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Abstract—This study reports the differences observed in the
EEG signals of linguistic activity and resting-state between male
and female subjects in a population of 16 individuals (8 females
and 8 males). These differences were spotted while performing
two experiments: sex identification and subject identification,
where the initial aim was to identify the optimal number and
placement of EEG channels to obtain high accuracies in sex and
subject identification. The results of the identification show that
the signals analyzed contain sex-specific information and that the
best features from this sex-specific information are extracted from
different EEG channel locations and from different hemispheres
of the brain, for either sex. The effect of the number of electrodes
and electrode localization is seen with clear differences between
male and female subjects. The accuracy loss for sex identification
when reducing the number of channels from 14 to 1 was of
only 0.03 points during resting states (Accuracies from 0.79 to
0.76). For subject identification within either male or female
groups during resting states, the accuracy loss was larger when
reducing the number of channels from 14 to 1 (0.96 to 0.71
for female, 0.96 to 0.81 for male subjects). One finding of this
study is that Theta and Gamma bands are strongest for males
in the right hemisphere during resting states, whereas during
linguistic activity these bands exhibit similar strengths in the left
hemisphere for both males and females. Similar specific features
in brain signals may enable the design of a flexible EEG device
that can be adapted to specific mental tasks and Subject settings.

Index Terms—Sex identification, Subject identification, Elec-
troencephalograms (EEG), Empirical Mode Decomposition
(EMD)

I. INTRODUCTION

Consumer wearable EEG technologies have experienced a
steady growth of devices with a reduced number of EEG chan-
nels available for personal use such as meditation, relaxation
training, motor imagery and control of moving objects [1].
As a result of this, today people can measure their own brain
signals outside medical laboratories thanks to the proliferation
of low-cost wireless headset EEG devices with a varying
number and configuration of EEG channels, with dry or wet
electrodes. For rigorous comparison studies between labo-
ratories and researchers, the 10-20 international system has
been proposed and adopted by the scientific community [2].

Although the ease of use and portability of emerging wireless
EEG devices offer a promising alternative to conventional
recording systems, reliability and quality of the measurements
remains elusive since the different EEG devices are not directly
comparable in the absence of a valid benchmark.

A previous validation study demonstrated that data derived
from a single channel, the wireless system (NeuroSky Mind-
Wave) is comparable to EEG recorded from conventional lab-
based equipment. However, critical open issues (e.g., real-time,
quality of recordings) remain yet unexplored [3]. One of the
unexplored aspects is the electrode placement, which in most
EEG devices is fixed depending on the targeted application/s.

For real-time applications, the high-quality-high-density
EEG devices will be computationally costly and the applica-
tions will be very limited. The existing wireless portable de-
vices with fixed electrode placement will also have limitations
since depending on the task, the neuro-paradigm used, age and
sex of the subject, most relevant features of brain signals may
be obtained at different locations of the electrodes in the scalp
[4]–[7].

The openBCI device is a more flexible EEG headset in the
sense that enables to add and remove electrodes within a fixed
frame of positions on the scalp but it does not allow to scan
the optimal position for a given task, neuro-paradigm, age or
sex.

Table I lists the main features of the most popular low-cost
portable devices available today in the market. The current
EEG technologies are based on wet or dry fixed electrodes.

The devices presented in the table have different electrodes
configurations, but in general, the electrodes are localized
according to the 10-20 international system. The current trend
for new EEG devices is the use of dry electrodes to avoid the
use of the inconvenient gel.

In a comparison presented in [8], the authors suggest
that EMOTIV EPOC may be more suitable if the neuro-
paradigms are attention/meditation, and in the case of Neu-
rosky MindWave with eye blinking. However, the conditions
are not directly comparable because the first device uses wet-
electrodes while the second one uses dry electrodes. It is well



TABLE I
EEG DEVICES

Name Channels Sample rate Sensors
OpenBCI1 16 250 Hz Dry

EMOTIV EPOC2 14 128 Hz Wet
EMOTIV Insight3 5 128 Hz Dry

Muse4 5 256 Hz Dry
Neurosky MindWave5 1 512 Hz Dry

known that wet electrodes have problems for real-time/long-
term use.

Most EEG devices available in the market were tailored
designed for a set of tasks and neuro-paradigms and in general,
they are found to be reliable only within those tasks and neuro-
paradigms. The accuracy and reliability of these systems for
repeated measurements have not been well-established and as
of now a rigorous comparative investigation of the different
portable solutions is not available. Most importantly, it is
not clear whether the limited number of channels and their
fixed localization may provide sufficient data and anatomical
coverage to obtain the neural signatures necessary for the given
tasks. Essentially, this is because both, electrode localization
and the number of electrodes, are task-dependent [1], [4], [8].
This opens the possibilities to explore the concept of “movable
electrodes and a variable number of electrodes” [9].

The current study aims to open the discussion of this
concept of movable and task-dependent electrode localization,
and it does so by studying the differences observed in the EEG
signals of male and female subjects during resting-state and
linguistic activity. The effect of both, electrode localization and
the number of electrodes, is explored by gradually removing
electrode information until only one electrode is left. A dataset
with a population of 16 individuals (8 females and 8 males) is
analyzed (Age: 26-year-old on average, 8 males right-handed,
6 females right-handed and 2 females left-handed).

The results show that useful features to create a machine-
learning-based model come from different channels depending
on the sex of the individuals and the neuro-paradigm selected
for the study (linguistic-activity/resting-state).

II. METHOD

The method used for feature extraction and classification is
explained in [10] and the greedy algorithm used in [11].

In this paper, two neuro-paradigms were used, the first one
is called imagined speech to correspond to the internal speech
of words without uttering sounds and without articulating ges-
tures [12]. The second neuro-paradigm used is named resting-
state, that refers to the absence of goal-directed neuronal
action with the integration of information from the external

1OpenBCI: https://openbci.com/
2EMOTIV EPOC: https://www.emotiv.com/epoc/
3EMOTIV Insight: https://www.emotiv.com/insight/
4Muse: http://www.choosemuse.com/
5Neurosky MindWave: http://neurosky.com/

Fig. 1. Flowchart summarizing the feature extraction procedure using EMD
[11].

environment and Subject internal state, this is why resting-
state can be used to obtain patterns from the brain signals
[13], [14].

In summary, the feature extraction stage for each electrode
is based on Intrinsic Mode Functions (IMFs) from Empirical
Mode Decomposition (EMD) that were selected using the
Minkowski distance. Then, for each IMF 4 features were
computed: The Instantaneous/Teager energy distribution and
Higuchi/Petrosian Fractal Dimension. The features were con-
catenated to obtain a single feature vector per repetition. After
that, 3 machine learning algorithms, Support Vector Machine
(SVM), naive Bayes and k-nearest-neighbors (k-NN), were
used to compare them and select the best for each task. These
steps are summarized in Fig. 1.

The greedy procedure to remove channels described in [11],
consists on selecting the k-combinations (k=1) removing 1
channel to create a classifier to select the subset of channels
with the highest accuracy and then repeat the step removing
another channel.

A. Dataset description

The dataset used is described in detail in [15], EEG signals
were obtained from EMOTIV EPOC device with a sample
rate of 128 Hz and 14 channels, the electrodes were placed
according to the 10-20 international system [2]. The complete
dataset was obtained from 27 subjects who perform 33 repeti-
tions of 5 imagined words in Spanish (Up, Down, Left, Right
and Select) with a mean size of d2e seconds, the repetitions



were separated with a resting-state with a mean size of d3e
seconds.

The duration of each repetition of imagined speech and
resting-state has different lengths between words and subjects.
Because there are only 8 females in the dataset and in order
to compare the results, the experiments were carried out using
16 subjects from the dataset: 8 males and 8 females and only
30 repetitions of linguistic activity and resting-state.

III. EXPERIMENTS

This section presents and compares the results obtained
from the experiments performed for two different tasks: Sex
classification and Subject identification using two small pop-
ulation of males and females. For the following experiments
and for simplicity, linguistic activity refers to the use of all
words as a single class.

In the first experiment, the aim was sex identification during
resting-state and during linguistic activity. In the case of sex
identification during linguistic activity, the 5 different words
per subject were tagged with the sex of the subject (male or
female). In total, in this experiment 30 repetitions were taken
into account from 5 imagined-words or resting-state from 8
males and 8 females. The setup was decided because the aim
of the experiments was to show the differences between the
sex of Subjects during linguistic activity and resting states, not
to recognize the imagined word.

For the second and third experiment, each of 30 instances
per imagined-word/resting-state was tagged with a subject id,
obtaining thus 150 instances per Subject, with the aim of sub-
ject identification in a population of males and the experiment
was repeated in a population of females. To understand the
differences of the populations, a greedy algorithm was used
to remove channels and repeat the experiments using a set of
14 channels and 4 subsets of channels (8, 4, 2 and 1 channel).

In the next Figs., the set of channels used for the exper-
iments (14, 8, 4, 2 and 1 channel) are marked with a color
box. The subset of 8 channels was marked with a blue box,
the subset of 4 channels with a black box, the subset of 2
channels with a red box and finally, 1 single channel with a
yellow box.

A. Sex identification during resting-state and linguistic activity

This experiment was carried out to show that brain signals
from males and females are different while performing the
same task. This allows us to understand the limitations of cur-
rent devices with fixed electrode positions. The most favorable
position of the electrodes might be different depending on the
neuro-paradigm and the sex of the subjects.

In Fig. 2 the results obtained after 10-folds cross-validation
using k-NN for sex classification, are shown. The results
show that even using 1 channel, the accuracy is on the
chance level for two classes (50% per class), and also that
the brain signals during resting-state and linguistic activity
are different between males and females. The Fig. 2 also
shows that the channels T8, O2, F3, and F4 are important for
sex classification during resting-state. On the other hand, the

Fig. 2. Evolution of the accuracy using fewer channels for sex distinction
during resting-state (Subplot A) and linguistic activity (Subplot B) using k-NN
classifier.

important channels used during linguistic activity were FC6,
P8, F3, and T8 for sex classification.

The results suggest that there are specific patterns to distin-
guish the sex of the Subject. Possibly the classification can
be done using different positions of electrodes, but if the
electrode is localized according to the task, the accuracy might
improve. As an example, the highest accuracy obtained for sex
distinction during resting-state from 1 channel was reached
using T8 channel (see subfigure A) from Fig. 2). In the case of
Sex distinction during linguistic activity, when only 1 channel
was used, the highest accuracy was reached using the FC6
channel (see subfigure A) from Fig. 2).

B. Subject identification during resting-state

This experiment consists of Subject identification during
resting states from a female population, to compare the ac-
curacies with a male population and to show the differences
between relevant channels in these two populations. In this
experiment, the results reported are with Linear SVM which
obtained highest accuracy compared with naive Bayes and k-
NN [11].

In Fig. 3 the results obtained for subject identification during
resting-state, are presented. When subject identification task
using 14 channels was performed using a female population,
the accuracy obtained was the same compared with a male
population, but when the number of channels is decreasing, the
accuracy in a male population is highest. Also, the channels
with more relevant information for this experiment were T8,
F4, FC6 and O2 in a male population and F4, T7, FC6 and
O2 in a female population. In Fig. 3, the channels for the
experiment using a male population are shown in the sub-plot
A), and for the female population in the sub-plot B).



Fig. 3. Evolution of the accuracy using fewer channels for Subject iden-
tification in Male (Subplot A) and Female population (Subplot B) during
resting-state using Linear SVM.

C. Subject identification during linguistic activity

The subject identification task was repeated using linguistic
activity and Linear SVM classifier. The results obtained are
shown in Fig. 4, where the last two channels used for subject
identification in both populations are the same. The channels
with more relevant information according to the experiments
are T8, F4, FC6, and F7 when the male population was used,
in the case of the female population the channels are F4, T7,
FC6, and F3. In Fig. 4 the channels used in this experiment are
shown and the channel removal order is marked with colors
codes as explained earlier. The channels used with a male
population are shown in the sub-plot A), while those for the
female population are shown in the sub-plot B).

D. Rhythms differences during resting-state and linguistic
activity

In the previous experiments (for subject identification in
male and female populations, during resting-state and lin-
guistic activity), it is shown that for the male population,
the right hemisphere was more active even using only 3, 2
and 1 channel, in both; resting-state and linguistic activity.
In general, higher amplitudes were observed in the right
hemisphere compared with the left hemisphere for these tasks.

In Fig. 5, a comparison of the left and right hemisphere
of mean amplitude from 30 instances of linguistic activity
and resting-state from the male and female population, is
presented.

In Fig. 5, it is shown that theta and gamma rhythms for
the male (in both left and right), are highest compared to the
female population during resting-state. Comparing the differ-
ences in percentage, the left hemisphere of the male population

Fig. 4. Evolution of the accuracy using fewer channels for Subject identifica-
tion in Male (Subplot A) and Female population (Subplot B) during linguistic
activity using Linear SVM.

is 49%, 36% difference in average to the right hemisphere
during linguistic activity and resting-state, respectively. On
the other hand, for the female population, the left hemisphere
is 20% different in average for both, linguistic activity and
resting-state.

IV. DISCUSSION

The experiments performed show that human brain activity
is different even during the same task depending on different
factors, specifically depending on the sex of the Subject and
the neuro-paradigm used.

Using the method for sex classification with 14 channels,
the accuracies were 0.79 and 0.72 using resting-state and
linguistic activity, respectively. With sex identification during
resting-state, the accuracy shows fluctuations but the difference
using 14 channels and 1 channel is only 0.3 using the k-NN
machine learning-based algorithm (from 0.79 with 14 channels
to 0.76 using 1 channel), obtaining the same accuracy using 1
channel during resting-state compared with 14 channels during
linguistic activity.

When the experiments for subject identification during
resting-state were carried out with male and female popu-
lations, and after applying the greedy algorithm to remove
channels, the accuracies obtained were drastically reduced.
In the case of the female population, the accuracy using 14
channels was 0.96 and using 1 channel 0.71, while for the
male population was only from 0.96 to 0.81, respectively.

In Fig. 6 is shown a comparison of configurations found for
the male and female population with 4 channels (according to
the Fig. 4) during resting-state. To understand the importance
of the configurations, the experiments for Subject identification



Fig. 5. Left and right hemisphere comparison of mean amplitude (Theta (4-7 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (31-60 Hz) frequency bands
[16]) during linguistic activity and resting-state from the male and female population using the EEG raw signal (14 bits).

during resting-state were repeated but using both configura-
tions in both populations.

Fig. 6. A comparison of configurations using 4 channels for male and female
populations during resting-state.

As it was mentioned previously, the accuracy obtained with
the configuration 1 for the male population was 0.93; however,
using the same configuration for the female population the
accuracy was 0.89. Using the configuration 2 the accuracy for
the female population was also 0.93, but if that configuration
is used for the male population, the accuracy was 0.90. The
importance of using a sex tailored configuration is shown
in this experiment, since using an adapted configuration the
accuracy was 0.04 and 0.03 points higher, respectively. In
this case, the configurations used were during resting-state and
there is only 1 channel difference, but in the case of linguistic
activity, there are 2 channels difference in the subset of 4
channels.

With the results presented previously, the idea of using 5
channels mixing both configurations (T7, O2, T8, FC6, and
F4) quickly come to mind. This is why the experiment for
subject identification was repeated with this new configuration
of 5 channels. However, the accuracy obtained was 0.93
with both populations. This means that the channel added

to create that configuration does not contain useful/fruitful
information for the specific characteristics of each population,
and the channel only added computationally cost. Even if
the populations are mixed (obtaining thus 16 Subjects for the
experiment of Subject identification) the accuracy was 0.86,
which obviously is lower.

To understand if the accuracies are affected by having only
right-handed males and females in the population, the exper-
iment of Subject identification was reproduced considering
only 6 Subjects, since there are only 6 right-handed females
in the dataset. The results obtained during resting-state (0.97,
0.97, 0.94, 0.86 and 0.77) and during linguistic activity (0.93,
0.94, 0.88, 0.78 and 0.69) respectively for 14, 8, 4, 2 and
1 channel also suggest that left and right-handed populations
may hold common information in the populations and if that
is taken into account, the accuracy may improve. However,
to obtain more evidence about this behavior, a comparison of
right-handed versus left-handed in both populations (male and
female) within a larger population, will be necessary.

Comparing the previous results obtained for Subject iden-
tification with only the right-handed female population and
the results from Fig. 3, the accuracy increased significantly,
especially using fewer channels, i.e., during linguistic activity;
using 2 channels the accuracy improves from 0.81 to 0.86 and
with 1 channel from 0.71 to 0.77.

There is evidence in the state-of-the-art that suggests that
male brain is more asymmetrically organized than female
brain [7], [17]. Taking this into account and looking at the
results in Figs. 3, 4 and 5, they appear to support the view
of a more pronounced functional brain asymmetry in males
than in females. This behavior becomes more evident when
channels were removed using the greedy algorithm. In the
male populations the location of channels is on the right
hemisphere whereas, for the female population, the channels
are distributed in both hemispheres, using 4 channels or fewer.

These results are supported by different applications with



relatively high accuracy for subjects identification and there-
fore hint on the existence of unique patterns for each Subject.
This means that a static EEG device design for multi-purposes
and for different types of populations may not be effective
even when using the same neuro-paradigm. This also points
out to potential improvements in the accuracy and reliability
of the acquisition system if the acquisition of brain signals is
associated with the characteristics of the Subject.

Some of these characteristics are sex, age, the task to
perform, culture, and even the subject intelligence level [4],
[5], [18], [19]. Some studies have shown that alpha, theta and
beta oscillations are associated with the sex of the Subject for
certain tasks [4], [5]. In the work presented in [6], is it exposed
that according to the culture, and the age of the population, the
brain signals may differ. The experiments performed during
resting-state show that children from Switzerland demon-
strated stronger power in the Delta-band at Fz electrode,
instead of the stronger Alpha-band activity of Saudi Arabian
children. These observations are supported by some works
where neuroplasticity was studied to explain the age variations,
and the effect of intelligence on EEG signals [18]–[20].

Current EEG technology presents some limitations for real-
time and for many real applications. The consumer grade
EEG devices in the market are limited to Dry/Wet electrodes
and often to specific tasks, for example, in the case of
Neurosky MindWave the research is focused only in resting-
state/concentration and eye-blink [8]. With a-priory under-
standing of Subject related characteristics, the analysis of the
signals can substantially improve, and this can help to create
a flexible device design for new applications.

Nonetheless, due to the high complexity of the brain, the
methods/knowledge to obtain valuable information from brain
data are still limited. Well-known challenges are the problem
of transfer learning and patterns acquisition in real-time which
require information from different sessions. The presence of
artifacts associated with the devices is another challenge that
affects the analysis.

To create machine-learning based models, it will be nec-
essary to take into account the sex differences even during
resting-state or in others states [21]. Nowadays, the features
can be extracted using different methods, but for a certain task,
it will be necessary to use more steps to add features related
to the Subject in order to improve the performance.

Future efforts will be dedicated to improving the accuracy of
sex classification, using the results of this paper. One of the
limitations of this study is the small population used in the
experiments. This is why new experiments will be designed
with an enlarged population with comparable characteristics
(age, right/left-handed, sexes, etc.).
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