of grid cells, known from neurophysiological experiments in

rats (Hafting et al, 2005). Grid cells are thought to constitute a spatial co-

ordinate system in the brain and to participate in path integration processes

(McNaughton et al, 2006), and for these reasons they are a compelling source

of biological inspiration for a coordinate system in a neural robot controller.

Grid cells are found in the medial entorhinal cortex, close to the hippocampus.

The hippocampal region is rich in neurons that represent high-level features

of the animal’s spatial context—in addition to grid cells, this area of the brain

also contains cell types such as place cells (O’Keefe and Dostrovsky, 1971),

head-direction cells (Taube et al, 1990) and border cells (Solstad et al, 2008).

These findings gradually uncover the neural basis for navigation in the brain,

and offer a window into how the brain computes with and represents abstract

cognitive features. Inspired by these advances, the basis for this project has

thus been to devise and implement a neural model to enable a robot to find

its way to a previously visited goal location using these neural representations

of space known from the brain. Through crafting these models, we hope to

gain insights into how these spatial representations might be utilized for navi-

gational purposes by neural systems, artificial and real alike.

Section 2 describes related work, Section 3 presents relevant background ma-

terial, Section 4 details the implemented system and the proposed decoding

mechanism, while Section 5 describes the experimental setup. Section 6

presents our results, which are then discussed in Section 7.

2 Related Work

The first evidence of spatially responsive cells in the rat hippocampus came

with the discovery of place cells, which were seen to respond at distinct lo-

cations in the environment (O’Keefe and Dostrovsky, 1971). However, place
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2 Related Work

cells do not appear to encode any metric information, such as distances and

angles (Spiers and Barry, 2015). The place cell representation by itself is thus

not sufficient to be able to navigate between arbitrary locations, because it

does not offer any means to calculate the direction of travel from one place

cell’s firing location to that of another. Possible solutions to this problem in a

robotic context include learning the required directions of movement for given

place cell transitions (Giovannangeli and Gaussier, 2008).

Grid cells offer another possible solution, as the grid cell system can be seen as

a general spatial coordinate system. Given the grid cell representations of two

locations, it is possible to compute the distance and angle between them, thus

providing the needed metric of space. Several biologically-inspired models

for navigation have indeed used models of grid cells (Milford and Schulz,

2014; Spiers and Barry, 2015; Bush et al, 2015). Often this has been for the

purpose of position tracking, as in the bio-inspired robot navigation system

“RatSLAM” (Milford and Wyeth, 2010), but in some cases grid cells have

also been used for direction-finding.

Erdem and Hasselmo (2012) consider a model with interconnected grid cells

and place cells, and introduce a mechanism for finding directions to remem-

bered goal-locations using these neurons. The mechanism involves testing a

number of “look-ahead probes” that trace out linear beams radially from the

current location of the agent. Each of these probes orchestrate activity across

the entire population of grid cells and place cells to make it appear as if the

agent were actually situated at the tested coordinates. If any of the successive

locations tested during a given look-ahead probe triggers a reward-associated

place cell, the agent is impelled to travel in the specific direction of that probe

(Erdem and Hasselmo, 2012, 2014; Erdem et al, 2015). An important ques-

tion is how this mechanism might be implemented in a neural network. Part of

the answer might be provided by Kubie and Fenton (2012), who show that a

Hebbian learning mechanism between conjunctive grid cells can train the grid

cell networks to be able to generate look-ahead trajectories similar to those

suggested by Erdem and Hasselmo (2012).

Common to these approaches is the requirement for the model to explicitly

test a wide range of different directions emanating from the current position,

in order to expectedly trigger the goal-reward in some specific direction. An
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alternative approach is to decode the grid cell representations of the current lo-

cation and the goal location and to calculate the movement direction directly

from this. A recent overview of neural network models for such navigation

with grid cells is provided by Bush et al (2015); as enumerated by them, sev-

eral neural models have been proposed for decoding grid cell signals: Fiete

et al (2008) consider the grid cell system to implement a residue number sys-

tem, and propose that grid cells could be read out using a neural architecture

earlier proposed by Sun and Yao (1994) for decoding such systems. The de-

coding process involves settling a recurrent neural network into a stable state,

whereafter the decoded position value would be represented by the firing rate

of the network. Huhn et al (2009b,a) show that distance information can be

decoded from grid cells through competition among neurons that each receive

grid cell inputs of a particular grid scale (for definitions, see Section 3.2).

However, this mechanism assumes that there is a large selection of grid orien-

tations for each particular grid scale, which is now known not to be the case

(Stensola et al, 2012). Masson and Girard (2011) demonstrate that position

can be decoded from grid cells, interpreted as a residue number system, by

applying the Chinese Remainder Theorem to the problem and wiring up a

neural network to perform the same calculations.

These models are primarily concerned with decoding information from grid

cells into explicit distance or position representations—not into goal directions—

so these systems would require additional stages to be able to generate the de-

sired movement direction signals. Bush et al (2015) introduce a set of neural

network models that do perform the full computation of a movement direction

signal from grid cell representations: The “distance cell” model assumes a set

of neurons that are pre-wired to activate whenever the grid cells represent spe-

cific displacements from an origin. By producing outputs from these neurons

in proportion to the recognized distance, the required direction of movement

can be determined for arbitrary pairs of grid cell-encoded current and goal lo-

cations. The “rate-/phase-coded vector cell” models generate a goal-direction

signal by detecting particular combinations—across grid modules—of phase

differences between the grid cell representations of the current location and

the goal location.

The model presented in this paper resembles Bush et al’s latter approach. The

current grid cell state and the goal grid cell state propagate through a pre-wired

neural network that calculates the offsets between the two representations in
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order to generate a direction signal. Whereas Bush et al (2015) investigate

the problem of grid cell-based navigation in isolation, in this paper we inte-

grate our decoding mechanism with a particular class of computational mod-

els for grid cells, namely continuous attractor networks, that are based on path

integration. We show that the grid cell signals resulting from path integra-

tion processes in the continuous attractor networks, can be successfully used

by our proposed decoding mechanism to perform navigation in a simulated

robot. This provides a promising building block toward a future neural robot

navigation system based on grid cells and place cells.

3 Background

This part of the paper provides background material relevant for the rest of

the paper. Section 3.1 describes how the presented system fits into the larger

picture of a research project to create a brain-inspired neural robot navigation

system, based on grid cells and place cells. Section 3.2 describes how grid

cells, as known from neurophysiological experiments, can be understood to

implement a general coordinate system of space in the brain. Section 3.3

describes a family of computational models for grid cells known as continuous

attractor networks, and how these networks use path integration to model grid

cells.

3.1 Robot Navigation with Neural Networks

The eventual goal for the research project of which this paper is a part, is to

devise and implement a full robot navigation system for indoor mobile robots,

where the majority of the computation takes place in neural networks utiliz-

ing spatial representations known from the brain. The robot should be able to

keep track of where it is, even with noisy sensors and imprecise motor con-

trol. It should be able to calculate routes toward goals that might potentially

involve moving around walls and other obstacles in the environment. Finally,

any information the robot requires about its environment to implement these

features it should be able to learn by itself as it explores the environment. The
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3 Background

Self-motion
velocity
(speed and
direction)

Estimated Current
Coordinates:

Updates through
path integration

Movement
Direction:

To wheels

Compared to
current coordinates

Compared to
goal coordinates

Goal
coordinates

A previous value
is copied into

Grid cells

Grid cell
decoder

Figure 2: The specific “sub-system” that will be considered in this paper, out of the

broader, future system described in Figure 1. The neural network does not perform

localization, mapping or route-planning, but navigates and performs path integration

with the coordinate system provided by the simulated grid cells.

scope of this problem thus involves aspects of path integration, Simultaneous

Localization and Mapping (SLAM) and map-based navigation.

To consider how to approach a neural implementation of such a navigational

system, and also to see where the work presented in this paper fits into the

larger picture, it is useful to break apart the full problem into a composition

of smaller, interacting subcomponents. One possible decomposition of the

mobile robot navigation problem as defined above, is shown in Figure 1. In

the figure, path integration is shown as the process that updates the Estimated

Current Coordinates component based on velocity inputs. To prevent errors

due to noisy sensors and motors from accumulating in this path integration

process, the position estimate is corrected whenever a previously visited loca-

tion is recognized from the sensory inputs. This involves the sensory inputs

triggering the recognition of a familiar location in the Localization Map com-

ponent and thereafter a flow of this information back to the Estimated Current

Coordinates component.

In order for the robot to be able to navigate to goal locations that are not

necessarily reachable by moving in a straight line from the current location,

the robot needs to employ some kind of route-planning process. This occurs

101



in the Topological Map component, where information is available about how

the discrete locations in the environment are connected to each other. From

this information, the system might then calculate that in order to go from

location A© to E©, the robot should follow as its route the sequence of known

locations A©– B©– C©– D©– E©. Currently residing at location A©, the robot would

then have as its immediate subgoal to first move to location B©, which we

will call the robot’s current waypoint. Whereas the final goal location might

be blocked by a wall or some other obstacle, we assume that the waypoint

location is one that can be reached in a straight line from the current location.

Calculating the required direction of movement to reach the waypoint location

is thus a matter of comparing the estimated coordinates for the current location

with the coordinates associated with the waypoint location. This calculation

happens in the Movement Direction component, the output of which is finally

used to control the motors of the robot.

The maps used by the place recognition and the route-planning processes have

to be learnt by the system through experience. This happens by associating

sensory inputs and position estimates to discrete place representations in the

localization map, and by learning associations between these place represen-

tations in the topological map. The primary data representations in this sys-

tem are thus coordinates and places—the path integration process continually

maintains an estimate of the current position as a set of coordinates, and these

coordinates are combined with sensory inputs to form place representations in

the localization and topological maps. By structuring the system in this way,

it becomes clear that place cells can play the role of the discrete place repre-

sentations in the map, while grid cells can be used to represent coordinates.

This is consistent with the fact that grid cells and place cells interact also in

the real brain.

The work presented in this paper has thus been concerned with the question

of how to implement the coordinate system of the broader, future navigation

system. Specifically, the “sub-system” considered in this paper is shown in

Figure 2. A system of grid cells can collectively be understood to encode co-

ordinates in 2D space (as described in Section 3.2), and by implementing our

artificial grid cells with a specific model of grid cells known as continuous

attractor networks, we will implicitly get support for path integration (as de-

scribed in Section 3.3). This means that the Estimated Current Coordinates

component of our navigation system can be fully realized by using these con-

Paper B Goal-directed navigation based on path . . . (Edvardsen, 2016)

102



3 Background
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Figure 3: (a) Idealized illustration of the activity of an individual grid cell. The figure
shows a top-down view of a square enclosure with a side length of, e.g., two meters.

The shaded areas are the regions in this 2D space where the example grid cell will

fire actively. (b) The spatial pattern of activity from a grid cell can be characterized

by the three parameters of scale, orientation and phase.

tinuous attractor networks. The question that arises, however, is how two sets

of grid cell-based coordinates then can be compared in order to calculate the

required direction of movement between them. This is the computation to

be performed by the Movement Direction—or grid cell decoder—component

in Figure 2, and the main contribution of this paper is thus to demonstrate

a mechanism to perform this operation when working with grid cell-based

coordinates.

3.2 Grid Cells as a Coordinate System

In this section we will see how the activity patterns of grid cells, as observed

in neurophysiological experiments, can be understood to implement a general

coordinate system for two-dimensional space in the rodent brain.

The name “grid cell” comes from the activity patterns that these neurons make

as the animal travels across space (Hafting et al, 2005). An idealized exam-

ple is shown in Figure 3a. In contrast to place cells, grid cells are not active
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Figure 4: When multiple grid cells are recorded simultaneously, the neurons are

found to cluster into grid modules. Within a module, the grid patterns have the same

scale and orientation but different phases. The three shades of gray in the figure rep-

resent the grid patterns from three grid cells that belong to the same module. By

assuming that the neurons in a grid module collectively cover all possible phases, it

becomes possible to always determine the agent’s position relative to the grid mod-

ule’s unit tile (shown as hexagonal tiles in this example). However, the activity within

the module does not contain any information about which unit tile is the correct one.
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only within single spatial fields in the environment, but have a periodic pat-

tern of activity that repeats at the vertices of a triangular tiling of the plane.

The result is a hexagonal grid pattern, extending indefinitely throughout space

(Figure 3a). These spatial activity patterns can be characterized by the three

properties of scale, orientation and phase—respectively the distance between

two neighboring vertices of the grid pattern, the rotation of the grid pattern

when compared against an axis of reference, and the translation of the grid

pattern when compared against a point of reference (Figure 3b).

When multiple grid cells are recorded from at the same time, it becomes ap-

parent that the individual grid cells do not operate in isolation. Rather, the

neurons are found to cluster into grid modules—groups of grid cells that share

the same scale and orientation of their individual firing patterns (Stensola et al,

2012). The only distinguishing property between neurons within the same grid

module is thus that of their phase, i.e. the relative translations in space of their

otherwise identical activity patterns (Figure 4).

Assuming that a sufficient number of grid cells participate in a given module,

the module as a whole has the ability to encode a given set of 2D coordinates

in a nearly continuous fashion—with one caveat. The limitation lies in the

periodic nature of the grid cell pattern, in that the information carried by a grid

cell module can only be interpreted relative to one specific hexagonal unit tile

of the infinitely repeating pattern. Unless there is some additional information

to indicate which particular unit tile is the correct one, the decoded position

will thus be ambiguous.

A possible solution comes from the fact that the entorhinal cortex harbors

multiple grid cell modules of different scales (Stensola et al, 2012). There

appears to be a constant ratio between the grid scales of successively larger

modules—in other words, the scale values of the grid modules form a geo-

metric progression. The implication is that, by integrating information from

modules of different scales, the ambiguity in single grid modules can be re-

solved.

However, there are multiple ways in which this resolution of ambiguity can

be interpreted to occur. Two possible interpretations are depicted in Figure 5

(inspired by the approach in Wei et al, 2015). The two subfigures show a

scenario where the position is read out from three grid modules, with a scale
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3 Background

ratio between successive modules of 1.5. For simplicity, we consider a one-

dimensional situation, so the horizontal axes in the figure represents e.g. po-

sition along a linear track. The actual location of the animal is in the center of

the axes.

The first three rows show the probability distributions of position given the

observed information from each of the modules. We assume that the position

can be decoded to a Gaussian distribution within the unit tile of each mod-

ule. However, because grid cells have a repeating pattern of activity, the final

probability distribution used for each module is a sum of multiple instances of

that Gaussian, separated by the period/scale of the grid module. We see that

module 1 has the smallest grid scale, and thus the most number of peaks in its

probability distribution, while module 3 has the largest grid scale and thus the

fewest number of peaks. Assuming that the responses from the grid modules

are independent from each other, the final probability distribution for position

given the responses from all modules will be the product of the per-module

distributions, as shown in the bottom rows of the figure.

In Figure 5a, because the periods of these three modules (1.50, 1.51 and 1.52)
collectively repeat only after making an excursion of 9 units, we see that

the correct position can be uniquely determined in the range −4.5 units to

4.5 units. In this interpretation of the grid cell system, the position can thus

be decoded for excursions exceeding the scale of the largest grid module, due

to the combinatorially long distance over which the activity across all of the

modules remains unique (Fiete et al, 2008). This is related to how residue

number systems represent numbers as their unique combinations of residues

after performing different modulo operations on the original number (Fiete

et al, 2008).

While this gives a large theoretical capacity of the grid cell system, it also

requires precise readouts from each module (Wei et al, 2015). If there is too

much uncertainty in the per-module readout, then the chance will increase of

erroneously decoding the position to a location far away from the correct one.

An alternative interpretation is shown in Figure 5b, where we have “zoomed

in” the horizontal axis to match one period of the largest module. This il-

lustrates an assumption that the largest module has a large enough scale to

unambiguously encode the position over the behavioral range of the animal.
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Figure 6: Connectivity in continuous attractor networks. (a) Neurons are assigned a

row and a column in a two-dimensional “neural sheet”. All neurons are recurrently

connected to each other. (b) The strengths of the recurrent connections are deter-

mined by the connectivity profile, which is a function that maps distance of separa-

tion between two neurons in the neural sheet to a connection strength. This specific

connectivity profile is based on Burak and Fiete (2009).

With this assumption, the grid cell system can be seen as gradually refin-

ing the position estimate from the largest grid module by adding information

from the smaller-scaled modules (Wei et al, 2015; Stemmler et al, 2015). The

smaller-scaled grid cell modules, while highly ambiguous, might represent

space at a finer resolution than the larger-scaled ones. The activity of all mod-

ules taken collectively would then contain both the low-precision/long-range

information of the larger-scaled modules as well as the high-precision/short-

range information of the smaller-scaled modules. This interpretation of the

grid cell system is the one used for the grid cell decoder in this paper.

3.3 Path Integration in Computational Models of Grid Cells

Continuous attractor network-based models are one of the major families of

computational models that have been proposed for grid cells (Giocomo et al,

2011). The network dynamics in these models implicitly supports path in-

tegration, which makes them a compelling choice for the coordinate system

in this project. In this section we will see the main principles behind these

models.

In continuous attractor network-based models of grid cells, all of the neurons

that belong to a grid module are conceptualized as being organized in a two-

dimensional “neural sheet”, such that each neuron is assigned a row and a

column in this “matrix” of grid cells (Burak and Fiete (2009); Figure 6a).
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3 Background

Timestep 0 Timestep 200 Timestep 250 Timestep 300 Timestep 500

0

2

Figure 7: Spontaneous formation of a grid-like activity pattern in the neural sheet

of an attractor-network grid cell module, due to random initial conditions and the

recurrent connectivity.
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Figure 8: How grid cells arise from continuous attractor networks (CAN). Path in-

tegration, by shifting around the patterns of activity in the neural sheet, will cause

the grid-like pattern in the neural sheet to also become visible through the spatial

responses of individual neurons in the sheet. In this simplified example, an animal

moves east, north and then back west again. As the animal makes these movements,

the activity pattern in the neural sheet is shifted correspondingly, as illustrated for

three different points along the animal’s trajectory. If the activity level of an individ-

ual neuron is recorded and plotted as a function of the animal’s position, as shown for

two example neurons A and B in the bottom of the figure, then the hexagonal pattern

in the neural sheet will eventually become visible across space. These neurons thus

behave as grid cells.
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4 Methods

This row/column combination will later correspond to the grid phase of the

neuron, so proximity between neurons in this sheet implies that the neurons

will have similar phases in their respective grid patterns.

The neurons are recurrently connected to each other, in an “all-to-all” fash-

ion. The strengths of these connections are decided by the connectivity pro-

file of the network, which is a function that relates the distance of separation

between a given pair of neurons in the neural sheet, to the strength of the con-

nection between them (Figure 6b). According to the connectivity profile in

Figure 6b, neurons will be inhibited by activity in other neurons that are lo-

cated in a certain range of radiuses away from the current neuron in the neural

sheet. This particular wiring of the network will cause grid-like patterns of

activity to spontaneously form in the network from random initial conditions

(Figure 7).

These network patterns, which are stable attractor states of the network, can be

made to shift around in the network in response to self-motion signals, which

in effect is to perform path integration. Assuming that these shifts consistently

reflect the actual movements of the agent, the hexagonal pattern of activity in

the network will, over time, become visible in the spatial activity patterns of

individual neurons in the network, as illustrated in Figure 8. This process is

responsible for generating the grid cell-like behavior of each neuron in the

attractor network.

Notice that in attractor-network models of grid cells, we thus have grid-like

patterns both in the time-averaged spatial activity plots of individual neurons

(e.g. Figure 3) and in the momentary network activity plots (e.g. Figure 7).

This is an important distinction to be aware of.

4 Methods

This part of the paper describes the implemented system, including our mech-

anism for decoding the grid cell-signals into movement directions.

The main part of the system comprises a configurable number of modules,
seen as the two rectangular blocks in the middle of Figure 9. Each module

m consists of (a) a grid cell module, (b) a target signal, and (c) a network
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of phase offset detectors. The grid cell modules perform path integration

on the incoming self-motion signal (composed of speed and direction), and

output vectors of grid cell-activity sm that are passed on to the correspond-

ing networks of phase offset detectors. These phase offset detectors also re-

ceive a copy of the intended grid cell-activity vector tm for the desired target

location—the “target signal”. The task of the phase offset detectors is to find

the required direction of travel to make up for the offset in the grid patterns

between the path integrator signal sm and the target signal tm. The intended

outputs of the model are a motor direction signal, giving the direction toward

the target location, and a motor strength signal, indicating whether the agent

has arrived at the target location or to keep going.

4.1 Multiple Modules with Different Spatial Scales

The model has multiple parallel modules in order to utilize information from

a variety of grid cell modules representing space at different scales; this will

provide the direction-finding process with long-range/low-precision signals

as well as short-range/high-precision signals. The different grid scales are

achieved by modulating the velocity inputs to each grid cell module. The

velocity signal to module m is multiplied by the gain factor gm before reaching

the grid cell network. Smaller gain factors will cause the path integrator to

respond more slowly to the same velocity inputs, thus causing the grid to

appear larger, and vice versa.

The path integrator model used in these simulations was found to respond

acceptably to velocity inputs at least in the range from 0.1 m/s to 1.2 m/s.

As the actual speed of the simulated agent was fixed to 0.2 m/s, the range of

acceptable gain factors could then be determined to be [gmin,gmax] = [0.5,6.0].
The model uses a geometric progression from gmin to gmax for the gain factors.

Given a specific number of modules M to be used, the gm values can then be

calculated as

R = M−1
√

gmax/gmin, gm = gmin ·Rm−1. (1)
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4 Methods

4.2 Path Integrating Grid Cell Modules

The path integrator modules are closely based on the attractor-network grid

cell model by Burak and Fiete (2009), and the following formulas are based

on their presentation of the model. Each grid cell module consists of a 2D

sheet of neurons of size n× n, where n = 40. The activation values of these

n2 = 402 = 1600 neurons are contained in a vector s, fully representing the

current state of the path integrator.

Each grid cell i receives recurrent inputs from all other neurons in s. Let xi be

the neural sheet coordinates of neuron i. The weight from afferent neuron i′

onto neuron i can then be calculated from the connectivity profile rec(d) by
letting d be the shortest distance between xi′ and xi in the neural sheet, taking

into consideration that connectivity may wrap around the N/S and W/E edges.

The recurrent connectivity profile rec(d) is a difference of Gaussians, seen in

Figure 6b or as the inhibitory “doughnut” in Figure 11, top left. Specifically,

rec(d) = e−γd2 − e−βd2

, (2)

where γ = 1.05 ·β , β = 3
λ 2 and λ = 15. λ approximately specifies the period-

icity of activity bumps in the neural sheet, i.e. the number of neurons from one

bump of activity to the next. To express the update rule for grid cell i using
vector notation, let wrec

c be the weight vector derived from the distance-to-

weight-profile rec(d) centered on the point c in the neural sheet. The update

rule can then be described as

τ
dsi

dt
+ si = f

(
s ·wrec

xi−êθi
+Bi

)
, (3)

solved for dsi, where dt = 10 ms, τ = 100 ms, s is the vector of the activation
values at the end of the previous timestep, Bi is a velocity-dependent external

input to the neuron and the activation function is f (x) = max(0,x).

The center point c of the connectivity profile for efferent neuron i is here given
as xi− êθi , i.e., there is an extra offset of êθi in addition to xi when positioning

the connectivity profile for neuron i. The offset êθi is the unit vector in the

direction of θi, which in turn is the directional preference of neuron i. The

directional preference is used to shift the activity pattern among the grid cells

in response to asymmetric velocity inputs. Preferences for each of the four
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cardinal directions are distributed among the neurons in each 2× 2 block of

neurons. Namely, the x,y coordinates of a neuron are used to calculate an in-

dex (2 · (y mod 2)+ x mod 2) into the list [W,N,S,E] to determine θi. In the

absence of velocity inputs, the four distinct preference-offsets counterbalance

each other to keep the activity pattern at rest in the network. During motion,

however, the external input Bi to each neuron becomes velocity-tuned accord-

ing to the directional preference of the neuron. This input is calculated as

Bi = 1+gmα êθi ·v, (4)

where v is the movement velocity and α = 0.10315 is a scaling constant spec-
ified by Burak and Fiete (2009).

4.3 Phase Offset Detectors

The vector of activation values s is passed on to a network of phase offset

detectors. In addition to receiving the input vector s from the path integrating

grid cell module, the phase offset detectors also receive a similarly-shaped

vector t that represents the grid cell activity of the target location, i.e. a grid

cell-encoding of the desired target coordinates.

Each phase offset detector j has an associated origin location x j and a pref-

erence direction θ j. The neuron is tuned to respond when an activity bump

is near the origin location x j in the neural sheet of the path integrator grid

cell module (s) and there simultaneously is an activity bump near the loca-

tion z j = x j + δ êθ j in the grid cell-encoded target-location-input (t), δ being

a fixed offset length. Specifically, the activation of phase offset detector j is
calculated as

p j = f
(

s ·win
x j
+ t ·wex

z j

)
, (5)

where w again refers to weight vectors derived from given connectivity pro-

files centered on given points in the neural sheet, but with new connectivity

profiles in and ex. The path integrator inputs s are fully connected using the

connectivity profile in(d) centered at x j, while the target location inputs t are
fully connected using the connectivity profile ex(d) centered at z j. These con-

nectivity profiles are defined as

in(d) = η ·
(

e−βd2 −1
)
, ex(d) = e−βd2

, (6)
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4 Methods

Figure 10: Concept behind the phase offset detectors. (a) If the current pattern in the
neural sheet, s, is similar/close to the target pattern, t, it is difficult to tell the correct

direction of movement. (b) If the current pattern s is shifted too far apart from the

target pattern t, then the ambiguity of the repeating pattern makes it impossible to

tell the correct direction. (c) If the shift between s and t is somewhere between the

regimes of (a) and (b), then it might be possible to extract the correct direction.

where η = 0.25. The offset length δ is set to be δ = 7, in the neighborhood

of half of λ .

The effect is to respond strongest when there is an offset of length δ in direc-

tion θ j between the activity patterns in s and t, given that the path integrator

currently has activity in the vicinity of x j. The concept behind this mechanism

is illustrated in Figure 10—given that the phase offset detectors are configured

to respond to offsets in a “favorable regime”, the neurons may be able to ex-

tract a direction of movement from the grid module. An example situation

is shown in Figure 11, where a phase offset detector with x j = (20,20) and
θ j = 45◦ receives inputs of favorable characteristics from s and t.

In order for the network of phase offset detectors to work independently of

the current location of network activity in the path integrator, there needs to

be a sufficient number of phase offset detectors that sample different origin
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Phase offset
detector p j :
x j = (20,20)

θ j = 45◦

δ = 7

z j = x j +δ êθ j

= (24.9,24.9)

Figure 11: Example of a phase offset detector, p j, showing the input networks s and
t and the connectivity profiles with which these two networks are connected to p j.

Depicted matrices are 40×40.

locations x j. Additionally, the network needs to sample a range of different

preference directions θ j. This is realized using two parameters Sθ and Sxy that

respectively specify the number of directions sampled in the interval [0,2π)
and the number of steps to use along each of the two dimensions of the neu-

ral sheet when sampling origin locations. The total number of phase offset

detectors will then be Sθ ·S2xy per module.

4.4 Motor-Output Neurons

The activity from the phase offset detectors are aggregated in a set of motor-
output neurons. Whereas the grid modules and phase offset detectors are in-

stantiated separately for each module, the motor-output neurons comprise a

common network receiving inputs from all of the modules. The number of

motor-output neurons is the same as the number of sampled preference di-

rections Sθ in the phase offset detector networks. The motor-output neurons

sample the same directions as the phase offset detectors.
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5 Experimental Setup

The activity in each motor-output neuron is essentially the sum of the activity

in all of the phase offset detectors that share preference direction with the

motor neuron. An important detail, however, is that these contributions are

weighted by the inverse of the gain factors of their respective modules. In

other words,

uk = ∑
m

[
g−1

m

θ j=θk

∑
j

pm, j

]
, (7)

where uk is the activity of motor-output neuron k and θk is the preference

direction of k. This weighting will give priority to the direction signals from

the modules with low gain factors gm, i.e. the modules where the quality of the

path integration information is long-range-applicable but with low precision.

As the agent gets closer to the target location, the intention is for these signals

to fade off to sufficiently weak strengths so that the shorter-range, higher-

precision signals will pick up in motor influence. The purpose is to achieve

the combination of a long-range and high-precision signal.

To calculate the final motor-output signal ΘΘΘ, the values of uk are considered as

vector contributions in the direction of θk, i.e. the vectors uk · êθk are summed

together, and this sum is then scaled to compensate for the variable number of

inputs and their weighting. The final calculation is thus

ΘΘΘ = ρ ·∑
k

uk · êθk , ρ =
1

Sθ ·S2xy ·∑m g−1
m ,

(8)

whereafter the angle of ΘΘΘ makes up the motor direction signal and the vector

length becomes the motor strength signal.

5 Experimental Setup

5.1 Trials

Each experiment trial consists of a succession of stages, specifically (a) pattern

formation in grid cell modules, (b) capture of path integrator states into target

states, (c) the agent performing a random walk for T seconds, and (d) the

agent attempting to return “home” to the target location.
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At the beginning of the simulation, in order for the grid cell networks to form

grid-like activity patterns, all si values are initialized randomly in the range

[0,10−4) before the networks are then allowed to settle for 1000 timesteps

(Figure 7). When this pattern formation process is done, the grid-like activity

patterns will have been initialized to essentially random starting-coordinates.

The system now copies these activity patterns sm into the target state vectors

tm. The m different target state vectors tm henceforth remain unchanged for

the rest of the trial, as a memory of the coordinates of the starting location

(“home”).

The agent then performs a random walk for a configurable duration of time

T seconds. The time duration for a single iteration of the model has been set

to be 10 ms, so there are 100 timesteps/s. During both the random-walk and

the return-home stages, the agent moves with a constant speed of 0.2 m/s with

only the movement direction changing. The random walk starts with a uni-

formly distributed random value from [0,2π) as the movement direction. At

every timestep it is updated by adding a radian value from a normal distribu-

tion with μ = 0, σ = 1.

After T seconds have elapsed, the return-home stage begins. The motor-

direction output from the network is used to set the movement direction of

the agent, whereas the motor-strength output is used as a termination criterion

for determining when to end the trial. Three different termination criteria are

used; (a) the motor-strength signal is less than 10−6, (b) the return-home stage

has lasted for at least a second and the straight-line distance to the point tra-

versed one second ago is less than 0.01 m, or (c) the return-home stage has

lasted 2 ·T seconds. Whichever termination criteria ends the trial, the straight-

line distance to the starting location from the final stopping location is deemed

the error of the trial. The favorable outcome is a low overall error value.

5.2 Parameter Search

A parameter search was conducted to find good values for M, Sθ and Sxy to

use for the rest of the experiments. An exhaustive test was performed on all

combinations of values in the intervals M ∈ [2,6], Sθ ∈ [4,32], Sxy ∈ [5,40].
However, to penalize expensive solutions and to place an upper bound on the

complexity of the solutions to be tested, a synapse cost C was calculated for
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6 Results

each parameter combination. This value provides an estimate of the number

of synapses in the model and consequently a rough estimate of the number of

floating-point operations required to update the model (without optimization).

C was calculated as C = M · (n2
(
n2+1

)
+2n2 ·Sθ ·S2xy +Sθ ·S2xy

)
, with the

three terms representing the synapse cost to operate respectively a grid cell

module, the phase offset detectors, and the axons to the motor-output neu-

rons. Only the combinations with C < 108 were tested, leaving 2685 combi-

nations to test. For each combination, 100 trials with a random-walk duration

of T = 30 s were performed and the mean error was reported (Figure 12a).

The parameter combination M = 4, Sθ = 28, Sxy = 9 was selected for further

use (highlighted).

To get a sense for how the individual parameters affect the outcome, new sets

of runs were performed where each parameter in turn was changed within the

defined intervals and evaluated over 100 trials, while the two other parameters

were left unchanged (Figure 12b). M and Sxy seem to affect the results little

above thresholds of respectively M = 2 and Sxy = 8. Sθ , on the other hand,

appears to be more sensitive to the particular value to which it is assigned.

5.3 Implementation Details

All random values used by the implementation in this paper were gener-

ated using the Mersenne Twister pseudo-random number generator included

with the C++11 standard library. The model and the simulator used single-

precision floating-point values throughout.

6 Results

6.1 Direction-Finding Ability

Two different examples of how the system operates in practice are presented

in Figures 13 and 14. In the first example, the direction-finding ability of the

model is tested at multiple points along a circle centered on the goal location.

For each of the 18 uniformly spaced directions tested, the agent was driven a

distance of 0.5 m in the opposite direction of the intended “goal direction” and
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Figure 12: (a) Scatter plot of parameter combinations tested during the parameter

search, with each dot showing the mean error over 100 runs for a given parameter

combination, plotted against the respective synapse cost. (b) For each of the three

parameters M, Sθ and Sxy, the effect of modifying that parameter from the chosen

parameter combination (M = 4, Sθ = 28, Sxy = 9; indicated by vertical lines) while

leaving the other parameters unchanged. Mean error over 100 runs. The combination

M = 4, Sθ = 28, Sxy = 9 is represented by the same set of trials in all three figures.
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6 Results

Figure 13: Example of network operation at locations a fixed radius r = 0.5 m away

from the home location in given directions. Left: Momentary activity in the Sθ = 28

motor-output neurons. Right: Final motor direction calculated from the motor-output

neurons, plotted at the closest 2π period to the goal direction.

allowed to settle for 250 timesteps before the motor outputs were examined.

For each trial, the figure shows the recorded activity from all Sθ motor-output

neurons as well as the motor-direction signal from the model. As evidenced

by the figure, the model is able to accurately calculate the goal direction at

this specific distance of r = 0.5 m.

Figure 14 demonstrates a full trial with both random-walk and return-home

stages as described above. After a T = 30 s random walk, the agent success-

fully attempts a return to the home location. The figure includes the momen-

tary activity of all of the grid cell modules (sm) both at the beginning and

the end of the return-home stage. In each of these cases, the motor-neuron

activity is also shown. The plots of sm show possible interpretations of how

the activity patterns might have shifted from the target state tm, which was

also the initial state of the grid modules at T = 0 s. From the leftmost to the

rightmost columns, the grid modules progress from long-range/low-precision

to short-range/high-precision. The first, second and third modules show a cor-

rect assessment of the goal direction at T = 30 s, whereas the fourth module

is “out of range” and in this case has an ambiguous response.

At T = 37.1 s, we see that the grid modules have aligned closely with the

corresponding target states. The trial thus terminated because of the weak

motor-strength signal, bringing the agent to a halt at a distance of 4.74 cm

from the goal location, from an initial goal distance of 1.47 m at the end of
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6 Results

Figure 15: Behavior of the M = 4 different modules at increasing distances from the

goal. The model was tested as in Figure 13, but r was varied at 0.1 m increments

in the interval [0.1 m,10 m]. For each tested radius the motor-output strengths and

direction-signal errors are reported as the mean over 18 tested directions. In order

to report values individually for each module, extra motor-output networks were in-

stantiated such that each only received phase offset detector-inputs from one given

module. For these plots, ρ = 1 in order not to cancel out the scaling differences.
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6 Results

the random walk.

6.2 Effect of Multiple Grid Modules

The effect of using multiple grid modules is further demonstrated in Figure 15,

which shows, as a function of the distance to the goal, the strengths and errors

of each module’s contribution to the motor-output network when seen in isola-

tion. To illustrate their relative influences, the signal strength of each module

is also shown in terms of its ratio of the sum. Lastly, the final motor-direction

error is shown overlaid on the direction-error plots from the individual mod-

ules.

For each module, there is a distinctive bell-shape in the strength curve as the

tested radius approaches and recedes from the “optimal detection distance”

of the module’s offset detectors. The vicinity of the peak of the bell curve is

also where the module’s direction-error is at a minimum. Past this region, the

module abruptly becomes unreliable due to the periodicity of the grid cell sig-

nal. Because of the gain-based weighting of module contributions, however,

one of the larger-scaled modules is able to overpower the contributions of the

smaller-scaled modules and thus ensure that the final direction signal is still

valid. As seen by the dashed line in the lower diagram, the final direction-

output achieves a combination of range and precision not seen in any of the

individual modules.

Figure 16 demonstrates the importance of this combination of precision and

range information. The figure contains results from three different sets of

500 trials, each with T = 180 s. Whereas the rightmost diagram shows the

results from trials with the default parameters (M = 4, Sθ = 28, Sxy = 9), the

two other diagrams only use one module (M = 1). The leftmost diagram has

the gain factor set to g1 = gmax, for rapid periodicity and short-range/high-

precision signals, while the middle diagram has g1 = gmin, i.e. tuned for long-

range/low-precision signals.

The distributions of termination locations seen in the scatterplots confirm our

expectations from the known qualities of the grid module signals. With one

module tuned for precision (Figure 16a), the agent either precisely returns

home to the target location or it ends up in an attractor location that is part of
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Figure 17: Traces of the 50 runs from Figure 16c with the farthest distance from the

goal at the end of the random-walk stage.

a repeating pattern of possible attractors. This shows the periodic nature of the

grid cell encoding of space. With one module tuned for range (Figure 16b), all

but one of the 500 trials terminate in a cluster centered on the target location.

However, the improved range has carried a penalty of worse precision. This

penalty is seen to be mostly alleviated by integrating information from multi-

ple grid modules; in Figure 16c, where four grid modules are used, all but six

of the 500 trials end up within 0.5 m of the target, with only one ending up

more than 1 m away.

To get a sense for the trajectories the model follows during these attempts

to reach the target, Figure 17 contains traces of the 50 runs from Figure 16c

with the farthest goal distance at the end of the random walk. With some

exceptions, the paths taken are all largely straight lines toward the target. All

but one trajectory (seen near the top) end up within 0.5 m of the goal.
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7 Discussion

7 Discussion

The basis for this project was to use neural representations of space for direction-

finding in a robot. The paper has presented a model that integrates an existing

model of path integrating grid cells with a novel mechanism that is able to use

the grid cell representation to direct the agent to a remembered goal.

We consider the model at its current abstraction level to be biologically plau-

sible. The inputs and outputs of the model are geocentric direction and speed

signals, which is supported by the existence of head-direction cells. Attractor-

network models are considered viable candidates for understanding the oper-

ation of grid cells, and the phase offset detectors and motor-output neurons

are simple input-summing neurons. The target state signals are assumed to be

a grid cell-encoding of the target coordinates; this could be provided in the

form of backprojections from the hippocampus.

Chadwick et al (2015) used VR-supported fMRI to look for a goal-direction

signal in the human brain. They found that there would be similar brain ac-

tivity patterns in the entorhinal/subicular region when a given geocentric di-

rection was used as either the current facing direction or the goal direction,

and the activity patterns were found to be best accounted for as a mixture of

the encodings of the facing direction and the goal direction. The authors see

these results as evidence that some form of goal-directed simulation of spa-

tial representations is involved in navigation, citing the model by Erdem and

Hasselmo (2012) as an example of how this mechanism could work.

This is not the only possible conclusion of these results, especially since the

model by Erdem and Hasselmo requires simulation of look-ahead trajecto-

ries in many different directions from the current location in order to discover

the goal location. A mechanism similar to the one presented in this paper

would allow the goal direction to be calculated directly from grid cell repre-

sentations of the current location and the goal, avoiding the need for extensive

simulations in multiple directions. The mixture representations reported by

Chadwick et al could still conceivably be accounted for by oscillations in the

entorhinal/subicular region between encodings of the present and the future

spatial states. Experiments at finer spatial and temporal resolutions would

hopefully be able to distinguish the extents of these two types of contribu-

tions.
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The model presented in this paper resembles the “rate-coded vector cell”

model by Bush et al (2015), in that both models detect salient differences in

grid phase between the grid cell representations of the current location and the

goal location. However, whereas Bush et al support displacements that can ex-

ceed the scale of the largest grid module, and therefore need to simultaneously

consider information from all grid modules when decoding phase differences,

in this paper we only support displacements within the scale of the largest grid

module, and the phase decoding can therefore take place independently within

each module. Our system operates based on the results of a path integration

process incorporated “in the loop” together with the decoding mechanism,

while Bush et al (2015) consider the decoding problem in isolation. Differ-

ences such as these make a direct comparison of model performance difficult.

For a comprehensive comparison of decoding mechanisms, one would need to

take into consideration the origin of the grid cell signal, any path integration-

related requirements such as error correction (Sreenivasan and Fiete, 2011),

the complexity of the decoder network in terms of neurons, synapses and tem-

poral demands, the supported range of distances, etc. This remains as future

work.

The successful simulation results show promise for implementing the system

in a physical robot in the future. The translation into the physical world will

bring with it its own set of challenges, such as noisy self-motion inputs and im-

precise motor control. The integration of sensory information into the model

is thus one important area for further study, as has been done in other grid

cell-based robot controllers (Milford and Wyeth, 2010). As described for the

proposed architecture of the future system in Section 3.1, the system could

accommodate sensory inputs through a network of place cells that interacts

with the grid cell system. A place cell-based mechanism could also play a

role in enabling the robot to navigate in more complex environments, such as

with walls and other obstacles.
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Abstract

Neural modelers in the domain of robot navigation, e.g. within the

fields of neurorobotics and neuromorphic engineering, can benefit from

a wealth of inspiration from neuroscientific research in the hippocam-

pal formation—cell types such as place cells and grid cells provide a

window into the inner workings of high-level cognitive processing, and

have spawned many interesting computational models. Grid cells are

thought to participate in path integration and to implement a general co-

ordinate system, both of which are useful features in a neural navigation

model. Continuous attractor networks are a computational model that

can embody both aspects of grid cells, and in previous work we showed

that a neural network can successfully decode the outputs of such net-

works in order to implement vector navigation. That work assumes that

the grid cell system represents long distances by employing a geomet-

ric progression in its spatial scaling of successive submodules, in such a

way that “nested” grid cell decoding can be performed. For long-range

navigation this requires that the continuous attractor networks can im-

plement sufficiently long geometric progressions of grid scales, but this

turns out to trigger the issue of “pinning”. In this paper we demonstrate

conditions under which pinning occurs as well as its consequences for

the grid cell-based navigation model. We propose and assess several

candidate solutions to the problem, in particular based on differential

adjustment of neurons’ update rates in the model. We finally demon-

strate that the system is able to perform long-range navigation using our

chosen solution.
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1 Introduction

Neural networks have in recent years had a renaissance as a tool for building

artificially intelligent computer systems [1]. Improved hardware, datasets and

techniques for construction and training of deep neural networks have yielded

systems that have advanced the state-of-the-art in areas of such wide variety

as image recognition [2] and beating human players in the board game Go

[3]. Neural networks for such tasks are often feed-forward in architecture,

especially in sensory processing applications [4]. However, the need for a

short-term memory capacity has also been emphasized, particularly for prob-

lems demanding higher-level cognitive processing [5].

One domain of cognitive tasks that usually requires a short-term memory is

that of navigation—keeping track of where you come from and where you are

going; planning how to get to a goal location and thereafter back home. In

earlier work [6] we showed how an artificial neural network inspired by the

brain’s grid cell system can keep track of an agent’s current 2D coordinates

and use this information to guide the agent to a goal location. In this paper

we will build upon that work to improve our grid cell-based neural navigation

system to work over longer distances.

Section 2 presents pertinent background material on grid cells and a compu-

tational model for them. In Section 3 we demonstrate the range of our navi-

gation system when using a single module of grid cells. Section 4 discusses

ways in which the range of the grid cell system can be extended by introducing

multiple modules. The navigation system is then tested with increasing num-

bers of modules and is shown to experience a shortfall in range improvement

after a certain number of modules have been added. Section 5 demonstrates

the issue of “pinning” that is responsible for this shortfall. In Section 6 we

propose and assess several candidate solutions to the pinning problem, with

our chosen solution evaluated in Section 7. Section 8 concludes the paper.
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2 Background

2 Background

2.1 Spatial neurons in the brain

Neuroscientific studies of navigation are often concentrated on the mammalian

brain region around the hippocampus, primarily in rats and other rodents. This

brain region is believed to implement a cognitive map—a neural implemen-

tation of high-level cognitive information about the spatial environment. Cell

types in this region, such as place cells [7], head-direction cells [8], border

cells [9], and grid cells [10], provide a wealth of inspiration for modelers

of artificial neural navigation systems. In the context of systems that bene-

fit from a short-term memory capacity, grid cells are particularly interesting.

Like place cells and border cells, grid cells are neurons that activate depend-

ing on the animal’s location in space. However, whereas place cells usually

activate at only a particular place in an environment and border cells activate

only along particular borders, a given grid cell is active whenever the animal

is located at the vertices of an imaginary hexagonal grid extending throughout

the 2D plane (Fig. 1). This relationship between the cell’s activity and the an-

imal’s location in 2D space persists even in complete darkness, indicating that

grid cells reflect an internally maintained neural activity and that this activity

can be generically updated by self-motion inputs. This suggests that grid cells

participate in a path integration process in the brain, continuously adding the

animal’s current velocity vector to an internal variable representing a vector

of the total displacement from a point of reference (Fig. 3).

2.2 Continuous Attractor Networks (CANs)

“Continuous Attractor Networks” (CANs) are recurrent neural networks that

are wired in a particular way so that the energy landscape of the network

contains a continuum of stable network states of a particular dimensional-

ity [11]. One-dimensional CANs are for example used as a model for head-

direction cells—the stable states of the network each represent a particular

head-direction, i.e. the stable states fall along a 1D line, and inputs signaling

head-turns cause the network to shift to new network states that reflect the

updated head-direction. These CANs thus perform path integration on the 1D
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Figure 1: Illustration of two types of spatial neurons found in the hippocampal for-

mation of rodents such as rats—place cells and grid cells. Left: Neurons are recorded

as the animal explores an enclosure. The animal’s position in the horizontal plane

is recorded simultaneously. Right: By plotting heatmaps for each neuron—showing

the neuron’s average activation in each visited position bin—the characteristic spatial

responses of place cells and grid cells are revealed. Place cells respond typically in

one or a few areas of the enclosure, whereas grid cells respond at the vertices of an

infinite hexagonal grid pattern.

head-direction variable—by extending a CAN to two dimensions, it will be

able to use inputs representing velocity in the 2D plane to update a network

state representing the current 2D total displacement (Fig. 2). It is possible to

create 2D CANs whose individual neurons produce the repeating, hexagonal

grid patterns across space that are characteristic of grid cells, and CANs have

indeed emerged as one of the major classes of computational models for grid

cells [12].

2.3 Vector navigation with grid cells

The robot navigation system RatSLAM [13] is an example of the potency of

looking to neuroscientific findings in the hippocampus for neural principles

to use in an artificial navigation system. The core of this algorithm is a CAN

that performs path integration and participates in place recognition. A CAN

such as used by RatSLAM will, within a certain range, generate unique neural

activity patterns for each distinct location, and reactivate these patterns when-

ever a “loop is closed” during revisits to old locations. The outputs of the

CAN can therefore be used to generate novel “labels” for new locations and
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Figure 2: Illustration of key concepts behind continuous attractor networks, which

constitute a major class of computational models for grid cells. Each neuron is as-

signed a row and a column in a “neural sheet”. Neurons are fully connected recur-

rently, with connection strengths pre-wired in such a way that bumps of activity will

spontaneously emerge in the neural sheet and distribute in a hexagonal pattern. This

hexagonal pattern becomes visible in the readouts of individual neurons across space

because the pattern in the neural sheet is made to shift in proportion to the agent’s

movements in 2D space. The square heatmaps show instantaneous snapshots of the

activation levels of the neurons in the neural sheet of a CAN-based grid module, each

pixel indicating the activation level of one neuron. These snapshots are shown at four

different timesteps, all while the agent is moving eastward. In response to the ve-

locity input, the pattern shifts rightward in the neural sheet (indicated by the yellow

circle, which tracks the motion of one of the bumps in the pattern). By reading out

the activation level of a single neuron and plotting it over time, the grid pattern is

revealed and the neuron therefore acts as a grid cell.

Path integration Coordst+1 ← Coordst +Movementt

Movementt+1 ← GoalCoordst − CoordstVector navigation

A

A+ north-east = BB

C

north-east

B + south-east = C

south-east

A A− C = westC

A?

Figure 3: Path integration maintains an internal estimate of the agent’s current coor-

dinates based on its movement history. Vector navigation calculates the direction to a

goal location based on the current coordinates and the goal coordinates.
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then reactivate those labels when an old place is visited anew [14], therefore

helping the system downstream of the CAN to perform place learning and

place recognition.

However, using the neural representation of grid cells, another function also

presents itself. Not only is there a systematic way in which grid cell activ-

ity can be generated by a path integration process, but the reverse can also

be said: Grid cell activity from location A and location B can be compared

in order to extract the direction of movement between them. The pieces are

therefore in place for grid cells to be used as a 2D coordinate system in ar-

tificial neural navigation systems; coordinates can be updated by adding new

velocity vectors to them, and movement directions can be recovered by com-

paring/“subtracting” coordinates (Fig. 3). Bush et al. [15] provide several

possible neural networks for decoding grid cells to movement vectors, and in

earlier work [6] we showed a neural system where both path integration and

grid cell decoding is integrated in the same agent controller. There are yet,

however, many possibilities and questions left to explore in this area, one of

which—the possibility of using grid cells for navigation over long distances—

is the topic of this paper.

3 Navigating with a single grid module

One of the defining characteristics of a grid cell is that the neuron’s activity

pattern repeats across space, so it is not possible to unambiguously determine

the animal’s location by making a read-out of one grid cell’s current activa-

tion level. The simultaneous activation levels of other grid cells must there-

fore also be considered. Biological grid cells are known to cluster into grid
modules, where all neurons in a grid module share the same hexagonal grid

pattern across space (identical scaling and orientation of the pattern), except

for a shift/offset in the pattern between neurons. Cells 5–7 in Fig. 1 might

thus belong to the same grid module. The read-out of an entire grid module

will have the same ambiguity due to repeating grid patterns as an individual

grid cell—after traveling a distance sufficient to make one grid cell start to

repeat itself, then all the other grid cells in the module will also have started

repeating. Grid cells organized in a module make it possible to determine the

animal’s location within the boundaries of the module’s “unit tile”, but it does
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Figure 4: Navigating with a single grid module. The agent was tested for “goal dis-

tances” in 1 cm increments from 1 cm to 200 cm, conducting 36 trials in 10 degree

increments for each distance. A trial consisted of the agent driving in the specified

direction, halting once the distance to the origin was within 10−6 m of the “goal

distance”, and then being allowed twice the number of outbound timesteps to try to

navigate back to the origin. The closest approach to the origin was divided by the ini-

tial halting distance to obtain a “relative error” for the trial. Trials with relative errors

of 0.5 or more were considered failures, and the failure rate was calculated for each

distance bin. This rate was then smoothed by averaging it in a sliding window of 5

bins. The “usable range” was determined as the last distance bin before the smoothed

failure rate reached a threshold of 0.1 (skipping the initial region of failed trials).

not reveal any information about where this unit tile might be located in global

space.

We sought to demonstrate the limits of navigating with only one grid module

in our current grid cell-based navigation system. The system performs path

integration using a configurable number of CAN-based grid modules as the

simulated agent drives away from the origin location, and then later tries to

find its way back to the origin by decoding the information residing in the re-

current short-term memory of the grid modules. The version of our navigation

model used in this paper is in most respects similar to how it was described in

[6].

Fig. 4 shows the results from an experiment where the agent was tested at

various goal distances between 1 cm and 200 cm. Using a criterion described

in detail in the figure caption, we calculated the “usable range” to be 1.05 me-

ters.

A navigational range on the order of one meter will clearly not be sufficient

for a number of applications, and neither is this range behaviorally sufficient
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1st module

2nd module

3rd module

Combinatorial
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Figure 5: Conceptual comparison of two different views on how the ambiguity from

a single grid module can be resolved—and the usable range thus be increased—by

utilizing multiple grid modules of increasing scale. Depending on the particular grid

scales used, the grid modules can continue to generate unique activity combinations

over distances exceeding the range of the largest-scaled module in a “combinatorial”

fashion. A different view is to assume that there is a hierarchy of grid modules such

that the largest module is sufficiently large to cover the entire behavioral range of the

animal and to guide the animal into the usable range of the smaller-scaled modules.

The smaller-scaled modules are thus “nested” within the larger-scaled ones, their

purpose being to increase precision beyond what the larger-scaled modules might

provide. Grid scales observed in neuroscientific experiments are known to follow a

geometric progression, so both of these views remain viable options.

for animals such as rats and bats that forage across distances up to kilome-

ters away from the nest [16]. However, the fact that there are multiple grid

modules in the brain might provide a solution.

4 Navigating with multiple grid modules

There are multiple grid modules in the brain, and there appears to be a constant

scaling factor between the spatial grid scales of successive modules, so that

the grid scales of a sequence of grid modules form a geometric progression

[17]. This enables two distinct views of how the grid cell system might unam-

biguously represent 2D coordinates over longer distances (Fig. 5), which we

will refer to respectively as the “combinatorial” and the “nested” approaches.

The “combinatorial” approach emphasizes that the collective activity of a set

of grid modules can remain unique over a total range far exceeding that of the

largest grid module. This range can theoretically be as much as the least com-

mon multiple of all of the modules’ grid scales [18], which increases quickly

when adding just a few grid modules together—however, it has been argued
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4 Navigating with multiple grid modules

that utilization of the full range requires precise readouts from each mod-

ule [19], and the possibility has been raised that an error correction mecha-

nism might be required during ongoing path integration operation [20]. The

“nested” approach embraces the fact that the grid scales of successive modules

appear to follow a geometric progression. As the number of grid modules in-

creases, the grid scale of the largest module grows exponentially. In this view,

one therefore assumes that there is a sufficient number of grid modules so that

the largest grid scale is larger than the behavioral range of the animal, i.e., that

there is a grid module large enough to by itself unambiguously indicate the

animal’s location in 2D space. While the resolution of a grid module might

grow coarser as the grid scale increases—so that a very large-scaled grid mod-

ule might only give a rough estimate of the animal’s location—smaller-scaled

grid modules could provide refinements to the initial estimate from the largest

module [21].

It is the latter view we will consider in this paper; we showed in [6] that

there exists a simple neural grid cell decoding mechanism for such setups.

The decoder considers the grid cell signal in each grid module individually

and then at the output end of the system gives priority to the largest-scale

grid module outputs, reminiscent of the nested refinement described by [21].

Following this principle, in order to increase the range of the navigation sys-

tem from ∼1 meter to e.g. 150 meters, we should repeatedly add extra grid

modules to the system in a geometric progression until the projected range of

the largest module is sufficiently large. Using a scale ratio of 1.5, as sug-

gested by theoretical studies and within the range of scale ratios reported

from neuroscientific experiments, we would need 14 grid modules in total

(1.05 m ·1.513−1 ≈ 136 m, 1.05 m ·1.514−1 ≈ 204 m).

Fig. 6 illustrates an overall schematic of the full grid cell-based navigation

system with all of these pieces in place. A number of CAN-based grid mod-

ules, following a geometric progression of grid scales, receive self-motion

velocity in order to perform path integration. The output from these modules

is decoded in a nested fashion to perform vector navigation. The illustration

also alludes to the specific mechanism by which the different grid scales are

attained in the otherwise identical CAN modules—by increasingly attenuat-
ing the velocity input to each module. We will return to this topic in later

sections.
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Figure 6: Conceptual overview of the full navigation model considered in this paper.

Self-motion velocity is used to update multiple CAN-based grid modules of increas-

ing grid scales that follow a geometric progression. Larger grid scales are achieved

by attenuating the input to the grid module, so that the module’s produced grid pattern

appears stretched across space. The collective activity of all grid modules represents

a set of “coordinates” in the navigation model. Larger-scaled grid modules are given

priority in the decoding process, in accordance with the view that smaller-scaled grid

modules are “nested” within the larger ones [21].

Fig. 7 shows the results of an experiment that follows the paradigm in Fig. 4,

but where much longer distances are tested and where separate sets of trials

were performed with the model configured to use 2, 4, 6, 8, 10, 12 and 14

grid modules. The set of trial distances was selected to be equally spaced on

a logarithmic scale, because we are interested in observing behaviors of the

system that are expected to follow an exponential development. Usable ranges

were determined as in Fig. 4, and aggregated results are shown in Fig. 8.

The system behaves as expected for low numbers of modules—as extra mod-

ules are added, the usable range increases exponentially. However, at 12 and

14 modules there are clear deviations from this trend. The usable range ap-

pears to level off around the level attained with 10 modules. The extra grid

modules added from 10 to 12 and 14 do not seem to have contributed appre-

ciably to the usable range of the system. In the remainder of this paper we

will look into the cause of this problem and discuss possible solutions.
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Figure 7: Navigating with multiple grid modules. The trials and analyses were

conducted as in Section 3, but with either 2, 4, 6, 8, 10, 12 or 14 modules, and

with 65 tested distances selected to be equally spaced on a logarithmic scale from

1.5−2 ≈ 0.444 m to 1.514 ≈ 292 m. Legend as in Fig. 4.
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Figure 8: Various results from the trials shown in Fig. 7, aggregated by the number

of modules. (a) Usable range for each number of modules, as determined in Fig. 7.

Also shows the expected range as a function of number of modules, projected from

the range value found for 2 modules and using a factor of 1.5 per module. (b) Mean

± std.dev. across trials, of CPU time spent per simulated time. 1 simulated second

corresponds to travelling 0.2 meters. “Outbound” is the initial excursion away from

the starting location, and “return” is the following navigation phase where a return

back to the starting location is attempted.
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5 “Pinned” pattern flows in CANs

The source of the shortcoming is demonstrated in Fig. 9. In this experiment,

the flow of the activity pattern in a CAN is measured for different strengths of

net input velocity. The relevance to the grid scaling problem is that this is cur-

rently how the CANs’ grid scales are increased from the baseline grid scale—

by increasingly attenuating the velocity inputs to the modules that should have

larger grid scales.

The average flow reported for the unattenuated case in Fig. 9 was ∼981 neu-

rons per 100 meters. In order to produce a grid module with e.g. twice the grid

scale, the velocity input to that module should be half of the original signal—

the module would then use twice the amount of time/distance to produce the

same output as the unattenuated module, in effect producing a grid pattern

stretched to twice the spatial scale. In general, to scale the grid pattern by a

factor s, we attenuate the velocity input by a = s by dividing it by a.

For this strategy to be successful, the network response should always remain

proportional to the net velocity input. Thus, with an attenuation of e.g. 100—

in order to produce a grid scale of 100 times the normal scale—we want the

network pattern to flow 981/100 = 9.81 neurons per 100 meters, etc. Fig. 9

explores whether this is the case, by measuring the network flow at various

attenuation levels between 1.5−5 and 1.513, equally spaced on a logarithmic

axis.

The specific attenuation levels used for the 14 different modules in Section 4

are indicated in the figure. At the attenuation levels observed by modules 1–

8, the network behavior is indeed inversely proportional to the attenuation,

so that the reported flow values are around 1 as a proportion of the “target

flow”. However, for stronger attenuations the behavior starts to break down.

Between the attenuation levels corresponding to the 8th and the 13th modules,

there is an increased spread in the observed flow values, and consequently the

grid module is less reliable as a path integrator. At yet higher attenuation

levels, the CAN barely seems affected by the input signal and is unable to

perform any path integration at all. This phenomenon can account for the

ineffectiveness seen in Figs. 7 and 8 of adding any extra modules beyond 10.

The phenomenon corresponds to what Burak & Fiete refer to as “pinning” of

the network pattern at low velocities [11].
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Figure 9: Tracking the flow of the network pattern in a CAN-based grid module,

across a range of different attenuation levels for the velocity inputs to the CAN. The

attenuation is 1 for the smallest-scaled, i.e. the first, grid module. To create larger

grid scales, the velocity inputs are attenuated increasingly—the attenuation levels

corresponding to the 14 grid modules used in Fig. 7 are marked by vertical lines. For

each of 73 different attenuation levels, equally spaced on a logarithmic scale from

1.5−5 to 1.513, 36 trials were conducted in 10 degree increments. Each trial consisted

of the agent making an outbound excursion for 600 meters in the specified direction,

with the velocity inputs to the single grid module attenuated at the specified level,

followed by a rest phase. The flow of the pattern in the neural sheet of the CAN

was tracked by following the motion of one of the activity bumps in the sheet, and

reported as the number of neurons the pattern shifted in the x and the y directions.

The Euclidean distance of this pattern shift was considered the “observed network

flow” of the trial. The “target flow”, i.e. the amount of flow we would expect for a

given attenuation level if the module behaved completely linearly, was calculated as

the mean observed flow at x = 1 divided by the attenuation. The outcome of each trial

was plotted as the observed flow divided by the target flow, and the goal is for these

points to fall along y= 1. The mean across the 36 trials for each particular attenuation

level is shown as a dark line, and the corresponding std.dev. is shown on a separate y

axis for clarity.
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6 Avoiding pinning

With this limited range of attenuation levels that the CAN will accept, we

will not be able to extend the navigational range of the system no matter how

many extra modules we include. All of the large-scaled modules will experi-

ence pinning and therefore not provide any useful navigational signal for their

respective scales. In order to extend our grid cell-based navigation model to

longer ranges, we thus need to solve the problem of implementing CAN mod-

ules for large grid scales while avoiding pinning. The issue at hand is that the

input signals to the network simply get too weak for the network dynamics

to be able to respond, i.e. for the network pattern to reliably shift to adja-

cent states. As an example, the attenuated velocity signal that reaches the

14th module is only 1.5−13 ≈ 0.005, i.e. half a percent, in strength compared

to what the first module receives. However, we have implemented all of the

CAN modules using identical network dynamics. Implicitly we therefore re-

quire our CAN modules to respond proportionally for inputs across several

orders of magnitude, which is quite a tall order. In this section we will con-

sider a few options for solving this problem.

One class of candidate solutions is to expand the CAN to make it better

equipped to respond to input levels from a wider range. In this paper we

will consider the effects of increasing the size of the CAN’s neural sheet, i.e.

increasing the number of neurons that participate in the grid module. The

idea is that the CAN might get a better response range the more neurons it

contains—the weak input signal reaches a larger number of neurons, thus the

chances might be higher that the collective response of the network will be

able to overcome the pinning phenomenon. We will test the effects of increas-

ing the neural sheet size from 402 neurons to 482, 562 and 642 neurons.

The other class of solutions we will consider is to adjust the update rates of

the grid cells as a function of the attenuation level—essentially to “subsample”

the sequence of velocity values provided to the grid cells. Take our previous

example of a module that shifts its network pattern 981 neurons per 100 me-

ters, whose grid pattern we now want to scale up by a factor of 10; our current

baseline approach is to achieve this grid scaling by dividing the input speed by

10. However, assuming that the network response correctly reflects the time

integral of the input signal, an equivalent way of obtaining the same effect
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6 Avoiding pinning

should be to use the original strength for the input signal, but to only update
the network a tenth as often. From the perspective of the CAN module, the

input history will reflect moving at full speed for 10 meters, rather than mov-

ing at 1/10th speed for 100 meters. However, because the agent will in fact

have moved 100 meters spatially, the module’s output should appear 10 times

stretched across space, as intended.

There are several ways to go about implementing this basic idea. One is to

update the entire module on fixed, repeating timestep intervals, and to skip

updating the module at all other timesteps. We refer to this as the “determin-

istic” update mode. Two aspects of the deterministic update mode motivate a

further development. First, this update mode is not able to generate all possi-

ble grid scales—there is e.g. no way to achieve an attenuation of 1.5 with this

scheme (the skip interval necessarily has to be an integer, so the first possible

skip amount beyond 0 is 1, skipping every other network update and resulting

in an attenuation of 2). Second, with a deterministic update mode the system

will be susceptible to failure in cases e.g. where the agent moves in peri-

odic patterns that match the module’s update rate. For example, if the agent

follows a movement pattern that cycles every 10 timesteps, a module that up-

dates precisely every 10th timestep will not be able to adequately sample the

full trajectory of the agent.

To alleviate this, we introduce stochasticity into our update rule. Instead of

calculating a discrete, deterministic update interval from the desired attenua-

tion level, we calculate an update probability instead. At every timestep of the

model, the entire module is updated by chance according to that update prob-

ability. Because this is a memoryless criterion—not relying on the model’s

timestep counter, as the deterministic mode does—we call this the “poisson-

module” update mode. This scheme should solve our two reservations about

the deterministic update mode. An attenuation of 1.5 would be achieved by

updating the module with a probability of 1/1.5≈ 0.67 on every timestep, etc.

Due to the probabilistic nature of the update rule, it should not be vulnerable

to periodic fluctuations in the animal’s velocity.

In both of these update modes, for strong attenuations, the module might go

a large number of timesteps between each update and thus miss out on a sub-

stantial amount of velocity information. As our final proposed update scheme,

we suggest to apply the probabilistic update rule individually to each neuron
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Figure 11: CPU demand for the various schemes presented in Figs. 9 and 10. Mean

CPU seconds per simulated seconds across trials for each attenuation level and model

configuration. The labels to the right show the mean values at the rightmost data

points.

on every timestep, rather than to the module as a whole. Each neuron should

over time experience the same update rate as with the module-wide proba-

bilistic update rule, but because it is applied individually to each neuron every

timestep, there might potentially be an active subset of neurons in any given

timestep. We term this the “poisson-neuron” update mode.

To evaluate the effect of these proposed solution schemes, Fig. 10 shows the

results of performing the same experiment as in Section 5 for each of the

following six configurations:

48-velocity, 56-velocity, 64-velocity:
Velocity-based attenuation, i.e. the original approach used in earlier

sections of this paper, but with the number of neurons in the CAN in-

creased from 402 to respectively 482, 562 and 642.

40-deterministic, 40-poisson-module, 40-poisson-neuron:
Subsampling-based attenuation as described above, while leaving the

CAN size unchanged at 402.

From Fig. 10a we can see that increasing the number of neurons in the CAN

module does help to increase the range of viable attenuation levels, and thus

the range of grid scales attainable. However, the improvement occurs at the

wrong end of the scale, for attenuation levels less than 1. These attenuation

levels would be used to produce smaller-scaled grid modules, but there is not
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7 Successful long-range navigation

any major improvement for the high attenuation levels, which is what we need

in order to increase the overall usable range of the system. Fig. 10b shows

the results from the update modes based on subsampling. The deterministic

mode, as expected, shows artifacts from only being able to correctly represent

integral attenuation levels. Both the per-module and per-neuron probabilistic

update modes show promising results; for all attenuation levels from 1 and

up, the observed network flows are close to the desired target flows needed

to produce the intended grid scales. Neither of the subsampling-based update

modes are built to adhere to attenuation levels less than 1, which would require

updating the modules/neurons more often than once per timestep.

Fig. 11 shows timing results obtained during the trials in Figs. 9 and 10. For

each trial the amount of CPU seconds elapsed per simulated outbound second

was calculated, and these values were then averaged across trials for each

attenuation value, for each tested model configuration. As expected, the CPU

time for the velocity-based configurations is constant as the attenuation level

changes, because the same amount of calculation takes place regardless of the

attenuation. Note, however, that there is a substantial increase in CPU time

going from 402 neurons to larger CAN modules. For all of the subsampling-

based configurations, the CPU time decreases as the attenuation grows.

7 Successful long-range navigation

The results in the previous section lead us to favor the “poisson-module” and

“poisson-neuron” update modes—as shown in Fig. 10b they are both able to

represent large grid scales, and as shown in Fig. 11 they both require gradu-

ally less computational time as the grid scale increases. Future work should

characterize whether there is any substantial difference between the two up-

date modes e.g. in their ability to handle more fluctuating trajectories than

the straight lines tested here, but for now we will proceed with the “poisson-

neuron” update mode as our choice to evaluate in the full navigational sys-

tem.

We re-ran the experiments from Section 4 using the “poisson-neuron” update

mode, with the results corresponding to Figs. 7 and 8 shown respectively in

Figs. 12 and 13. Particularly comparing Figs. 8a and 13a, we can see that the
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Figure 12: Same experimental setup as in Fig. 7, but now using the “poisson-neuron”

update mode. Legend as in Fig. 4.
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8 Discussion
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Figure 13: Aggregate results as in Fig. 8, but now based on the experiment shown in

Fig. 12, where the “poisson-neuron” update mode is used.

shortfall previously experienced at 12 and 14 modules has been resolved—the

viable range keeps growing exponentially as more modules are added beyond

10. Comparing Figs. 8b and 13b we can see that the updated model requires

less CPU time than before, and that the growth is at most linear in the number

of grid modules added to the system.

8 Discussion

The basis for this project was a grid cell-based neural navigation system ca-

pable of vector navigation based on path integration processes in a geometric

progression of grid modules [6]. We sought to determine whether such a sys-

tem, based on CANs and nested decoding of grid cells, can support vector nav-

igation over long distances. We found that the geometric progression of grid

scales is interrupted due to “pinning” of network patterns in the CAN mod-

ules at the low input velocities used to implement large grid scales. Though

this work specifically used a CAN grid cell model, the key issue of accommo-

dating strong attenuation may also be relevant for the dynamics in other grid
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cell models. We assessed several candidate solutions and found that a proba-

bilistic update rule in each grid module/grid cell can successfully implement

large grid scales. Using this new approach, the system restored its exponential

growth in range as the number of grid modules increases, enabling navigation

beyond ∼100 meters as seen in these experiments and expectedly to much

farther distances.

Bush et al. [15] demonstrated successful vector navigation with grid cells over

distances of hundreds of meters, albeit in a setup where the grid cell signal

was externally generated and thus would not suffer any issues arising from a

neural path integration process. In any case, their largest grid scale is only

∼5 meters, the large final navigational range achieved by using a decoder

capable of utilizing the “combinatorial” view of the grid cell code. In our

present work we show that navigation at distances of∼100 meters can also be

accomplished when taking a “nested” view of the grid cell code and producing

the grid cell signals in path integrating neural networks.

We saw an exponential growth in viable range as extra grid modules were

added, with at most a linear growth in CPU time. We have thus demonstrated

a grid cell-based neural navigation system where the CPU requirements are

logarithmic in the desired navigational range. This is encouraging for the

prospects for implementing this system to run in real time on a robot. For such

an application it would also be natural to integrate additional spatial neurons,

such as place cells.
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Navigating with grid and place

cells in cluttered environments
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Technology, 7491 Trondheim, Norway
2Institute of Cognitive Neuroscience, University College London, Alexandra House,

17 Queen Square, WC1N 3AZ London, United Kingdom

Abstract

The hippocampal formation contains several classes of neurons thought

to be involved in navigational processes, in particular place cells and

grid cells. Place cells have been associated with a topological strategy

for navigation, while grid cells have been suggested to support metric

vector navigation. Grid cell-based vector navigation can support novel

shortcuts across unexplored territory by providing the direction towards

the goal. However, this strategy is insufficient in natural environments

cluttered with obstacles. Here, we show how navigation in complex

environments can be supported by integrating a grid cell-based vector

navigation mechanism with local obstacle avoidance mediated by bor-

der cells and place cells whose inter-connections form an experience-

dependent topological graph of the environment. When vector naviga-

tion and object avoidance fails (i.e. the agent gets stuck), place cell

replay events set closer subgoals for vector navigation. We demonstrate

that this combined navigation model can successfully traverse environ-

ments cluttered by obstacles and is particularly useful where the envi-

ronment is under-explored. Finally, we show that the model enables the

simulated agent to successfully navigate experimental maze environ-

ments from the animal literature on cognitive mapping. The proposed

model is sufficiently flexible to support navigation in different environ-

ments, and may inform the design of experiments to relate different

navigational abilities to place, grid and border cell firing.
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Task: Get home across large,
under-explored, cluttered terrain

A
Topological navigation
Place cell-supported

Vector navigation
Grid cell-supported

B

C

Figure 1: (A) Stereotypical navigation task. An agent has traveled across unknown

terrain to a remote location and wishes to return to its nest, with limited knowledge

of the environment. (B) Two major navigation paradigms supported by neurophysio-

logical evidence. Place cells likely support topological navigation, where knowledge

about locations’ interconnectivity is used to reach the goal. Grid cells likely enable

the calculation of distances and angles for straight-line trajectories between arbitrary

pairs of previously visited locations (vector navigation). (C) Model overview. Net-

work portion (gray box) remains fixed across all trials. An external agent controller

orchestrates components in the network in order to produce a variety of navigational

strategies; either primarily vector-based navigation, primarily topological navigation,

or combined strategies utilizing a mixture of information from grid cells, place cells

and border cells. A grid cell decoder performs vector navigation toward a subgoal

provided by the place cells. Border cells provide local obstacle information to a

course adjustment mechanism. Box colors indicate related areas in the hippocampal

formation.
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1 Introduction

1 Introduction

Successfully navigating the environment is a problem common to most an-

imals. There is a wide range of approaches to navigation, mirroring the

wide range of behavioral requirements across different species (Trullier et al.,

1997). In mammals, navigation is thought to be supported in part by a “cog-

nitive map” (O’Keefe and Nadel, 1978), an internal neural representation of

space. Such a map would endow an animal with navigational planning capa-

bilities that should enable it to robustly find its way to previously visited lo-

cations (Fig. 1A). The theoretical notion of the cognitive map is supported by

compelling neurophysiological evidence. Hippocampal place cells represent

unique locations in the environment (O’Keefe and Dostrovsky, 1971), and the

more recently-discovered grid cells in the medial entorhinal cortex (Hafting

et al., 2005) appear to provide a spatial metric by encoding the animal’s coor-

dinates in the two-dimensional plane. The discoveries of head-direction cells

(Taube et al., 1990a,b) and border cells/boundary vector cells (Barry et al.,

2006; Solstad et al., 2008; Lever et al., 2009) further strengthen the hypothe-

sis of an internal neural map of space.

Place cells, particularly in hippocampal area CA3, are thought to form inter-

connections through recurrent synapses such that neighborhood relationships

between locations in the explored environment might be retrievable from the

synaptic strengths between place cells. Such a system could implement a

“topological navigation” strategy (Fig. 1B), whereby the agent navigates to

its goal location by calculating the shortest path in this internal representa-

tion of the environment and then following the resultant sequence of place

cells’ firing fields as its itinerary. Many models of place cell-based navigation

have emphasized this topological view, considering recurrent synapses among

place cells to encode connectivity, distance or transition probability between

locations (Mataric, 1991; Muller et al., 1996; Blum and Abbott, 1996; Redish

and Touretzky, 1998; Gillner and Mallot, 1998; Stachenfeld et al., 2017).

Grid cells have been suggested to support goal vector representations (Erdem

and Hasselmo, 2012; Kubie and Fenton, 2012; Edvardsen, 2015; Bush et al.,

2015). Given grid cell activity for the present location and a trace of the grid

cell activity for the goal location, the appropriate straight-line vector across

two-dimensional space can be determined. The grid cell network can then
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support a “vector navigation” strategy (Fig. 1B; Mittelstaedt and Mittelstaedt,

1980; Etienne et al., 1996), assuming the allocentric goal vector can be trans-

formed to the agent’s egocentric frame of reference. Head-direction cells and

parietal gain field neurons (Snyder et al., 1998; Pouget and Sejnowski, 1997)

have been suggested to provide this function (Burgess et al., 2001; Byrne et al.,

2007; Bicanski and Burgess, 2018). The agent can then find the correct bear-

ing toward the goal location even across large stretches of unexplored space,

due to the metric properties of grid cells (Fiete et al., 2008; Carpenter et al.,

2015).

According to these separate classes of computational model, place cells and

grid cells seem to support complementary navigational strategies. Either strat-

egy alone has its strengths and weaknesses: Place cell-based topological nav-

igation excels at finding the shortest possible paths needed to reach goals in

cluttered and complicated environments, possibly including detours around

known obstacles, but only if the agent has explored the environment exten-

sively in advance, forming the necessary topological map. Conversely, grid

cell-based vector navigation can rely on goal vectors, even across long stretches

of potentially unknown terrain, but obstacles along the straight-line path to the

goal might cause the agent to get stuck. A navigational strategy based on grid

cells alone would not be sufficient outside of obstacle-free open-field envi-

ronments, raising the question of whether or how grid cells participate in the

navigation process under real-world conditions.

Here we show how a grid cell-based vector navigation model can be aug-

mented to cope with environments cluttered by obstacles, based on known

aspects of hippocampal function. Medial entorhinal cortex (mEC) layer II,

where grid cells are most prevalent, is a major input to the hippocampus, and

the hippocampus in turn projects back to deeper layers of mEC. While the

suggested interplay of grid cells and place cells has been modeled extensively

at the circuit level, such work has usually focused on maintaining the firing

properties of one population based on inputs from the other (Rolls et al., 2006;

Solstad et al., 2006; Kropff and Treves, 2008; Hardcastle et al., 2015; Mulas

et al., 2016; Dordek et al., 2016; Stachenfeld et al., 2017). Here we investi-

gate how the distinct characteristics of these two representations of space can

interact to guide behavior. We suggest a role for hippocampal replay events

during navigation, using place cells to dynamically adjust the target for the

vector navigation process, based on the intriguing possibility that place cells
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2 Materials and Methods

and grid cells can fire coherently during replay (Ólafsdóttir et al., 2016). Addi-

tionally, the existence of border cells (Solstad et al., 2008) suggests that a grid

cell-supported vector navigation mechanism might have access to informa-

tion about nearby obstacles, and hence the ability to make course adjustments

based on their presence. Boundary vector cells (Barry et al., 2006; Lever et al.,

2009) could serve a similar function, signaling boundary presence at greater

distance, forgoing the need for actual boundary contact before deflecting a

trajectory. We combine these aspects of topological navigation and local ob-

stacle avoidance with a grid cell-based vector navigation model, and demon-

strate that such an augmented vector navigation mechanism can efficiently

navigate cluttered environments. The combined navigational strategy enables

the agent both to negotiate complicated obstacles and to efficiently traverse

long distances of unexplored space, potentially exploiting shortcuts.

2 Materials and Methods

Here we present the architecture and main features of the proposed hippocam-

pal navigation model (Fig. 1C), consisting of grid cells decodable to goal vec-

tors, border cells for local obstacle avoidance, and a topological map imple-

mented by place cells. Different types of obstacles present different challenges

during navigation, and we describe how the model utilizes its components in

concert to overcome these challenges. Grid cells, the grid cell decoder and

obstacle avoidance mechanism are represented by rate-based neural networks

in our implementation. The networks do not need any advance training, as

the weights have been explicitly pre-configured for their intended roles in the

model (see McNaughton et al. (2006), Kubie and Fenton (2012) for how such

grid cell networks might be obtained through learning). For simplicity, the

place cell system is represented directly by a graph data structure, and the

agent’s high-level control logic is represented by explicit rules. A more de-

tailed description of the implementation is given in the Supplementary Mate-

rials.
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Slanted obstacles:
Border deflectionA

Perpendicular obstacles:
Hippocampal replayC

- =
Border cellsMotor cells

before inhibition
Motor cells

after inhibitionB

Figure 2: (A) Obstacles that form a slanted angle (less than 90◦) with the goal vec-

tor can be negotiated by deflecting the direction of motion away from the obstacle.

Goal distance keeps decreasing along the diverted trajectory. (B) Obstacle deflection

mechanism: A bump of activity is induced in a ring of motor cells, pointing in the

direction of the goal vector decoded from the grid cells. Each border cell responds

to nearby obstacles in a particular allocentric direction and inhibits the corresponding

motor cell, causing the population vector readout of the motor cells to steer away

from the obstacle. (C) Perpendicular obstacles have no direction in which to suc-

cessfully deflect the agent’s motion—upon reaching a perpendicular obstacle (first

panel), a new vector navigation subgoal must thus be selected. A hippocampal re-

play event is initiated at the goal location and propagated toward the current location,

while concurrently updating the goal vector (second panel; red circle shows location

of replay event). When a new viable destination is found, the agent diverts there

and performs topological navigation for a while, before eventually resuming vector

navigation (third panel; see Fig. 3 for legend).

2.1 Grid Cell Decoding for Vector Navigation

At the core of the model—alongside place and border cells—is a set of grid

cells together with a grid cell decoding mechanism. The main output of the

network is the allocentric direction in which the agent should move next; this

output is primarily driven by the grid cell decoder. The decoding mechanism

confers vector navigation capabilities onto the model, by processing inputs

from two separate grid cell populations and calculating the vector between the
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2 Materials and Methods

two respective locations represented by those populations. One of the grid cell

populations encodes the agent’s current location in the two-dimensional plane,

whereas the other population encodes the agent’s destination. This arrange-

ment is similar to previous work on vector navigation by grid cell decoding

(Edvardsen, 2015; Bush et al., 2015), with one crucial extension: Here, the

vector navigation destination does not necessarily have to be the same as the

agent’s ultimate goal location, but can change between different “subgoals”

throughout the navigation process (see below).

Note that the model of combined vector and topological navigation proposed

below is indifferent to the particular workings of the grid cell decoding mecha-

nism, or indeed to the origin of the grid cell signal itself—we assume only that

vector navigation can be performed through the readout of grid cells. Our spe-

cific implementation used here builds on the implementation from Edvardsen

(2017), where grid cell decoding is performed according to a “nested” view

of the grid cell system (Stemmler et al., 2015). Feed-forward decoder neurons

receive inputs from the two grid cell populations, and are pre-configured to

detect specific patterns of directional offset between the two inputs. A goal

vector can be inferred in as few as 1-2 synapses (Edvardsen, 2018), thus even

a fast sweep through multiple locations (e.g. within the time frame of a re-

play event) can continuously update the goal vector. Assuming reasonably fast

synaptic integration and neuronal time constants, a post-synaptic neuron could

fire within 5-10 ms, which would allow for approximately 10 place fields to be

sampled within a replay episode. In addition, replay events (chained together;

Davidson et al., 2009) can last longer than 120 ms, potentially covering longer

trajectories, suggesting the order of magnitude estimate for the timescales in

the model are consistent with published data.

The grid cells are implemented as a set of recurrent neural networks (specif-

ically, continuous attractor networks; Burak and Fiete, 2009), which perform

path integration on a self-motion velocity input in order to maintain an updated

grid cell representation. Although no noise is explicitly added to this process,

some drift may nevertheless occur over time due to imperfect path integration

by the grid cell networks. Within the context of the presented simulations the

drift is negligible, though future versions of the model could be extended to

utilize sensory inputs for error correction in the grid cell system.
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2.2 Place Cells Learn a Topological Map

Place cells, particularly in hippocampal area CA3, have been suggested to rep-

resent space as a graph structure by virtue of their synaptic interconnections

(Muller et al., 1996; Redish and Touretzky, 1998). For simplicity we imple-

mented the place cells directly as nodes in a place graph. New place nodes

are created whenever the agent is sufficiently far away from the place field of

any previously created place node, i.e. the agent instantaneously memorizes

novel locations. Each node takes a snapshot of the grid cell ensemble’s cur-

rent activity, effectively establishing a link between a given place cell and the

grid cells for later coordinated replay.

Next, bidirectional links are formed between pairs of place cell nodes when-

ever the agent moves from the place field of one node to another, correspond-

ing to one-shot Hebbian learning between traversed place cells. The resulting

place cell graph reflects the topology of the explored environment, and con-

tains sufficient information to calculate the shortest paths between arbitrary

pairs of start and goal place cells across those explored parts; the graph can

e.g. determine which of the current immediately adjacent place fields lies on

the shortest path to the destination. By always moving toward the neighboring

place cell located on that shortest path, the agent would implement a topolog-

ical navigation behavior. We implemented a graph search algorithm directly

using the place graph structure, but we assume that the hippocampal place cell

system can support a similar search mechanism e.g. via the resistive network

of recurrent synapses (Muller et al., 1996).

2.3 Combining Topological and Vector Navigation

Topological navigation does not require grid cells, as navigation is always

directed toward a local place cell. However, combining a topological map

with grid cell decoding yields additional navigational capabilities. We assume

that an active place cell can trigger the reinstatement of the corresponding grid

cell activity for the corresponding location, possibly mediated by projections

from CA1/subiculum to medial entorhinal cortex (van Strien et al., 2009; Bush

et al., 2014). In the model, each place node is associated with a snapshot of the

grid cell activity at the time of the place cell’s creation. By associating each
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visited place field with its unique grid cell activity pattern, any location can

become the start or end point for vector navigation. This enables powerful

combinations of vector navigation and topological navigation, and can help

an agent overcome obstacles by selecting a more suitable place field as its

subgoal. We propose that hippocampal replay events can be used to sample

possible subgoals among place cell firing fields to allow the agent to change

its current destination (see below).

Hence, the model accommodates purely topological, purely vectorial, and

combined navigational strategies within the same network architecture. Through-

out the navigation process, the relative impact of each strategy is influenced

by external factors (bold arrows in Fig. 1C) that may affect the strength of ob-

stacle deflection (see below), trigger new hippocampal replay events or induce

periods of random exploration (see Supplementary Materials).

2.4 Negotiating Obstacles via Border Cells

Grid cell-derived goal vectors do not account for any obstacles that might lie

in the direct path. To steer the agent clear of such obstacles we employ bor-

der cell signals as inputs to a course adjustment mechanism. This obstacle

avoidance mechanism can be sufficient to overcome some of the obstacles

encountered by the agent, but—due to the local nature of the information con-

veyed by the border cells—there will inevitably be certain obstacles that are

insurmountable to it.

Obstacles that form a slanted angle with the goal vector (less than 90◦) can be

avoided by deflecting the agent’s direction of motion away from the obstacle,

all the while remaining on a course that brings it closer to the goal, as the

deflected vector still points less than 90◦ away from the true goal direction

(Fig. 2A). Since the goal vector is continuously updated (see description of

decoder in Section 2.1), the vector will continue to point to the target as the

agent is deflected by obstacles. The agent can follow the deflected vector

until either of two events occurs: The obstacle has been cleared, in which case

the agent can resume navigating along the true goal vector, or the agent has

followed the slope of the obstacle to a point where the border now forms a

perpendicular obstacle to the goal vector and the deflection mechanism fails.

Note that some obstacles might technically be perpendicular to the goal vector
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yet be trivially negotiable by small amounts of random exploration, such as

a cylindrical shape encountered head-on. We treat these among the slanted

obstacles and use the term “perpendicular” throughout to refer to obstacles

that remain a problem even after limited random exploration (e.g. a partially

concave shape). In these cases the agent selects a new subgoal via replay (see

next section).

The deflected movement vector (distinct from the vector derived from grid cell

decoder) is calculated by ring networks of “motor cells” (resembling head-

direction cells), that combine the true goal direction decoded from grid cells

with obstacle information from border cells (Fig. 2B; see also Supplementary

Materials). The border cells each respond to obstacles in a particular allocen-

tric direction, with stronger activity as distance decreases, and inhibit corre-

sponding motor cells with the same allocentric tuning direction (see Burgess

et al. (1994) for a similar approach). The population vector readout of the

motor cell population will then tend to steer away from the obstacle (Fig. 2B,

rightmost panel). When the agent is initially far away from an obstacle, the

inhibition, and thus the deflection, is barely noticeable. However, because of

rapid growth in border cell inhibition, the deflection increases in strength as

the obstacle is approached—resulting in a trajectory that gently curves away

from the obstacle (Fig. 2A; Supplementary Video 1).

The goal vector is constantly updated to reflect the detour undertaken by the

agent during the deflected trajectory. For example, whereas the goal vector

originally pointed due East in the example in Fig. 2A, after deflecting to the

Northern corner of the obstacle the goal is now located in a Southeasterly di-

rection. Because the grid cell decoder can always recalculate the correct goal

direction from any potentially novel location along the deflected trajectory,

the agent remains able to find the goal.

2.5 Selecting New Subgoals through Hippocampal Replay
Events

Faced with “perpendicular obstacles” (locally perpendicular boundaries where

random exploration is unable to trigger further progress), the local obstacle

deflection mechanism will fail to find a viable path forward. Motor cells will
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be equally inhibited on either side of the goal vector, so there is no remain-

ing direction of “least resistance” toward which to deflect the agent, which is

now stuck. The agent must then select a new location as the currently active

subgoal for the vector navigation process. We propose that this takes place

through hippocampal replay events, which have been reported to occur when

navigating animals stop at choice points or otherwise come to rest during maze

sessions. These events are characterized by quick bursts of hippocampal neu-

ral activity that appear to play back, or “replay”, traces of earlier place cell

activity along paths previously traveled—possibly remote from the animal’s

current location (Foster and Wilson, 2006; Ji and Wilson, 2007; Ólafsdót-

tir et al., 2018). Intriguingly, simultaneously recorded grid cells have been

reported to activate in coherence with the replaying place cells (Ólafsdóttir

et al., 2016), suggesting that the grid cell population might mirror the replay

trajectory by recalling the corresponding spatial locations of the reactivating

place cells. As the grid cell decoder can infer a goal vector in 1-2 synapses

(Edvardsen, 2018), this suggests that the (sub-)goal vector can follow along on

the timescale of the replay events. These would then be replay events where

grid cells follow a replay in the place cell population through hippocampal–

entorhinal projections (Ólafsdóttir et al., 2016). However, note that temporal

coding phenomena may also arise in the grid cell population independently of

the hippocampus (Hafting et al., 2008; O’Neill et al., 2017).

Whenever the agent gets stuck, a replay event originating at the goal location

and propagating toward the current location could thus be used to find candi-

dates for the new subgoal. The agent initially tries to reach the ultimate goal

location, but if the goal vector is blocked by an insurmountable obstacle, the

subgoal shifts step by step along a replay trajectory—in our model the short-

est path according to the place cell graph (that is, among all previously visited

locations)—toward the current location. As soon as a place cell is encoun-

tered for which the grid cell-decoded goal vector points sufficiently clear of

any obstacles (that is, allowing the motor cells to activate despite inhibition

from border cells), the agent resumes moving in that direction. The agent will

thus initially prefer to navigate toward locations close to the goal location,

attempting to quickly find shortcuts across open space using the grid cells.

However, if all of these locations are blocked, the agent will eventually resort

to finding its way back via a previously visited place cell close to the current

location. Fig. 2C and Supplementary Video 1 show examples of the process
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during navigation; when the agent reaches the wall, a replay event propagates

along the chain of place cells until a feasible subgoal past the obstacle has

been found, and the agent then diverts there.

Since the replay events occur across place cells contained in the place graph,

the choice of subgoal is restricted to previously visited locations—however,

shortcuts can be taken due to the grid cell system. Once a subgoal has been

reached, the agent follows a topological navigation strategy for a while, in or-

der to ensure that it escapes the catchment area of the obstacle. Otherwise—if

the agent immediately reverted to vector navigation—it might risk running

back into the same obstacle. The agent eventually resumes vector naviga-

tion, to enable more potential shortcut discovery later in the trial. The dura-

tion of this topological navigation phase is governed by a configurable “reset-

ting” probability (Supplementary Materials). Also note that, should a replay

event propagate all the way to the current place cell—indicating that none

of the place cells activated earlier during the replay were accepted as the new

subgoal—we consider the path forward to be blocked. The agent will then un-

learn the connection to the most recently activated place cell (the one across

the blocked gap), so that the place graph again correctly reflects the topology

of the environment.

3 Results

Here we present simulation results from our combined vector/topological nav-

igation model, first demonstrating successful navigation in cluttered environ-

ments, next addressing key characteristics of environments where our com-

bined navigation model is particularly well-suited, and finally demonstrating

how the model is sufficiently flexible to solve certain experimental mazes from

the literature.

3.1 Navigating Cluttered Environments

Fig. 3A shows an example of the kinds of environments employed to test the

simulated agent’s navigational abilities. Large open spaces are interspersed
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A Overview of stages in each simulation trial:

1. Leave nest 2. Go to trial start point 3. Attempt return to nest

?

B Vector navigation with
obstacle deflection:

40 cm

C Same as in B, but with
different goal location:

D Same as in C, but with
“combined navigation”:

Initial excursion/perimeter
Attempted return to goal

Start of return attempt
End of return attempt

Replay episode
Topological step

Enter exploration phase
Leave exploration phase

Figure 3: (A) Overview of trial stages. The agent leaves the nest (black cross in

B/C/D) along a pre-defined trajectory for the initial exploration of the environment,

performs a partial traversal of a perimeter in order to reach its pre-specified starting

position (all trials equally spaced across the full perimeter), and then attempts to re-

turn to the nest. (B) Results from 64 trials in an environment with a diverse set of

obstacles, using a strategy of vector navigation with border cell-based obstacle deflec-

tion. Upper panel shows two example trials from the set of simulations, while lower

panel shows all trajectories from the full set of 64 trials, superimposed in the same

plot. (C) Results from 64 trials with the same agent strategy as in B, but with the envi-

ronment modified so that the nest is now located further into the cave-like structure.

This creates perpendicular obstacles where the agent gets stuck. (D) Results from

64 trials in the same environment as in C, but now using the combined vector–place

strategy that can utilize the topological map to select a new subgoal whenever stuck.
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Figure 4: Comparing purely topological and combined vector–place navigation

strategies. (A) Results from a densely explored environment. Upper panel shows 64

trials using a purely topological strategy, while lower panel shows 64 trials using the

combined vector–place strategy. (B) As in A, but now with only sparse exploration

of the environment. (C) As in B, but now with novel shortcuts introduced between

the training and test phases. (D) Median return lengths for each set of trials shown in

A, B and C.
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with obstacles of various shapes centered around a “nest” location in the mid-

dle of the arena. Each trial consists of a training phase and a test phase, with

the agent initially located at the nest location without any pre-existing knowl-

edge of the environment. The agent first follows a given outbound path from

the nest, while updating grid cell and place cell population activity as usual

during this initial excursion (performing path integration in the grid cells, gen-

erating new place cells in the place cell graph, associating them with the con-

temporary grid cell population snapshot, and forming links among place cells

when moving from one field to the next). It then moves along a perimeter

around the environment to a given starting location, before navigating back

to the nest. These starting locations are spread out along the perimeter in or-

der to assess the robustness of the agent’s navigational ability under different

conditions.

Simulation results from augmenting pure vector navigation with an obstacle

deflection mechanism are presented in Fig. 3B. Two example trials show the

agent successfully returning to the nest location from two different starting

points along the circular perimeter (Fig. 3B, upper panel), and the results from

all 64 trials superimposed in one plot shows that the agent is indeed success-

ful in reaching the nest location from all tested starting points (Fig. 3B, lower

panel). The obstacle deflection mechanism allows the agent to locally de-

flect away from obstacles that lie ahead in its vector toward the goal, in this

case enabling it to navigate all the way back to the goal. Whether boundary

deflection alone is sufficient or not for successful navigation is determined by

environmental characteristics; if all encountered obstacles present slanted sur-

faces (i.e. appear convex to an agent heading toward the goal; Fig. S2A in

Supplementary Materials), then this form of navigation will succeed.

An environment with only slanted obstacles will be the exception rather than

the norm. Even in the favorable situation discussed above, the situation looks

quite different if we move the nest just a short distance into the surround-

ing “cave” structure. Fig. 3C shows results from a new set of trials with the

nest in this changed location. A majority of the trials are no longer success-

ful in reaching the goal, and most of the trials end with the agent stopping

at two seemingly unremarkable locations along the outer cave wall. The ob-

stacle forms a perpendicular border against the goal vector in these locations

(i.e. appears concave to an agent heading toward the goal; Fig. S2B). When

the agent finds itself in these locations, practically all motor cell activity gets
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canceled by inhibition from border cells in the direction of the goal. In this

situation, the agent initiates a brief period of random exploration before re-

suming attempted navigation towards the goal. However, as the goal distance

increases on both sides of the perpendicular point (Fig. S2B), the agent al-

ways ends up back at the same obstacle. These trials eventually expired after

a timeout of 100 simulated seconds.

To avoid these failures, the agent diverts toward a different subgoal when

halted by a perpendicular obstacle. Fig. 3D presents results where the agent

employs our proposed “combined” approach of augmenting vector navigation

with replay-based selection of a subgoal when stuck. A new subgoal is se-

lected from the place graph by gradually shifting the subgoal closer to the

current location until the decoded goal vector is no longer blocked by the ob-

stacle. In the two example trajectories singled out in more detail, red triangular

markers indicate the locations in which the agent gets stuck on a perpendicu-

lar obstacle and has to initiate a replay episode to find a new subgoal—each

trajectory can be seen to continue onwards from the replay location on a di-

verted course toward a new subgoal. The “combined vector–place navigation”

strategy is successful in guiding the agent away from perpendicular obstacles

and ultimately to the final goal location, from all tested starting locations.

See Supplementary Video 2 for animated examples of trials performed as in

Fig. 3.

3.2 Advantages in Sparsely Explored Environments

To compare the combined navigational strategy with a purely topological

strategy, we used environments that had been densely explored (Fig. 4A),

sparsely explored (Fig. 4B), or had novel shortcuts introduced after the train-

ing phase (Fig. 4C). A quantitative comparison of the agent’s navigational

behavior across these configurations is depicted in Fig. 4D, showing the me-

dian length of the paths needed to return to the goal location across the 64

trials for each unique configuration.

Dense versus sparse exploration refers to how many different parts of the en-

vironment the agent had visited before the navigation trial. For dense explo-

ration, the agent’s pre-programmed exploration trajectory was drawn to cover

close to the full environment with place fields (Fig. 4A, top row), in order
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to facilitate a place graph with more nodes and connections. To quantify the

difference in strategies we considered close to full exploration of the environ-

ment versus only one outbound trajectory. However, there is no fixed amount

of “necessary” exploration for the model to work. The proposed mechanism

for selecting subgoals can be engaged with any amount of exploration, though

subgoals must necessarily coincide with a previously visited location.

When the environment is densely explored, the purely topological navigation

strategy is able to immediately follow the shortest paths around obstacles,

without first having to run into them (Fig. 4A). However, because the agent

only navigates according to its learnt place cell graph, sparse knowledge of

the environment results in suboptimal paths (Fig. 4B), and it does not utilize

any of the novel shortcuts introduced to the environment after the training

phase (Fig. 4C). The combined vector–place agent performs less well than the

topological agent in the densely explored environment (Fig. 4A), but performs

better in the sparsely explored scenario (Fig. 4B). The grid cell-provided vec-

tor navigation capability enables the agent to shortcut across the open space

not initially explored, and also to discover the novel shortcuts introduced after

the training phase (Fig. 4C). Because the combined agent’s behavior is mostly

driven by vector navigation until the later stages of the navigation trials, there

is not much difference in performance between the densely and sparsely ex-

plored situations in this condition. See Supplementary Video 3 for animated

examples of trials performed as in Fig. 4.

3.3 Flexibility to Solve a Variety of Experimental Mazes

We tested the navigation model in experimental environments from the animal

navigation literature. Although relatively simple, we found that the flexible

architecture underlying the navigation model made it possible to solve certain

experimental tasks with minimal peripheral changes to the agent.

An early inspiration for development of the cognitive map theory was the

sunburst maze (Tolman et al., 1946), in which rats deduced the correct cor-

ridor toward a goal location despite major modifications to the environment

between the initial training sessions and the test session. Specifically, the cir-

cuitous outbound corridor available during training (the gray line showing the

agent’s initial excursion in Fig. 5A) was removed before the test session and
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replaced with a set of novel radial arms. Tolman et al. (1946) reported that 19

of 56 rats eventually chose the arm pointing directly toward the food location

(arm 6), and hence demonstrated an ability to calculate the correct shortcut to-

ward the goal. Though the methodology of this specific experiment has been

challenged and their reported results have been difficult to reproduce (Gentry

et al., 1947; Bennett, 1996; Grieves and Dudchenko, 2013), we nevertheless

wanted to see if the navigation abilities claimed of the rats in this study were

realizable within the framework of our navigation model.

To let our agent avoid the incorrect arms in the sunburst maze, we tune the

motor cells in the boundary deflection mechanism to have a narrower width of

their tuning curves. This causes the agent to abort its vector navigation-driven

goal approach whenever the current goal vector is misaligned with the angle of

the current corridor, i.e. whenever following the vector would make the agent

run into corridor walls. The agent will then turn around to perform a period

of random exploration, followed by another attempt to vector navigate toward

the goal. Eventually, the agent might find itself in a favorable starting loca-

tion where it has a clear path toward the goal location—the vector navigation

process can then succeed in guiding the agent down the correct corridor with-

out getting interrupted by the obstacle avoidance mechanism. This process

of alternating between random exploration and vector navigation is visible in

an example of a successful trial in Fig. 5A (note that the rats in Tolman et al.

(1946) on average used around three and a half minutes to select an arm). Su-

perimposed results from the full set of 64 trials is shown in Fig. 5B. Trials

were terminated after a timeout of 100 simulated seconds or when the agents

ventured a certain distance down a corridor (approximately corresponding to

the length of the short arms; Tolman et al. (1946) also allowed rats to explore

the initial segments of the arms). The majority of trials ended with the agent

choosing the correct corridor (Fig. 5C).

While the sunburst maze lends itself to a vector navigation-based solution,

an environment that might instead favor topological navigation is the detour

maze (Tolman and Honzik, 1930; Alvernhe et al., 2011). This maze consists

of a direct corridor between the start location and the goal location, as well as

two detour corridors that branch off near the starting location—a short detour

and a long detour. The direct corridor can be blocked in one of two locations,

so that either both detours can reach the goal, or only the long detour can

reach the goal. A cognitive map should enable the animal to choose the short-
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est possible detour, depending on the location at which the novel obstacle is

encountered. Simulations are shown in Fig. 5D–G. When the agent encoun-

ters the novel obstacle, the place cell connection across the obstacle is severed

and the chain of place cells linking the current location and the goal location

down the main corridor is thus interrupted. The new shortest path in the place

graph, along which the next replay event will propagate, then guides the agent

toward the correct corridor in both the short detour scenario (Fig. 5E) and

the long detour scenario (Fig. 5G). See Supplementary Video 4 for animated

examples of trials performed as in Fig. 5.

4 Discussion

We have presented a hippocampal navigation model that is able to navigate

in cluttered environments by utilizing a combination of grid cell-driven vec-

tor navigation, place cell-driven topological navigation and border cell-driven

local obstacle avoidance. The proposed architecture, which maps well onto

known anatomy and electrophysiology of the hippocampal formation, can

support a diverse range of navigational strategies by allowing external mod-

ulation of network components to produce different navigational behaviors.

The agent initially performs vector navigation, primarily driven by grid cells

and aided by border cells for obstacle deflection. If progress is blocked by

obstacles the agent initiates hippocampal replay that introduces aspects of

topological navigation into the agent’s overall behavior, allowing the agent

to switch between different subgoals in order to successfully navigate com-

plex environments. Our results demonstrate that grid cell decoders (Edvard-

sen, 2015; Bush et al., 2015; Stemmler et al., 2015) can be the primary driver

of navigational processes even beyond the open-field environment, because

such vector navigation mechanisms can indeed work in cluttered environ-

ments when aided by place cells and border cells to negotiate obstacles.

Such a combined navigational strategy can be particularly useful in large,

under-explored environments (which applies to most natural, open environ-

ments), where the agent would otherwise have to resort to a topological strat-

egy of navigating by retracing its original steps back to the origin. The grid

cell-based vector navigation process can instead guide the agent across novel
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Figure 5: (A) A single example trial from a set of 64 trials in the sunburst maze,

showing alternation between vector navigation attempts and random exploration that

ultimately succeeds in finding the correct corridor. (B) Superimposed trajectories

from the full set of trials in the sunburst maze. (C) Sunburst maze trials accumulated

by outcome. (D) A single example trial from a set of 32 trials in the detour maze

with the short corridor as the correct choice. (E) Superimposed trajectories from the

full set of trials in the short version of the detour maze. (F) A single example trial

from a set of 32 trials in the detour maze with the long corridor as the correct choice.

(G) Superimposed trajectories from the full set of trials in the long version of the

detour maze.

Paper D Navigating with grid and place cells in . . . (Edvardsen et al., 2019)

178



4 Discussion

territory, eventually resorting to a place cell-driven topological navigation pro-

cess should vector navigation turn out to be impossible. Besides potentially

enabling more efficient navigation in under-explored scenarios, the combined

strategy is useful for discovering pre-existing or novel shortcuts in the envi-

ronment (Fig. 4). The agent is a “pragmatist”, trying out the fastest route first

(a straight line). The hybrid aspect of the model (interacting with place cells

for subgoal selection via replay events) is only engaged when it gets stuck.

In experimental environments animals often bias their exploration trajectories

differently (Kubie and Fenton, 2009), e.g. spending more time near walls,

which could affect navigational performance, e.g. restricting the availability

of subgoals. However, to the best of our knowledge the tendency of experi-

mental animals to spend more time near the walls is likely due to perceived

safety and not navigational considerations. In larger, open and under-explored

environments the pragmatic approach proposed here may be a simple, non-

demanding, yet effective strategy for shortcut discovery and quick return to

the nest. Future work should systematically investigate simplicity (i.e. prag-

matism) versus optimality trade-offs, which, however, will depend heavily on

the structure of the environments used to assess optimality.

The flexibility of our proposed architecture is demonstrated by the model’s

performance in two examples of experimental maze environments from the

animal navigation literature, namely the sunburst maze and the detour maze.

Interestingly, we found that—while both types of maze might be cited as ex-

amples of animals expressing cognitive map-based navigation capabilities—

these two environments primarily exercised complementary parts of our nav-

igation model. That is, the nature of these mazes is such that mostly only the

vector navigation capacity or the topological navigation capacity of the model

is utilized. Specifically, for the sunburst maze, only vector navigation with

obstacle avoidance and random exploration was needed—the topological map

was not used. On the other hand, in the detour maze, vector navigation would

not strictly be necessary—the maze layout is fully known by the animal in

advance, so navigating only according to the topological map should be suf-

ficient (Martinet et al., 2011). If the cognitive map is considered to consist of

both the topological aspects of place cells and the metric aspects of grid cells,

then experimental environments should ideally be designed to engage the as-

pects of the navigational circuit intended to be probed by the experimenter.

Besides this more general conclusion about navigational strategies and ex-
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perimental environments, the model also makes certain predictions about the

nature of hippocampal replay events. Replay has been suggested to be in-

volved in both planning and consolidation (Wilson and McNaughton, 1994;

Foster and Wilson, 2006; Diba and Buzsáki, 2007; Karlsson and Frank, 2009;

Girardeau et al., 2009; Carr et al., 2011). Here we considered a potential role

for replay in the planning of a trajectory (Pfeiffer and Foster, 2013). These

events are triggered in the model whenever the agent gets stuck during the

vector navigation process—we hence predict a higher propensity for replays

to occur when the agent encounters obstacles. Replays should be coherent be-

tween place cells and grid cells (Ólafsdóttir et al., 2016). Whenever the agent

diverts its course, the new destination should be in the vicinity of a recent

replay, and there should be a goal vector representation (Sarel et al., 2017)

for this subgoal. The agent might follow different bearings across the same

open field, depending on whether it encountered any obstacles earlier in the

trial that caused it to change subgoals. In general, the model suggests that the

analysis of behavioral and neurophysiological data might benefit from taking

into account the location of obstacles and likely subgoals as relevant variables,

not just the animal’s own location and its ultimate destination. However, there

seems to be a diversity of different forward/reverse replay/preplay phenom-

ena (for review, see Ólafsdóttir et al., 2018), and the model proposed here

only considers one type of replay.

The integration of grid cells and place cells in the same architecture for nav-

igational purposes has been proposed before. Erdem and Hasselmo (2012,

2014) present a model for grid cell-based vector navigation that depends on

place cells as a critical component of the system. The model relies on the grid

cells “simulating” hypothetical forward trajectories in different directions in

order to trigger the activation of the target place cell and thus to have detected

the correct goal direction. That is, it exploits projections from grid cells onto

place cells to determine the goal direction, whereas the grid cell decoder in

our model produces its goal vector through direct readout of the grid cell pop-

ulation (Edvardsen, 2015; Bush et al., 2015; Stemmler et al., 2015). Whereas

Erdem and Hasselmo (2012, 2014) perform subgoal selection by diffusing a

reward signal throughout the topological graph of place cells and navigating in

the direction of the place cell most strongly activated by a simulated forward

trajectory, we propose that hippocampal replay events might interact with a

grid cell decoder for the same purpose.
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4 Discussion

In reinforcement learning parlance, both aspects of the current model fall into

the category of model-based approaches to navigation. A full model of ro-

dent navigation should, in addition, contain interactions with (e.g. striatal)

reinforcement learning mechanisms (Chavarriaga et al., 2005; Dollé et al.,

2010; Chersi and Burgess, 2015), and/or possibly a mechanism akin to the

successor representation (Dayan, 1993; Stachenfeld et al., 2017; Gershman,

2018). A successor representation is comparable to the topological place cell

representation used in the current model, and replay events could similarly

propagate through it, selecting new subgoals. The recent theoretical frame-

work where grid cells form a low-dimensional state representation (obtained

via an eigenvector decomposition of place cells; Dordek et al., 2016; Stachen-

feld et al., 2017), can in principle identify bottleneck states in environments

(e.g. doorways), though it is currently unclear how this computation would

be carried at the level of neurons. Such states could also constitute interesting

subgoals, but the eigenvector decomposition requires a thorough exploration

of the environment, contrary to the present model. With regards to spatial nav-

igation, other strategies such as taxis and landmark-based navigation (Trullier

et al., 1997) are also known to guide an animal’s behavior, and should be in-

corporated for a more complete navigation model. Finally, look-ahead and

mental navigation could also interact with the combined vector–place strat-

egy proposed here (Erdem and Hasselmo, 2012, 2014; Bicanski and Burgess,

2018). In mental navigation, simulated motion (potentially driven by mock

motor efference and conveyed by grid cells; Bellmund et al., 2016; Horner

et al., 2016) can be thought of as accompanied by a reinstatement of sensory

representations bound to locations (via place cells) along the imagined trajec-

tory (Bicanski and Burgess, 2018), and would hence be particularly useful if

planning involves particular sensory aspects along the route.

In conclusion, we have shown that grid cells can potentially be used to drive

navigation and shortcut discovery even in cluttered environments, if aided by

place cells and border cells. Realistic navigational strategies in cluttered, large

and under-explored environments will likely utilize combinations of both vec-

tor navigation and topological navigation. Environments commonly used in

animal navigation research may not exercise both of these systems at the same

time. Designing experiments with under-explored parts of the environment

could shed more light on the interplay between vector and topological strate-

gies in animal behavior and lead to new insights in the role of grid cells and
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place cells in navigation. A flexible navigation system with a plausible neural

implementation might also be of interest to the field of biologically inspired

robotics, to enable robots to navigate according to biologically inspired prin-

ciples in cluttered, under-explored environments.
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Supplementary Materials – Edvardsen et al. (2019)
Navigating with grid and place
cells in cluttered environments

1 Detailed model description

Fig. S1 shows a more detailed version of the navigation model’s schematic

from the main paper, now including the specific modulatory signals used by

the agent controller to orchestrate network behavior. The model executes 1000

timesteps per simulated second. The agent moves with a fixed simulated speed

of 20 cm/s (unless halted, see Sec. 1.5). On each timestep, the model compo-

nents update in the following order: (1) Model inputs, including border cells,

(2) modulatory signals, (3) grid modules, (4) place graph, and (5) motor out-

put, labeled “course adjustment” in Fig. S1. Each step is described in more

detail next.

1.1 Model inputs

In this step, besides updating velocity and x,y position inputs to the model,

information about nearby obstacles is conveyed as follows: There are 72 bor-

der cells, each responsible for a particular allocentric direction equally spaced

across 360◦. For each border cell, a beam emanating from the agent’s current

location and extending 0.25 m in the cell’s specified direction is tested for in-

tersections with obstacles in the environment. If there were no intersections,

the border cell gains an activation value of 0, otherwise the closest intersection
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Table S1: Pseudocode specification of the internal logic of the agent controller.

Default values reset

before each timestep:

FormPlaceCells ← ρ
GenerateReplayAt ← /0

MoveReplayTowards ← /0

WeakenReplaySynapse ← False

PrimaryMotorSource ← GridCellDecoder

ForcedMotorRotation ← 0

MotorTuningWidth ← δapproach

MovementThreshold ← ηapproach

Agent logic for state

InitiateNavigation:

If φ is False, then GenerateReplayAt ← GoalNode,

else

{
GenerateReplayAt ← AgentNode

MoveReplayTowards ← GoalNode.

NextState ← ApproachSubgoal

Agent logic for state

ApproachSubgoal:

If AtReplayLocation, then NextState ← TopologicalStep,

else if MovementHalted, then

{
MovementThreshold ← ηreplay

NextState ← ReplayEpisode,

else NextState ← ApproachSubgoal.

Agent logic for state

TopologicalStep:

GenerateReplayAt ← AgentNode

MoveReplayTowards ← GoalNode

If U(0,1)< εreset , then NextState ← InitiateNavigation,

else NextState ← ApproachSubgoal.

Agent logic for state

ReplayEpisode:

If not MovementHalted, then NextState ← ApproachSubgoal,

else if ReplayTerminated, then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WeakenReplaySynapse ← True

PrimaryMotorSource ← LastHeading

ForcedMotorRotation ← π
NextState ← Exploration,

else

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MotorTuningWidth ← δreplay

MovementThreshold ← ηreplay

MoveReplayTowards ← AgentNode

NextState ← ReplayEpisode.

Agent logic for state

Exploration:

PrimaryMotorSource ← LastHeading

MotorTuningWidth ← δexploration

ForcedMotorRotation ← N(μ = 0, σ = 0.02)

If U(0,1)< εexploration, then NextState ← InitiateNavigation,

else NextState ← Exploration.
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Table S2: Description of parameters and their default values.

Parameter Default Description

ρ True Whether to form new place cells

φ False Whether to navigate topologically

εexploration 0.003 Probability of exploration ending

εreset 0.05 Probability of subgoal resetting

δapproach 0.75 Motor tuning for vector navigation1

δreplay 0.1 Motor tuning for replay episodes1

δexploration 0.1 Motor tuning for exploration periods1

ηapproach 0.05 Halt threshold for vector navigation2

ηreplay 0.2 Halt threshold for replay episodes2

1 Tuning width in motor cells; larger values give more lenient

obstacle deflection, small values require clearer line of sight.
2 Threshold for confidence value c, below which agent will halt.

Table S3: Different versions of the agent used.

Vector-navigating agent with deflection (Fig. 3BC)
ρ = False, rest default

Purely topological agent (Fig. 4ABC upper row)
φ = True, rest default

Combined agent (Fig. 3D, 4ABC lower row, 5DEFG)
All parameters set to defaults

Combined agent, sunburst version (Fig. 5AB)
εexploration = 0.0005, δapproach = 0.1, rest default

Combined agent, exaggerated traits (Fig. 2AC)
εreset = 0.25, ηreplay = 0.9, rest default
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distance d (in meters) is mapped through 2 ·e−5·d/0.25 to get the final activation

value for the border cell. In our implementation we used the Boost.Geometry

library (https://www.boost.org/) to detect intersections.

1.2 Modulatory signals

The agent controller—in order to orchestrate the behavior of components in

the hippocampal formation network—decides appropriate values for the mod-

ulatory inputs that flow from the controller into the network. The schematic

in Fig. S1 shows that the internal logic of the agent controller is represented

by a “state machine”, consisting of different states/phases of the navigational

process and possible transitions between them. The internal logic of these

states needs to monitor the agent’s progress in order to make decisions—this

information is mediated by the modulatory outputs that flow from the network

to the controller.

On each timestep, all modulatory inputs are first reset to their default values

according to Table S1 upper row. The agent’s current state—determined by

the value of NEXTSTATE, which starts out as “InitiateNavigation”—is then

used to calculate the present values for the modulatory inputs according to

the corresponding state definition in Table S1. U(0,1) samples a uniformly

random value between 0 and 1, and N(μ,σ) samples from a Gaussian distri-

bution. Modulatory outputs used in these calculations retain their values from

the end of the previous timestep, and the specific meaning of all the different

modulatory input/output signals are described in more detail in their relevant

sections below.

Parametrization of the state logic was used to achieve the different agent ver-

sions used throughout the paper—see Table S2 for a specification of these

parameters and their default values, and Table S3 for adaptations relevant to

the specific agent versions.

1.3 Grid modules

The grid cell system, as well as the grid cell decoder, builds on our imple-

mentation from earlier work (Edvardsen, 2017). The system consists of 12
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grid modules, each implemented as a continuous attractor network based on

the model by Burak and Fiete (2009). The smallest grid module exhibits a

grid scale of around 0.2 m, and each succeeding grid module scales up by

a fixed factor of 1.5 from the previous one. This geometric progression of

grid modules is then decoded according to a nested view of the grid cell sys-

tem (Edvardsen, 2015; Stemmler et al., 2015). However, our model does not

depend on any particular aspects of the grid cell system/decoder besides the

following:

• There is a mechanism that can generate/maintain grid cell activity to

represent the current location/spatial coordinates

• Whenever a new place cell is generated, that cell may take a “snapshot”

of the current state of the grid cell population

• The grid cell decoder is able to calculate the approximate direction from

the current location to a previously visited location, whenever it is pre-

sented with one of these earlier snapshots of the grid cell population

(provided by the place cell system)

The reader is refered to Edvardsen (2015, 2017) for a full description.

1.4 Place graph

The place graph updates according to the following steps:

1. Retrieve the place cell closest to the agent’s current x,y coordinates as

the visited place cell

2. If the center of the visited place cell is located farther away than twice

the place field radius, and FORMPLACECELLS is true, then create a new

place cell at the current coordinates and use that as the visited place cell

instead. Take a snapshot of the current grid cell population and store it

alongside the newly created place cell

3. If the visited place cell is different from last timestep’s visited place cell,

and these two cells are not already connected, then form a connection

between the two cells with a strength of 2
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4. If WEAKENREPLAYSYNAPSE is true, then decrease the connection

strength between the last replaying place cell and the second-to-last
replaying place cell, and delete the connection altogether if the connec-

tion strength reached 0

5. If GENERATEREPLAYAT is different from /0, then update the replay
place cell to be either the visited place cell or the goal place cell, de-

pending on whether the value of GENERATEREPLAYAT is respectively

“AgentNode” or “GoalNode”

6. If MOVEREPLAYTOWARDS is different from /0:

• Update the replay place cell to be the place cell one step closer

in the graph to either the visited place cell or the goal place cell,

depending on whether the value of MOVEREPLAYTOWARDS is

respectively “AgentNode” or “GoalNode”, according to Breadth-

First Search

• If the search failed to find a path in the graph, or if the replay

place cell was already at the indicated target node for the graph

search, then set the output signal REPLAYTERMINATED to true

on the next timestep

7. If the agent’s distance to the center of the replay place cell is no greater

than the place field radius, then set the output signal ATREPLAYLOCA-

TION to true on the next timestep

8. Send the grid cell snapshot associated with the replay place cell to the

grid cell decoder as the “target” for vector navigation

The place field radius was set to 13 cm in Figs. 3 and 4, and 6.5 cm in

Figs. 2 and 5.

1.5 Motor output

There are two consecutive motor networks. Each motor network consists of

two stages:
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1. Generating motor activity: Receive a directional input α and then

generate a Gaussian bump of activity in a ring of 72 motor neurons,

pointing in the given direction (with tuning width/standard deviation δ
for the Gaussian function, and afterwards rescaling all activation values

so the peak activation value in the network is 1)

2. Inhibiting motor cells from border cells: Target each motor neuron

with inhibition from the corresponding border cell, and then threshold

negative activation values to 0. The final directional output of the mo-

tor network is calculated from the population vector average of the 72

motor neurons

The tuning width δ1 for the first motor network is set to MOTORTUNING-

WIDTH. The directional input α1 to the first motor network is determined as

follows (possibly with an extra offset if FORCEDMOTORROTATION is differ-

ent from 0):

• If PRIMARYMOTORSOURCE is “GridCellDecoder”, update the grid

cell decoder and set α1 as follows:

– If the agent’s distance to the center of the replay place cell is

within three times the place field radius, consider the subgoal to be

within visible range and explicitly calculate α1 as the true bearing

to the center of the replay place cell

– Otherwise, set α1 to the direction indicated by the grid cell de-

coder

• If PRIMARYMOTORSOURCE is “LastHeading”, set α1 to the agent’s

current bearing

The directional input α2 to the second motor network is the output from the

first motor network, and δ2 = 0.1. The combination of two motor networks is

used to alleviate potential errors, e.g. traveling head-on toward sharp corners,

when the border cells might symmetrically inhibit the motor population on

both sides of the bump; even after receiving border cell inhibition, the agent

would still be headed directly toward the obstacle. By repeating the entire pro-

cess in a duplicated circuit (with a narrower/stricter tuning width), the agent
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can be halted if the deflected goal vector is still on a collision course with the

obstacle.

To determine whether to halt the agent or to allow it to move, we calculate a

“confidence” value c as follows: Let sn denote the strength of the motor signal

in motor network n after border cell inhibition as a ratio of the corresponding

strength before inhibition. “Strength” here refers to the length of the popula-

tion vector. The confidence value is then calculated as c=
√

s1 · s2. The agent

is halted if c is less than MOVEMENTTHRESHOLD, otherwise it is allowed

to move in the direction indicated by the second motor network. The output

signal MOVEMENTHALTED is set accordingly.

Special-case handling is added throughout to avoid divisions by zero, should

e.g. all motor activity be cancelled out by border cell inhibition or the grid

cell decoder return a zero-length goal vector. The agent will halt in these

situations.

2 Energy landscapes for vector navigation with
obstacle deflection

In the main paper we make the distinction between slanted and perpendicular

obstacles, the former being negotiable by vector navigation augmented by an

obstacle deflection mechanism. This property of slanted obstacles becomes

apparent if we consider the navigation problem from the perspective of an

“energy landscape”—considering each position in the environment to have as

its “energy” the distance to the goal location—with the objective of the agent

being to minimize this energy. The energy landscape can be visually inspected

by drawing the geometry of the environment with a “reversed-polar” transfor-

mation; rather than drawing a given straight line according to its Euclidean

coordinates, points along the line are transformed into goal direction θ and

goal distance r—on respectively the x-axis and the y-axis—using the follow-

ing expressions (varying t between 0 and 1):

θ(t) = atan2(ystart + t · (yend − ystart), xstart + t · (xend − xstart)) ,

r(t) =
√
[xstart + t · (xend − xstart)]

2+[ystart + t · (yend − ystart)]
2.
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ward the goal location unimpeded by obstacles, while encounters with slanted

obstacles cause deflections to the left or right. Importantly, there are no “local

minima” in this energy landscape—whenever the agent reaches an obstacle,

there is always a deflected direction in which the goal distance keeps decreas-

ing, and so the agent can remain on its downward trajectory through the energy

landscape toward the goal location at the bottom.

Choosing a different goal location will alter the energy landscape; sometimes

these changes will “warp” the landscape in such a way that the agent might

become stuck where it previously would not, and vice versa. Fig. S2B shows

the energy landscape after the goal location was moved in Fig. 3C in the main

paper—local minima have now appeared, and the agent got stuck in these lo-

cations. However, this warping of the energy landscape—caused by moving

the goal location—can also be used to the agent’s advantage: During hip-

pocampal replay episodes in our model, the subgoal shifts gradually closer to

the current location until the decoded goal vector is no longer blocked by the

obstacle. At that point, the energy landscape has warped in such a way that

the current agent location is no longer a local minimum, and the agent can

therefore make further progress toward the goal. In Fig. S2C (from Fig. 3D in

main paper), using the combined strategy, the agent was able thus to escape

the local minima.
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Supplementary Videos – Edvardsen et al. (2019)
Navigating with grid and place
cells in cluttered environments

[This paper is accompanied by four Supplementary Videos to support the fig-

ures and descriptions in the main paper. To give a sense for what these videos

convey, here are presented a few frames from each video.]

Supplementary Video 1 – Edvardsen et al. (2019)
Proposed solutions to obstacles: Slanted obstacles – border deflection
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Supplementary Video 1 – Edvardsen et al. (2019)
Proposed solutions to obstacles: Perpendicular obstacles – hippocampal replay
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Supplementary Video 2 – Edvardsen et al. (2019)
Vector navigation with obstacle deflection (Fig. 3B)
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Supplementary Video 2 – Edvardsen et al. (2019)
Vector navigation with local minima in energy landspace (Fig. 3C)
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Supplementary Video 2 – Edvardsen et al. (2019)
Combined vector-place navigation to overcome local minima (Fig. 3D)
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Supplementary Video 3 – Edvardsen et al. (2019)
Combined vector-place agent, sparse exploration, without shortcuts
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Supplementary Video 3 – Edvardsen et al. (2019)
Combined vector-place agent, sparse exploration, with novel shortcuts

F
ra

m
e

at
∼3

1
.5

se
co

n
d
s

F
ra

m
e

at
∼4

0
se

co
n
d
s

203



Supplementary Video 4 – Edvardsen et al. (2019)
Experimental environments: Sunburst maze
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Supplementary Video 4 – Edvardsen et al. (2019)
Experimental environments: Detour maze, short version
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Supplementary Video 4 – Edvardsen et al. (2019)
Experimental environments: Detour maze, long version
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Navigating with distorted grid cells

Vegard Edvardsen

Department of Computer Science,

NTNU – Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Grid cells in the hippocampal formation are a valuable system to

study both for neuroscientists and for neural network researchers, as

these neurons present both a window into higher-level cognitive pro-

cesses such as navigation, as well as inspiration for how to build ar-

tificial neural navigation systems. Grid cells are believed to represent

an animal’s coordinates in two-dimensional space in a general fashion,

useable for geometric computations by downstream neural networks,

and earlier neural models have indeed shown how grid cells can be

decoded for navigational purposes. However, accumulating evidence

shows that grid cells are not as stable as assumed by models, but that

they exhibit various geometric distortions depending on time and place.

This presents a challenge to grid cell decoding models, which mainly

separate into “nested” and “combinatorial” ones. Here we present a

new and simplified version of a nested grid cell decoder, demonstrate

that this decoder can cope with distortions, and show how this relates to

a fundamental property of nested grid cell decoding. By providing pos-

itive proof that a nested decoder can navigate with distorted grid cells,

we hope to inspire further neuroscientific investigation into the biolog-

ical plausibility of different models for grid cell-based navigation.

1 Introduction

Navigation is an interdisciplinary problem area relevant to both artificial life

and neuroscience; it is an important capability for situated and embodied
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agents, and neuroscientific research on navigation has provided a valuable

window into the inner workings of higher-level cognition. Particularly in

the hippocampal formation of mammals, numerous spatially selective neurons

have so far been identified (Moser et al., 2017), including place cells, border

cells, head-direction cells and grid cells. Grid cells are particularly intriguing

because of the highly fascinating patterns these neurons generate across space

(Hafting et al., 2005), that appear almost algorithmic in nature. Specifically,

they respond to the animal’s location in the two-dimensional plane in a hexag-

onal pattern; the neurons activate whenever the agent is located on the vertices

of an equilateral triangular lattice imagined to span the entire space available

to the animal (Fig. 1A).

The mathematically appealing patterns of grid cells have suggested they might

implement a spatial coordinate system: The collective activity of all grid cells

might uniquely describe the animal’s current coordinates and be useful for in-

ferring geometric relationships (Fiete et al., 2008), and grid cells have now

been shown to be decodable into goal vectors by hypothetical downstream

neural networks, enabling an agent to navigate toward arbitrary goal locations

by reading out the current activity of the grid cell population and compar-

ing this to a stored version of the grid cell activity corresponding to the goal

(Edvardsen, 2015; Bush et al., 2015). While these models are interesting ar-

chitectures for artificial agents, they also provide proofs of concept that real

grid cells might contribute to “vector navigation”—thus guiding future neuro-

scientific research into the function of grid cells.

However, the universal decodability of grid cells has been questioned, particu-

larly by recent discoveries that grid patterns are not as stable and predictable as

models have assumed (Krupic et al., 2015; Carpenter and Barry, 2016). Grid

patterns have been shown to distort in various ways, for example by shearing

and rescaling as a function of the amount of time spent in a particular envi-

ronment. As such distortions challenge the assumptions of different proposed

grid cell decoders, they might help discern any differences in their biological

viability. In particular, two major approaches to grid cell decoding are the

“nested” (Stemmler et al., 2015) and the “combinatorial” (Fiete et al., 2008)

decoders. In this paper we show that a nested decoder can cope with distorted

grid cells, without addressing the question of whether a combinatorial decoder

could similarly be made able to handle the distortions. Thus, while our results

allay the criticism that grid distortions might present a problem for grid cell
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2 Grid cells organized into grid modules

decoding in general, they leave open the question of whether combinatorial

decoding remains viable.

Next in this paper we first describe grid cells, grid modules, how to decode one

module and how to combine multiple modules in a nested fashion to navigate

long distances. This presents a new, simplified version of our earlier model

for nested decoding (Edvardsen, 2015) that makes it easier to reason about the

effects of distortions. We then add distortions to the model, show that navi-

gation with one module still succeeds, and demonstrate that navigation with

multiple, differently distorted modules also succeeds. Before concluding, we

show how our results relate to a fundamental property of nested decoders, by

demonstrating that the model can cope even with “perturbed” grid patterns.

2 Grid cells organized into grid modules

Fig. 1A shows examples of four different idealized grid cells, each box a top-

down heatmap of a 4 m wide square arena, showing where that particular grid

cell might be active. All grid cells in this paper were generated by evaluat-

ing

GC(x,y) = max
[
0, −0.2+

2

∏
d=0

(
1+ cos

(
(x−Ox) · 2π/S · cos(R+d · π/3) · 2/

√
3 +

(y−Oy) · 2π/S · sin(R+d · π/3) · 2/
√

3
))]

(1)

at any given (x,y) location, making a hexagonal pattern by intersecting three

waves 60◦ apart (Solstad et al., 2006). A grid cell is here characterized by

the parameters S, R and O; S is the scale of its pattern, given as the distance

between two peaks, R is its orientation, fixed at π/2 in this paper, and O is the

two-dimensional offset of the pattern from some arbitrary point of reference.

Cells with the same scale and orientation are said to belong to a grid module,

which is our fundamental unit for grid cell-based navigation; assuming there

is sufficient coverage of cells in a given module, there will always be an active

subset of neurons to help localize the animal no matter where it might be

located. As the first three grid cells in Fig. 1A have the same scale (0.9 m) and
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orientation, they belong to the same module, while the fourth cell, of different

scale (0.6 m), belongs to a different one.

The collective activity of all grid cells in a given module can be visualized by

arranging them in a matrix according to their individual offset values Ox and

Oy, so that cells with similar offsets—thus highly overlapping grid patterns—

are located nearby in the matrix, while cells with less overlapping patterns are

located farther apart. Fig. 1B shows examples of such “neural sheet” matrices

at various snapshots in time, each pixel showing the instantaneous firing rate

of a particular grid cell, with all pixels in a given matrix recorded simultane-

ously. The first matrix shows a grid module that includes the first three cells

from Fig. 1A, recorded while the agent is located at the goal in the box center.

The grid cells from Fig. 1A are in this matrix represented respectively by the

1st, 6th and 11th upper row pixels from the left.

Each matrix reveals a single “bump” of activity distributed among the grid

cells, potentially wrapping around horizontally from the upper left corner to

the upper right corner and vertically from both upper corners to the lower

middle of the matrix. This is because the neural sheet reflects the “twisted

torus” topology inherent to the hexagonal grid cell pattern (Guanella et al.,

2007). The second matrix shows the same module, but with the agent located

20 cm east of the previous location—the activity bump has thus shifted to the

right in this updated snapshot. The third matrix shows the activity a further

20 cm east, while the fourth matrix shows the activity after the agent has then

moved 20 cm south.

3 Navigating with a single grid module

Comparing the first and the fourth matrices, we see that the collective activity

of the grid module has updated to reflect the agent’s new location southeast of

the goal, by moving the bump to the right and down from its initial location

in the matrix. The principle behind the grid cell decoder is to recognize the

correct shift of the bump needed to bring it back to its correct place in the

matrix. Fig. 1C shows how we propose to do this: A set of detectors is instan-

tiated for 12 different directions, each detector consisting of a “template” of
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3 Navigating with a single grid module

the expected state of the grid module should the goal be located in a particular

direction away from the agent.

For a given current state of the grid cell module, the task of the decoder is then

to compare that current state to each of these 12 template states. We have im-

plemented this as the dot product between the template matrix and the current

matrix (after flattening both to vectors), essentially corresponding to a neuron

with multiplicative synapses between input signals from corresponding cur-

rent state and target state grid cells. Fig. 1C shows how the different detectors

activate in a situation corresponding to the fourth matrix in Fig. 1B—the de-

tectors corresponding to northwesterly goal directions are the most strongly

activated, thus correctly compelling the agent to move northwest in order to

reach the goal.

In Fig. 1D we use this mechanism to navigate, starting the agent at random

locations sampled from the area of a 0.6 m radius disc. In 1 cm timesteps,

the agent updates the grid cell population to reflect its current location, com-

pares this to the grid cell population for the goal using the mechanism outlined

above, and calculates its next movement direction from the population vector

average of a set of unit vectors pointing in the directions indicated by the 12

detector units, weighted by their corresponding activation values. This pro-

cess iterates until the agent’s current location is less than 2.5 cm from five

timesteps ago, signalling that the agent has reached what it believes to be the

goal and started oscillating around this point. Fig. 1D shows the outcome of

400 such trials, blue lines indicating successful trials that ended within 4.5 cm

of the goal and red lines showing failed trials.

These trials clearly separate into two classes; the successful ones that pre-

cisely hit the intended goal location, and the unsuccessful ones that instead

aim directly toward one of a discrete set of erroneous target locations, dis-

tributed in a hexagonal pattern. Because grid cells have a repeating pattern,

such ambiguity will inevitably arise as you go too far away from the goal.

Fig. 1E clarifies this by tracing out the boundary at which the decoded goal

vector flips from pointing inward, i.e. less than 90 degrees away from the true

goal direction, to instead pointing away from the goal (blue line). Consider-

ing the radius of starting locations (dashed line), some trials in Fig. 1D may

evidently have started outside of the valid navigational range for this single

grid module.
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3 Navigating with a single grid module

[Figure on the facing page.]

Figure 1: Navigating with a single grid module. (A) Top-down view of 4 m wide

square box; heatmaps of where four grid cells are active (blue/red colors for low/high

activity). White cross indicates goal location in box center. First three grid cells have

scale 0.9 m, y offset (Oy) of 0 cm and x offsets (Ox) of 0 cm, 15 cm and 30 cm.

Fourth cell has scale 0.6 m. (B) Matrices with snapshots of concurrent activity within

a full grid module at different points in time. Each plot shows collective activity of

all 30×26 cells in the module, each pixel indicating a given neuron’s instantaneous

firing rate and arranged according to its offset values Ox and Oy. First matrix shows

case with agent in box center, second matrix after moving 20 cm east, third matrix

another 20 cm east and fourth matrix after then moving 20 cm south. (C) Mechanism

for decoding a single grid module, consisting of 12 units each responsible for detect-

ing the expected module state should the goal be located ∼8 neurons in a particular

direction from the current location, here configured to navigate back to the location

indicated in top matrix in B. Center matrix shows current module state. Radial bars

show activation of each detector. Black semi-circular notch shows final goal direction

from the population vector average of all detectors’ contributions, correctly indicat-

ing the goal to be to the north-west. (D) Trajectories from navigating with decoder

outlined above. 400 trials were started from locations randomly sampled across the

area of a 0.6 m radius disc. Trials terminating within 4.5 cm of true goal location

were deemed successful and shown in blue. Failed trials shown in red. Trajectories

were plotted with 5× subsampling throughout paper. (E) Trace of boundary where

decoded vector flips from pointing inward to pointing outward (blue line). Dashed

line shows maximum possible starting distance for trials in D, showing that some

trials might start outside this boundary and thus fail.
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While the range of this system is quite short, the system is able to pinpoint the

correct goal location with high precision; one immediate proposal for how to

increase the navigational range of this system would thus be to trade some of

this precision for an increase in range. We could e.g. zoom up the scale of the

grid module by a factor of a thousand, and assuming the agent remained able

to hit the goal location, we would then have gained a thousandfold increase

in range “for free”. However, we cannot expect this to be viable biologically,

as there will inevitably be noise in the system e.g. due to error from path

integration processes (proposed to participate in maintaining grid patterns in

the real brain).

Hence, for a more realistic take on the grid cell decoding problem, we explic-

itly introduce some jitter into the coordinates represented by each of the grid

modules; specifically, on each new trial, the true goal coordinates are offset

by a noise vector with random direction and with magnitude sampled from a

Gaussian distribution with standard deviation 5 % of the grid scale. Once such

jitter is taken into account, simply scaling up one grid module might no longer

be a viable way of increasing navigational range while maintaining sufficient

precision. A possible solution, for which there is biological backing, is then

to combine information from multiple modules of different scales—described

next.

4 Combining multiple grid modules for nested
grid cell decoding across longer distances

In a nested view of the grid system (Stemmler et al., 2015), we assume there

exists a grid module with a sufficiently long navigational range to exceed

the agent’s behavioral requirements (Fig. 2A). While this module might be

too jittery to successfully hit the goal location, we then assume that addi-

tional smaller-scaled modules can fine-tune the navigational resolution once

the agent gets closer to the goal. Fig. 2B shows a smaller grid module (yel-

low) nested within a larger one (blue), as well as the criterion we propose for

handing off control from the larger to the smaller module: An extra detec-

tor unit, configured to detect the target location itself, is added to the larger-

scaled module—the green line here showing the area within which this unit
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4 Combining multiple grid modules for nested grid cell decoding. . .

will fire above a certain threshold. We propose that decoding is an iterative

process, where the largest-scaled module has control of the decoded goal di-

rection until its target detector exceeds its threshold. It will then yield control

of the navigation process to the next, smaller module—with its own set of

detectors—which assumes control until its respective target detector is suffi-

ciently strongly activated, and so on. This nested process, executed on every

timestep, can be maintained for as long as there are smaller-scaled grid mod-

ules available.

A high amount of jitter in large-scaled modules is thus acceptable as long as

the agent can be delivered into the valid navigational range of smaller-scaled

modules with less debilitating jitter (Fig. 2C). Grid cells in the real brain are

known to cluster into multiple coexisting grid modules of increasing scale, and

intriguingly, these modules seem to have a fixed ratio between their successive

grid scales, so that the sequence of grid scales within an animal constitutes a

geometric progression (Stensola et al., 2012). There is thus an exponential

growth in range as more modules are added.

Say we wanted to navigate from distances of up to 2 m while coping with

jitter—we could e.g. configure our agent to utilize eight distinct grid modules,

with grid scales progressively increasing from a lower value of 0.3 m with a

fixed ratio of 1.5 between modules, for a largest scale of ∼5 m. Fig. 2D first

demonstrates how each of these modules would perform individually, each

box showing 400 trials with only one of the eight modules present. Using

only a small-scaled module, trials terminate early in a multitude of erroneous

goal locations. As scale increases, the “catchment area” for the correct goal

location grows too, thus improving the number of trials that head toward the

correct target—however, the amount of jitter increases as well, so the preci-

sion is no longer sufficient for trials to succeed. The largest grid module’s

catchment area encompasses all trials, yet 87 % of trials still failed because of

the jitter (Fig. 2E).

If we instead combine several modules as described above, the agent should

enjoy both the long range of the larger modules and the precision of the

smaller modules. In Fig. 2F, with the agent now combining all eight mod-

ules in a nested fashion, almost all trials successfully reached the goal within

specified tolerances. Drilling further into the agent’s behavior, histograms in

Fig. 2G–H show respectively the deviation in decoded goal direction and the
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4 Combining multiple grid modules for nested grid cell decoding. . .

[Figure on the facing page.]

Figure 2: Navigating with multiple grid modules. (A) Maximum trial distance was

increased to 2 m (dashed line). Catchment area of largest-scaled grid module (#8)

is sufficiently large to contain all trials (blue line). Thin solid lines indicate jitter in

the corresponding module. (B) Nested within module #8 is the next-largest-scaled

module (#7, yellow line). Drop-off area from module #8 (green line) is inside catch-

ment area of #7, thus nested navigation should succeed. (C) In total eight modules

are nested within each other, grid scales organized in a geometric progression from a

smallest value of 0.3 m with a fixed ratio of 1.5 between successive modules. (D) Trial

outcomes if the agent were to navigate using only one of the eight possible modules.

Upper left shows 400 trials with smallest module. Module scale increases in standard

reading order. Smaller-scaled modules are more ambiguous and have a denser dis-

tribution of erroneous goal locations, but the larger-scaled modules experience more

jitter and hence are also insufficient by themselves. Each box shows a 4.5 m wide

square top-down view of environment. (E) Failure rates in each of the situations

shown in D, red indicating trials that failed outside of the expected catchment area

for a module of the given scale (calculated according to 0.15 m ·1.5i−1 for module i),
yellow indicating trials that failed within the catchment area but due to jitter were not

able to hit within the success criterion of 4.5 cm. (F) Trials combining all eight mod-

ules in a nested fashion. Almost all trials were successful. (G) 2D histogram showing

deviation in the decoded goal direction as a function of distance (normalized per col-

umn). Histogram includes samples from every 1 cm timestep in all successful trials in

F. Decoding error is kept low until immediately adjacent to the goal. (H) Histogram

as in G, but here showing which module was active at the given timestep.
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identity of the currently driving grid module, as a function of distance, for

all timesteps across all successful trials in Fig. 2F. At far distances, the larger

modules are in control of the agent—gradually yielding control to the smaller

modules as the goal is approached (Fig. 2H). This maintains the deviation at

a low level until the agent is immediately adjacent to the goal (Fig. 2G), thus

ensuring successful navigation in these trials.

5 Navigating with a single distorted grid module

In the preceding sections we assumed perfectly hexagonal grid patterns, re-

liably adhering to the equilateral lattice everywhere. However, this is not an

accurate description of the real situation, as grid patterns in real animals have

been shown to distort from the perfect hexagonal grid in various ways. For

example, Stensola et al. (2015) showed that with increased exposure to a par-

ticular enclosure, grid patterns may gradually shear away from the walls of the

box, while Barry et al. (2007) showed that when a familiar enclosure is com-

pressed, grid patterns may also rescale to match the new dimensions of the

box. Interestingly, other co-recorded grid modules might stay fixed at their

previous scales (Stensola et al., 2012), highlighting the notion that different

grid modules might distort incoherently. Several more examples of grid cells

deviating from the idealized hexagonal pattern have been identified (Carpenter

and Barry, 2016).

While the purpose and underlying mechanisms of these distortions are still

unknown, their mere presence poses a challenge for grid cell navigation mod-

els: Can these decoders still function when grids are not perfectly hexagonal

(Krupic et al., 2015; Carpenter and Barry, 2016)? To investigate how our

decoder copes with distortions, we have thus incorporated one-axis stretching

(Barry et al., 2007; Stensola et al., 2012), one-/two-axis shearing and symmet-

ric shearing (Stensola et al., 2015) into our model as follows. Each distortion

is represented in Fig. 3A by a function D : (x,y) �→ (x̃, ỹ) that maps the agent’s

true (x,y) coordinates to the distorted coordinates (x̃, ỹ). These distorted x̃ and

ỹ values are then used when determining grid cell activation using Eq. 1. The

specific expressions used for stretch, one-/two-axis shear and symmetric shear

distortions are given respectively by Dstretch, Dshear and Dsymmetric (the latter

Paper E Navigating with distorted grid cells (Edvardsen, 2018)
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5 Navigating with a single distorted grid module

two based on formulations in Stensola et al., 2015):

Dstretch(x,y) =
[

a 0

0 b

]−1[x
y

]
(2)

Dshear(x,y) =
[

1 a
b 1

]−1[x
y

]
(3)

Dsymmetric(x,y) =
(

x
1+a

,
y

1+a · x/1+a

)
(4)

See Fig. 3B for examples of resulting distorted grid cells.

The first question to address is whether navigation with a single grid mod-

ule can still succeed when the constituent grid cells are distorted. If we as-

sume that all grid cells within a given module distort in the same way, which

seems to be the case biologically (Stensola et al., 2012, 2015), we expect the

neural sheet to look the same as without distortions: Because distortion is

a function of location, all cells will experience the same x and y distortion

simultaneously—the activity bump in the neural sheet should thus retain its

shape.

We can therefore attempt to navigate with a distorted grid module by using the

same decoder as earlier, unmodified. Fig. 3C shows catchment areas traced

as before, but with distortions in effect. Inside these boundaries, the decoded

goal vectors point inward toward the goal, a promising sign that navigation

with distorted modules might succeed. Fig. 3D presents a set of navigation

trials performed with a sheared grid module as shown in Fig. 3A second col-

umn, demonstrating that a large proportion of trials remained able to reach

the goal. Observe that the shape of the catchment area has been distorted as in

Fig. 3C, and that the distribution of erroneous goal locations has also similarly

been distorted.

Careful observation of the trajectories reveals that they might now curve; be-

cause the decoder is unaware of any distortions in effect, it would not know

e.g. that a decoded goal vector pointing east might in fact correspond to a

northeastern bearing under the distorted regime. Fig. 3F shows a scatter plot

of this deviation from the true goal direction during successful trials in Fig. 3D

(yellow dots), revealing a clear pattern of deviation. For grid distortions that

produce constant x̃ and ỹ gradients throughout space, which includes Dstretch
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6 Navigating with multiple distorted modules

and Dshear but not Dsymmetric, there is a simple remedy in adjusting the decoded

goal vector (ṽx, ṽy) using

[
vx

vy

]
=

[
∂ x̃/∂x ∂ x̃/∂y
∂ ỹ/∂x ∂ ỹ/∂y

]−1[ṽx

ṽy

]
(5)

as the final step. Fig. 3E shows a new set of trials employing this compensa-

tion mechanism. The trajectories no longer curve as in Fig. 3D, and Fig. 3F

confirms that the deviation has been corrected (green dots). Note however

that, because the curving mostly affects only the path lengths and has little

influence on the ultimate success of the trials, we do not actually apply this

compensation in the rest of this paper.

6 Navigating with multiple distorted modules

Having verified that navigation with a single grid module succeeds despite

distortions, we now ask whether navigation over longer distances, combining

multiple nested modules, can also succeed with distorted modules. We expect

this to work as long as larger-scaled modules remain able to deliver the agent

into the catchment area of the smaller-scaled ones. To investigate this we next

ran a set of trials as in Fig. 2F, but with the eight modules distorted using

a mix of one-axis stretching, one-/two-axis shearing and symmetric shearing

(Fig. 4A, details in caption). In other words, we have configured the agent

not only to utilize distorted grid modules, but to have differently distorted

modules—should this succeed, it would be a stronger demonstration of capa-

bility than having one single distortion apply equally to all modules.

Example grid cells from each of the eight modules are shown in Fig. 4A, while

Fig. 4B shows outlines of each module’s catchment area together with the

“drop-off areas” from their respective larger-scaled modules. The condition

for successful navigation is that the agent should always be dropped off fully

inside the catchment area for the lower-scaled module; Fig. 4B confirms this

to apply to the present configuration, but note that in some areas, the extra

trial-by-trial jitter in each module’s represented coordinates might cause some

of these boundaries to intersect and potentially cause problems. Fig. 4C shows

400 trials with these distorted grid modules, but without any additional jitter;
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7 Navigating with perturbed grid cells

all trials were successful. Navigation is still largely successful when the trials

are run with additional trial-by-trial jitter (Fig. 4D), with a few exceptions due

to failures from the extra jitter. Except for this caveat, though, we see that

grid distortions pose no problem for the navigation process with nested grid

cell decoding, and that this applies even when different modules are distorted

incoherently.

7 Navigating with perturbed grid cells

The previous results highlight an appealing feature of nested grid cell de-

coders, in that they don’t require precisely interlocked conjunctions of grid

activity across all modules in order to work. This is in contrast to combina-

torial decoders—the main alternative to nested decoders—which exploit the

combinatorial growth in the number of unique conjunctions of activity across

all modules as new modules are added, to theoretically enable navigation far

beyond the range of the largest module (Fiete et al., 2008). A nested decoder,

on the other hand, can only navigate within the range of the largest module—

although with a geometric progression of grid scales, this range does rise

exponentially. In exchange, though, nested decoding faces a far simpler re-

quirement for successful navigation, namely that larger-scaled modules need

only deliver the agent into the realm of a smaller-scaled module. The smaller

modules do not even need to participate in the process until the larger modules

finish their jobs.

This should mean that a nested decoder can function in yet more adverse con-

ditions than those considered so far. Specifically, we will consider what hap-

pens to the navigational system when modules are perturbed at locations far

away from the goal. By “perturbed” we mean that the cells no longer keep

perfect track of the agent’s exact position relative to the goal, but that e.g. due

to noisy path integration, the grid cells’ firing locations might jump around

and no longer resemble grid patterns when far away from the goal.

Fig. 5A shows how we have implemented these perturbations, by using the

same formalism of a D : (x,y) �→ (x̃, ỹ) function. However, this function no

longer changes gently across space as in Fig. 3, but instead presents noisy

maps that might violently jumble the grid pattern around. Specifically, the
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x and y offset maps were generated by selecting 300 random points within a

4 m radius disc, for each point sampling an offset value from a Gaussian dis-

tribution with standard deviation 15 cm, and then interpolating across these

points (using Clough-Tocher interpolation from the SciPy software package).

As mentioned above, though, we only want these perturbations to be in effect

when the agent is far away from the goal—we assume that an agent would re-

alistically be able to gradually correct these perturbations from sensory inputs

as it approaches a familiar goal location. We therefore fade away the effect of

perturbation toward the goal, using a Gaussian fade with standard deviation

0.6 m (Fig. 5B).

In Fig. 5C–D, to see the effects of the perturbation in more detail, we analyze

a grid pattern before and after by performing two-dimensional autocorrelation

on each 3×3 subdivision of the spatial response heatmap. Autocorrelograms

are frequently used in the neuroscience literature to quantify the degree of

“gridness” of a particular neuron, as the hexagonal symmetry of a grid cell

becomes apparent when correlating the spatial response map in this fashion.

Fig. 5C shows that, as expected, there is hexagonal symmetry in the autocor-

relograms for the non-perturbed grid cell. In Fig. 5D, however, we see that

the neuron only has hexagonal autocorrelation structure in the central subdi-

vision, i.e. close to the goal. The neuron therefore behaves as a grid cell when

close to the goal, but at farther locations the perturbation might mean that this

neuron would not have been classified as a grid cell.

Thus, in some respects, these perturbed cells do not behave as grid cells when

sufficiently far away from the goal location. Can these neurons still contribute

to a successful navigational process? Fig. 5E–H present results similarly as

in Fig. 4A–D, but with a new configuration of the model where the grid mod-

ules experience a perturbation as just described. Similar to how the trial-by-

trial jitter was specified as a proportion of grid scale, we find it reasonable

to assume that larger-scaled modules get perturbed on a proportionally larger

scale—noise points are therefore more spread-out, but have a higher ampli-

tude, for larger-scaled grids, and the radius for the fade-away near the goal

is also larger for the larger-scaled modules. Fig. 5F shows that the catch-

ment areas for each individual module has largely retained its shape from the

undistorted situation—this is as expected, since we have assumed that the per-

turbation fades off toward the goal location. The conditions are therefore in

place for nested decoding to succeed; when trials are run either without or
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8 Discussion

with jitter, shown respectively in Fig. 5G and Fig. 5H, we see that navigation

with perturbed grids indeed was successful.

8 Discussion

In this paper we have presented a new and simplified version of our earlier

nested grid cell decoder (Edvardsen, 2015), able to perform vector navigation

over arbitrarily long distances using multiple modules. Our earlier model per-

forms nested decoding as part of a larger neural navigation system that also

includes path integration components to generate the grid cells; here we in-

stead look at the decoding problem in isolation, thus we calculate the grid

patterns directly for a simpler overall model. The decoding mechanism itself

has also been simplified, now only requiring a set of 13 detector units per

module. Whereas the earlier model decoded all modules in parallel and used

different weighting of output from different modules, the new version uses a

simpler approach to combining multiple modules, by making explicit the un-

derlying principle that a nested decoder only strictly needs to follow the signal

from one module at a time.

We then showed that this nested grid cell decoder can cope with distorted grid

cells, and that navigation can succeed even when different grid modules expe-

rience different distortions. In Stemmler et al. (2015), which presents a nested

decoder based on recursive population vector readout of the full grid cell pop-

ulation, they point out that it is possible to accommodate grid modules with

distortions such as shearing in their decoder. However, while they compensate

for these distortions directly in their readout mechanism, here we show that

the decoder might not even need to be aware of the distortions for navigation

to succeed.

We showed how this relates to a fundamental property of the nested view of

the grid system, namely that navigation can proceed as long as each grid mod-

ule can guide the agent from inside the drop-off area from a larger module

and into the realm of a smaller module. We underscored this by showing

that nested decoding succeeds even when grid patterns are perturbed—to the

point of no longer resembling grid cells—in locations away from the goal.

Our nested navigation model was able to cope with these challenges with no
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change to its decoding mechanism, whereas e.g. a combinatorial system sen-

sitive to unique conjunctions of activity across all modules, would likely have

to be retrained or account for the distortions through some other means.

We have thus demonstrated a nested grid cell decoder robust to disturbances

in the form of jitter, distortions and perturbations of grid patterns. Noisy path

integration can hence support successful grid decoding, so this might be a vi-

able architecture for neuromorphic robot navigation if extended with circuitry

for motor control, obstacle avoidance, etc.

There is also the question of how these results relate back to the biological sys-

tem. It remains an open question whether real grid cells participate in vector

navigation, and if so, whether this occurs according to nested decoding, com-

binatorial decoding or some other mechanism. Our results here show that a

nested decoder can be robust to the challenges of noise and distortions that are

relevant in a biological setting, and also that nested decoding can have mod-

est resource requirements in terms of numbers of neurons and synapses. To

address these questions on the role of real grid cells in navigation, more data

is needed e.g. about how these neurons behave when animals navigate across

long distances in their natural environments (Geva-Sagiv et al., 2015).
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