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ABSTRACT 

 

Uncertainty analysis of the identified hydrodynamic coefficients of a nonlinear manoeuvring model is 

presented in this paper. The classical parameter estimation method, Least Square, is briefly introduced, and 

the uncertainty of the hydrodynamic coefficients due to the noise in the measured data is analysed using 

singular value decomposition. Then, two methods, truncated singular values decomposition and Tikhonov 

regularization, are introduced to diminish the uncertainty. A nonlinear manoeuvring mathematical model of 

a marine surface ship is derived using Lagrange’s method. The dimensionless hydrodynamic coefficients are 

obtained using the Least Squares method, truncated singular values decomposition and Tikhonov 

regularization with Planar Motion Mechanism test data. The validation process is carried out to test the 

performance and accuracy of the resulting nonlinear manoeuvring models. The result shows that 

identification of the uncertain parameters using the truncated singular values decomposition and Tikhonov 

regularization resulted in good estimating the parameters and significantly diminish the uncertainty. 
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NOMENCLATURE 

 

v1 Linear velocity of the rigid body, expressed in Body-fixed frame  

v2 Angular velocity of the rigid body, expressed in Body-fixed frame 

MRB Rigid-body mass matrix 

T Kinetic energy of the rigid body 

S  Skew-symmetric cross-product 

τ Hydrodynamic forces and moments 

u,v,w Velocity in surge, sway and heave 
p,q,r Angular velocity of roll, pitch and yaw 
X,Y,Z Forces of surge, sway and heave 
K,M,N Moments of roll, pitch and yaw 
CRB Rigid-body Coriolis-centripetal matrix 

MA Added mass matrix 

CA Added Coriolis-centripetal matrix 
D(v) Nonlinear damping matrix 
ρ Water density 
L Ship length  
U Total speed 

,uu uuuX X    Surge nondimensionalized hydrodynamic coefficients 

, ,uv urY Y    Sway nondimensionalized hydrodynamic coefficients 

, ,uv urN N    Yaw nondimensionalized hydrodynamic coefficients 

θ Hydrodynamic coefficients matrix 

X Matrix contains the measured data 

τRB Hydrodynamic forces and moments 

y Measurement data  

ˆ( , )y x  
  Estimation values 

y   Mean value of measurement data 

2 ( )    Chi-squared errors 

R2 The goodness of fit criterion 

yV   Diagonal matrix of variances of y 

̂
V  Error propagation matrix.  

U   Left-singular vectors 

V   Right-singular vectors 

   Singular values matrix 

P, Q Weighting matrices 

β2 Tikhonov regularization factor 

  Reference parameter vector 

rU   Truncated left-singular vectors 

rV   Truncated right-singular vectors 

r  Truncated singular values matrix 

̂
  Standard error of the parameters 
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1.  Introduction  

Mathematical modelling of marine vessels has been drawing more and more attention related to the 

requirements of marine ship design, and ship manoeuvring and operation. The development of numerical 

computation makes it possible to simulate the ship response travelling with the complicated environmental 

disturbance and vessel simulators are playing an important role in the testing and verification of the computer 

software of the complex system, such as dynamic positioning (DP) ships (Sørensen, 2011), remotely operated 

vehicles (ROVs) operations and control systems ( Moreira and Guedes Soares, 2011; Fernandes et al., 2015; 

Ridao et al., 2015), and ship simulators (Varela and Guedes Soares, 2015a, 2015b). Many mathematical 

models of marine vessels have been proposed to meet application requirements, such as Abkowitz model 

(Abkowitz, 1980), Maneuvering Modeling Group (MMG) model (Yoshimura, 2005), Nomoto model 

(Nomoto et al., 1956), a core mathematical model for hard manoeuvres (Sutulo and Guedes Soares, 2015; 

Sutulo and Guedes Soares, 2011), and vectorial model (Fossen, 2011). These models have different features 

and are proposed for different application purposes considering the trade-off between the complexity and 

fidelity. For example, Nomoto model was proposed for autopilot design only considering the yaw motion. 

The vectorial model proposed by Fossen (2011) is describing the motion of ships in a vectorial setting. 

Vectorial models are extensively used in the stability analysis and designing controllers and observers for 

marine ships. The model of Sutulo and Guedes Soares (2015; 2011) allows describing arbitrary 3DOF ship 

manoeuvring motions.  

Estimation of the hydrodynamic coefficients is a challenge and an interesting topic (ITTC, 2002). Captive 

model test carried out in a multi-purpose towing tank (SINTEF), is a reliable and effective method to measure 

the hydrodynamic forces and moments from which hydrodynamic coefficients in manoeuvring model can 

be determined (Sutulo and Guedes Soares, 2006). System identification is a mature technique for building 

mathematical models of dynamical systems from measured data (Ljung, 1999). Now it has been widely used 

for estimation the hydrodynamics coefficients for marine vessels (Åström and Källström, 1976; Golding et 

al., 2006; Perera, et al, 2012; Luo et al., 2014; Luo and Zou, 2009; Ross et al., 2015; Sutulo and Guedes 

Soares, 2014; van de Ven et al., 2007; Xu et al., 2018c). Many methods have been developed for system 

identification, and Least Squares (LS) is one of the most popular methods. In (Golding et al., 2006), the 
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nonlinear viscous damping forces of a surface vessel in the horizontal plane was estimated using the Least 

Squares method. In (Ross et al., 2015), the Least Squares method was used to estimate the hydrodynamic 

coefficients based on Planar Motion Mechanism (PMM) tests. The obtained mathematical model was then 

validated by reproducing the manoeuvring test conducted in full-scale (Hassani et al., 2015). In (Sutulo and 

Guedes Soares, 2015; Sutulo and Guedes Soares, 2014), an optimal offline system identification method 

combined the Least Squares with genetic algorithm was proposed to estimate the parameters of a nonlinear 

manoeuvring mathematical model.  

Other methods have been employed to estimate the hydrodynamic coefficients. For example, van de Ven et 

al., (2007), used a neural network to estimate the damping matrix of an underwater vehicle. Moreira and 

Guedes Soares, (2003) adopted recursive neural networks for a dynamic model of manoeuvrability. Extended 

Kalman filter (EKF) is also a good option and it was used for parameter estimation. Fossen et al. (1996) 

proposed an off-line parallel extended Kalman filter algorithm utilizing two measurement series in parallel 

to estimate the parameters of the dynamic positioning ship model. An adaptive wave filter coupled with a 

maximum likelihood parameter identification technique was proposed by Hassani et al. (2013) and used for 

dynamic positioning control of marine vessels. In (Perera et al., 2016, 2015), the parameters of a modified 

Nomoto model for vessel steering were identified using an extended Kalman filter. 

Recently, the support vector machine (SVM) has been applied to estimate the hydrodynamic coefficients of 

a ship model ( Luo and Zou, 2009; Luo et al., 2016). SVM is a supervised machine learning algorithm, which 

can be used for both classifications (Suykens and Vandewalle, 1999) or regression challenges (Cortes and 

Vapnik, 1995; Suykens et al., 2002). It has been receiving much attention in the last decade and was one of 

the most popular machine learning algorithms. In (Hou et al., 2018), a roll motion equation for floating 

structures in irregular waves was identified using a ε support vector regression. A modified version, Least 

Squares Support Vector Machine (LSSVM) was applied to model the controller of the marine surface vehicle 

for path following scenarios based on manoeuvring test (Xu and Guedes Soares, 2018a, 2016). An online-

version of LSSVM was used for dynamic ship steering modelling based on free-running model tests (Xu et 

al., 2018b).  
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Least Squares is a simple and popular method for parameter estimation, but there are also some 

disadvantages (Chen and Ljung, 2013; Ljung, 1999). The parameters estimated by Least Squares method are 

usually largely affected by the noise of training data and it usually leads to non-consistent estimates 

(Söderström, 2013). Truncated singular value decomposition (TSVD) (Golub and Reinsch, 1970) is a good 

option to solve the ill-conditioned problem of the Least Squares method (Chan and Hansen, 1990). The main 

assumption is to neglect its smallest singular values (Hansen, 1998) because the data corresponding to 

smaller singular values usually imposes more uncertainty in the process of estimating uncertain parameters. 

Liu et. al. (2017) proposed a novel method to establish a model, which can efficiently reduce the ill-

posedness combining with the singular value decomposition. In (Chen and Ljung, 2013), a regularized least-

square method was used to solve the hyper-parameter estimation problem with large data sets and ill-

conditioned computations. Tikhonov regularization (Bell et al., 1978) is the most commonly used method of 

regularization of ill-posed problems. It can significantly improve the condition number by modifying the 

normal equations in the Least Squares method while leaving the estimated parameter relatively unchanged. 

The effect of Tikhonov regularization is to estimate the parameters while also keep them near the reference 

values (Golub et al., 1999; Hansen and O’Leary, 1993; Ma et al., 2017).  

The uncertainty of the identified parameters due to the ill-conditioned problem is also a challenge problem 

in marine ship modelling. The obtained parameters with a large uncertainty are very sensitive to the noise in 

the measured data and usually drift from the true values, which was called parameter drift (Hwang, 1980; 

Liu et al., 2016). In (Hwang, 1980), the dynamic cancellation was found and the linear hydrodynamic 

coefficients drift simultaneously using slender-body theory. In (Luo and Li, 2017), nonlinear hydrodynamic 

coefficients was also found due to the so-called multicollinearity. The parameter drift cannot be eliminated 

due to physical reasons, and several methods were proposed in (Hwang, 1980; Luo and Li, 2017) to diminish 

the parameters drift, such as parallel processing and additional excitation. It is necessary to point that the 

main purpose of these methods is to reconstruct the samples and improve the condition number. 

The main contribution of this paper is to give a mathematical explanation for the parameter drift and two 

methods, truncated singular values decomposition and Tikhonov regularization, are introduced to diminish 

the uncertainty of the hydrodynamic coefficients due to the noise in the measured data. A nonlinear 

manoeuvring mathematical model of a marine surface ship in 3 degrees of freedom (DOF) is derived using 
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Lagrange’s method. In order to compare the coefficients of different ships, the hydrodynamic coefficients 

have been converted to the dimensionless ones using the prime system of SNAME (SNAME, 1950). The 

identification procedure uses a data set from a series of PMM tests, carried out by SINTEF Ocean (Ocean) 

on their multi-purpose towing tank (SINTEF) using a scaled ship model of research vessel Gunnerus 

(Hassani et al., 2015). Various captive model tests recommended by ITTC (2002) have been carried out, such 

as pure sway, pure yaw and mixed sway and yaw. The nondimensionalized hydrodynamic coefficients are 

obtained using the classical Least Square, TSVD, and Tikhonov regularization. The resulted nonlinear 

manoeuvring models were further tested against the portion of the data that was not used in the identification 

process. The R2 goodness of fit criterion is used to demonstrate the accuracy of the obtained models. 

Uncertainty analysis of the obtained hydrodynamic coefficients is carried out. The results show that TSVD 

and Tikhonov regularization can provide more stable results and diminish the parameter drift. 

The rest paper is organized as follows. In section 2, a nonlinear manoeuvring modelling in 3-DOFs is derived 

using Lagrange’s method, and dimensionless form is given using the prime system of SNAME. In section 

3, uncertainty analysis of the identified parameters is given using singular value decomposition. In order to 

diminish the parameter uncertainty, the Least Squares and Tikhonov regularization combined with the 

singular value decomposition are presented in section 4. Section 5 describes the planar motion mechanism 

(PMM) Tests. In section 6, validation and uncertainty analysis of the obtained hydrodynamic coefficients 

using PMM test data are presented. The final section is the conclusion. 

 

2. Nonlinear Manoeuvring modelling using Lagrange’s method 

 

The Newton’s Second Law is one of the widely used methods for the mathematical modelling of a rigid body 

motion, but the disadvantage is that it describes the motion in an inertial reference frame and difficult to 

switch to a different coordinate system. The Lagrangian method, in contrast, is independent of the coordinates 

(Lurie, 2002). In this section, the manoeuvring model for a marine ship is derived using Kirchhoff’s equations 

(Kirchhoff, 1869). Consider a ship with linear velocity 1 [ , , ]Tu v w=v  and angular velocity 2 [ , , ]Tp q r=v , 

The Kirchhoff’s equations is given (Fossen, 2011): 
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mass terms Coriolis centrip
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dt
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dt
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 
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S ν τ
ν ν

S ν S ν τ
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 (1) 

where 
_ 6

1

2

T

RB DOFT = v M v  is the kinetic energy of the rigid body; S is the skew-symmetric cross-

product operator; τ   represents the forces and moment, 
1 [ , , ]TX Y Z=τ  and 

2 [ , , ]TK M N=τ  . For 

convenience, we assumed that the equations are solved at the centre of gravity and the ship is port-

starboard symmetric. The mass matrix in 6 degrees of freedom (DOF) can be formed as: 
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M . (2) 

 

Then the Kirchhoff’s equations (Eq. 1) can be solved as: 
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dt

mw muq mvp

− + 
   

+ = + −
  
 − + 

S ν
ν ν

 (3) 

 

 

( ) ( )

( )

( ) ( )

( )

2 2

2 1

2 2 1
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dt
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 + + = − − +     

         
 + − −
 

S v S v
v v v

 (4) 
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For ship manoeuvring study, the 3 degrees of freedom (DOFs), surge, sway and yaw motion, are usually 

considered (Sutulo and Guedes Soares, 2011).  The above equations are rewritten in a vectorial setting with 

emphasis placed on matrix properties like positiveness, symmetry and skew-symmetry(Berge and Fossen, 

2000). Those properties benefit the marine control system design (controller and observer) (Fossen, 2011). 

So, the above equations can be formulated into: 

( )RB RB RB+ =M v C v v τ ,               (5) 

where RBM  is the mass matrix in 3 DOF (surge, sway and yaw), it is same as derived using Newton’s 

Second Law. RBC is the rigid body Coriolis-centripetal matrix, and it can be considered to be a correction of 

the first to compensate for the fact that the equation is being solved in a non-inertial frame of reference 

(Fossen, 2011; Ross, 2008).  

 

0 0

0 0

0 0

RB

z

m

m

I

 
 

=
 
  

M ,  (6) 

0 0

0 0

0

RB

mv

mu

mv mu

− 
 

=
 
 − 

C , (7) 

[ , , ]T

RB X Y N=τ .  (8) 

 

When a ship moving through water, the kinetic energy is imparted to the fluid. These forces due to the water 

around the ship are usually proportioned to the acceleration of the ship. So they are denoted as added-mass, 

represented as in (Fossen, 2011): 

0 0

0

0

u

A v r

v r

X

Y Y

N N

 
 

=  
 
 

M ,  (9) 

where, 
uX  and 

vY  are the added-mass in surge and sway motion, respectively. 
rN  is the add-inertia 

moment. 
rY  and 

vN  are the cross-inertia terms. 
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Then the kinetic energy is given: 

 

1 1

2 2

T T

A A AT = =v M v v M v ,  (10) 

where ( )( )1

2

T

A A A= +M M M   is the symmetric part of AM  . The skew-symmetric parts can have no 

influence whatsoever on the kinetic energy of the system (Fossen, 2011). Applying the Kirchhoff’s equations, 

then the forces on the rigid body due to added-mass can get: 

 

 

A A
A

A A
A

A A A
A

Coriolis centripetalAdded mass

T Td
X r

dt u v

T Td
Y r

dt v u

T T Td
N v u

dt r u v
−

  
= − + 

  

  
= − − 

  

   
= − + − 

   

  (11) 

 

Then the Coriolis-centripetal forces in the matrix can be expressed as (Fossen, 2011): 

 

0 0

( ) 0 0

0

v r

A u

v r u

Y v Y r u

X u v

Y v Y r X u r

 +  
   

= −    
   − −   

C v v   (12) 

 

Hydrodynamic damping forces are very complex and mainly caused by lift and drag, cross-flow drag, vortex 

shedding el. al (Fossen, 2011). It constitutes the most awkward and ill-defined of the forces and moments 

acting on a ship. Here, the structure of nonlinear damping forces is adopted from the reference (Ross, 2008; 

Ross et al., 2007), where the total damping forces are derived into two terms, damping due to lift and drag 

and crossflow drag. The total damping matrix is given: 
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X r X ur
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Y u Y u Y v Y u Y u Y r
D

Y r Y v Y r Y v Y v Y r

N u N u N v N u N u N r

N r N v N r N v N v N

− − − −
− −

− − −

− − − − − −
=
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v

r r
r

 
 
 
 
 
 
 
 
 
 
 

,  (13) 

where , ,uu r r
X N  are the hydrodynamic coefficients (or regression coefficients), which are supposed to 

be identified and constant for a manoeuvering model. 

The forces in the 3DOF nonlinear manoeuvring model described in Eq. 5 can be written as: 

 

 ( ) ( )RB A A r r r r= − − −τ M v C v v D v v .               (14) 

The equations of the hydrodynamic forces and moment can be expressed as follow: 

u v r uu uuu

rvu vv rv uvv rr

urr u v

X X u Y vr Y rr X uu X uuu

X rvu X vv X rv X uvv X rr

X urr X u v

= + + + +

+ + + + +

+ +

   (15) 

v r u uv ur uur

uuv vvv rrr rrv vvr

v r v v r v r r

Y Y v Y r X ur Y uv Y ur Y uur

Y uuv Y vvv Y rrr Y rrv Y vvr

Y v r Y v v Y r v Y r r

= + + + + +

+ + + + +

+ + + +

         (16) 

( )v r v u r

uv ur uur uuv vvv

rrr rrv vvr v r

v v r v r r

N N v N r Y X vu Y ur

N uv N ur N uur N uuv N vvv

N rrr N rrv N vvr N v r

N v v N r v N r r

= + + − +

+ + + + +

+ + + +

+ + +

       (17) 

In order to compare the coefficients of different ships and to estimate the dynamics of a full-size ship, the 

hydrodynamic parameters need to be converted to dimensionless ones. The most commonly used 

normalization forms for the manoeuvring of the marine ship is the prime system of SNAME (SNAME, 

1950). The water density,  , the ship length L and the ship speed U are employed as the characteristic 
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dimensional parameter. The list of the nondimensionalized factors and corresponding coefficients in Eqs. 

(14)-(16) is shown in Table 1.  

Table 1. Dimensional factors for nondimensionalized the hydrodynamic coefficients.  

Coef. Dimensional 

Factor 

Coef. Dimensional 

Factor 

Coef. Dimensional 

Factor 
0

uX  30.5 L  
vY   

30.5 L  
vN   

40.5 L  

uuX   
20.5 L  

rY   
40.5 L  

rN   
50.5 L  

uuuX   
2 -10.5 L U  

uvY   
20.5 L  

uvN   
30.5 L  

rvuX   
3 10.5 L U −  

urY   
30.5 L  

urN   
40.5 L  

vvX   
20.5 L  

uurY   
3 10.5 L U −  

uurN   
4 -10.5 L U  

rvX   
30.5 L  

uuvY   
2 -10.5 L U  

uuvN   
3 -10.5 L U  

uvvX   
2 -10.5 L U  

vvvY   
2 -10.5 L U  

vvvN   
3 -10.5 L U  

rrX   
40.5 L  

rrrY   
5 -10.5 L U  

rrrN   
6 -10.5 L U  

urrX   
4 -10.5 L U  

rrvY   
4 -10.5 L U  

rrvN   
5 -10.5 L U  

u v
X   

20.5 L  
vvrY   

3 -10.5 L U  
vvrN   

3 -10.5 L U  

  
v r

Y   
30.5 L  

v r
N   

40.5 L  

  
v v

Y   
20.5 L  

v v
N   

30.5 L  

  
r v

Y   
30.5 L  

r v
N   

40.5 L  

  
r r

Y   
40.5 L  

r r
N   

50.5 L  

 

 

3. Uncertainty analysis of the estimated hydrodynamic coefficients  

 

The uncertainty of the estimated hydrodynamic coefficients due to the noise is discussed in this section. The 

parameter with a large uncertainty is very sensitive to the noise and usually drift from the true value. This 

phenomenon was observed by Hwang (Hwang, 1980) and was called parameter drift. The physical reason 

for the parameter drift was discussed by Hwang using slender-body theory and the multicollinearity was 

considered as the main factor (Hwang, 1980; Luo, 2016; Luo and Li, 2017). In this section, the classical 
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parameters estimation method, Least Squares (LS), is briefly introduced, and a mathematical explanation of 

the parameter drift is discussed using singular value decomposition. The above Eqs. (15) to (17) need to be 

reordered in a vector format given by: 

 

y =X ,                       (18) 

where the matrix *38nX   contains the measured data, 38*1   represents the uncertain parameters 

described in Eq. (19), and [ , , ]Ty X Y N= is the matrix of the recorded forces and moments during the tests. 

In this study, there are 38 parameters to be estimated. Obviously, the linear equation is over-determined 

(n>m). 

[ , , , , , , , , , , , ,

        , , , , , , , , , ,

       , , , , , , , , ,

       ,

u v r v r uu uuu rvu vv rv uvv rr

urr uv ur uur uuv vvv rrr rrv vvru v

uv ur uur uuv vvvv r v v r v r r

rrr

X Y Y N N X X X X X X X

X X Y Y Y Y Y Y Y Y

Y Y Y Y N N N N N

N

            =

         

        

  , , , , , ]rrv vvr v r v v r v r r
N N N N N N    

(19) 

3.1 Parameter estimation using Least Squares method 

Considering Eq. (18), the estimation problem is to find the optimal parameters,   , which can minimise 

the difference between the estimated values ˆ( ; )y x  and the measured data y. In addition, several assumptions 

need to be made. The first assumption is that the sample of measurements, yi , are uncorrelated. It is 

reasonable because each measurement is independent. Each measurement yi has a particular variance,
2

y , 

due to the environmental disturbance and sensors. 

In order to find the optimal parameters, the residual error, ˆ( ; )ie y x y= −  , need to be defined first. 

Furthermore, the error needs to be dominated by the high-accuracy data (small-variance) and less affected 

by the low-accuracy data (large-variance). So the weighted sum of the squared residuals, also called 'chi-

squared' is defined in terms of the vectors: 

( ) ( )2 1( )
T

yy y   −= − −X V X ,             (20) 
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where 
yV is the diagonal matrix of variances of y. Usually, it can be assumed to be the identity matrix if the 

variances of y is unknown in advance. The optimal parameters, θ, corresponds to the minimum value of the 

2 error function, which means the derivative of 2  respect to the θ equals to zero. 

2

ˆ

1 1

                    0

ˆ 0T T

y y y

 







=

− −


=



− =X V X X V

                (21) 

Then the optimal values of the parameters can be obtained as 

1 1 1ˆ [ ]T T

y y y − − −= X V X X V .            (22)  

The 2  error function can be minimized with respect to the parameters θ. The estimated values, which 

have the best agreement with the measured data, can be computed using ˆ ˆˆ( ; )iy x  = X  . 

3.2 Uncertainty analysis due to the ill-conditioned matrix 

The uncertainty analysis of the identified parameters in the model is of paramount importance to obtain a 

robust model. Large uncertainty or covariance of the parameters can be due to noise in data or an ill-

conditioned model (or both). If the obtained parameters with a large uncertainty, it means that the parameters 

drift from their true values with higher probability. A poorly identified model (models with large parametric 

uncertainty) is very sensitive to the disturbance in the input data. Such a model cannot reproduce the 

behaviour of the system with high accuracy. This is due to the fact that the parameters with large uncertainty 

will change dramatically with the errors in the measured data. In this section, singular value decomposition 

is introduced to analysis the uncertainty of the hydrodynamic coefficients due to the noise in data. The matrix 

X can be rewritten as 

1

n
T T

i i i

i

u v
=

= = X U V ,            (23)  

where the matrix U  and V  are orthonormal, T I=U U  and T I=V V  .   is the diagonal matrix of the 

singular values of the matrix X . Furthermore, substitution of Eq. (23) into the optimal parameter estimation 

in Eq. (18) gives: 
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1

1

Tn
T i i

i i

v u y
y



−

=

=  =V U .                (24)  

As presented in Eq. (24), the smaller singular values can potentially dominate the solutions θ. Assume that 

there is an additive perturbation, y , it will propagate to a perturbation in the solution,   

1

1

Tn
T i i

i i

v u
y y  



−

=

=  =V U .     (25)  

The smaller the singular value 
i  is, the more uncertainty the estimated parameters have. For example, if 

i   is close to the numerical precision of the computation, then the singular values 
i   and the 

corresponding columns of U  and V  contribute negligibly to the matrix X  . Their contribution to the 

solution can be easily dominated by the noise and round-off error in the recorded data (y). The condition 

number is usually used to measure how sensitive the matrix X is to the error the recorded data (y). If the 

condition number is large, then it is ill-conditioned. The condition number for Eqs. (15)-(17) is given in 

Table 2. 

Table 2: The condition number of the surge, sway and yaw motion 

 Surge Sway Yaw 

Condition number 2.77e+19 4.33e+16 2.81e+18 

 

The uncertainty of parameters is affected by noise and quantified by the error propagation matrix. The error 

propagation matrix or covariance matrix can be used to indicate how the random errors in the recorded data 

(y), as described by yV , propagate to the optimal parameter ̂ . The error propagation matrix is given by 

ˆ

ˆ ˆ
T

y
y y

     
=    

    
V V       (26)  

where the standard error of the parameters, 
̂

 , can get by calculation of the square-root of the diagonal of 

the error propagation matrix. Then the absolute error can be calculated easily. The confidence intervals for 

the parameters can get by: 
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ˆ ˆ1 2 1 2
ˆ ˆt t  
    − −−   +       (27)  

where 1 −  is the desired confidence level, and t is the Student-t statistic. 

4. The methods for diminishing the parameter uncertainty  

In this section, in order to alleviate or diminish the uncertainty, two methods, truncated singular value 

decomposition (TSVD) and Tikhonov regularization, are introduced to estimate the parameters.  

4.1 Optimal truncated singular value decomposition  

In order to get a physically meaningful solution, it is necessary to reduce the effect caused by the smaller 

singular values. In most cases, TSVD is an effective tool to reduce the uncertainty of the data set. TSVD is 

used to obtain a relatively accurate representation of the matrix X  by simply retaining the first r singular 

values of X and the corresponding columns of U and V. The TSVD can be presented as 

T

r r r r=X U Σ V ,                    (28)  

where the matrix 
rΣ is obtained by retaining the first r singular values of Σ . Similarly, matrices 

rU and 

rV are found using the corresponding singular vectors. The resulting 
rX represents the reduced data set 

where the data related to the omitted singular values are filtered.  

 

Fig. 1: Estimate the optimal values of r using L-Curve 
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It should be noted that truncation of the original matrix will inevitably increase the bias error for the 

parameters due to the loss of some information, but the uncertainty of the parameters (parameters drift) can 

be reduced significantly. As presented in the following section, the bias error for the parameters increases 

slightly, because the smaller singular values contribute little to the parameters. The optimal value of r can be 

estimated using the L-curve. It is a log-log plot of the norm of a regularized solution versus the norm of the 

corresponding residual norm. It is a convenient graphical tool for displaying the trade-off between the size 

of a regularized solution and its fit to the given data, as the regularization parameter varies (Golub et al., 

1999; Hansen and Johnston, 2001; Hansen and O’Leary, 1993). As presented in Fig. 1 in our current data set 

the optimal r equals to 30. 

4.2 Tikhonov regularization with singular value decomposition 

Tikhonov regularization is the most commonly used method of regularization of ill-posed problems (Bell et 

al., 1978). The goal of regularization is to improve the condition number of the matrix X while leaving the 

solution relatively unchanged. The effect of Tikhonov regularization is to estimate model parameters while 

also keeping the model parameters near some reference values. In Tikhonov regularization, a quadratic term 

involving the parameters, θ, is included in the Least Squares error function. Consider Eq. (18), the cost 

function for Tikhonov regularization can be defined as: 

22 2( )
P Q

J y    = − + −X                     (29) 

where P and Q are the weighting matrices and positively defined. Tikhonov regularization factor, β2, is non-

negative and weights the relative importance of 2

P
y −X  and 

2

Q
 − . The reference parameter vector, 

 , reflect the way in which we would like to constrain the parameters.  

Setting the derivative of ( )J  respect to the θ equals to zero, then one gets: 

2 2( )
2 2 2 2

T
T TJ

y


    



= − + − =


X PX X P Q Q 0 .                    (30) 

Solving for the parameter θ, then: 

( )
1

2 2ˆ T T y   
−

 = + + X PX Q X P Q .                    (31) 
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In most cases, every measurement, yi, has the same distribution of measurement errors and the measurement 

errors are uncorrelated. In order to simplify the problem, the difference between the parameters,  − , are 

assumed to be equally important. So, the weighting matrix P and Q can be set to the identity matrix. If there 

is no reference parameter set, it is common to set 0 = . Then substitute the singular value decomposition 

of X into Eq. (31): 

( )

1
2

1
2 2

2 2
1

ˆ T T T

n
T Ti

i i

i i

I y

I y v u y

 




 

−

−

=

 =   +  

 
=  +  =  

+ 


V U U V V U

V U
                    (32) 

As shown in Eq. (32), the singular values of the matrix X are damped by the Tikhonov regularization factor. 

It is equivalent to a singular value decomposition solution, in which the inverse of each singular value, 1 i

, is replaced by 2 2

i i  +  . Obviously, the largest singular values are negligibly affected by the 

regularization factor, but the effects of the smallest singular values on the solution are suppressed. 

5. Planar Motion Mechanism (PMM) Tests 

A series of captive model tests were carried out by SINTEF Ocean (Ocean) during a research project 

(SimVal) on the scaled ship model according to the recommended procedures by ITTC (2002). The captive 

model test is nowadays commonly used to provide data for the identification and validation of mathematical 

models of ship manoeuvring motion. It can provide a reasonable estimation of the hydrodynamic 

coefficients, however, performing such tests is costly. In this section, a brief summary of different PMM tests 

is presented, such as pure surge, pure drift, pure sway, pure yaw and mixed sway and yaw, which were carried 

out in SINTEF Ocean’s multi-purpose towing tank (SINTEF) using the scaled ship model, presented in Fig. 

2. The motions in the surge, sway and yaw were controlled using a 6-DOF hexapod motion platform, which 

is mounted on the carriage. Each type of test emphasises different dynamic characteristics: 

Pure Surge: A pure surge test tows the model forward with oscillations around a fixed velocity. It is usually 

sinusoidal oscillations. This test aims to achieve the full response of surge motion. 

Pure Drift: A pure drift test tows the model forward with a fixed oblique angle. This test is usually used to 

isolate the static derivatives from yaw motion (Ross et al., 2015). 
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Pure Sway: A pure sway test is used to isolate the sway dynamics from the yaw motion. The ship will move 

forward with a constant velocity and with a sinusoidal oscillation in sway. This test aims to achieve the full 

response of sway motion. 

Pure Yaw: Similarly, in a pure yaw test, the model will move forward with a sinusoidal oscillation in yaw. 

The effect of sway can be neglected owing to the zero velocity in sway motion. 

Mixed Sway and Yaw: This test was carried out using a ship model at a set of sway velocity and yaw rate. 

It is a generalization of pure yaw, except the model is held at a nonzero sway (Ross, 2008). 

 

Fig. 2: Planar motion mechanism tests in towing tank [courtesy of SINTEF OCEAN (Ocean)] 

6. Validation and Sensitive Analysis of the hydrodynamic Coefficients 

In this section, the parameter estimation based on the Least Squares method is presented using the PMM test 

data. the uncertainty of the obtained hydrodynamic coefficients is discussed. In order to diminish the 

uncertainty or parameter drift due to the noise, the previously discussed methods truncated singular value 

decomposition and Tikhonov regularization, are employed to identify the hydrodynamic coefficients. The 

absolute error of the obtained parameters is compared with results using the Least Squares method. Before 

the identification process, the data needs to be regrouped to be used as a training set in the identification 

process. The training set should contain enough information to excite the 3-DOF manoeuvring model (surge, 

sway and yaw motion). Here, the training set contains data collected from surge acceleration, pure drift, pure 

surge, pure sway and mixed sway and yaw tests. It is built by simply joining all the data in sequence. A small 
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portion of the data was kept for validation. The same process is carried out to construct a new data set for 

validation purpose. 

 

(a)                                             (b) 

 

                   (c) 

Fig. 3: The experimental test compares with the prediction of the regressed numerical model obtained by LS 

(a), TSVD (b) and Tikhonov regularization (c). 

 

In order to assess the performance of the numerical model, the data for validation was not used for training. 

In the first phase, the parameter estimation based on Least Squares method has been carried out using training 

set. The prediction of forces and moments compared with training data is presented in Fig. 3(a). From this 

figure, the curves fit well with each other, especially for sway force and yaw moments. A similar process 

was also carried out after treating the data set using the TSVD and Tikhonov regularization, as shown in 
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Fig.3 (b) and (c). Furthermore, the obtained numerical model also can predict the system response 

successfully.  

  

(a)                                              (b) 

 

                  (c) 

Fig. 4: Validation of the obtained manoeuvring model obtained by LS (a), TSVD (b) and Tikhonov 

regularization (c). 

Table 3: the R2 goodness of fit criterion for validation. 

Methods Surge Sway Yaw 

LS 0.6674 0.9913 0.9190 

TSVD 0.6881 0.9971 0.9538 

Tik 0.6764 0.9964 0.9537 
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Table 4: The nondimensionalized hydrodynamic coefficients of the Lagrange’s model using LS, TSVD and 

Tikhonov regularization. 

COEF. LS TSVD TIK. COEF. LS TSVD TIK. 

uX   -7.28E-03 -7.40E-03 -7.26E-03 
rrrY   -4.60E-03 -8.64E-04 -3.15E-03 

vY   -3.86E-02 -3.86E-02 -3.86E-02 
rrvY   -1.32E-02 -9.93E-03 -1.04E-02 

rY   -2.83E-04 -2.70E-04 -2.69E-04 
vvrY   5.70E+00 8.12E-03 -3.87E-02 

vN   1.80E-03 1.80E-03 1.80E-03 
v r

Y   -1.20E-02 -1.33E-02 -1.35E-02 

rN   -1.18E-03 -1.19E-03 -1.19E-03 
v v

Y   -1.62E-01 -1.25E-01 -1.18E-01 

uuX   -5.63E-02 -1.96E-04 -6.61E-03 
r v

Y   1.54E-01 2.71E-02 4.38E-02 

uuuX   5.62E-02 7.69E-05 6.47E-03 
r r

Y   8.26E-03 1.92E-03 5.35E-03 

rvuX   6.73E-02 2.76E-02 3.58E-02 
uvN   -1.23E-01 -1.28E-01 -1.24E-01 

vvX   9.21E-03 3.15E-04 1.27E-02 
urN   3.27E+00 3.38E-02 3.52E-02 

rvX   -8.33E-03 2.92E-02 2.14E-02 
uurN   -3.27E+00 -4.23E-02 -4.38E-02 

uvvX   1.07E-02 -3.07E-04 -1.48E-02 
uuvN   1.40E-01 1.45E-01 1.40E-01 

rrX   2.13E-02 -3.07E-04 1.05E-02 
vvvN   -1.90E-02 -1.70E-02 -1.84E-02 

urrX   -2.21E-02 -5.06E-04 -1.13E-02 
rrrN   -6.95E-04 -8.89E-04 -8.91E-04 

u v
X   -9.46E-04 -2.50E-03 -1.46E-03 

rrvN   2.58E-03 2.62E-03 2.60E-03 

uvY   5.34E-01 -2.53E-02 -7.86E-03 
vvrN   -4.24E+01 5.77E-03 -1.54E-02 

urY   -1.27E+01 1.56E-02 3.63E-03 
v r

N   2.31E-03 2.27E-03 2.28E-03 

uurY   1.27E+01 1.17E-02 2.22E-02 
v v

N   6.34E-02 6.36E-02 6.33E-02 

uuvY   -5.85E-01 -2.84E-02 -4.70E-02 
r v

N   -4.88E-02 -2.19E-02 -2.19E-02 

vvvY   -1.58E-01 3.22E-02 1.38E-02 
r r

N   -5.14E-04 -3.77E-05 -3.41E-05 

 

The performance of both numerical models needs to be verified. The manoeuvring model is validated if the 

model can approximate the measured force and moments of the validation data set with high accuracy. The 

validation data set is a small portion of all PMM data and is not used for training purpose. The fit of the 

models obtained by Least Square, TSVD and Tikhonov regularization is presented in Fig. 4. From the figures, 

all the models work well and can successfully predict the test data. The R2 goodness of fit criterion is used 
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to measure the goodness of the fitness.  The 2R   is the ratio of the variability in the data that is not 

explained by the model to the total variability in the data. If 2R equal to zero, it means that the model fails 

to explain the measurement variability. Otherwise, if 2R   equal to 1, it means that all the variability of 

measured data can be fully explained by the model. If 2R  is negative, it means the model can explain the 

data worse than the mean value. The 2R  for the validation process is presented in Table 3. From this table, 

the three methods have almost equal accuracy in predicting the test data. However, the uncertainty of the 

obtained hydrodynamic coefficients can be diminished significantly using the TSVD and Tikhonov 

regularization method.  

 

Fig. 5: The uncertainty (absolute error) of the obtained parameters. 

The obtained nondimensionalized hydrodynamic coefficients of the Lagrange’s model are presented in Table 

3. The error propagation matrix of the estimated parameters is calculated using Eq.(25). The absolute errors 

of the obtained parameters are presented in Table 4. The bar plot is presented in Fig.5. Here, it is assumed 

that if the absolute error bigger than 100% the obtained parameters are not stable and easily affected by the 

noise. The identify values will drift from the true value with a large probability. As presented in Fig. 5, there 

are 5 parameters are failed to be estimated using the Least Squares method, 3 parameters using TSVD and 1 

parameters using Tikhonov regularization. Obviously, for example, L

uuX   and L

uuuX  are highly linearly 

correlated, the so-called multicollinearity happens. TSVD and Tikhonov regularization can significantly 

improve this condition. Observing the absolute errors in Table 4, the proposed methods provide very stable 

results for the yaw motion equation, the absolute errors are smaller than 6%. It is because that the yaw motion 
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is fully excited using the PMM test. The structure of the yaw motion equation is reasonable. The largest 

uncertainty occurs in the surge motion because the surging speed is kept as constant during the most PMM 

test, so the surge motion is not fully excited. For sway motion, the uncertainty is significantly diminished 

using the TSVD and Tikhonov regularization.  

Table 4: The absolute error (%) of the estimated parameters using LS, TSVD and Tikhonov regularization. 

NUM. COEF. LS TSVD TIK. NUM. COEF. LS TSVD TIK. 

1 
uX   4.74 4.69 4.78 20 

rrrY   27 135 37.9 

2 
vY   0.47 0.48 0.47 21 

rrvY   29 39 35.2 

3 
rY   12.24 12.9 12.99 22 

vvrY   13 4.25 16.2 

4 
vN   0.35 0.35 0.35 23 

v r
Y   19 17.54 16.2 

5 
rN   0.10 0.10 0.10 24 

v v
Y   3.52 3.36 3.04 

6 
uuX   297 42 33.8 25 

r v
Y   8.96 3.41 5.50 

7 
uuuX   298 95 34.5 26 

r r
Y   19.5 78 28.8 

8 
rvuX   35 1.73 13.75 27 

uvN   1.73 1.68 1.68 

9 
vvX   359 173 34.1 28 

urN   1.72 1.99 1.90 

10 
rvX   267 1.73 21.8 29 

uurN   1.71 1.57 1.52 

11 
uvvX   1074 123 34.1 30 

uuvN   1.49 1.45 1.44 

12 
rrX   49 25.4 55.2 31 

vvvN   3.90 4.38 3.92 

13 
urrX   48 15.4 51.5 32 

rrrN   6.10 4.80 4.78 

14 
u v

X   68. 14.2 34.6 33 
rrvN   5.23 5.20 5.24 

15 
uvY   11 4.34 29.1 34 

vvrN   1.73 1.77 2.49 

16 
urY   12 1.69 41.8 35 

v r
N   3.46 3.55 3.54 

17 
uurY   12 2.83 6.15 36 

v v
N   0.31 0.31 0.31 

18 
uuvY   10 1.95 4.53 37 

r v
N   0.98 0.50 0.50 

19 
vvvY   13 17.2 34.6 38 

r r
N   10.8 147 162 
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CONCLUSIONS 

 

This paper discussed the parameter uncertainty (also called parameter drift) of a nonlinear manoeuvring 

mathematical model of a marine surface ship in 3-DOF and truncated singular values decomposition and 

Tikhonov regularization were employed to diminish the uncertainty. First, a nonlinear manoeuvring 

mathematical model of a marine surface ship in 3-DOF was derived using Lagrange’s method. In order to 

compare the coefficients of different ships, the hydrodynamic coefficients have been converted to the 

dimensionless ones using the prime system of SNAME (1950). A series of captive model tests were carried 

out by SINTEF Ocean (Ocean) on the scaled ship model according to the recommended procedures by ITTC, 

the data was used for the parameter estimation of the manoeuvring model and validation. 

The classical parameters estimation method, Least Squares method, is briefly introduced, and the uncertainty 

of the hydrodynamic coefficients due to the noise in the measured data is analysed using singular value 

decomposition. The parameters with large uncertainty are very sensitive to the noise and easily drift the true 

values. A mathematical explanation for the parameter uncertainty or parameter drift was given using singular 

values decomposition. The estimation of the hydrodynamic manoeuvring coefficients is a typically ill-posed 

problem, so, truncated singular values decomposition and Tikhonov regularization was employed to reduce 

the uncertainty and diminish the parameter drift. The nondimensionalized hydrodynamic coefficients were 

obtained using a Least Squares method, truncated singular values decomposition and Tikhonov regularization 

based on PMM test data. The performance of the resulting nonlinear manoeuvring models was further tested 

against the portion of the data, which was not used in the identification process. The R2 goodness of fit 

criterion was used to demonstrate the accuracy of the obtained models. Identification of the uncertain 

parameters using truncated singular values decomposition and Tikhonov regularization resulted in good 

estimating the parameters with smaller uncertainty. 
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