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Abstract: This paper proposes a hybrid collision avoidance (COLAV) approach based on the
integration of a global path planning algorithm and a reactive collision avoidance technique. This
combination provides a robust path planning tool that can avoid collision with moving obstacles.
Bézier curves are exploited as the basis for global path planning, while dynamic window (DW)
algorithm is employed to search for optimal velocity pairs which ensure collision-free trajectory.
In particular, the interface between the deliberate and reactive method is developed, enabling
the vehicle to simultaneously track the generated global path towards the goal and avoid local
collision. The performance and robustness of the proposed hybrid COLAV method is evaluated

through numerical simulations.
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1. INTRODUCTION

A considerable amount of work has been done in the field
of autonomous vehicles and collision avoidance (COLAV)
over the past few decades. Autonomous path planning and
collision avoidance are essential for Autonomous Surface
Vehicles (ASV), navigating in unknown or partially known
environment with static and moving obstacles in the
vicinity of the vehicle. The hybrid COLAV architecture
proposed in this article, decomposes the task into global
path planning and local collision avoidance.

Reactive COLAV methods are widely used due to the
low demand for computing capabilities. Velocity Obsta-
cles method is one of those reactive COLAV approaches,
intended for motion planning to avoid static and moving
obstacles in the velocity space, Fiorini and Shiller (1998).
Ge and Cui (2002) proposed a new potential field method
for motion planning of mobile robots in a dynamic envi-
ronment with moving target and obstacles. Additionally,
dynamic window algorithm is one of the existing reactive
COLAYV approach, originally designed for robot with first
order nonholonomic constraints, Fox et al. (1997). A mod-
ified DW algorithm presented in Eriksen et al. (2016), is
adapted and tested for autonomous underwater vehicles
(AUV) with second-order nonholonomic constraints.

Nevertheless, dynamic window algorithm suffers from
many drawbacks, and the most significant one is high
sensitivity to the local minima. Seder and Petrovic (2007)

proposes an improved dynamic window algorithm incor-
porated with a focused D* search algorithm, such that
the vehicle is less likely to be trapped in a local minima.
Furthermore, Serigstad et al. (2018) introduces a hybrid
dynamic window approach, functions as an interface to
any deliberate COLAV method which generates time pa-
rameterized trajectories, enabling vehicles to avoid local
minima.

Motivated by the above considerations, in this paper, a
hybrid COLAV architecture is presented, based on the
combination of global pre-defined path generated by Bézier
curves and dynamic window algorithm. Furthermore, in-
terface between these two methods is developed, steer-
ing the vehicle to track the global path while avoiding
both static and moving obstacles. Besides, detecting and
recognizing obstacles, especially for moving obstacles, is
generally difficult. Light Detection and Ranging Device
(LIDAR) or other range-based sensors will be deployed on
real vehicle to perceive relative position and map local ter-
rain, facilitating further implementation of Simultaneous
Localization and Mapping (SLAM).

The global path planning is carried out using a new gener-
ation of path planning that incorporates in its formulation
the dynamics of the vehicles and extra data made available
by on board sensors about obstacles and other vehicles
in vicinity, Hassani and Lande (2018). Bézier Curves are
used as the basis for generating a rich set of paths that
determines spatial and temporal profile of the vehicles.
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Using differential flatness property of the vehicle, we are
able to reconstruct all the states of the vehicles during the
maneuver. The calculated states are then used to assign
a cost function to each path that reflects the dynamic
capabilities of the vehicle on that path. Hence, the global
path generated by Bézier curves takes the dynamics of
vehicle into account in their formulations; see Hassani and
Lande (2018).

The rest of the article is organized as follows. Section 2
summarizes the results in Hassani and Lande (2018) and
presents a brief introduction to the global path generator
used in this article. In section 3, a short description
of the Dynamic Window algorithm is presented. Section
4 describes the key idea behind the proposed hybrid
COLAYV technique. The performance and robustness of the
proposed hybrid COLAV algorithm is evaluated through
several simulation scenarios in Section 5. Conclusions and
suggestions for future research are summarized in Section
6.

2. GLOBAL PATH GENERATOR FOR FIXED
OBSTACLES

This section summarized the results of Hassani and Lande
(2018) in which, a class of Bézier curves is used to provide
a rich class of potential paths. Using the flatness property
of ASV, all the states and inputs of the ship along the
path is computed from which a cost value can be assigned
to each candidate path. Finally, an optimization problem
is formulated that would give birth to a global path
generator that would generate a path from point A to
point B in presence of fixed obstacles. the calculated path
satisfies dynamic limitations of the ASV such as required
curvature, continuity, smoothness.

2.1 Bézier curve

The mathematical basis for the Bézier curve are the Bern-
stein polynomials, named after the Russian mathemati-
cian Sergei Natanovich Bernstein, Farin (2014). In 1912
the Bernstein polynomials were first introduced and pub-
lished as a means to constructively prove the Weierstrass
theorem. In other words, as the ability of polynomials
to approximate any continuous function, to any desired
accuracy over a given interval. The slow convergence rate
and the technological challenges in the construction of the
polynomials at the time of publication, led to the Bernstein
polynomial basis being seldom used for several decades to
come. Around the 1960s, independently, two French auto-
mobile engineers of different companies, started searching
for ways of representing complex shapes, such as auto-
mobile bodies using digital computers. The motivation
for finding a new way to represent free-form shapes at
the time, was due to the expensive process of sculpting
such shapes, which was done using clay. The first engineer
concerned with this matter was Paul de Faget de Casteljau
working for Citroén, who did his research in 1959. His
findings lead to what is known as de Casteljau algorithm,
a numerically stable method to evaluate Bézier curves.

De Casteljau work were only recorded in Citroén internal
documents, and remained unknown to the rest of the world
for a long time. His findings are however today, a great tool
for handling Bézier curves, Farin (2014). The person who
lends his name to the Bézier curves, and is principally
responsible for making the curves so well known, is the
engineer Pierre Etienne Bézier. Bézier worked at Renault,
and published his ideas extensively during the 1960s and
1970s. Both Bézier and de Casteljau original formulations
did not explicitly invoke the Bernstein basis, however the
key features are unmistakably linked to it and today the
Bernstein basis is a key part in the formulation, Farouki
(2012).

A Bézier curve is defined by a set of control points P;
(¢ =0...n) for which n denotes the degree of the curve.
The number of control points for a curve of degree n is
n + 1, and the first and last control points will always be
the end points of the curve. The intermediate points does
not necessarily lay on the curve itself. The Bézier curve
can be express on a general form as

P(t) = Zn:Bin(t)Pi t € [0,1], (1)
=0

where t defines a normalized time variable and BJ(t)
denotes the blending functions of the Bézier curve, which
are Bernstein polynomials defined as

= (M- izeizen @

2.2 Differential flatness

A dynamic model of ASV is presented in Hassani and
Lande (2018); furthermore, it is shown that the pro-
posed model exhibits a differential flatness property; see
Van Nieuwstadt and Murray (1998). A system is said to
be differentially flat if one can find a set of outputs, equal in
number to the number of inputs, such that one can express
all states and inputs as functions of these outputs and their
derivatives. This can be formulated mathematically for a
nonlinear system, as follows. Consider a nonlinear system

&= f(z,u) z€R" uweR™ (3)
y=h(x) yeR™, (4)
where x denotes the state vector, u denotes the control

input vector and y denotes the tracking output vector.

Such a system is said to be differentially flat if there exist
a vector z € R™, known as the flat output, of the form

2=z, u, 1, ..., u"), (5)

such that
z = ¢y, Gy y'?) (6)
u=a(y,i,..,y?), (7)

where (, ¢ and a are smooth functions.
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3. DYNAMIC WINDOW ALGORITHM

Dynamic window method is a local reactive avoidance
technique, searching for inputs implemented in the space
of velocities. The main advantage of this approach is that
it directly incorporates the dynamics of the vehicle, since
the velocity space consists of translational velocity and
rotational rate, which turn into surge speed u and yaw
rate v for ASV, specifically. By adopting velocity space,
the pruning of the search space enormously simplify the
computational effort. Furthermore, the trajectory of the
ASV can be approximated by a sequence of straight lines
and circular arcs, and each arc is uniquely determined by
the velocity tuple (u,r) with the radius R = wu/r. For
each velocity pair within the velocity space, the dynamic
window algorithm is designed to predict the trajectory
that velocity pair (u,r) might generate for the next n time
intervals. Then, we only consider the first time interval and
assume that velocity vector remains unchanged within the
remaining n-1 time intervals. This assumption is based on
the observation that search is automatically repeated after
each time interval, while velocity will remain constant if
there are no new commands.

3.1 Search Space

With the constraints imposed on the velocity space, the
resulting search space is the intersection of three restricted
velocity sets, namely, the set of possible velocities Vi,
admissible velocities V,, and dynamic window V. The set
of possible velocities is limited by the extreme value of the
surge speed u and yaw rate r, which is defined as

Ve = {(u,m)|u € [0, Umaz]) AT € [~Tmazs Tmaz] }- (8)

Due to the kinematic and dynamic constraints, the search
space is reduced to a certain span around the current
velocity, which only consists of reachable velocities within
the next time interval. Thus, the dynamic window can be
described as

Vi = {(u,7)|uc € [u—1p - At,u. + 1, - At]
AN wE [re—7ry Atyre + 7, - At]},

(9)

where accelerations u, and r, are maximal translational
and rotational accelerations, while u; and 7, are maximal
breakage decelerations. Terms wu., r. are current surge
speed and yawrate.

The existence of obstacles in the vicinity imposes restric-
tions on the velocity pairs. The velocity is considered
admissible if the vehicle is able to move to the next point
before it hits the next obstacle on the predicted trajectory.
As a consequence, the search space is reduced to a set of
velocities that allow the vehicle to move without colliding

with any obstacle, which can be defined as
Vo = {(u,r)|u < /2 dist(u,r) - p (10)
2 - dist(u,r) - 7p},

where dist(u,r) represents the distance to the closest
obstacle on the corresponding trajectory.

3.2 Objective Function

Among those velocity pairs within the resulting search
space V., velocity vector (u,r) is chosen to maximize a
certain objective function, which consists of some criteria,
like target heading, clearance and velocity.
G(u,r) = a- goal(u,r) + f - dist(u,r) + v - vel(u,r)
st.(u,r) €V,

(11)
where the terms goal(u, r), dist(u, r) and vel(u, r) are
weighted by the factors «, 8 and . The terms involved in
the objective function can be denoted as,

H
OA-0OB
goal(u,r) = arccos( ), (12)
04| -10B|
dist(u,r) = " 1‘ , (13)
vel(u, ) = Umaz — Ue. (14)

Trajectory of the vehicle can be calculated with the ve-
locity pairs (u, r), which implies the position is given at
each time step. The term goal(u, r) is used to measure the
progress towards the target, mathematically denoted as
the angle between the vector pointing to goal and vector
connecting start point and current position. 7., is re-
ferred to the distance from current position to the nearest
obstacle, and the distance function dist(u, r) will reach
a maximum value when obstacle occurs in the vicinity.
The velocity term vel(u, r) is the difference value between
maximal surge speed and the current one, which means
vel(u, r) is exclusively dependent on surge speed u.

4. ADAPTIONS FOR HYBRID COLAV

As a reactive COLAV approach, dynamic window algo-
rithm is restricted in many ways. The main drawback is
that the vehicle may suffer from the risk of getting stuck
in local minima and being unable to reach the goal, even
though an exact path leading to the goal exists. Hence,
it becomes necessary to employ a global path generated
by Bézier curves, as a guidance for dynamic window al-
gorithm. Based on the proposed deliberate and reactive
COLAV methods, it’s essential to develop the interface
between global path planning and local collision avoidance
algorithm.

4.1 Pure Pursuit Path Tracking Algorithm

To incorporate global pre-defined path generated by Bé
zier curves with dynamic window algorithm, a path track-
ing algorithm is obliged to be adopted. Pure pursuit path
tracking algorithm (Coulter, 1992) has been widely used
as a steering controller for autonomous vehicles. Yamasaki
et al. (2009) proposes a robust path-following for UAV us-
ing pure pursuit guidance algorithm. Rankin et al. (1998)
presents a review and evaluation of PID, pure pursuit,
and weighted steering controller for an autonomous land
vehicle.
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The major objective of this method is to calculates curva-
tures enabling the vehicle to chase a moving target point
that is some distance ahead of it on the pre-planned path.
The chord length of the arc represents the look-ahead
distance joining current position and goal point, and it’s
used when search for the next target point. The state of
vehicle, including position and heading need to be updated
after each search, and can be presented as

Tit1 = x; + veosh; At (15)
Yi+1 = Y; + vsinb; At, (16)
07;+1 = 91 + wAL. (17)

4.2 Interface between deliberate and reactive COLAV

Desired trajectory has been derived by employing pure
pursuit path tracking algorithm, which can be used as a
guidance for dynamic window. Hence, the interface be-
tween the deliberate and reactive method needs to be
developed, enabling the vehicle to simultaneously track
the generated global path towards the goal and avoid
local collision. Based on the objective function presented
in section 3, a new term corresponding to path alignment
should be incorporated, denoted as align(p,, p:), distance
between point on pre-defined trajectory and current posi-
tion determined by velocity pair (u, r) at each time step.

G(u,r) =a - goal(u,r) + B - dist(u, )+

v - vel(u,r) — § - align(pp, pt)

These weight factors «, 3, v and § determine how the hy-
brid COLAV favors trajectory keeping, collision avoidance

or aligning with the global path. Each weight constant
could be tuned to highlight the importance of each criteria.

In addition, since deliberate COLAV based on Bézier
curves only ensures collision-free path with the presence
of static obstacles, it is important to note that the gain
in terms of obstacle clearance function 5 should be tuned
bigger compared to other weighting factors, such that the
vehicle is able to avoid when a moving obstacle emerges
in the vicinity. As a consequence, the practical trajectory
may deviate from the global path to a certain extent,
presented in the following simulation section.

(18)

5. SIMULATION RESULTS

In this section, some simulation scenarios are presented
to show the performance of hybrid COLAV method, in-
cluding the ability of following global pre-planned path
and collision avoidance. In the following scenarios, the
hybrid algorithm manages to generate a trajectory from
start point (0, 0) to goal point (1000, 1000) under different
conditions of obstacles.

First Scenario:

As shown in Fig. 1, trajectory of vehicle aligns well with
the global pre-defined path when merely considering static
obstacles. The trajectory differs slightly when approaching
close static obstacles, that indicates the prominent ability
of tracking planned path. As shown in the simulations,
when vehicle gets very close to a static obstacle, it allows

deviation from the global path to keep a fair distance
from the obstacle while turning around the obstacle in
the vicinity of position x = 400m. As the constraints of
obstacle avoidance imposed on the deliberate method is
less strict, yielding the path fairly close to the obstacle,
which is considered as an unacceptable risky behaviour
for reactive DW algorithm.

Time[s]:154.5 v[m/s]:9.99 y[rad/s]:4.16

500

400 +

300

200

—— Global path
— Trajectory

® start

@® Goal

Static Obstacle

100 +

T T T T T T
o} 100 200 300 400 500

Fig. 1. DW trajectory with static obstacles

Second Scenario:

In the second scenario, moving obstacles with constant
speed and heading are involved, with parameters shown in
Table 1.

Table 1. Parameters of the moving obstacles

Parameter Moving Obs 1~ Moving Obs 2
Initial position [200, 400] [400, 100]
Heading angle —45° 120°
Moving speed 3m/s 3m/s

The global path generated based on Bézier curve in con-
junction with optimization formulation is inadequate to
handle moving obstacles due to the less responsiveness to
unexpected situation. As shown in Fig. 2, ASV ends up
with colliding with the straight-line moving obstacle if it
merely follows the global path. Fig. 3 validates that hybrid
method incorporated with reactive DW algorithm is more
powerful in the case of avoiding collision with moving
obstacles, and gives us a clear explication that the vehicle
is able to follow the global path when there is no threat,
while significantly deviating from the global path in the
middle section to stay clear of the moving obstacle and
the vehicle then catches up with the path after entering
safe region.
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Time[s]:95.00Speed[m/s]:9.91Yawrate[rad/s]:0.85

500 " — gGlobal path
—— Trajectory
@® start

400+ @ Goal
@ Obsl start
@ Obs2 Start
300 4 Static Obstacle

200 4

ylm]

100 A

T T T T T
100 200 300 400 500
x[m]

o 4

Fig. 2. Global trajectory with straight-line moving obsta-
cles

Time[s]:152.1 v[m/s]:9.99 y[rad/s]:1.73

500 1 — Gilobal path

—— Trajectory

@® start

® Goal

@ Obsl Start

@ Obs2 Start
Static Obstacle

400 -

300 4

200+

100 A

T T T T T
Q 100 200 300 400 500

Fig. 3. DW trajectory with straight-line moving obstacles

Third Scenario:

In this scenario, moving obstacles with varying heading
and velocity leading to circular-arc trajectories, are taken
into consideration, as shown in Table 2. As depicted in Fig.
4, the vehicle deviates from the global path to avoid the
first moving obstacle emerging in the vicinity by changing
the yaw rate, and it starts to catches up with the global
path after entering the safe region. After tracking the path
for a short distance, the occurrence of the second obstacle
steers the vehicle off the track again. Further, the vehicle
changes its heading to re-follow the path as soon as it gets
rid of the obstacle.

Table 2. Parameters of the moving obstacles

Parameter Moving Obs 1 Moving Obs 2
Initial position [150, 300] [450, 100]
Motion y=-0.006z2 4 1.8x +165 -0.01z2 + 6.5x - 800
Moving speed 3m/s -1.5 m/s

Time[s]:152.1 v[m/s]:9.99 y[rad/s]:-6.0

500 1 — Global path
—— Trajectory
® start

Goal

o
@ Obsi start
o

400 1

Obs2 Start

300 4 Static Obstacle

200 4

100 1

T T T T T
100 200 300 400 500

o

Fig. 4. DW trajectory with circular-arc moving obstacles

Fourth Scenario:

In this scenario, an unknown dynamic obstacle with ran-
dom trajectory is employed to evaluate the robustness
of this hybrid method. The unpredictable and rapidly-
varying motion trends have made the collision avoidance
task more challenging, demanding for more responsive
performance. As depicted in Fig. 5, the hybrid algorithm
is still able to generate a collision-free trajectory almost
coincided with the desired global path. When the vehicle is
approaching the second moving obstacle, it is surrounded
by static and moving obstacles on both sides. Compromise
has been made to guarantee the safety by giving up keeping
a fair distance to the static obstacle. As a consequence, the
ASV takes the potential risk of running into the static ob-
stacle to achieve collision avoidance with moving obstacle.

Time[s]:152.7 v[m/s]:9.99 y[rad/s]:4.62

500 1" — global path

—— Trajectory

@® start

® Goal

@ Obsl start

@ Obs2 Start
Static Obstacle

400 A

300 4

200 4

100 1

T T T
100 200 300 400 500

o4

Fig. 5. DW trajectory with random moving obstacles

Fifth Scenario:

To evaluate the robustness of this COLAV algorithm, a
Gaussian noise is added to the measured position and
velocity of the obstacle. In other words, in this Scenario the
COLAYV algorithm only has access to noisy measurements
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of position and speed of the moving obstacle. Due to the
robustness of the hybrid COLAV algorithm, the vehicle
is still capable of generating a feasible and collision-free
trajectory until the noise is increased to an unaccepted
value. And the tolerance limit to noisy measurement is
tested by increasing the value of standard deviation o.
Fig.6 shows the result of trajectory including Gaussian
noise with standard deviation ¢ = 10. The vehicle is
still able to follow the global path and avoid random
obstacle involving Gaussian noise with zero mean value
and standard deviation o = 5,10, while it fails to proceed
when the standard deviation is set to 15.

Time[s]:152.9 v[m/s]:9.99 y[rad/s]:-1.8

500 1 — global path

—— Trajectory

@® start

® Goal

@ Obsl Start

@ Obs2 Start
Static Obstacle

400 -

300 4

200+

100 A

Fig. 6. DW trajectory with random moving obstacles
including Gaussian noise

6. CONCLUSION

A hybrid COLAV method based on Bézier curves and
dynamic window algorithm is introduced. Pure pursuit
guidance is exploited to track the global path and ex-
tensively contribute to developing the interface between
deliberate and reactive COLAV method. Furthermore, the
feasibility and robustness of the algorithm is analysed
regarding different scenarios through numerical simula-
tions. The future work will include conforming with the
International Regulations for Preventing Collisions At Sea

(ColReg).
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