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Abstract

The substructures of offshore wind turbines are subjected to extreme breaking irregular wave
forces. The present study is focused on investigating breaking irregular wave forces on a
monopile using a computational fluid dynamics (CFD) based numerical model. The breaking
irregular wave forces on a monopile mounted on a slope are investigated with a numerical
wave tank. The experimental and numerical irregular free surface elevations are compared in
the frequency-domain for the different locations in the vicinity of the cylinder. A numerical
analysis is performed for different wave steepness cases to understand the influence of wave
steepness on the breaking irregular wave loads. The wave height transformation and energy
level evolution during the wave shoaling and wave breaking processes is investigated. The
higher-frequency components generated during the wave breaking process are observed to
play a significant role in initiating the secondary force peaks. The free surface elevation
skewness and spectral bandwidth during the wave transformation process are analysed and
an investigation is performed to establish a correlation of these parameters with the breaking
irregular wave forces. The role of the horizontal wave-induced water particle velocity at the
free surface and free surface pressure in determining the breaking wave loads is highlighted.
The higher-frequency components in the velocity and pressure spectrum are observed to be
significant in influencing the secondary peaks in the breaking wave force spectrum.
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1 Introduction

Offshore wind technology has experienced a remarkable growth due to an increased focus
towards the green and renewable energy research. The objective of offshore wind related
research is to develop methods of design and construction which will help to keep offshore
wind turbines safe, efficient, functional, economical and able to resist the severe environmen-
tal loads. Among the environmental loads, wave loads are very important for the design of
the offshore wind turbines. They are exposed to irregular and severe sea states which are
composed of both breaking and non-breaking waves. Usually, wave breaking occurs when
waves propagate from deep water to shallow water. The wave height increases until the wave
crest becomes vertical and overturns with a jet of water. Due to the overturning crest and
the large amount of water impacting the cylinder, breaking waves exert large impact loads,
which is crucial in design of offshore wind turbines (Det Norske Veritas (DNV), 2010). Ocean
waves exhibit a random behaviour. Each individual wave component in the irregular wave
train possesses a distinctive wave height and period, which influences the breaking pattern
for each wave. Consequently, the breaking location, breaker height and breaking wave forces
vary for each individual wave (Rattanapitikon and Shibayama, 1998). The energy transfers
towards the higher frequencies, which occurs during the wave transformation, influences the
characteristics of the wave spectrum which in turn affects the breaking irregular wave loads.
Several experiments and field studies have been conducted to study the breaking regular wave
forces in shallow water. Goda et al. (1966) concluded that the change in momentum of the
water mass of a vertical wave front causes the impact force by performing experiments on
a vertical cylinder. Tanimoto et al. (1986) conducted experiments for inclined piles under
irregular waves and proposed a method to calculate the impact forces by using the simplified
von Karman’s and Wagner’s theory. Apelt and Piorewicz (1987) carried out experiments
for measuring the breaking regular wave forces by placing a cylinder in the surf zone. They
expressed the forces as a function of deep water wave steepness and dimensionless cylinder
diameter. Chan and Melville (1988) correlated the impact force history with the position of
the breaking point measured with respect to the location of the structure front, and hence
by the breaker shape. Oumeraci et al. (1993) conducted experiments to point out that the
breaking criteria for regular waves on unobstructed flat sea bottoms cannot be applied for
incident irregular waves on vertical structures. Chakrabarti et al. (1997) measured breaking
wave forces on a single pile caisson in breaking waves for both regular and irregular waves.
They investigated the changes in the wave energy spectra during the wave breaking process
and the breaking irregular wave forces in the time-domain.
Numerical modelling with computational fluid dynamics (CFD) can be used to study the
breaking waves and breaking wave forces. Many important hydrodynamic flow details can be
modelled by using CFD with interface capturing and two-phase flow, which are difficult to
measure in the experiments. Several researchers have numerically modelled breaking waves
and associated forces in the past (Lin and Liu, 1998; Zhao et al., 2004; Hieu et al., 2004;
Jacobsen et al., 2012; Mo et al., 2013; Choi et al., 2015). The modelling of breaking waves
is quite challenging due to the higher-order and non-linear wave transformations during the
wave breaking process. Most of the numerical studies are dedicated towards the modelling
of regular breaking waves and wave forces. Kamath et al. (2016a) modelled breaking regu-
lar wave forces on a vertical cylinder. They validated their numerical model by comparing
their results with experiments with a good accuracy. They further investigated the effect of
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breaking location on the breaking wave forces. Christensen et al. (2005) and Bredmose and
Jacobsen (2010) investigated the breaking wave forces under focused waves and regular waves
on offshore wind turbine foundations, respectively, and reported reasonably good results. Ala-
gan Chella et al. (2017); Bihs et al. (2016b) have numerically investigated breaking regular and
solitary waves and wave forces on a single cylinder and tandem cylinders. They found good
agreement with the experimental breaking wave force data. Although a few researchers have
numerically modelled non-breaking irregular wave forces (Aggarwal et al., 2016a,b; Paulsen
et al., 2013), there are no CFD studies performed to investigate the breaking irregular wave
forces and the associated spectral characteristics to the best of the authors’ knowledge. The
breaking irregular waves are complicated in nature compared to the breaking regular waves
due to the multiple frequencies, wider breaking area and multiple breaker heights.
The goal of the present work is to investigate breaking irregular wave forces and associated
characteristics on a vertical cylinder mounted on a slope in the frequency-domain. The nu-
merical simulations are performed with the open-source hydrodynamics model REEF3D (Bihs
et al., 2016a). The numerical model has been validated for different applications including
breaking regular wave forces (Kamath et al., 2016b; Alagan Chella et al., 2016; Kamath et al.,
2017). The numerical model is first evaluated for the irregular wave surface elevation and then,
breaking irregular wave forces on a vertical cylinder for two cases for three different grid sizes.
Both cases are compared with the experiments performed by Chakrabarti et al. (1997). The
numerical results agree well with the experimental measurements. Further, numerical simu-
lations are performed for different cases (based on different wave steepnesses) to investigate
the wave transformations during the wave breaking process. The wave spectra and the wave
heights at the different wave gauge locations around the cylinder are investigated to under-
stand the energy level evolution during wave breaking process. Further, the breaking irregular
wave forces are analysed in the frequency-domain and the effect of the higher-frequency wave
components on the wave forces is discussed. The role of the free surface elevation skewness
and spectral bandwidth in influencing the irregular breaking wave forces is investigated. The
influence of wave deformation and wave breaking location on determining the wave breaker
type is studied by exploring the geometric wave profile properties and breaker indices. The
horizontal wave-induced water particle velocity at the free surface is also an important factor
in determining the free surface pressure and consequently, the breaking wave forces. There-
fore, the spectral variations of the free surface velocity and free surface pressure are examined
in the frequency-domain to understand the transformation of horizontal wave-induced water
particle velocity and wave pressure during the breaking process. Further, the best distribution
fit is also determined for the breaker indices, significant value of the irregular breaking wave
force and peak free surface pressure to understand their statistics.

2 Numerical Model

2.1 Governing Equations

In the present work, the open-source hydrodynamics model REEF3D (Bihs et al., 2016a; Bihs
and Kamath, 2017) is employed. The numerical model is based on the Reynolds-Averaged
Navier-Stokes equations (RANS) defined for incompressible fluids. The governing equations
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are the momentum conservation equation and the continuity equation:
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= 0 (1)
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where u is the velocity averaged over time t, ρ is the fluid density, P is the pressure, ν is the
kinematic viscosity, νt is the eddy-viscosity and g is the acceleration due to gravity.
For the spatial discretization, the fifth-order finite difference Weighted Essentially Non-Oscillatory
(WENO) scheme in multi-space dimensions is used (Jiang and Shu, 1996). The viscous terms
are source term dependent and result in very low CFL numbers when discretised explicitly. In
order to avoid this, the viscous terms are treated with an implicit method to take it out of the
CFL criterion. The third-order TVD Runge Kutta scheme is used for time discretization (Shu
and Oscher, 1988). An adaptive time stepping is applied in order to control the CFL number
and computing the time step size (Griebel et al., 1998). The pressure in the Navier-Stokes
equations is computed using the projection method (Chorin, 1968). The HYPRE integrated
conjugate gradient solver in combination with the multigrid preconditioning is utilized to
solve the Poisson pressure equation (Falgout and Yang, 2002). The present study uses the
k − ω model (Wilcox, 1994) along with the RANS equation to solve for turbulence. The
numerical model employs a Cartesian grid approach in order to apply the higher-order dis-
cretization schemes. A ghost cell immersed boundary method (GCIBM) is applied in order
to implement the irregular and non-orthogonal solid boundaries (Berthelsen and Faltinsen,
2008). For capturing the free surface, the level set method approach (Osher and Sethian,
1988) is used. The level set function gives the closest distance to the interface and the two
phases are distinguished by the change of the sign. The function can be written as:

φ(~x, t)


> 0 if ~x is in phase 1

= 0 if ~x is at the interface

< 0 if ~x is in phase 2

(3)

A higher-order discretization scheme for the convection of the level set equation as mentioned
above, in combination with the staggered grids results in insignificant mass loss in the numer-
ical wave tank. The mass conservation with the present numerical model has been shown in
Alagan Chella et al. (2016). At the interface, the fluid properties such as the density and vis-
cosity are smoothened across the interface over a distance of 2.1dx using a Heaviside function.
The details of the density and viscosity interpolation are presented in Bihs et al. (2016a).

2.2 Irregular wave generation

In the present work, the relaxation method is used for the wave generation (Mayer et al.,
1998), and they are dissipated with the active wave absorption method at the outlet boundary
(Schaffer and Klopman, 2000). Wall boundary conditions are used on the sides of the NWT.
The irregular waves are generated by superposition of linear regular waves components. The
free surface η is defined as:

η =

N∑
i=1

Aicosθi (4)
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Ai =
√

2S(ωi)∆ωi (5)

θi = kix− ωit+ εi (6)

ω2
i = gkitanhkid (7)

where N is the number of components, d is the water depth, Ai is the amplitude of the each
wave component, S(ωi) is the spectral density and θi is the phase of the each component, εi
is a random number distributed between 0 and 2π, ωi is the angular wave frequency, λi is the
wavelength of a component and ki is the wave number of a component given by:

ki =
2π

λi
(8)

Similarly, the horizontal velocity u and the vertical velocity w are computed as the superposi-
tion of the individual ui and wi components in the irregular wave train. In the present study,
the Bretschneider spectrum is used for the generation of irregular waves. The Bretschneider
spectrum is mainly defined for the developed sea states. The input values to the spectrum
are the significant wave height Hs and the peak angular frequency ωp:

S(ω) =
5

16
H2
s

ω4
p

ω5
exp[
−5

4
(
ωp
ω

)4] (9)

2.3 Wave force computation

The total wave force (F ) in the numerical model is calculated by integrating the pressure and
the normal component of viscous stress tensor τ over the surface Ω of the structure. This
procedure is performed discretely by evaluating the pressure p and τ for the individual cell
surfaces:

F =

∫
Ω

(−np+ n · τ)dΩ (10)

2.4 Computational setup

The numerical tests are carried out in a three-dimensional (3D) numerical wave tank (NWT)
(Fig. 1). The numerical results are compared with the experimental results by Chakrabarti
et al. (1997). The NWT is 31 m long, 1.8 m high and 0.40 m wide. The still water level over
the horizontal bottom is d = 1.01 m. The numerical setup employs a vertical cylinder with
an uniform diameter D = 0.046 m and is placed at x = 13.41 m. Five wave gauges are placed
at x = -2.00 m (W1), 5.00 m (W2), 11.59 m (W3), 13.41 m (W4), 15.59 m (W5) to measure
the free surface elevations; three velocity probes are placed at the free surface with x and y
coordinates as: P1 (11.59 m, 0.20 m), P2 (13.41 m, 0.15 m), P3 (15.59 m, 0.20 m) to measure
the particle velocities. The irregular waves are generated using the Bretschneider spectrum.
The goal of the paper is to first validate the numerical model against the experimental data
before performing extensive numerical analysis. The waves in the experiments by Chakrabarti
et al. (1997) were generated using the Bretschneider spectrum. Therefore, the authors have
used the same wave spectrum to simulate the experimental waves in the numerical model. The
numerical simulations for the validation of the numerical model are conducted for 2 different
cases as listed in Table 1. The computations are conducted on the supercomputer which is
based on the Intel Xeon E5–2670 processor with 2.6 GHz speed and a memory of 2 GB per
core. Furthermore, 256 processors are used for the present simulations.
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W3,P1W2W1
W4,P2

W5,P3
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1

1.01m
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Figure 1: Numerical wave tank setup to simulate the experiments by Chakrabarti et al. (1997)

Cases

Significant wave height, Hs (m) Peak

period,

Tp (s)

Grid

size,

dx (m)

Significant

force, Fs (N)
Input

W3 W4 W5

Exp Num Exp Num Exp Num Exp Num

Case 1 0.457

0.459 0.381 0.468 0.402 0.411 0.348

2.9

0.05 – 14.54

0.459 0.422 0.468 0.411 0.411 0.353 0.025 – 19.92

0.459 0.441 0.468 0.446 0.411 0.382 0.01 – 20.12

Case 2 0.330

– 0.263 – 0.276 – 0.221

2.9

0.05 17.04 12.95

– 0.284 – 0.295 – 0.241 0.025 17.04 16.89

– 0.317 – 0.331 – 0.268 0.01 17.04 17.11

Table 1: List of cases for the validation of the numerical model with the experiments by
Chakrabarti et al. (1997)

2.5 Grid convergence study for the wave free surface elevation and breaking
irregular wave force

The grid convergence study is carried out for the free surface elevation and breaking irregular
wave force in the NW. The numerical model is based on the Cartesian grid, which means that
the mesh size is uniform in all directions (dx = dy = dz). For the free surface elevation, the
numerical simulations are performed with a significant wave height Hs = 0.457 m and a peak
period of Tp = 2π

ωp
= 2.9 s for three different grid sizes dx = 0.05 m (total number of mesh

elements= 178,560), 0.025 m (total number of mesh elements= 1.4 million) and 0.01 m (total
number of mesh elements= 22.3 million), as listed in the Table 1 (case 1). The wall time
(CPU time) is around 10 hours with dx = 0.05 m, 70 hours with dx = 0.025m and 250 hours
for each case with dx = 0.01 m. The simulations are run for 200 s of data. The local wave
spectrum Sη at the wave gauges is normalised with respect to the incident wave spectrum,
i.e.
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(c)

Figure 2: Comparison of the normalised numerical and experimental wave spectrum Ŝη with
different grid sizes dx for case 1 (Hs = 0.457 m, Tp = 2.9 s) at a) W3 (x = 11.59 m) b) W4
(x = 13.41 m) c) W5 (x = 15.59 m)

Ŝη(f) =
Sη(f)

S(f)
(11)

where f = 2π
ω .

Fig. 2 presents the comparison of the normalised numerical and experimental wave spec-
trum Ŝη with different grid sizes dx for case 1 at W3, W4 and W5. It appears that the
numerical results with dx = 0.05 m and 0.025 m underestimate the wave energy content at
W3. The value of the primary spectral peak at f =0.34 Hz is in agreement with the ex-
periments, but the spectral values in the higher frequencies (0.6-1.2 Hz) is not represented
correctly at these grid sizes. This is due to the lack of sufficient cells per wavelength. The
computed Hs is lower than the experimental values by 17 % and 8.1 % for the cases with dx
= 0.05 m and 0.025 m, respectively (Fig. 2a).

The results with dx = 0.01 m are in reasonable agreement with the experimental data for
most of the frequency range. The difference between the experimental and numerical value of
Hs reduces to 3.9 %. When the waves reach the cylinder, some of the shoaled waves attain their
maximum heights due to the sloping seabed after which they break. A few waves continue to
shoal (waves which have not reached their maximum heights), as computed at the wave gauge
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located besides the cylinder (W4). At W4, the computed Hs is lower than the experimental
values by 14.1 % and 12.2 %, for the cases with dx = 0.05 m and 0.025 m, respectively. The
difference between the experimental and numerical value of Hs reduces to 4.7 % at dx = 0.01
m (Fig. 2b). The wave gauge located behind the cylinder (W5) measures the waves which
have already broken and lost most of their energy. Thus, the spectral values at W5 is lower
than at W4 due to the loss of wave energy. The computed Hs is lower than the experimental
values by 15.3 % and 14.1 %, for the cases with dx = 0.05 m and 0.025 m, respectively. The
difference between the experimental and numerical value of Hs reduces to 7.1 % at dx = 0.01
m. The values of the numerical wave spectrum at W5 is lower than the experimental values
in the frequency range from 0.9 Hz to 1.4 Hz (Fig. 2c). Even though, the numerical results
for dx = 0.01 m represent most of the wave energy and frequencies well (0-0.9 Hz) with a low
uncertainty (2.2 %) , but it should be noticed that the difference between the experimental
and numerical values in the high frequency range (0.9 Hz to 1.4 Hz) is around 42 % at all wave
gauges. The number of elements per wavelength corresponding to waves at peak frequency
are around 800, which are enough to model waves at these frequencies correctly resulting in
a good agreement at the peak frequencies. However, at higher frequencies (around 0.9 Hz
or more), the number of elements per wave length is about 200 or less. This explains the
discrepancies in the high frequency ranges, as a further refined grid size is required in order
to capture them accurately. A very refined grid size would increase the computational costs
manifolds which are beyond the scope of the present study. But, since the energy content is
quite low (less than 4 %) at these frequencies, it can be concluded that overall, the numerical
results with dx = 0.01 m simulates the experimental waves with reasonable accuracy, i.e., the
primary and secondary spectral peaks are well represented (Fig. 2). In general, the spectral
evolution of the waves during the transformation processes like wave shoaling, wave breaking
and wave decomposition post-breaking is reproduced well at dx = 0.01 m.

After the numerical model is validated for the free surface elevation, a grid convergence
study is performed for the total force spectrum. The simulations are performed with Hs =
0.33 m and Tp = 2.9 s with three different grid sizes dx = 0.05 m, 0.025 m and 0.01 m, as
listed in the Table 1 (case 2). Here, horizontal component of the total force is considered,
since it is dominant over the other two directions. Fig. 3a presents the grid refinement study
in terms of normalized force spectrum ŜF on the vertical cylinder. Further, the numerical
wave spectrum at this location of wave impact (W4 ; x = 13.41 m) can be seen in Fig. 3b.

ŜF =
SF

Tp(ρg(πD3/4))2
(12)

The force spectrum has a primary peak at f = 0.36 Hz for the results with all grid sizes.
The peak of the numerical force spectrum is lower by 19.5 % and 9.5 % for dx = 0.05 m
and 0.025 m, respectively, than the corresponding experimental peak value. This difference
reduces to less than 1 % for dx = 0.01 m. The value of the numerical significant wave force Fs
is lower by 24.0 %, 8.1 % and 0.6 % for dx = 0.05 m, 0.025 m and 0.01 m, respectively, than
the experimental significant wave force Fs. The secondary peak at f = 0.57 Hz is in good
agreement with experimental results for dx = 0.025 m and 0.01 m. The primary spectral
peak in the force spectrum corresponds to the peak frequency of the irregular wave train.
The secondary peak is due to the interaction of the decomposed wave components with the
cylinder, i.e., the higher frequency components are generated because of the wave energy
redistribution towards shorter waves (higher frequencies) during wave breaking (Tian et al.,
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Figure 3: Normalised spectra for case 2 (Hs = 0.330 m, Tp = 2.9 s) (a) experimental and
numerical force spectrum ŜF with different grid sizes dx (b) Numerical wave spectrum at this
location; at W4 (x = 13.41 m)

2011). Fig. 3b demonstrates the numerical wave spectrum besides the cylinder at W4. The
wave forces are measured with a reasonable accuracy at dx = 0.025 m, but the numerical
results with dx = 0.01 m gives more detailed information about the flow properties. Thus,
the grid size of 0.01 m is chosen for the further simulations. The time-step is calculated based
on the CFL number in the numerical model (Bihs et al., 2016a).

3 Investigation of breaking irregular wave forces and associ-
ated parameters

3.1 Numerical setup

In order to investigate the hydrodynamic properties of irregular breaking waves and the associ-
ated breaking wave forces for different spectral wave steepnesses, seven different configurations
are performed. The spectral wave steepness for irregular waves is defined by:

s =
2πHso

gT 2
p

(13)

In the first four cases (A1-A4), the wave steepness is varied by modifying the incident offshore
significant wave height Hso, while maintaining the peak period Tp. In cases B1-B3, the wave
steepness is changed by varying the peak period Tp, while keeping the incident significant
wave height Hso the same. The simulation cases are listed in Table 2.

3.2 Wave height transformation

The changes in the irregular free surface elevation for irregular waves can be investigated
with the wave energy spectrum. When waves approach from deep water to shallow water, the
characteristics of the irregular wave group such as wave energy, wave height and wave length
change due to the varying water depth; their group velocity decreases. In order to keep the
energy flux constant, the decrease in the group velocity is compensated by an increase in the
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Sim. No.
Significant wave

height Hso (m)

Peak period

Tp (s)

Spectral steepness

s

Significant force

Fs (N)

A1 0.30 2.9 0.023 14.34

A2 0.50 2.9 0.038 26.23

A3 0.55 2.9 0.042 32.21

A4 0.60 2.9 0.046 35.51

B1 0.55 2.0 0.088 24.91

B2 0.55 2.5 0.056 30.64

B3 0.55 3.5 0.029 22.08

Table 2: Simulation cases for the study of breaking irregular wave forces on a cylinder mounted

on an impermeable slope

energy density, i.e. the wave height. Figs. 4 and 5 present the computed free surface profile
with velocity variation during the wave breaking process in the irregular wave train for cases
A4 (s = 0.046) and B2 (s = 0.056), respectively. For case A4, the waves start shoaling near
the toe of the slope and continue to shoal up to the breaking point (Figs. 4a and 4b). The
wave crest overturns and collapses at the cylinder resulting in the breaking wave impact on
the cylinder (Figs. 4c and 4d). After wave breaking, a chute-like downstream jet is formed as
observed in Figs. 4e and 4f. Most of the waves in the irregular wave train for case A4 break
near the cylinder, Fig. 4 shows the breaking process for one such wave in the irregular wave
train. The breaking waves exert higher wave loads due to the collapsing tip of the wave crest
and the large amount of water impacting the cylinder. For case B2, the wave steepness is
relatively larger (s = 0.056) implying that most of the wave components attain the breaking
limit before impacting the cylinder and that they break in the vicinity of the cylinder (Fig.
5). On further increasing the wave steepness (case B1, s = 0.088), the wave non-linearity
increases due to a larger number of steep wave components. Consequently, the higher-order
wave-wave interactions become significant and generate very steep wave crests, and waves
break further offshore and away from the cylinder in this case (Banner and Peregrine, 1993).
Therefore, it is important to investigate the complex wave height transformations around the
cylinder for a better understanding of the breaking irregular wave forces.

Fig. 6 presents the variation in the normalised wave spectrum Ŝη for breaking irregular
waves versus frequency f for (a) case A1 (low spectral wave steepness s = 0.023) (b) case
B1 (high spectral wave steepness s = 0.088). For case A1 (Fig. 6a), the wave gauge located
far away from the cylinder (W2), the second spectral peak is not very pronounced. When
waves propagate further, the wave gauge located before the cylinder (W3) exhibits two small
spectral peaks around the peak frequency region. This might be attributed further to the
wave shoaling (Elgar et al., 1997). This leads to a transfer of the spectral peak energy (f =
0.321 Hz) to slightly higher frequencies (f = 0.417 Hz). This phenomenon contributes to an
additional peak in the peak frequency region. Another reason for this could be due to the
interaction between waves and structure. When the waves propagate further, more waves in
the wave train attain their maximum wave heights and break in the vicinity of the cylinder
(W4). However, the difference between the spectral peaks at W4 and W3 is very small (4.6
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Computed wave profile during wave breaking with the velocity variation on the
cylinder for case A4 (Hso = 0.60 m, Tp = 2.9 s, s = 0.046) at t = (a) 75.9s (isometric-view)
(b) 75.9s (top-view) (c) 76.3s (isometric-view) (d) 76.3s (top-view) (e) 76.5s (isometric-view)
(f) 76.5s (top-view)

%) which means that only a few waves break in the irregular wave train and they attain their
breaking wave height at the cylinder. For the wave gauge located after the cylinder (W5),
both spectral peaks are reduced. The primary spectral peak is reduced by 11.2 % (Fig. 6a).
This is due to the loss of wave energy during the wave breaking process and the interaction
with the cylinder. In the case of higher wave steepness (case B1), the primary spectral peak is
lower than for case A1. The spectrum at W2 for this case is larger than at W3, because most
of the waves have already shoaled at this point, and on further shoaling , they start to break
and have lost most of their energy before reaching W3 (Fig. 6b). However, the wave spectrum
still contains some shoaled waves which have not yet broken. The spectral peak values at W3
and W4 (beside the cylinder) reduce to less than 1 due to the large number of breaking waves
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(a)

(b)

(c)

Figure 5: Computed wave profile during wave breaking with the velocity variation in the
vicinity of the cylinder for case B2 (Hso = 0.55 m, Tp = 2.5 s, s = 0.056) at t = (a) 53.3s (b)
53.45s (c) 53.85s

in the wave train. The offshore wave energy dissipation leads to reduced magnitude of the
wave impact forces on the cylinder. After the waves propagate towards the lee side of the
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cylinder (W5, wave gauge located after the cylinder), the spectral peak is reduced further.
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Figure 6: The normalized numerical wave spectrum Ŝη versus frequency f at different wave
gauge locations for (a) case A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) (b) case B1 (Hso = 0.55
m, Tp = 2.0 s, s=0.088). W3 is at x = 11.59 m, W4 is at x = 13.41 m and W5 is at x = 15.59
m.
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Figure 7: Bicoherence estimate for numerical free surface elevation for case A1 (Hso = 0.30
m, Tp = 2.9 s, fp = 0.35 Hz, s=0.023) at W4 (x = 13.41 m).

Further, a bispectrum analysis is performed for case A1 (Hso = 0.30 m, Tp = 2.9 s, fp
= 0.35 Hz, s=0.023) to understand the couplings between different frequencies during wave
shoaling and wave breaking processes. Bound waves generated as a result of wave nonlinearity
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play an important role in this process. The present study uses the procedure similar to that
of Elgar and Guza (1985) for the bispectrum analysis with 95 % significance levels for the
normalization of bicoherences. Fig. 7 presents the bicoherence amplitude (‖b‖) spectrum
for case A1. It indicates nonlinear couplings between different modes of the power spectrum
shown in Fig. 6a. The bicoherence shows a strong coupling between the peak frequencies
(fp, fp). A strong coupling is further observed between fp and at about 2fp, also strong
coupling is observed between lower frequencies (< fp) and higher frequencies (> fp). This
means that the waves at these frequencies are bound waves. In addition, there is relatively
weak coupling between fp and higher-frequencies due to the nonlinear wave shoaling and wave
breaking processes which behave as relatively free waves. Thus, the bispectrum shown in Fig.
7 illustrates the coupling between different frequency ranges and the transfer of wave energy
from the peak frequency to larger frequencies.

Fig. 8 presents the distribution of the normalized local significant wave height (Hs/Hso)
versus the distance along the wave tank (x) for (a) cases A1-A4 (same Tp, different Hso and
(b) cases B1-B3 (different Tp, same Hso). The wave height becomes 1.42Hso) for case A4
(s=0.046) compared to case A1 (s = 0.023), where Hs/Hso is 1.31 at the wave gauge before
the cylinder (W3). For cases A4 and A1, the wave height is 1.28Hso and 1.36Hso, respec-
tively at the wave gauge located besides the cylinder (W4). The waves with lower spectral
wave steepness have a higher Hs/Hso ratio due to the onshore wave breaking at relatively
shallower water depths. Since the incident wave energy in case A4 is much larger compared
to case A1, the breaking wave forces in case A4 are larger than in case A1, even though the
waves lose a higher amount of wave energy in case A4 after offshore wave breaking. For the
cases with the same Hso and different Tp (cases A3, B1 , B2 and B3), a similar behaviour is
observed. In the case when the wave train is dominated by the shorter waves (case B1, s =
0.088), Hs/Hso attains its maximum value at x = 5 m (W2). The waves lose 9.8 % of their
wave energy when they reach the cylinder (at W3) compared to the energy at W2. This is
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Figure 8: The normalized significant wave height Hs/Hso versus the distance along the wave
tank for (a) cases A1 (s=0.023), A2 (s=0.038), A3 (s=0.042) and A4 (s=0.046) (b) cases A3
(s=0.042), B1 (s=0.088), B2 (s=0.056) and B3 (s=0.029).

due to the wave breaking at larger water depths. The rate at which the waves lose energy is
higher in the cases with larger wave steepness s. The irregular wave train with larger s has

14



Aggarwal, A. et al., 2019

a higher number of individual waves which attain their breaking limit farther offshore. The
wave breaking location and the number of breaking wave components in the irregular wave
train are important factors in determining the magnitude and properties of the breaking wave
forces.

3.3 Energy level evolution

This section demonstrates the energy transfer between the different frequency ranges of the
wave spectrum by tracking the wave energy levels at different frequency ranges during the wave
shoaling and wave breaking processes. Five different frequency ranges of the wave spectrum
are considered: spectral peak region (f/fp = 0.9-1.1, E1), above-peak region (f/fp = 1.2-
1.5, E2), higher-frequency region (f/fp = 1.5-2.5, E3), low frequency range (f/fp = 0.5-0.9,
E4) and significantly high frequency region (f/fp = 2.5-5, E5). These energy levels are non-
dimensionalised with the total incident wave energy E0 near the wave generation boundary.
The total wave energy at each wave gauge is computed by integrating the wave spectrum with
wave components of frequencies lower than 5fp. This is similar to the methodology used by
Tian et al. (2011) to investigate the energy transfer for breaking focused wave groups. Fig. 9
presents the variation of the energy levels at different frequency ranges versus the normalized
distance in the NWT. As the waves propagate over the slope for case A1 (Hso = 0.30 m, Tp =
2.9 s, s=0.023), the energy reduces from both regions E1 (spectral peak region) and E4 (low
frequency range) due to wave shoaling, and this energy is transferred to the above-peak region
E2 as noticed by an increase in E2 (Fig. 9a). Moreover, the energy during the wave shoaling
process in the high-frequency regions E3 increases, while E5 first reduces and then increases.
After breaking (at x/Ls = 0.82 ), the energy from the spectral peak region E1 is significantly
reduced (43 %) compared to the energy in E1 before the slope (x/Ls = -2). This is due to
the energy dissipation during breaking and energy transfer towards E2 and E3, as noticed by
the increase in their energy levels by almost 42 % and 33 %, respectively, after breaking. The
energy levels in the significantly high frequency range E5 are not affected much. Furthermore,
total wave energy is reduced by around 20 % compared to total incident wave energy. For case
B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088), a similar behaviour is observed (Fig. 9b). However,
wave breaking occurs at larger water depths for this case, since the energy dissipation from
the spectral peak E1 for case B1 occurs earlier (after x/Ls = 0.31) and some of the energy is
transferred to the higher-frequencies in E2 and E3. Total energy is reduced by more than 30
% compared to total incident energy after wave breaking for this case.

3.4 Breaking irregular wave forces

Breaking waves exert large impact forces on the cylinder due to the overturning wave crest
with a water jet impacting the cylinder. Due to this, the breaking irregular wave forces are
larger in magnitude and more complex in nature compared to the non-breaking irregular wave
forces. Time-series for horizontal wave-induced impact loads for cases A1 (s = 0.023) and
A4 (s = 0.046) is also shown in Figs. 10a and 10b, respectively. The wave force is highly
irregular and random. Fig. 9 presents the variation of the normalised force spectrum ŜF
versus frequency f for (a) cases A1-A4 (different Hso, same Tp) (b) case A3 and cases B1-
B3 (same Hso, different Tp). In general, when Tp is kept constant and Hso is varied, the
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Figure 9: The energy levels versus the normalized distance in NWT for (a) case A1 (Hso =
0.30 m, Tp = 2.9 s, s=0.023) (b) case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088). Open cir-
cles represent E1(x)/E0(x); squares represent E2(x)/E0(x); rhombus represent E3(x)/E0(x);
crosses represent E4(x)/E0(x); triangles represent E5(x)/E0(x). E1 for spectral peak region
(f/fp = 0.9-1.1), E2 for above-peak region (f/fp = 1.2-1.5), E3 for higher-frequency region
(f/fp = 1.5-2.5), E4 for low frequency range (f/fp = 0.5-0.9) and E5 for significantly high
frequency region (f/fp = 2.5-5).

value of the primary spectral force peak increases as the spectral wave steepness s increases
(Fig. 10c). The multiple secondary peaks are observed in the higher frequencies which might
be attributed to the shorter wave components generated during the wave breaking process.
However, when the wave steepness increases such that more wave components in the irregular
wave train break farther offshore (before the cylinder), the increase in the peak value of the
force spectrum is quite small due to the offshore dissipation in wave energy. The normalised
spectral force peak is further increased for case A2 (s = 0.038) and case A3 (s = 0.042).
By further increasing the wave steepness (case A4, s = 0.046), the increase in the primary
spectral peak is very small (3.3 %) and the secondary spectral peak is slightly reduced (Fig.
10c). Most of the waves in this irregular wave train break at the cylinder (Fig. 4). Due to the
larger incident wave energy (higher incident Hso) and the pronounced wave breaking at the
cylinder, the breaking wave forces and consequently, the value of the primary spectral force
peak is higher.

When the spectral wave steepness is changed by changing Tp ( keeping Hso constant),
the value of the primary spectral peak is highest in case A3 (s = 0.042). The incident wave
energy is the same in these cases (due to same incident Hso), but the wave breaking location
shifts farther offshore (away from the cylinder), when spectral wave steepness s is increased
(by reducing Tp) (Fig. 10d). Since most of the energy dissipation occurs offshore (Fig. 5),
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the magnitude of the breaking wave forces on the cylinder is reduced. In case B1, the wave
steepness is quite high (s = 0.088), but the value of the spectral force peak is reduced as
compared to case A3. Here, in addition to the depth-induced wave breaking, the role of
wave-wave interactions becomes important. The irregular wave train with the larger incident
Hso contains a larger number of wave components with larger wave steepness. The wave
breaking is also initiated by the steeper wave components generated as a result of wave-wave
interactions. Due to a large number of wave components breaking farther offshore, the waves
lose a significant amount of wave energy before reaching the cylinder and exert relatively lower
wave forces.

The values of the significant breaking wave force Fs is computed from the wave force
spectra as shown in Table 2. Fig. 11 presents the variation of the significant wave force Fs
versus wave steepness s (cases A1-B3). As s increases, the value of the significant wave force
Fs increases up to a certain point (until s = 0.046). By increasing s further, a major portion
of the waves in the irregular wave train starts to break at larger water depths (far before the
cylinder) and a reduction in Fs is observed.
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Figure 10: The normalized numerical force results (a) force time-series for case A1 (s=0.023);
(b) force time-series for case A4 (s=0.046); (c) spectrum ŜF versus frequency for cases A1
(s=0.023), A2 (s=0.038), A3 (s=0.042) and A4 (s=0.046); (d) spectrum ŜF versus frequency
for cases A3 (s=0.042), B1 (s=0.088), B2 (s=0.056) and B3 (s=0.029).
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Figure 11: The significant wave force Fs versus spectral wave steepness for cases A1 (s=0.023),
A2 (s=0.038), A3 (s=0.042), A4 (s=0.046), B1 (s=0.088), B2 (s=0.056) and B3 (s=0.029).

3.5 Free surface elevation skewness and spectral bandwidth

When the waves undergo transformation during the propagation from deep to shallow water,
the skewness of the free surface and the spectral bandwidth of the irregular wave train also
change. The skewness of the free surface elevation η is quantified as (Goda, 2010):

β =
1

η3
rms

1

N

N∑
i=1

(ηi − η̄)3 (14)

where, η̄ is the mean free surface elevation and ηrms is the root-mean-square (rms) value.
The spectral bandwidth (ν) is defined as (Longuet-Higgins, 1975) :

ν2 =
m0m2

m2
1

− 1 (15)

where, mn is the spectral moment:

mn =

∫ ∞
0

ωnS(ω)dω;n = 0, 1, 2....... (16)

Fig. 12 presents the distribution of the skewness (β) versus the distance in the wave
tank (x) for (a) cases A1-A4 and (b) cases B1-B3. In general, the skewness increases up
to the breaking point and it is nearly invariant after breaking. For cases A1-A4 (same Tp),
the skewness β for the waves with small s (compared with the waves with larger s) is always
higher both at and after breaking. The skewness becomes 0.035 at the cylinder (W4) and 0.037
after the cylinder (W5) (post wave breaking) for case A1 (s = 0.023). A similar behaviour
is observed for cases B1-B3. For a given offshore significant wave height Hso, the wave
components with lower Tp break more offshore and have a lower skewness compared to the
cases with larger Tp. The wave components with lower s possess a larger β because these
wave components are relatively longer and travel faster over the slope and undergo more
deformation (Goda, 2010). The skewness influences the breaking wave forces for irregular
waves. The non-linear wave components contribute towards the higher-order wave forces in
the force spectrum. Fig. 14a presents the significant wave force Fs versus the skewness β
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computed at the wave gauge located besides the cylinder (W4). The value of Fs increases as
the skewness β increases up to a certain value (0.015) and decreases afterwards.
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Figure 12: The skewness β versus the distance along the wave tank for (a) cases A1 (s=0.023),
A2 (s=0.038), A3 (s=0.042) and A4 (s=0.046) (b) cases A3 (s=0.042), B1 (s=0.088), B2
(s=0.056) and B3 (s=0.029).

Fig. 13 presents the variation of the normalized bandwidth ν̂ versus the distance along
the wave tank (x) for (a) cases A1-A4 (same Tp, different Hso) and (b) cases B1-B3 (different
Tp, same Hso). The bandwidth is normalized with the offshore bandwidth value at W1
(before wave transformation). In general, the spectral bandwidth increases until the wave
components (both non-breaking and breaking) attain their maximum heights during shoaling.
For all the cases A1-B3, the spectral bandwidth ν̂ for waves with larger s increases up to the
wave breaking location, and then it decreases in the surf zone. The energy loss takes place
during wave breaking as energy from the peak regions is redistributed to the shorter wave
components and the wave spectrum becomes narrower. The distribution of the wave energy
over the frequency range changes during the breaking process as quantified by ν̂. Fig. 14b
presents the significant wave force Fs versus the normalized bandwidth ν̂ computed at the
wave gauge located besides the cylinder (W4). In general, Fs increases as ν̂ increases. A
larger bandwidth means that a larger amount of the non-linear energy transfer has taken
place and a relatively larger number of wave components in the irregular wave train shoal to
attain their breaking limits (Tian et al., 2011). After wave breaking has occurred, ν̂ decreases
further due to energy dissipation (Figs. 13a and 13b). However, in some cases where the
local wave energy is larger, the breaking Fs is larger even though the bandwidth is smaller
(case B1, Fig. 14b). Therefore, the local wave energy and the breaking location are the most
important factors in determining the significant wave forces. In general, the wave spectrum
with a larger bandwidth exerts the larger breaking wave forces on the cylinder.
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Figure 13: The normalized bandwidth ν̂ versus the distance along the wave tank for (a) cases
A1 (s=0.023), A2 (s=0.038), A3 (s=0.042) and A4 (s=0.046) (b) cases A3 (s=0.042), B1
(s=0.088), B2 (s=0.056) and B3 (s=0.029).
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Figure 14: The significant wave force Fs at the wave gauge located besides the cylinder W4 (x
= 13.41m) for cases A1 (s=0.023), A2 (s=0.038), A3 (s=0.042), A4 (s=0.046), B1 (s=0.088),
B2 (s=0.056) and B3 (s=0.029) with (a) β (b) ν̂

3.6 Breaking wave characteristics

The breaking of regular waves can be defined by four types: spilling, plunging, collapsing
and surging depending on the surf similarity parameter. The surf similarity parameter at
breaking (ξb) is a function of the wave steepness at breaking (sb) and the slope of the seabed
(m) (Battjes, 1974).

ξb =
m
√
sb

; sb =
2πHb

gT 2
(17)


ξb < 0.4 Spilling

0.4 < ξb < 2.0 Plunging

ξb > 2.0 Surging or Collapsing

(18)
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The breaker depth index (γb) and breaker height index (Ωb) are two parameters used to
investigate the breaking characteristics of waves. They are defined as:

γb =
Hb

db
; Ωb =

Hb

Hso
(19)

where db is the depth at breaking, T is the zero-crossing period of individual waves at breaking,
Hb is the local wave height at breaking and Hso is the offshore significant wave height.

Fig. 15 presents the breaker depth index (γb) (Fig. 15a) and the breaker height index (Ωb)
(Fig. 15b) versus the surf similarity parameter at breaking (ξb) for cases A1 and B1. For case
A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023), it is observed that the trend lines for the scattered
values of γb and Ωb remain almost invariant with the change in ξb. Further, all of the waves
break as spilling breakers and have values for Ωb lower than 1, which means that none of the
waves in the irregular wave train have a higher Hb than Hs during the shoaling process. The
spilling breakers experience less reflections due to a lower ξ2

b (according to Battjes (1974),
the reflection coefficient is directly proportional to ξ2

b ). The waves break more onshore at
shallower water depths and experience more deformation. For case B1 (Hso = 0.55 m, Tp
= 2.0 s, s=0.088), the trend of γb and Ωb with ξb is similar to case A1. In this case, waves
break farther offshore and experience more reflections from the slope for ξb>0.4. The plunging
breakers experience more reflections due to larger ξ2

b . Moreover, the wave spectra with larger
spectral wave steepness s undergo less deformation (Hajime and Kirby, 1992).
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Figure 15: The (a) breaker depth index γb versus ξb; (b) breaker height index Ωb versus ξb
(logarithmic x-axis). Upper y-axis shows spilling breakers (case A1) and lower y-axis shows
plunging breakers (case B1). Open circles represent case A1 (Hso = 0.30 m, Tp = 2.9 s,
s=0.023); dashed black line is linear fit for case A1; rhombus for case B1 (Hso = 0.55 m, Tp
= 2.0 s, s=0.088); solid black line is linear fit for case B1

Figs. 16 and 17 show the cumulative probabilities (CDF) for the normalized breaker
indices γ̂b and Ω̂b, respectively, for cases A1 and B1. The breaker indices are normalized with
their corresponding rms values. The figures show the numerical data together with the best
fit of the Weibull distribution to the data. The Weibull PDF is given by:

p(x) =
b

a
(
x

a
)b−1exp{−(

x

a
)b} (20)
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where b is the shape parameter and a is the scale parameter; the best fit values of a and b
are presented in Table 3.
Figs. 16a and 16b indicate that the Weibull distribution is an appropriate fit for the larger
values of the breaker depth index γ̂b for both spilling and plunging breakers (cases A1 and
B1, respectively). For the irregular wave train dominated by the spilling breakers (case A1,
Hso = 0.30 m, Tp = 2.9 s, s=0.023), the Weibull distribution can be taken to represent the
γ̂b data for γ̂b >0.3. For plunging breakers (case B1, Hso = 0.55 m, Tp = 2.0 s, s=0.088), the
Weibull distribution represents the data reasonably well for γ̂b >0.1. The normalized breaker
height index (Ω̂b) follows a trend similar to that for γ̂b for case A1 (Fig. 17a). The Weibull
distribution is a reasonable fit for spilling breakers for most of the Ω̂b values (case A1). For
case B1 (plunging breakers), the Weibull distribution represents the data reasonably well for
Ω̂b >0.8. (Fig. 17b), see Table 3 for details of the Weibull fit values.
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Figure 16: CDF fits in Weibull scale for the normalized breaker depth index γ̂b for (a) case
A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) (b) case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088).
Open circles for numerical data; solid black line for Weibull fit (for details of the CDF fits,
see Table 3)

3.7 Geometric properties of wave profile at breaking

During the breaking process, the waves become more steep and asymmetric. The present
study investigates further the geometric properties of the wave profile at breaking by using
the steepness and asymmetry parameters (Fig. 18) defined by Kjeldsen and Myrhaug (1978).

Figs. 19a, 19b, 19c and 19d present the crest front wave steepness (ε), the crest rear wave
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Figure 17: CDF fits in Weibull scale for the normalized breaker height index Ω̂b for (a) case
A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) b) case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088).
Open circles for numerical data; solid black line for Weibull fit (for details of the CDF fits,
see Table 3)
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Figure 18: Definitions of wave profile geometry (Kjeldsen and Myrhaug, 1978) a) crest front
wave steepness ε; b) crest rear wave steepness δ; c) vertical asymmetry factor λ; d) horizontal
asymmetry factor µ
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steepness (δ), the horizontal asymmetry factor (µ) and the vertical asymmetry factor (λ),
respectively, versus the surf similarity parameter at breaking (ξb) for cases A1 and B1. The
crest front steepness (ε) shows a slight decreasing trend as ξb increases for both cases A1 and
B1 (Figs. 19a). The values of ε for case B1 are slightly larger than for case A1, which is
dominated by plunging breakers. The crest rear steepness (δ) shows a slight increasing trend
as ξb increases for both, case A1 (dominated by spilling breakers) and case B1 (plunging
breakers) (Fig. 19b). The wave crest becomes more steep and skewed when the irregular
wave train propagates for spilling breakers compared to plunging breakers.
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Figure 19: Wave profile geometric properties versus the surf similarity parameter at breaking
ξb (logarithmic x-axis) for case A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) and case B1 (Hso =
0.55 m, Tp = 2.0 s, s=0.088) (a) ε; (b) δ; (c) µ; (d) λ. Upper y-axis shows spilling breakers
(case A1) and lower y-axis shows plunging breakers (case B1). Open circles represent case
A1; dashed black line is linear fit for case A1; rhombus for case B1; solid black line is linear
fit for case B1

It is noticed from Figs. 19c and 19d that µ remains almost invariant, while λ decrease
slightly as ξb increases for both cases A1 and B1. For the spilling breaker, the front and rear
faces of the wave crest become steeper and the forward wave trough flattens at wave breaking.
For the plunging breaker, the front face of the wave crest becomes very steep without much
change in the rear face of the wave crest and undergoes less deformation.
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3.8 Correlation of individual breaking and significant breaking wave forces

An irregular wave train is composed of regular wave components of different heights and
periods. Each breaking event can have a different breaker location, different breaker type
and different breaker shape. The geometric criteria based on the wave slope limit is used to
determine breaking waves (Kjeldsen and Myrhaug, 1978; Bonmarin, 1989). The percentage
of breaking waves Pb is defined as:

Pb =
Nb

Ni
× 100 (21)

where Nb is the number of breaking waves and Ni is the number of incident waves.

Figs. 20a and 20b present the percentage of breaking waves Pb and the significant value
of the irregular breaking wave force Fs versus the spectral wave steepness s as a bar graph.
For cases A1-A4 (same Tp and varying Hso), both the magnitude of the significant force and
the percentage of breaking waves in the irregular wave train increase as the spectral wave
steepness increases. Pb and Fs increase by almost 94 % and 140 %, respectively, as s increases
from 0.023 (case A1) to 0.046 (case A4) (Fig. 20a). In case A4, a larger number of breaking
waves impact the cylinder with large mass of water and exert larger Fs. When the wave
steepness is changed by keeping Hso constant and by changing Tp (cases A3 and B1-B3; see
Table 2), it is observed that the number of breaking waves increases as the wave steepness
increases, but the value of the significant wave force Fs first increases and then decreases as s
increases. For case B1 (s = 0.088), 33.4 % of the waves break, but they break further offshore
far away from the cylinder due to a large s. They lose most of their energy when they reach
the cylinder and the value of Fs is lower, even though the number of breaking waves in the
irregular wave train is larger. Fig. 21 shows the CDF of the normalized F̂s (F̂s = Fs/F
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Figure 20: Bar representation of the percentage of breaking waves Pb and significant breaking
wave force Fs versus spectral wave steepness s for (a) cases A1 (s=0.023), A2 (s=0.038), A3
(s=0.042) and A4 (s=0.046) (b) cases A3 (s=0.042), B1 (s=0.088), B2 (s=0.056) and B3
(s=0.029). White bar represent Fs and corresponds to the values on left y-axis; black bar
represent Pb and corresponds to the values on right y-axis

for all cases (A and B). It appears that the Weibull distribution represents the data quite well
for F̂s >0.8, see Table 3 for the details of the Weibull parameters.
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Figure 21: CDF in Weibull scale for the normalized breaking significant irregular wave force
F̂s for all cases A1 (s=0.023), A2 (s=0.038), A3 (s=0.042), A4 (s=0.046), B1 (s=0.088), B2
(s=0.056) and B3 (s=0.029). Circles represent numerical data; black solid line for Weibull fit

3.9 Changes in the horizontal wave-induced water particle velocities at the
free surface

During the shoaling and breaking processes, the wave-induced water particle velocities vary
due to the change in water depth and wave heights. In order to understand this, the variations
in the horizontal wave-induced water particle velocities at the free surface and the velocity
spectra are investigated for the horizontal velocity components at the velocity probes located
before, at and after the cylinder. The velocity spectrum Ŝu is normalised according to the
following equation:

Ŝu =
Su

Tp(
√
gd)2

(22)

Fig. 22 presents the variation of the normalized horizontal velocity spectrum Ŝu for irreg-
ular breaking waves versus frequency f for (a) case A1 (s = 0.023) (b) case B1 (s = 0.088).
For the case with s = 0.023, the probe located before the cylinder (P1) estimates the wave
velocities during the wave shoaling process (Fig. 22a). The number of breaking wave compo-
nents in the irregular wave train for this case is low. The wave particle velocity increases due
to wave shoaling until the waves reach the cylinder (P2) which is noticed by a slightly higher
spectral peak value. After the waves interact with the cylinder, they experience reflections
from the cylinder. Some shorter waves are generated due to the wave decomposition process
after breaking and the secondary spectral peaks in the velocity spectra become significant
(Fig. 22a) (Kamath et al., 2017).

The role of shorter components and their coherence with the spectral peak components
is further studied by computing bicoherence for this case (case A1, s = 0.023) as shown in
Fig. 23. A strong coupling is observed at the peak frequencies (fp, fp) and between fp
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and frequencies around 2fp. This means that a major portion of the shorter components
generated with frequencies around 2fp contribute to the spectral peak and are bound waves
(Doering and Bowen, 1995). Furthermore, other components contribute to secondary peaks
at higher frequencies in the spectrum as observed by the weak coupling between them and
behave as free waves. In the higher spectral wave steepness case B1 (s = 0.088), the wave
breaking occurs farther offshore at larger water depths. The waves lose a significant amount
of their incident wave energy during the wave breaking process before the cylinder (P1) and
non-linearity in the wave train is further enhanced. A similar trend was also observed for
the wave spectra signifying the contribution of shorter wave components towards the higher
frequencies. However, the frequencies at 2fp in the wave spectra behave as bound waves and
contribute to the spectral peak. When the waves reach the cylinder on the flat bed (P2), they
further lose their energy which reduces the particle velocities as observed by the lower velocity
spectrum peak. However, the contribution of the particle velocities for the higher frequencies
(>0.4 Hz) is still about the same as at P1. After the waves have interacted with the cylinder,
the velocity probe located after the cylinder (P3) shows the further reduced values of the
spectral peaks (Fig. 22b). The wave-induced water particle velocities are likewise reduced as
noticed by the reductions in both the primary and secondary spectral velocity peaks. This
corresponds to the decrease of the wave spectrum computed at this location due to the loss
of energy during the wave breaking process.
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Figure 22: Normalized numerical horizontal velocity spectrum Ŝu versus frequency f at dif-
ferent probe locations at free surface for (a) case A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) b)
case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088). X and Y coordinates (in metres) of P1, P2 and
P3 are (11.59, 0.20), (13.41, 0.15), (15.59, 0.20), respectively

3.10 Changes in the local pressure at the free surface

The total pressure exerted by the waves during the wave-structure interaction plays a major
role in estimating the wave forces. The variations in the wave pressure at the free surface
for breaking irregular waves are investigated in the frequency-domain by using the pressure
spectrum. The pressure spectrum ŜP is normalised according to the following equation:

ŜP =
SP

Tp(ρgd)2
(23)
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Figure 23: Bicoherence estimate for numerical horizontal velocity for case A1 (Hso = 0.30 m,
Tp = 2.9 s, fp = 0.35 Hz, s=0.023) at P2 (13.41, 0.15)

where SP is the pressure spectrum and ŜP is the normalised pressure spectrum.
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Figure 24: Normalized numerical pressure spectrum ŜP versus frequency f at different probe
locations at free surface for (a) case A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023) b) case B1 (Hso

= 0.55 m, Tp = 2.0 s, s=0.088). X and Y coordinates (in metres) of P1, P2 and P3 are (11.59,
0.20), (13.41, 0.15), (15.59, 0.20), respectively

Fig. 24 shows the variation of ŜP for irregular breaking waves versus the frequency f for
(a) case A1 (s = 0.023) (b) case B1 (s = 0.088). The instantaneous pressure due to waves is
associated with the free surface particle velocities. The pressure spectra exhibit behaviours
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similar to the horizontal particle velocity spectra for both cases. For the case with the low
spectral wave steepness s = 0.023, both the primary and secondary spectral peaks before the
cylinder (P1) are of lower magnitude compared to ŜP computed at the cylinder (P2). Most
of the individual wave components for the irregular wave train in this case continue shoaling
after P1 and attain their maximum wave heights in the vicinity of the cylinder (P2) (Fig.
24a). The increase in the wave heights is associated with the increase in u and consequently,
the free surface pressure. This is also noticed in Figs. 4 and 5, where u becomes significantly
larger during the breaking process. The spectral peaks of the free surface pressure are slightly
reduced after the wave train has interacted with the cylinder (P3), since some of the waves
break in the vicinity of the cylinder (P2) and lose their energy (Fig. 24a). In the higher
spectral wave steepness case B1 (s = 0.088), the number of individual wave components with
larger wave steepnesses is higher, leading to offshore wave breaking farther away from the
cylinder for most of the waves (Fig. 24b). On further wave propagation over the slope, the
additional wave breaking leads to the reduced peaks of the pressure spectrum measured in
the vicinity of the cylinder (P2) and after the cylinder (P3), unlike case A1.

Fig. 25 shows the CDF of the normalized P̂ = P/Prms (normalized peak values of the
free surface pressure in the time-series data) measured at the probe located at the cylinder
(P2). It is noticed from Fig. 25a that for case A1 (Hso = 0.30 m, Tp = 2.9 s, s=0.023), where
wave breaking is dominated by spilling breakers, the Weibull distribution is appropriate for
P̂ >0.01. For case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088), the Weibull distribution is a
reasonable fit for P̂ >0.0001, see Table 3 for the details of the Weibull parameters (Fig. 25b).

10-4 10-310-2 10-1 100

P̂

0.0001

0.0005
0.001 

0.005 
0.01  

0.05  
0.1   

0.25  
0.5   

0.75  
0.9   

0.99  0.999 0.9999

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

(a)

10-5 10-3 10-1100

P̂

0.0001

0.0005
0.001 

0.005 
0.01  

0.05  
0.1   

0.25  
0.5   

0.75  
0.9   

0.99  0.999 0.9999

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

(b)

Figure 25: CDFs in Weibull scale for the normalized peak values of the total free surface
pressure P̂ measured at the probe located at the cylinder (P2) (a) case A1 (Hso = 0.30 m,
Tp = 2.9 s, s=0.023) (b) case B1 (Hso = 0.55 m, Tp = 2.0 s, s=0.088). Circles represent
numerical data; black solid line for Weibull fit
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Weibull parameters

a b

Normalized breaker depth

index γ̂b

case A1 (s=0.023) 0.96 1.62

case B1 (s=0.088) 0.95 1.57

Normalized breaker height

index Ω̂b

case A1 (s=0.023) 1.06 4.33

case B1 (s=0.088) 1.06 3.66

Normalized total peak free

surface pressure P̂

case A1 (s=0.023) 0.52 0.72

case B1 (s=0.088) 0.50 0.65

Normalized breaking significant

irregular wave force F̂s
all cases A1 -B3 1.06 4.90

Table 3: Table listing the details for different statistical parameters for the Weibull distribution

.

4 Conclusions

A two-phase flow CFD model is used for the numerical investigation of irregular breaking wave
forces on a cylinder mounted on a slope. The numerical model is validated for breaking irregu-
lar waves and the resulting breaking wave forces on a vertical cylinder. The numerical results
for the irregular wave free surface elevation at different wave gauge locations and breaking
irregular wave forces are compared with the experiments by Chakrabarti et al. (1997) and a
good agreement is obtained with the experimental data for the free surface elevation and the
wave force. An extensive numerical analysis is performed to study breaking irregular wave
forces by carrying out the investigations for multiple incident irregular wave trains propagat-
ing over the slope. Further, alternative simulations with a cylinder moved as a function of a
breaking point can be run for the future investigations. First, the wave height transformations
and the energy level evolution during the wave breaking process are investigated. The incident
wave parameters play a major role in affecting the spectral wave parameters and breaking
wave forces. The transformations in the skewness and spectral bandwidth during the wave
breaking process are also highlighted. The breaking wave forces are further correlated with the
skewness and spectral bandwidth. The dominant wave breaker type and the influence of wave
deformation on wave breaking process is also investigated for lowest and highest spectral wave
steepness cases. The wave breaking is associated with the changes in the local wave kinemat-
ics. The changes in the horizontal wave-induced water particle velocity at the free surface and
the free surface wave pressure during the wave breaking process in the vicinity of the cylinder
are analysed in the frequency-domain. The following conclusions can be drawn from the study:

• For a given slope, the value of the significant wave force increases as spectral wave
steepness increases (for constant offshore Hso and different Tp) for irregular waves up
to a certain spectral steepness (s = 0.046). As the wave steepness increases further, the
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wave breaking shifts offshore and the waves break at larger water depths. As a result,
they lose a considerable amount of their incident energy before they impact the cylinder
and exert wave forces of lower magnitude.

• The spilling breakers dominate the wave breaker type for the cases with lower spectral
steepness (s = 0.023), they undergo more deformation. While, wave breaking is dom-
inated by plunging breakers for the cases with highest spectral steepness (s = 0.088),
such waves in the irregular wave train break experience more reflections from the slope
due to larger surf similarity parameter.

• Many shorter wave components are generated after wave breaking. The components
with frequencies around 2fp behave as bound waves and contribute to the spectral peak
as shown by the bicoherence amplitude spectrum. Furthermore, shorter waves with
other frequencies behave as free waves and contribute to the multiple peaks in the force
and velocity spectra.

• In general, the non-linear energy transfer from the spectral peak region (f/fp = 0.9-1.1)
to the above peak region (f/fp = 1.2-1.5) and higher-frequency region (f/fp = 1.5-2.5)
during the wave transformation process influences the changes in free surface elevation
skewness and spectral bandwidth. Further, the value of the significant wave force is
large, when the spectral bandwidth is large. A large bandwidth represents the wave
transformation processes; increased wave shoaling and wave breaking and thus large
breaking wave forces are observed.

• The horizontal wave-induced water particle velocities at the free surface are significant
in estimating the total pressure under waves during the wave breaking process. The
wave breaking location is important in determining the secondary and tertiary spectral
peaks during the spectral evolution of the velocity and pressure spectra.

• Overall, the Weibull distribution represents higher values of the numerical data reason-
ably well for the breaker depth index, breaker height index, peak free surface pressure
and significant value of the breaking irregular wave force.
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