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Abstract

The emerging field of spintronics utilizes the spin degree of freedom of the electron
in information storage and processing instead of the electron charge as in conven-
tional electronics. Spintronics research has already led to a revolution in magnetic
storage technology and has the potential for considerable improvements in future
technologies.

A recent new avenue for research in spintronics is spin dynamics in magnetic
insulators. In these materials, the electric charge cannot move, but information
can still be transported through fluctuations in the electron spin because the spins
strongly interact in magnetic materials. Eliminating the motion of the electric
charges reduces Joule heating, a central limitation for the performance of nanoelec-
tronics. Consequently, insulator spintronics is a good candidate for energy-efficient
technologies.

A particular type of magnetic insulator that has gained significant interest over
the past few years is the antiferromagnetically ordered insulator. Antiferromagnetic
materials have several promising qualities, the most prominent of which is a van-
ishing net magnetic moment, which renders them insensitive to magnetic noise and
allows for a denser stacking of components; another key ingredient is the ultrafast
dynamics on the THz scale. Moreover, antiferromagnets are abundant in nature,
making them easily accessible. Very recently, several remarkable experimental re-
sults have been obtained when using antiferromagnets as the main active compo-
nent. These results include a long-distance transport of a spin current through an
antiferromagnetic insulator and the demonstration of an antiferromagnetic memory
operating at a THz frequency.

The research presented herein aims to improve our fundamental understanding
of antiferromagnetic insulator spintronics. To this end, we study key aspects at
the microscopic and quantum levels. This thesis starts by providing an overview of
the historical background and the main motivation for antiferromagnetic insulator
spintronics. Microscopic descriptions of antiferromagnetic ordering and magneti-
zation dynamics are then given before these concepts are applied to the transport
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of spin in heterostructures. Moving to a quantum mechanical description, we ana-
lyze quantized spin excitations in antiferromagnetic insulators and study how these
excitations interact with both microwave photons and fermions such as electrons.
We then move beyond antiferromagnetic insulators to study magnetic phases in two-
dimensional ferromagnets. Finally, we present the main results of this doctoral work
in five research papers.

The main research topics can be divided into (i) the electrical generation and
detection of spin currents in heterostructures consisting of antiferromagnetic insu-
lators and normal metals and how these are significantly enhanced at the spin-flop
transition [1, 2]; (ii) the interaction between spin fluctuations in ferromagnets and
antiferromagnets over macroscopic distances, mediated by independent coupling to
microwave photons [3]; and (iii) the formation of exotic states of matter, such as
indirect exciton condensates, caused by an interaction between the electron spin and
magnetic fluctuations in an antiferromagnetic insulator at magnetic interfaces [4]. In
addition, we also explore current-induced spin dynamics in selected two-dimensional
ferromagnetic conductors and how this can be used to control magnetic phases,
including a potential means for observing the topological Berezinskǐi–Kosterlitz–
Thouless phase transition in the two-dimensional XY model in magnetic systems
[5].
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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) as a partial fulfillment of the requirements for the degree of Philosophiae
Doctor. The work was performed at the Department of Physics under the supervi-
sion of Professor Arne Brataas, with Professor Jacob Linder as a cosupervisor, from
August 2016 until the fall of 2019. During the course of this doctoral work, I also
had a research stay for three months at Utrecht University in the Netherlands under
the guidance of Professor Rembert A. Duine, from the beginning of April until the
end of June 2018. This doctoral work resulted in five research papers, all of which
are presented at the end of this thesis. In addition to research, the doctoral pro-
gram also included coursework amounting to 30 ECTS, corresponding to a workload
of one semester, as well as teaching undergraduate physics laboratory exercises for
three semesters, also corresponding to a workload of one semester. The PhD was
funded by the Research Council of Norway, under Grant No. 239926 "Super Insula-
tor Spintronics" and through its Centres of Excellence funding scheme Project No.
262633 "QuSpin", as well as by the European Research Council via Advanced Grant
No. 669442 "Insulatronics".

The first part of this thesis provides an introduction to the fields of spintronics
and magnetization dynamics on semiclassical and quantum levels to readers unfa-
miliar with these fields. As these are quite broad fields, the focus is on the most
important concepts that are discussed and utilized in the research papers at the end
of this thesis. The purpose is to provide an intuitive understanding of the physics
and methods utilized in the research papers, without extensive rigorous mathemat-
ical derivations, which are left to the research papers and other literature. The aim
of this first part is not to simply reformulate the contents of the research papers, but
there are several parts where I have found it useful to spend more time examining
the research results in more detail or through an alternative way of seeing things.
Because some journals have a length restriction on their manuscripts, one is often
forced to condense the discussion in the research papers themselves, occasionally
making it more demanding for the reader to grasp certain ideas. Moreover, in my
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experience, one may often consider some of the research results in a new light post-
publication. With these aspects in mind, I have attempted to write this thesis in a
way such that it complements the research papers presented at the end.

The structure of this thesis is designed in an order that I personally find to be
the most intuitive to read up on the research fields. To make the topics easier for
readers who do not read this thesis from cover to cover or who occasionally need a
reminder of different definitions, I have created an index with a list of terms and
definitions at the end of this thesis. I hope that this thesis will serve as a useful
source of information to readers interested in antiferromagnetic insulator spintronics.

Øyvind Johansen
Trondheim, Norway

September 2019
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1
Introduction

1.1 Electronics and information technology

Information and communication technology has experienced an explosive develop-
ment over the past century. A nice illustration of this trend is Moore’s law. This
law is based on Moore’s prediction that there will be an exponential growth in the
number of components (transistors) on integrated circuits [6]. Initially predicted
to be a doubling in the number of components every year, it was later updated to
a doubling every two years from 1975 [7]. Quite surprisingly, this prediction has
thus far proven to be quite accurate for half a century. This trend in technological
development has had an immense impact on the community as a whole. Where
computers were enormous and extremely expensive half a century ago, the signif-
icant reduction in both size and price has led to computers becoming an essential
commodity for a major part of society.

When most people think about technological devices in today’s society, they
think about devices based on electronics. Electronics is a technology that relies on
information processing through the controlled transport of the fundamental electrical
charge of electrons. Although the technological development of electronic devices has
thus far been marvelous, electronics has certain fundamental limitations at its core
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2 Chapter 1. Introduction

Figure 1.1. An electric current is carried by negatively charged electrons, illustrated
here as small blue spheres, moving from the left to the right. In a classical picture,
when the electrons move, they collide with the positively charged crystal lattice,
illustrated as large red spheres, or with each other. These collisions transfer energy in
the form of heat to the crystal lattice and cause an unwanted Brownian motion of the
electrons around the desired current direction. This results in a significant decrease
in the energy efficiency of the charge current when the overall purpose is to transfer
information in the form of an electron flow from left to right.

that will eventually cause further development to come to a standstill. An example
of such a limitation is Joule heating. Electric currents consist of moving particles,
and these particles can collide with each other and generate heat, as illustrated in
Fig. 1.1. The power of the heating in the material where the current passes through
is proportional to the square of the current and therefore increases quite rapidly with
increasing current. This heating is occasionally beneficial, as this effect is utilized
in e.g. incandescent light bulbs and electrical ovens or heaters; however, it is an
unwanted effect for information and communication technology for two main reasons.
First, as devices become increasingly smaller, the electric circuits where the current
passes through become narrower, leading to a significant increase in the current
density needed to pass a certain amount of current through the wires. The increased
current density in these wires leads to a drastic increase in the local heating, causing
the wires to easily burn up if one passes a current that is too large through the wire.
This places a significant restraint on how small one can make these electric circuits.
Second, the heating from the electric currents results in a substantial energy loss for
applications where this heating is unwanted, such as in computers. This point is of
particular interest today, where the importance of creating an energy-efficient and
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sustainable society using clean energy is becoming central. Although information
and communication technology is perhaps not the first thing that comes to mind
when people think of a green society, the explosive growth of its use in today’s
society makes it increasingly important to take into consideration. A study from
2015 estimated that a worst case scenario in 2030 could be that communication
technology will account for as much as 51% of the global electricity usage and
could be responsible for up to 23% of the greenhouse gas emissions worldwide [8].
While one can argue that it can be extremely difficult to make realistic predictions
about something so complex, the development of energy usage in information and
communication technology should be a reason for concern. With these drawbacks of
electronics in mind, if the current progress is to be continued for the better, we need
to change something fundamental about what we base our technology on. Here,
the emerging field of spintronics shows some promising features that might help us
address some of these issues.

1.2 Spintronics

1.2.1 Conventional spintronics

In addition to having a negative charge, the electron has an internal degree of
freedom in the form of an intrinsic angular momentum, which is called the spin of
the electron. A simple analogy of the electron spin is that the electron spins around
its own axis, much like the Earth, as illustrated in Fig. 1.2. Note, however, that
this picture is just a naive attempt to obtain a physical intuition of the electron
spin. The behavior of the electron is inherently quantum mechanical. And if there
is one thing we have learned about quantum mechanics thus far, it is that it can
be extremely difficult, and often impossible, to align our intuitive understanding of
classical physics on a macroscopic scale with quantum physics. An example of this
mismatch is that the electron spin can only be in one of two possible states, often
referred to as spin up and spin down, as can be understood from Fig. 1.2 (a). The
electron spin and its orbital motion around the atomic nucleus are the fundamental
building blocks for magnetic materials. This is because the combination of the spin
and the electric charge results in an intrinsic magnetic moment and a corresponding
magnetic field, as illustrated in Fig. 1.2 (b). The atomic nucleus can also possess
a magnetic moment, but it is much smaller than that of the electron due to its
comparatively heavy mass and can therefore often be neglected [9].
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(a) (b)

Figure 1.2. (a) An illustration of two electrons with spin down and spin up. The spin
of the electron is often just illustrated by vectors, as in this figure. (b) The electron
spin results in a magnetic moment and thereby a magnetic field, as illustrated by the
red field lines.

In magnetic materials, the direction of the electron spins will follow certain
types of ordering. As an example, in ferromagnetic materials, commonly referred
to simply as "magnets" in layman terms (this is the material that will stick to your
fridge door), the electron spins tend to align in the same direction. This causes
the individual magnetic moments to interfere constructively, thereby creating an
external magnetic field. The tendency for spins to order means that neighboring
spins communicate with each other in magnetic materials (the mechanism of which
will be discussed in the next chapter). This is the basis for the field of spintronics.
The name spintronics is short for “spin transport electronics” [10, 11], and in this
field, we are interested in information processing, storage, and control using the spin
of the electron instead of its charge as in conventional electronics.

The concept of spintronics might be unfamiliar to many readers, but much
of the technology used today already relies on some of its applications. The first
major applications of spintronics began after the discovery of the giant magnetore-
sistance (GMR) effect in 1988 by the experimental groups of Fert and of Grünberg
[12, 13]. These two groups independently studied the electrical resistance in het-
erostructures consisting of ferromagnetic layers separated by nonmagnetic/normal
metal (N) spacers. It was discovered that when an electric current passes through
a | ↑ |N| ↓ | structure, where the arrows indicate the average spin direction in two
separate ferromagnetic layers, the electric resistance was significantly higher than
that in | ↑ |N| ↑ | or | ↓ |N| ↓ | structures. This property allowed for reading
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"0" "1" "1" "0" "0"

Figure 1.3. Basic illustration of the read-out concept used in magnetic memories.
A fixed ferromagnetic layer (black) in the read head is placed over a location in the
magnetic memory. The local magnetization direction in the magnetic memory can
then be read by measuring the electrical resistance by passing a current through the
nonmagnetic spacer (gray). The spacer layer is a conductor for the giant magne-
toresistance (GMR) effect and an insulator for the tunnel magnetoresistance (TMR)
effect. For instance, one can assign the bit value "1" to the parallel magnetization
configuration and the bit value "0" to the antiparallel configuration with respect to
the fixed layer.

out the local magnetization in a material along a given axis through electric mea-
surements. This discovery was very beneficial for magnetic memories, such as hard
disk drives (HDDs), which are now widely used in computers, and magnetoresistive
random-access memory (MRAM). In these magnetic memories, one can store digital
information in the form of local variations of the magnetization direction in mag-
netic materials, which can then be read via the GMR effect, as illustrated in Fig.
1.3. The discovery of the GMR effect was awarded the Nobel prize in physics in
2007, as “It is thanks to this technology that it has been possible to miniaturize hard
disks so radically in recent years” [14]. The possibility of storing substantially more
data on much smaller devices using the GMR effect, the commercialization of which
was to a great extent because of Parkin at IBM, subsequently led to technologi-
cal innovations such as the iPod [15]. Although it was the discovery of GMR that
sparked the applications of spintronics in magnetic memories, another related effect
has since replaced its role. This effect is called tunnel magnetoresistance (TMR)
and functions quite similarly to GMR, but with the nonmagnetic conducting layer
being replaced by a nonmagnetic electric insulator. When this insulating layer is
sufficiently thin, the electric current can still pass through via quantum tunneling.
While TMR was discovered over a decade prior to GMR [16], the initial discovery
was achieved at very low temperatures and did not exhibit a very large change in
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resistance; therefore, it did not attract much attention. However, more recent exper-
iments of TMR have shown that this effect can also occur at room temperature with
a tremendous change in the electrical resistance, which has increased significantly
over the years. The initial resistance change of 14% in the 1975 discovery has since
increased to ∼200% in 2004 [17, 18], ∼600% in 2008 [19], to the staggering values of
∼19000% [20] and even one million percent [21] in 2018. These values make TMR
a more sensitive and favorable measuring technique than GMR.

In addition to using spintronics for storing and reading information, there is
also ongoing research on how to use spintronics to effectively write information to
memory. A decade before the discovery of the GMR effect, Berger predicted that
spins in an electric current could move ferromagnetic domain walls [22–25], which
are the borders between the different magnetic directions/domains in Fig. 1.3, via
so-called spin-transfer torques (STTs) [26]. Later, Berger and Slonczewski indepen-
dently predicted that these torques could transfer angular momentum in magnetic
multilayers, and that the torques could be used to change the magnetization direc-
tion in one of the magnetic layers [27, 28]. STTs can be used for writing the memory
and transferring the magnetic information in a bit line to the read head. This is
greatly advantageous, as we can then avoid having any moving parts, which will cost
less energy and be more durable [29]. The commercialization of MRAM utilizing
STTs, known as STT-MRAM, is currently in progress. As an example, Everspin
has manufactured 256 Mbit STT-MRAM chips [30].

Another promising application of spintronics that has attracted considerable
attention is the spin field-effect transistor proposed by Datta and Das in 1990 [31].
The transistor is the invention that revolutionized modern electronics. It works
as a switch and can therefore be used to represent a bit in memory applications
or to carry out logical operations in processors. The spin field-effect transistor
is a nonvolatile alternative to the current transistors, which causes lower energy
consumption. Realizations of spin field-effect transistors have been reported over
the past decade [32–34], but the development has not yet reached the stage of large-
scale implementation in modern devices, to the best of my knowledge.

1.2.2 Insulator spintronics

– Future technology for a more energy-efficient society?

The applications of spintronics discussed in the previous section are generally re-
ferred to as applications of conventional spintronics. While they utilize the spin
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Figure 1.4. Instead of transferring information via moving electrons, one can transfer
information via the electron spins in the form of spin waves, as illustrated here. The
signal generator causes the electron spin on the left-hand side to precess, and as the
electron spins are coupled in magnetic materials, this precession propagates to the
neighbors to the right. The signal detector to the right can then detect the signal
coming from the left once the spin(s) next to the detector start precessing. The in-
plane precessions of the electron spins are illustrated by the rotating arrows beneath
the electrons.

of the electron, the motion of the spin is interconnected with the motion of the
electron itself. Consequently, even if conventional spintronics has greatly assisted in
miniaturizing computers, it suffers the same drawback as conventional electronics
in regard to effects such as Joule heating because we still rely on electric currents.
It would therefore be more beneficial if we could transport spin without the ac-
companying transport of charge. This is where magnetic insulators and insulator
spintronics become interesting. In electrically insulating materials, the electronic
charge is no longer free to move as in conductors such as metals. However, if the
insulator also exhibits a magnetic ordering, one can transport information via the
spins instead, as these couple to their neighboring spins. An example of such spin
transport is the propagation of a spin wave from a generator to a detector, as shown
in Fig. 1.4. Experiments demonstrating the transport of spin in a magnetic insula-
tor have already been realized [35–37]. The transport of information purely via the
electron spins does not suffer the same disadvantages as electronics such as Joule
heating. Insulator spintronics therefore shows great promise as a candidate to solve
some of the fundamental problems of electronics in e.g. computers.
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1.2.3 Antiferromagnetic spintronics

– Smaller and faster components

Another type of magnetic ordering that commonly occurs in nature is that of an-
tiferromagnetic ordering. Ferromagnets prefer having all the spins aligned along
one direction, whereas antiferromagnets would like to have each spin point in the
opposite direction with respect to its neighboring spins. For a one-dimensional spin
chain, we would then have a spin ordering such as ↑↓↑↓↑↓. This type of ordering
was initially suggested by Louis Néel, who later won the Nobel prize in physics for
his work on magnetic ordering in condensed matter physics. However, he was not
very optimistic regarding the applications of this type of magnetic ordering:

“A large number of antiferromagnetic materials is now known; these are
generally compounds of the transition metals containing oxygen or sulphur.
They are extremely interesting from the theoretical viewpoint but do not seem
to have any applications.”

– Louis Néel, Nobel Lecture December 1970

Despite this outlook, antiferromagnets have found applications with the birth of
spintronics. Initially, antiferromagnets had a passive role in spintronic devices. A
prime example is the use of the exchange bias effect at interfaces between ferro-
magnets and antiferromagnets, which pins the magnetization in the ferromagnet
in a specific direction [38]. This is utilized in the GMR and TMR effects to pin
the magnetization direction in the fixed ferromagnetic layer in the read head (black
layer in Fig. 1.3) by having an additional antiferromagnetic layer adjacent to the
fixed ferromagnetic layer. Recently, however, interest in using antiferromagnets as
the active component in spintronic devices has been surging [39, 40]. This interest
is because antiferromagnets have several advantages over ferromagnets:

• Antiferromagnets produce no external/stray magnetic fields, which allows for
a denser packing of antiferromagnetic components, as shown in Fig. 1.5.

• Antiferromagnets are insensitive to magnetic noise.

• Antiferromagnets have a very high resonance frequency compared to ferromag-
nets. While ferromagnets typically have a resonance frequency on the GHz
scale, antiferromagnets have resonance frequencies in the range of hundreds of
GHz to THz. This allows for much faster dynamics when e.g. switching the
magnetization orientation.
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(a)

(b)

Figure 1.5. (a) Ferromagnetic components need to have a sufficient separation
between themselves to avoid unwanted crosstalk via the external magnetic fields they
produce (red field lines). (b) Antiferromagnetic components have a strong internal
magnetic field, but the external magnetic field is canceled due to the antiparallel
ordering. They can therefore be more densely packed than ferromagnetic components,
without any crosstalk via self-produced magnetic fields.

One of the applications of antiferromagnets currently being investigated is an
antiferromagnetic memory. While bits can be encoded in the two magnetization
directions ↑ and ↓ in ferromagnets, the situation is a bit different in antiferromag-
nets. It is extremely challenging to distinguish a configuration such as ↑↓↑↓ from
↓↑↓↑ because they are almost the same - just shifted with an atomic distance with
respect to one another. For antiferromagnets, one instead encodes the bits in the
two configurations where the spins either point along l or ←→, which can be dis-
tinguished from one another. The electrical switching of the antiferromagnetic spin
ordering has recently been theoretically predicted [41] and demonstrated experimen-
tally [42–44], where it was also shown that one could obtain a THz writing speed of
the antiferromagnetic memory [44]. In addition to applications of antiferromagnets
in memory technologies, there has also been very recent progress in the transport of
spin currents through antiferromagnetic insulators. In an experiment using the an-
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tiferromagnetic insulator hematite (Fe2O3), a very common iron oxide and the main
component of rust, the experimentalists were able to transport and detect an in-
jected spin current over distances of 80 µm [37]. Although this is not a large distance
from a macroscopic perspective, it is very far in the context of nanotechnology.

The work in this thesis is, as the title suggests, primarily focused on insula-
tor spintronics in antiferromagnetic materials. The aim of the presented work is to
further improve the fundamental understanding of the field, which may hopefully
also be of use in future applications of antiferromagnetic spintronics. This thesis
covers a variety of topics. In Papers [1, 2], we study the generation and detection
of a spin current in an antiferromagnetic insulator and how this depends on the
parameters of the free energy of the antiferromagnet. In Paper [3], we present a
possible way to bridge antiferromagnetic and ferromagnetic spintronics via interac-
tions between the spins and photons. In Paper [4], we study how fluctuations in
the antiferromagnetic spin structure can mediate an attractive interaction between
fermionic particles to create exotic states of matter that can be used for dissipation-
less transport. An introduction to the terminology and formalism in the papers is
given in the remaining chapters of this thesis. Chapters 2 and 3 provide an intro-
duction to semiclassical magnetization dynamics in antiferromagnetic insulators, as
well as spintronics in multilayer heterostructures, laying the groundwork for Papers
[1, 2]. Chapter 4 presents a quick introduction to the quantum mechanical descrip-
tion of magnetization dynamics in antiferromagnets. Building upon this, Chapter
5 gives an introduction to interacting bosons, specifically between quantized spin
fluctuations (known as magnons) and microwave photons, which is considered in
Paper [3]. In Chapter 6, we consider interactions between magnons and fermionic
particles and give an introduction to the formalism in Paper [4]. The last chapter
and paper of this thesis, Chapter 7 and Paper [5], do not involve antiferromagnetic
insulators. Instead, these consider the magnetic phases in recently experimentally
detected two-dimensional ferromagnetic materials and how these magnetic phases
can be controlled with an electric current in certain materials.



2
Antiferromagnetic magnetization

dynamics

Magnetic ordering has a quantum mechanical origin but still persists on a macro-
scopic level. When describing the overall system behavior, it is no longer necessary
to provide a rigorous description of all the individual spins in the system. Thus,
it can be beneficial to use a so-called semiclassical treatment of the electron spins
rather than a quantum mechanical one. In this semiclassical treatment, we con-
sider the expectation values of quantum mechanical operators, such as the electron
spin, instead of describing a macroscopic ensemble of physical quantities in terms
of operators. This semiclassical description is often referred to as micromagnetics,
and it is capable of describing numerous magnetic phenomena on a microscopic
level. This chapter will give an introduction to the micromagnetic description of
antiferromagnets both in equilibrium and in response to a dynamical source.

2.1 Antiferromagnetic order

In antiferromagnetic materials, the neighboring spins prefer to point in opposite di-
rections, unlike in ferromagnetic materials, where they prefer to point in the same

11
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M2

M1

+

Figure 2.1. An antiferromagnet can be considered two (coupled) ferromagnets with
opposite magnetizations if we split the sublattices.

direction. Antiferromagnetic ordering is illustrated for a two-dimensional square
lattice to the left in Fig. 2.1. When describing antiferromagnetic materials, it is
convenient to divide the material into two sublattices, as illustrated in Fig. 2.1.
In each sublattice, all the spins point in the same direction for a spatially uniform
antiferromagnet. To describe the magnetic order of an antiferromagnet, we can con-
sider the average magnetization, which is the density of magnetic moments, within
each of the two sublattices. Let us denote these as Mi (i = 1, 2). Note that for an
antiferromagnetic material, |M1| = |M2| ≡ M . If these are not exactly equal but
still point in opposite directions, the material is ferrimagnetic. Because the magne-
tization within the two sublattices is equal in magnitude for an antiferromagnet, it
is common to only describe the direction of the magnetization in terms of the unit
vectors mi = Mi/M .

Although we can describe the antiferromagnetic order in terms of the sublattice
magnetization unit vectors mi, it is often more convenient to work in a different
basis where the antiferromagnetic order is more apparent. In this basis, we describe
the antiferromagnetic order in terms of the average magnetization m and average
staggered magnetization n, defined as

m = m1 + m2

2 , n = m1 −m2

2 . (2.1)

The average staggered magnetization vector n is often referred to as the antiferro-
magnetic order parameter, or the Néel order parameter. This is because this param-
eter intuitively describes the degree of antiferromagnetic ordering. When |n| = 1
(which also entails |m| = 0), we have a perfect collinear antiferromagnetic ordering,
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whereas if we have |n| = 0 (and |m| = 1), we no longer have antiferromagnetic
ordering but rather a ferromagnetic ordering. From the definitions of m and n in
Eq. (2.1), we note that they are not unit vectors as m1 and m2 but satisfy the
following relations:

m2 + n2 = 1 , m · n = 0 . (2.2)

Now that we have a description of antiferromagnetic ordering, we will discuss how
this ordering occurs.

2.2 Micromagnetic energy

There are many different types of energy contributions in magnetic systems that
affect the structure and dynamics of the magnetic moments. These are typically
microscopic in origin but can have a macroscopic effect on the magnetic order.
In this section, we will discuss three common contributions to the micromagnetic
energy, namely, the exchange interaction, magnetocrystalline anisotropy, and the
Zeeman interaction. While there are several other possible energy contributions,
the work presented in this thesis primarily focuses on systems that can be described
by a combination of these three effects. Notably, one magnetic interaction that
is absent in this description of antiferromagnets is the dipole-dipole interaction.
Although the dipole-dipole interaction is generally a significant contribution to the
description of e.g. ferromagnets, its contribution in antiferromagnetic materials is
relatively insignificant because there is no net magnetization that creates a dipole
field worth considering.

2.2.1 Exchange interaction

The exchange interaction causes the magnetic ordering of spins. The exchange
interaction can be considered as a balance between two principles: electrostatic
Coulomb repulsion and the Pauli principle. The Pauli principle states that two
identical fermionic particles (particles with half-integer spin), such as electrons, have
to have an overall antisymmetric wave function, which means that two fermions
cannot be in the same state. In other words, if two electrons are in the same spatial
state, it requires them to have opposite spins in an antisymmetric singlet state,
whereas if they have the same spin, it requires them to have an antisymmetric
spatial wave function.
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The form of the exchange interaction depends on the balance between the
Coulomb repulsion and the Pauli principle. In materials with a strong Coulomb
repulsion, it will be energetically favorable to have the electrons far from each other
or electrons that have a small overlap in their wave functions and as a consequence
are less visible to each other (e.g. by having spatially antisymmetric two-particle
wave functions). Due to the Pauli principle, this is a natural state for electrons with
aligned spins, and a ferromagnetic ordering is therefore favorable [45, 46].

Antiferromagnetic ordering occurs when the Coulomb interaction is short
ranged due to a combination of quantum fluctuations and the Pauli principle.
The mechanism for antiferromagnetic ordering is quite subtle and is best explained
through the following example: consider a case where we have a square lattice of
atoms, and each atom can host at most two electrons in the same spatial orbital. Let
us further specify a scenario where we have a number of electrons equal to the num-
ber of atoms, and we have a short-ranged Coulomb repulsion between the electrons
such that they only repel each other if they are at the same atom. Consequently,
the ground state of the system must be the case where we have one electron at each
atom because this does not cost energy due to Coulomb repulsion. In addition to a
Coulomb repulsion between the electrons, the electrons also have a small contribu-
tion to the kinetic energy from processes where the electrons hop from atom to atom.
We assume that the kinetic energy is much smaller than the Coulomb repulsion and
treat this as a perturbation. If we start from the ground-state configuration with
one electron at each atom, once an electron hops to the neighboring atom, it will
hop to an atom that is already hosting another electron. For this to be allowed by
the Pauli principle, the electron hopping to the neighboring atom must have the
opposite spin of the electron already there because the two electrons are not al-
lowed to have the same spatial and spin states. After the first hopping process, the
electron will hop back to its original atom because it costs energy due to Coulomb
repulsion for it to remain at the already-occupied atom. However, the ability of the
electron to move back and forth between the neighboring atoms delocalizes its wave
function and lowers its overall energy by a small amount. Delocalized particles gen-
erally having less energy (when disregarding contributions from other interactions)
can be found in other systems, such as particles in a box and quantum wells, where
the ground-state energy decreases with an increase in the box or well size. Because
only the electron with a spin antiparallel to its neighbors can lower its energy via
delocalization through hopping processes to neighboring atoms, the ground-state of
this system has an antiferromagnetic ordering of the spins. The above model is a



2.2. Micromagnetic energy 15

x

x(a) (b)

(c) (d)

Figure 2.2. (a) When two neighboring spins are antiparallel, electrons are allowed to
(virtually) hop back and forth between the atoms to lower its energy, unlike scenario
(b), where the neighboring spins are parallel. In superexchange, an indirect magnetic
interaction between two magnetic atoms is mediated by exchange interactions with a
nonmagnetic atom. In (c), both of the higher-energy magnetic orbitals can undergo
a simultaneous exchange interaction with the nonmagnetic orbital, whereas this is
not possible with the parallel configuration in (d). This causes a preferred magnetic
ordering of the magnetic atoms, which is often antiferromagnetic [9].

special case of the Hubbard model, and its ground state has indeed been shown to
be an antiferromagnetic insulator in one dimension [47]. Often, these quantum fluc-
tuations between two magnetic atoms (= atoms with a net spin) involve exchange
interactions with an intermediary nonmagnetic atom. The magnetic interaction is
then called a superexchange [48, 49], and it is illustrated in Fig. 2.2.

The exchange interaction between localized spins can be expressed by the
Heisenberg Hamiltonian

HHeisenberg = Jex
∑
〈i,j〉

Si · Sj , (2.3)

where the sign of the exchange constant Jex indicates whether ferromagnetic (Jex <

0) or antiferromagnetic (Jex > 0) ordering of the spins is preferred. The above
Heisenberg model only includes nearest-neighbor interactions, denoted by 〈i, j〉, but
it can be extended to include interactions over several atomic distances. However,
the exchange interaction is a short-ranged interaction, and a nearest-neighbor model
often captures the essential physics. For a spatially uniform magnetization within
each sublattice of the antiferromagnet, the contribution to the free energy from the
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exchange interaction can be written as

FExch. =
ˆ

dV
∣∣∣J̃ex

∣∣∣M1 ·M2 = V
∣∣∣J̃ex

∣∣∣M2m1 ·m2 = V
∣∣∣J̃ex

∣∣∣M2
(
m2 − n2

)
. (2.4)

Here, J̃ex is the exchange interaction strength between the two sublattice magneti-
zations, analogous to the single-spin exchange constant Jex. If we also take spatially
varying magnetization profiles into account, the exchange interaction also obtains a
contribution from the spatial fluctuations [50]:

FExch. =
ˆ

dV
∣∣∣J̃ex

∣∣∣M2
{

m2 − n2 + a2

4
[
(∇m)2 + (∇n)2

]}
. (2.5)

Here, a is the lattice constant of the antiferromagnet.

2.2.2 Magnetic anisotropy

If the magnetic interactions in a magnet are solely described by the Heisenberg model
in Eq. (2.3), where the exchange interaction Jex is equal in all directions, then this is
called an isotropic Heisenberg magnet. This is because there is then an isotropy in
spin space, where the direction along which the spins order does not matter. This is
not true for many magnetic materials, as they often exhibit a phenomenon known as
a magnetic anisotropy, where the energy of the system depends on the direction along
which the spins point. The magnetic anisotropy is often closely related to spin-orbit
coupling, where there is, as the name implies, an interaction between the motion of
the electron and its spin. The spin-orbit interaction is a relativistic effect. Its origin
can be explained heuristically as follows: as seen from the reference frame of the
electron, the positively charged nuclei of the crystal are moving, thereby creating a
dynamical electric potential. This in turn leads to a magnetic field that interacts
with the magnetic moment of the electron, i.e. its spin. This case is illustrated in
Fig. 2.3. The magnetization of a material is caused by the electron spins of the
outer orbitals, where the shells are unfilled and can carry a net spin. These orbitals
are not spatially isotropic, unlike the lowest energy s-orbital, and there are therefore
certain orbits that are more probable for the electrons to follow. Consequently, this
also leads to an anisotropy in spin space due to the spin-orbit coupling, and certain
directions are therefore easier to magnetize than others.

In micromagnetics, we often simplify the mathematical description of the mag-
netic anisotropy by a model such as

HAni =
∑

α

kα

2
∑

i

(Si · êα)2 . (2.6)
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(a) (b)

Figure 2.3. (a) The electron (blue sphere) orbits the positively charged atom core
(red sphere). (b) From the reference frame of the electron, the atom core will instead
orbit the electron. This leads to a charge current around the electron, which generates
a magnetic field (dotted field lines) that interacts with the electron spin (black arrow).

Here, kα is the strength of the magnetic anisotropy along the anisotropy axis êα.
Note that this energy is even in the spin; therefore, both directions along the axis
are equally (un)favorable. This is because the free energy has to be invariant un-
der time-reversal symmetry in the absence of external influences, such as external
magnetic fields. Higher-order even terms are often neglected because these terms
are generally small compared to the term that is second order in the spin. The
axis along êα that corresponds to the lowest value of kα is typically called the easy
axis of the system, and similarly, the axis that corresponds to the highest value
of kα is called the hard axis. Any axes with nonextremal values of kα are called
intermediate axes. In the lowest-energy state, the spins align along the easy axis,
and in the highest-energy state, they align along the hard axis if the contribution
from other interactions is neglected. The anisotropy Hamiltonian for the spins can
be generalized to macroscopic magnetic moments for an antiferromagnet:

FAni =
ˆ

dV
∑

α

Kα

2
[
(M1 · êα)2 + (M2 · êα)2

]
(2.7a)

=
ˆ

dV
∑

α

KαM
2
[
(m · êα)2 + (n · êα)2

]
. (2.7b)

The anisotropy constants Kα have a physical meaning equivalent to the anisotropy
constants kα but have different units due to the minor differences in the definitions
of Eq. (2.6) and Eq. (2.7).

2.2.3 Zeeman interaction

The Zeeman interaction is the interaction between the magnetization of a material
and a magnetic field (which is generally external). This interaction is the macro-
scopic version of the Zeeman effect, which is the spin-dependent energy level splitting
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of electrons in a static magnetic field. The Zeeman interaction makes it energeti-
cally favorable for the magnetization of a material to point in the same direction
as a magnetic field. This is the case regardless of the magnetic field being static
or dynamic. The contribution of the Zeeman interaction to the free energy can be
expressed as

FZ = −
ˆ

dVH ·M , (2.8)

where H is a magnetic field in units of Tesla and M is the net magnetization. For
a spatially uniform antiferromagnet, this free energy becomes

FZ = −VMH · (m1 + m2) = −2VMH ·m . (2.9)

While antiferromagnets are infamous for being highly insensitive to magnetic
fields, there is nonetheless an interaction with external magnetic fields even if the
material has a vanishing net magnetization. We will later see that an easy-axis
antiferromagnet at resonance does have a small net magnetization that can interact
with external magnetic fields. First, however, we will consider the case of a strong
static magnetic field in equilibrium and what occurs when the strength of this field
becomes comparable to other energy contributions in the system.

2.3 The spin-flop transition

Let us consider a system where we have a uniaxial easy-axis antiferromagnet in
an external magnetic field along the easy axis. This system has three competing
interactions, which we introduced in the previous section:

• Exchange interaction: wants the spins in the two sublattices to be antiparallel.

• Easy-axis anisotropy: wants the spins to be aligned with the easy axis.

• Zeeman interaction: wants a net magnetization along the magnetic field, i.e.
parallel spins on both sublattices.

The easy-axis anisotropy can cooperate with both the exchange interaction and Zee-
man interaction (as long as the magnetic field is along the easy axis), but there is
an obvious conflict of interest for the exchange interaction and the Zeeman interac-
tion. The exchange interaction is, in almost all cases, the dominating contribution
to the effective interaction, with an interaction strength that can be comparable to
external magnetic fields in the range of 50-1000 T [51–53]. Consequently, unless
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Figure 2.4. (a) Below the spin-flop transition, the magnetic moments are collinear
and parallel to the easy axis. (b) If we apply an external magnetic field H0 along the
easy axis, above some critical field strength Hsf, the magnetic moments "flop" and
are at an angle θ with respect to the easy axis, creating a net magnetization along
the magnetic field. At Hsf, the angle is θ ≈ π/2 due to the strength of the exchange
interaction, and θ decreases for increasing H0.

the external magnetic field is very large, antiferromagnets will effectively remain in
the antiparallel configuration. However, when the external magnetic field becomes
sufficiently large compared to the exchange and anisotropy energy contributions, the
lowest-energy state becomes one where the sublattice magnetizations are not com-
pletely antiparallel to one another. They are instead tilted in the direction of the
magnetic field. This tilting leads to a net magnetic moment along the field direction,
which we choose to be along the easy axis in this scenario. If the external magnetic
field is small compared to the effective exchange field, which is the case for realistic
scenarios, the magnetic moments will still be mostly antiparallel. To satisfy this, in
addition to having a small net magnetic moment along the easy axis of the material,
the spins need to "flop" to a state where they are almost perpendicular to the easy
axis. This case is illustrated in Fig. 2.4.

The transition from the antiparallel state along the easy axis to the tilted
state with a net magnetic moment is called the spin-flop transition. The critical
field strength Hsf at which this transition occurs is Hsf ≈ M

√
2
∣∣∣J̃exK‖

∣∣∣ [54], to
the lowest order in K‖/J̃ex. Here, K‖ is the strength of the easy-axis anisotropy.
The ratio K‖/J̃ex is typically quite small because the magnetic anisotropy is much
weaker than the exchange interactions. The approximation when higher-order terms
in this ratio are discarded is commonly referred to as the exchange approximation.
The critical spin-flop field Hsf is always larger than the effective anisotropy field;
thus, it is more energetically favorable to have a small component of the sublattice
magnetizations along the easy axis. It is also dependent on the exchange interaction
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strength since it costs exchange energy to tilt the sublattice magnetizations to obtain
a net magnetization.

2.4 The Landau–Lifshitz–Gilbert equation

Now that we have considered the static configuration and energy contributions to
antiferromagnets, we will focus on the dynamical behavior of the magnetic moments.
Before considering the antiferromagnetic case, we will start with the simpler case of
a ferromagnet to obtain a better intuition of the dynamical equations.

2.4.1 Ferromagnetic magnetization dynamics

Magnetic moments in an external magnetic field H0 perform something known as
a Larmor precession around the magnetic field. These precessions can be described
mathematically as

ṁ = − |γ|m×H0 = −ωHm× Ĥ0 , (2.10)

where γ is the gyromagnetic ratio (|γ| ≈ 1.76 · 1011 s−1T−1) and ωH = |γH0| is the
Larmor frequency. If the external magnetic field is the only component that interacts
with the magnetic moment, the external field denotes the direction of minimal energy
for the magnetic moment. If we now also account for other contributions to the free
energy, such as the exchange energy and magnetic anisotropy discussed earlier, we
can do this mathematically by treating their contribution as some effective magnetic
field that denotes the direction of minimal total free energy for the magnetic moment:

Heff = − 1
M

δf

δm
, (2.11)

where f = δF/δV is the total free energy density in a volume V and F is the total
free energy. The contribution from the Zeeman interaction to the effective field Heff

will then simply be the external magnetic field H0, whereas the other interactions
are written in a form such that they can effectively be treated as magnetic fields.

The Larmor precession of the magnetic moments described in Eq. (2.10) will
lead to an endless rotation of the magnetization in a closed loop around the effective
field. In real systems, however, dissipation will cause the magnetization to gradually
relax to its equilibrium direction along the effective field unless the dynamics is
sustained by some externally applied source. To take dissipation into account, one
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m mĤeff Ĥeff

α = 0 α > 0

Figure 2.5. Without damping (α = 0), the magnetization performs a right-handed
Larmor precession around the effective field direction. When damping is present
(α > 0) in the absence of a source to sustain the dynamics, the Larmor precession
amplitude spirals inwards as the magnetization relaxes to its equilibrium state along
the effective field.

commonly describes the magnetization dynamics by the Landau–Lifshitz–Gilbert
(LLG) equation

ṁ = − |γ|m×Heff + αm× ṁ , (2.12)

where ṁ is a short-hand notation for dm/dt. Here, the phenomenological Gilbert
damping term [55, 56], parameterized by the dimensionless damping factor α > 0,
has been added to the Larmor precession to account for dissipation. The effect of
this term on the precession of the magnetization is shown in Fig. 2.5. Note that
this differential equation only describes the dynamics of the direction of the magne-
tization and does not describe any change in the magnitude of the magnetization.

2.4.2 Generalization to antiferromagnets

To obtain dynamical equations for the sublattice magnetizations in antiferromag-
nets, one can describe each sublattice magnetization by its own LLG equation:ṁ1

ṁ2

 =
− |γ|m1 ×H(1)

eff + α11m1 × ṁ1

− |γ|m2 ×H(2)
eff + α22m2 × ṁ2

 . (2.13)

The effective fields for each sublattice are defined as H(i)
eff = −δf/δMi. At first

glance, these equations might appear to be uncoupled differential equations, but
they are coupled through the effective fields as H(1)

eff depends on m2, and similarly,
H(2)

eff depends on m1.
Recent works have suggested that the model in Eq. (2.13) does not provide a

complete and accurate description of dissipation in two-sublattice systems [57–59],
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and the damping in these systems needs to be treated more generally. Rather than
having a Gilbert-damping torque τ

(i)
GD acting on sublattice i that is given by

τ
(i)
GD =

∑
j=1,2

αijmi × ṁj (2.14)

where the tensor αij is diagonal (αij = αiiδij), one should not inherently assume
that any of the tensor elements vanish. This introduces new cross terms into the
Gilbert damping for a two-sublattice LLG equation of the form τ

(1)
GD ∼ α12m1× ṁ2

and τ
(2)
GD ∼ α21m2 × ṁ1 [59]. These cross terms are not accounted for in the works

presented in this thesis. The model that we have used is based on the work by
Cheng et al. [60], where α11 = α22 ≡ α and α12 = α21 = 0. We will return to this
discussion in the next chapter, where we discuss the concept of spin pumping from
antiferromagnets. We will argue that the difference between the models does not
necessarily entail any significant changes in the main results and conclusions of the
papers relying on the model by Cheng et al.

The antiferromagnetic LLG equation in Eq. (2.13) can be transformed into the
m, n basis through a substitution of variables. Using the definitions in Eq. (2.1),
the LLG equation becomesṁ

ṅ

 =
1

2ωm ×m + 1
2ωn × n + αm× ṁ + αn× ṅ

1
2ωm × n + 1

2ωn ×m + αm× ṅ + αn× ṁ

 , (2.15)

where we have introduced the frequency vectors ωm = − |γ|
M
δf/δm and ωn =

− |γ|
M
δf/δn that correspond to the effective fields.

2.5 Antiferromagnetic resonance

2.5.1 Linear response

Finding a general analytic solution of the antiferromagnetic LLG equation can be
difficult because we have a system of 6 coupled nonlinear differential equations.
However, as the differential equations are all first order in time, we are able to
find a solution if we can linearize the equations. For instance, we can linearize the
equations by assuming that the dynamical response of the system is a small offset
from some equilibrium value. We use the ansatz that the average magnetization and
Néel order parameter can be written as

m(t) = m0 + δm(t) , n(t) = n0 + δn(t) . (2.16)
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If we consider the system below the spin-flop transition (H0 < Hsf) and assume
that the z axis is the easy axis, we have that the equilibrium values m0 and n0

are m0 = 0 and n0 = ẑ. Furthermore, the linear response ansatz requires that
|δm(t)| , |δn(t)| � 1. To linearize Eq. (2.15), we then only keep terms up to the
first order in δm(t) and δn(t).

Let us now consider the response from a small oscillating magnetic field h(t)
for an antiferromagnet with a uniaxial easy-axis anisotropy. If we consider a spa-
tially uniform magnetization within each sublattice, which we will call the sublattice
macrospin mode, the free energy density of the system under consideration can be
written as

f =
∣∣∣J̃ex

∣∣∣M2
(
m2 − n2

)
− |Kα|M2

(
m2

z + n2
z

)
− 2M [hxmx + hymy + (H0 + hz)mz]

≡ M

|γ|
{
ωE

(
m2 − n2

)
− ω‖

(
m2

z + n2
z

)
− 2 [ωxmx + ωymy + (ωH + ωz)mz]

}
.

(2.17)

Here, we introduced the frequencies ωE, ω‖, and ωH , which describe the strengths
of the exchange, easy-axis anisotropy, and Zeeman interactions, respectively. We
have also introduced the frequencies ωi (i = x, y, z), which describe the strength of
the i-th component of the oscillating magnetic field, which is our dynamical source.
Next, we perform a Fourier transform of the time-dependent parameters in our
system (δm(t), δn(t),h(t)), defined by

g(t) ≡ 1
2π

ˆ ∞

−∞
dωĝ(ω)eiωt . (2.18)

The antiferromagnetic LLG equation can then be reduced to a set of 4 nontrivial
linear equations:

1
2π

ˆ ∞

−∞
dωeiωtχ−1


m̂x

m̂y

n̂x

n̂y

 = 1
2π

ˆ ∞

−∞
dωeiωt


0
0
ω̂y

−ω̂x

 , (2.19)

where χ−1 is the inverse susceptibility given by

χ−1 =


iω ωH 0 iαω + ω‖

−ωH iω −iαω − ω‖ 0
0 iαω + 2ωE + ω‖ iω ωH

−iαω − 2ωE − ω‖ 0 −ωH iω

 . (2.20)
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Let us consider a case where the applied magnetic field oscillates harmonically with
a fixed frequency ωrf such that h(t) = heiωrft. The time dependence of the magnetic
moments will be that of the source, and the solution to the antiferromagnetic LLG
equation is then 

m̂x

m̂y

n̂x

n̂y

 = χ(ω → ωrf)


0
0
ω̂y

−ω̂x

 . (2.21)

Note that in linear response, a dynamical source along the magnetic moments (i.e. an
oscillating magnetic field hz along the easy axis) has no effect; this only contributes
when one includes terms to the second order or higher. Similarly, the dynamical re-
sponse in the antiferromagnet is just perpendicular to the easy axis in linear response
because this is the direction in which it is easiest to create excitations.

2.5.2 Resonance modes of antiferromagnets

We have now seen that the susceptibility of the antiferromagnet, meaning how large
the dynamical response is for a given source, depends on the frequency of the applied
source. The frequencies at which this susceptibility obtains its maxima are called the
resonance frequencies of the system. If we assume that the damping of the system
is sufficiently small to not affect the resonance frequencies significantly, we can set
α = 0. Without dissipation, the susceptibility diverges at resonance in the linear
response model. We can use this to determine the resonance frequencies through
the condition det (χ−1) = 0. The resonance frequencies of the uniaxial easy-axis
antiferromagnet are then found to be

|ωres| =
√
ω‖(2ωE + ω‖)± ωH . (2.22)

The eigenvectors of χ−1 describe how the magnetization and Néel order parameter
will precess in the absence of dissipation and a dynamical source. By calculating
these eigenvectors, one can find that the resonance modes are circularly polarized,
where the mode corresponding to the high-resonance frequency in Eq. (2.22) has
a right-handed circular polarization with respect to the external magnetic field H0,
and the mode corresponding to the low-resonance frequency has a left-handed polar-
ization. Moreover, from the eigenvectors, one can also find that the precession in the
net magnetization is typically much smaller than that in the Néel order parameter:

|mx,y| =
√

ω‖

2ωE + ω‖
|nx,y| . (2.23)
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(a) (b)

m1 H(1)
eff

Ĥ0

H0 = 0

m2 H(2)
eff

Figure 2.6. Antiferromagnetic resonance modes for different magnetic fields [61].
The red and blue solid arrows denote the directions of m1 and m2, respectively,
and the dashed arrows show the respective effective fields H(1,2)

eff . The black circular
arrows denote the precession direction of all the arrows below. (a) In the zero external
magnetic field, we have a symmetry along the easy axis, and the left- and right-
handed resonance modes have the same energy/resonance frequency. (b) By applying
a magnetic field along the easy axis, the symmetry along the easy axis is broken.

Because the magnetic anisotropy is typically much weaker than the exchange energy
(ω‖ � ωE), one can therefore disregard higher-order contributions in mx,y in the
exchange approximation.

The two antiferromagnetic resonance modes are illustrated for zero and finite
magnetic fields in Fig. 2.6. Under zero applied magnetic field, the resonance fre-
quencies of the two modes are degenerate. When there is no external magnetic field
to break the inversion symmetry along the easy axis, the two resonance modes are
mirror images of each other (with the mirror plane being perpendicular to the easy
axis): their resonance frequencies are the same, but they have opposite polariza-
tions/chiralities. Once the inversion symmetry along the easy axis is broken by the
application of a magnetic field, as shown in Fig. 2.6 (b), the resonance modes are also
no longer inversion symmetric and become nondegenerate. To understand the dis-
tinction of the two resonance modes, it can be beneficial to consider each resonance
mode to be "driven" by one of the magnetic sublattices [62]. This can be understood
as follows. In Fig. 2.6 (b), we apply a magnetic field along the equilibrium direction
of m1, which increases the magnitude of the effective field H(1)

eff . Because of this in-
crease in the effective field for the first sublattice, m1’s desired precession frequency
increases accordingly, as we recall that the Larmor frequency increases linearly with
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the magnetic field strength. Conversely, for the second sublattice, the opposite is
true. The external magnetic field counteracts the effective magnetic field at this
sublattice, thereby reducing its magnitude and m2’s desired precession frequency.
This explains the lifting of the degeneracy of the antiferromagnetic resonance fre-
quencies in the presence of a magnetic field. In the high-frequency mode, m1 drives
the resonance by oscillating at its preferred higher resonance. Since the effective
field H(2)

eff strongly depends on the direction of m1 due to the exchange interaction,
this also precesses with m1’s frequency, thereby forcing m2 to precess at the same
rate as m1. However, since m2 prefers oscillating at a slower rate, the dynamical
response (i.e. the precession angle away from its equilibrium direction) is smaller
for m2 compared to that of m1 for the high-frequency mode. A similar picture can
be made for the scenario when m2 drives the resonance, which corresponds to the
low-frequency resonance mode.

2.5.3 The critical behavior at the spin-flop transition

In addition to the applied magnetic field splitting the resonance frequency degen-
eracy, it also affects the precession amplitudes of the sublattice magnetizations. It
costs more energy for the magnetization to move away from the effective field di-
rection when the effective field is stronger. Consequently, the high-resonance mode
(where the resonance is driven by the sublattice magnetization with the strongest
effective field) should have smaller precession amplitudes than the low-resonance
mode for a fixed strength of the applied dynamical source. In fact, for uniaxial
easy-axis antiferromagnets, the precession amplitudes in frequency space can be
shown to be inversely proportional to the resonance frequency. If we consider the
resonance frequencies in Eq. (2.22), as we approach the spin-flop field correspond-
ing to ωH =

√
ω‖(2ωE + ω‖), the low-frequency resonance mode goes to having zero

frequency. In other words, fluctuations that drive the sublattice magnetizations
away from the equilibrium position along the easy axis cost no energy at this field
strength. At this point, the precession amplitudes of the magnetic moments become
very large (in fact, they diverge, which is due to our linear response ansatz breaking
down at this point). This explains the spin-flop phase transition, where the magnetic
moments suddenly "flop" away from the easy axis, as shown in Fig. 2.4. Because of
the low energy cost for creating fluctuations near the spin-flop transition, we expect
the region just below it to be optimal for having large precession amplitudes of the
magnetic moments. In the next chapter, we will consider some scenarios where this
effect can be utilized in a beneficial manner.



3
Spin dynamics in multilayer

heterostructures

In the introduction, we discussed how information can be transported via spin waves
in magnetic insulators. However, there are no good approaches for directly detect-
ing these spin waves. At present, a common technique for measuring the spin signal
is to convert it into an electrical signal, which is easier to measure experimentally.
Because the magnetic insulator cannot carry an electrical current, we must therefore
combine the magnetic insulator with a different material with other properties, form-
ing a heterostructure. Now that we have studied the magnetization dynamics in an
antiferromagnetic insulator in the previous chapter, we will examine what happens
to the spin signal in these heterostructures. Specifically, we will study how these
other materials can be used to both generate and detect spin signals in magnetic
insulators.

3.1 Charge currents and spin currents

In spintronics, we consider the transport of both spin and charge degrees of freedom
of the electron. It is beneficial to briefly consider what this means in a physical

27
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(a) (b)

−Jc −Js

Figure 3.1. (a) An unpolarized (net spin equal to zero) charge current −Jc of
electrons is moving to the right. (b) A pure spin current (net charge equal to zero)
−Js of electron spins is moving to the right. The negative signs on the currents are
due to the particles being electrons that have a negative charge, whereas the common
definition of currents is with positively charged particles. Note that a spin current
is, strictly speaking, a tensor product between the current direction and the spin
polarization direction, although we only illustrate the current direction here.

picture. In conventional electronics, the information is passed through charge cur-
rents Jc, where a net amount of charge is transported in one direction, as illustrated
in Fig. 3.1 (a). Normally, in charge currents, we only have electrons carrying their
negative charge in one direction. However, if we also had positively charged particles
in a charge current, these would be transported in the opposite direction compared
to the electrons. In other words, a positive charge current to the right can either
be caused by positively charged particles moving to the right or negatively charged
particles moving to the left.

A spin current Js is defined analogously to a charge current, but there is now a
net transport of spin (or angular momentum) instead of charge. Whereas opposite
charges move in opposite directions in the charge current, antiparallel spins move in
opposite directions in the spin current, as illustrated in Fig. 3.1 (b). Mathematically,
the spin current is slightly different from the charge current. As charge is a scalar, the
charge current can effectively be described as a vector. However, spin and angular
momentum have a direction in addition to a scalar magnitude, and a spin current
must therefore be described by the tensor product between the spin polarization
axis and the transport direction of the spins.

Spin and charge are two independent properties of an electron, and we can
therefore have currents with varying degrees of overlap between charge and spin
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currents. In Fig. 3.1 (a), we have a net transport of charge but a zero net transport
of spin, which is called an unpolarized charge current. However, if we flip one of
the electron spins in Fig. 3.1 (a), e.g. we flip one of the down spins to be spin up,
we would then have four electrons with spin up and two electrons with spin down
moving to the right. In this case, we also have a net transport of spin in addition to
charge, which is then referred to as a polarized charge current. If all the electrons
moving in one direction have parallel spin, it is often referred to as a fully polarized
charge current. In Fig. 3.1 (b), we have no net transport of charge but a net
transport of spin, which is called a pure spin current. Although the electrons in Fig.
3.1 (b) are moving, spin currents can also be carried by stationary electrons. The
spins interact through the exchange interaction in magnetic materials. If we then
perturb one of the electron spins, this perturbation will propagate to the neighboring
spins, thereby carrying a spin current. In magnetic insulators where there are no
free electrons moving, we can then suppress the motion of the electrons but still
transport information through a pure spin current. This situation was illustrated in
Fig. 1.4 in Section 1.2.2.

3.2 Spin Hall effect and inverse spin Hall effect

– Conversion between charge and spin currents

Spin currents can be more energy efficient than charge currents, but they do have
some disadvantages compared to charge currents. Charge currents are easy to gen-
erate and detect through either applying or detecting a voltage bias to a conductor.
The same is not true for spin currents because there currently are no direct methods
for generating or detecting a local spin bias that are as practical as the methods
utilized in electronics. However, in some materials, it is possible to convert charge
currents into spin currents and vice versa through the spin Hall effect and inverse
spin Hall effect. We can then generate and detect spin currents by using charge
currents as the "middle man" in an intermediary process.

The spin Hall effects occur in materials with strong spin-orbit coupling, such
as the heavy metals platinum (Pt) [63, 64], tungsten (W) [65, 66], and tantalum
(Ta) [67]. The spin Hall effects are typically divided into an extrinsic part and an
intrinsic part. The extrinsic part is due to spin-dependent scattering with impurities
in the material [68, 69], whereas the intrinsic part is due to an interaction between the
momentum and spin of the conduction electrons [70] and does not require impurities
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(a)

(b)
−Jc

−Js

−Jc

−Js

ŝ

Figure 3.2. Illustration of the (a) spin Hall effect and (b) inverse spin Hall effect. In
the spin Hall effect, a charge current Jc leads to a spin current Js that is perpendicular
to the charge current and the spin polarization axis ŝ. The inverse spin Hall effect is
the reciprocal effect that leads to a conversion of a spin current to a charge current.
These effects can, for instance, be caused by spin-orbit coupling inside the material.

in the system. The intrinsic spin Hall effect originates from spin-orbit coupling,
where electrons with antiparallel spins prefer to move in opposite directions, as can
be understood from Fig. 2.3. In both the extrinsic and intrinsic parts of the spin Hall
effects, opposite spins are, on average, scattered or deflected in opposite directions.

The spin Hall effect is illustrated in Fig. 3.2 (a), where the spins in an un-
polarized charge current are deflected in opposite directions, giving rise to a spin
current that is perpendicular to the charge current. The efficiency of this conversion
is typically given in terms of the spin Hall angle θSH, which is defined through the
relation

JSHE
s

~/2 = θSH
Jc × ŝ
e

, (3.1)

where JSHE
s is the spin current with a spin polarization direction ŝ resulting from

the spin Hall effect and Jc is the charge current. Each current is divided by its
transport quantity, i.e. the charge current is divided by the electron charge e and
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the spin current by the electron spin ~/2 such that the currents are expressed as
simple time rates. The spin Hall angle is then a dimensionless number that provides
an indication about how large a percentage of the charge current is converted to a
spin current.

The inverse spin Hall effect is, as its name suggests, the reciprocal effect to the
spin Hall effect, where a charge current is induced perpendicularly to a spin current,
as illustrated in Fig. 3.2 (b). The mechanism for the inverse spin Hall effect is
exactly the same as that for the spin Hall effect. The conversion efficiency θSH from
the charge current to the spin current in the spin Hall effect is also identical to the
conversion efficiency from spin current to charge current in the inverse spin Hall
effect. Consequently, the charge current resulting from the inverse spin Hall effect
is given by

JISHE
c

e
= θSH

Js × ŝ
~/2 . (3.2)

Now that we have seen how spin and charge currents can be converted to one another
through the spin Hall effects in heavy metals, we will begin to study heterostructures
of heavy metals and magnetic insulators and show how the heavy metal layers can
be used as detectors and generators of spin currents in magnetic insulators.

3.3 Spin pumping

In addition to the spin Hall effect, another way to generate a spin current is through
spin pumping. In heterostructures that consist of a magnetic material and a nonmag-
netic material, a precession of the magnetization in the magnetic layer can transfer
nonequilibrium angular momentum from the electrons in the magnetic material to
the electrons in the nonmagnetic material. This process is known as spin pump-
ing [71] and leads to an injection of a spin current into the nonmagnetic material.
This spin current can, for instance, be generated by driving the magnetization at
resonance by an oscillating magnetic field, as we considered in Section 2.5. Spin
pumping is illustrated in Fig. 3.3. If we inject this spin current into a conducting
material with strong spin-orbit coupling, such as platinum, we can then detect the
spin current through the inverse spin Hall effect. The heavy metal layer can then be
used to detect the presence of a spin current in the magnetic insulator. Moreover,
by detecting the pumped spin current, we can also obtain information such as the
magnetic resonance frequency and the linewidth of the resonance peaks, thereby
providing a means to probe the magnetization dynamics.
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hrf(t)

m(t)

Js(t)

MI N

Figure 3.3. A precessing magnetic moment m(t) in a magnetic insulator (MI) can
pump a spin current Js into a normal metal (N), which acts as a spin sink. The
spin pumping can be sustained by driving the magnetic moments at resonance by an
oscillating magnetic field hrf(t). Without a dynamical source for the magnetization
dynamics, the transfer of angular momentum to the spin sink causes the magnetic
moment to relax towards equilibrium, thereby acting as an enhanced damping of the
magnetization dynamics [71].

3.3.1 Spin pumping from ferromagnets

The pumped spin current from a ferromagnetic material is given by [71]

Ipump
s (t) = ~

4π [Re(g⊥)m(t)× ṁ(t)− Im(g⊥)ṁ(t)] , (3.3)

where g⊥ is the transverse spin conductance (also commonly referred to as the spin-
mixing conductance g↑↓) across the magnetic insulator/normal metal interface. The
real part of transverse spin conductance is a measure of how many electron spins are
pumped across the interface per precession cycle of the magnetization. Henceforth,
we assume that Im(g⊥) = 0 because it is negligible in many materials [71]. The
remaining term proportional to the real part of the transverse spin conductance is
then of the same form as the Gilbert damping in the LLG equation in Eq. (2.12).
Consequently, spin pumping leads to an enhanced damping of the magnetization
dynamics at magnetic interfaces [71]. This can be understood quite intuitively: when
the magnetic material pumps nonequilibrium spins into the adjacent material acting
as a spin sink, conservation of angular momentum requires that the magnetization
relaxes towards equilibrium. Note that the pumped spin current Ipump

s is not defined



3.3. Spin pumping 33

analogously to the spin current Js in the previous section: whereas Js is defined as
the propagation direction of the spin current with polarization ŝ, Ipump

s is defined
along the direction of the spin current polarization. The propagation direction of
the pumped spin current is along the interface normal, in the direction pointing
away from the magnetic material.

To obtain a better understanding of the contributions from the pumped spin
current, we will consider a brief example. Let us assume the magnetization to
be of the form m(t) ≈ (δmx(t), δmy(t), 1), where δmx(t), δmy(t) � 1, and that
δmx(t) = δmx cos(ωt), δmy(t) = δmysin(ωt+ φ). We then have that the pumped
spin current is

Ipump
s (t) ≈ ~

4π Re(g⊥)m(t)× ṁ(t) = ~ω
4π Re(g⊥)


−δmy cos(ωt+ φ)
−δmx sin(ωt)
δmxδmy cos(φ)

 . (3.4)

We see that the pumped spin current has two different types of contributions. In the
x and y components, we have a time-dependent contribution that is first order in
δmx, δmy, which is denoted as the AC pumped spin current. The AC pumped spin
current can be difficult to detect because its time average vanishes. It is, however,
a means of generating an oscillating spin current in an adjacent spin sink. The z
component of the pumped spin current, on the other hand, is fully independent of
time and is second order in δmx, δmy, which is denoted as the DC pumped spin
current. Note that the area that the precessions enclosed in the xy plane can be
found to be A = πδmxδmy |cos(φ)|. From this and Eq. (3.4), one can find that the
DC spin pumping is directly proportional to the area enclosed by the precessions and
the frequency of the precessions. In other words, if we have a linear precession of the
magnetization, where the magnetic moment precesses along a line and thereby does
not enclose an area, the corresponding DC pumped spin current vanishes completely.

3.3.2 Spin pumping from antiferromagnets

Spin pumping is an interfacial effect and therefore highly depends on the magnetic
structure at the interface. For antiferromagnets, there are two general types of
interfaces that one typically considers, denoted as uncompensated and compensated
interfaces. These interfaces are depicted in Fig. 3.4.

For the case of uncompensated interfaces, where only one magnetic sublattice
is present at the interface, spin pumping in antiferromagnets becomes completely
analogous to spin pumping in ferromagnets [60]. The magnetization m(t) in Eq.
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(a) (b) (c)

Figure 3.4. The figures show the spin structures of the atoms at the antiferromag-
netic interface. (a) and (b) are interfaces with only one sublattice present. These are
called uncompensated interfaces. (c) is an interface with both magnetic sublattices
present in a chessboard pattern. This is called a compensated interface, as the mag-
netic moment at the interface is compensated. This figure is from the supplementary
material to Paper [4].

(3.3) is then replaced by the sublattice magnetization m1/2(t) that is present at the
interface.

What is more unique to spin pumping from antiferromagnets is the case of
spin pumping at compensated interfaces, such as in Fig. 3.4 (c). Both sublattice
magnetizations will then contribute to the spin pumping, and the question is then
whether the two magnetic sublattices pump spin constructively or destructively.
As mentioned in the previous subsection for ferromagnetic spin pumping, when
the imaginary part of the transverse spin conductance is negligible, spin pumping
takes the form of enhanced Gilbert damping at magnetic interfaces. Following the
discussion of Gilbert damping in antiferromagnets from Section 2.4.2, the general
form of spin pumping from antiferromagnets can then be expressed as [57]

Ipump
s (t) ≈ ~

4π
∑

i,j=1,2
Re(gij

⊥)mi(t)× ṁj(t) ≡
~
4π

∑
µ,ν=m,n

Re(gµν
⊥ )µ(t)× ν̇(t) . (3.5)

Here, gij
⊥ (i, j = 1, 2) is a generalized tensor of the transverse spin conductance,

and the definition of gµν
⊥ (µ, ν = m,n) follows from the definitions of m and n in

Eq. (2.1). The theory of spin pumping from antiferromagnets was initially studied
by Cheng et al. in Ref. [60]. In this work, Cheng et al. derived spin pumping
from antiferromagnets by considering scattering theory in a nearest-neighbor tight-
binding model for a perfectly matched interface. In this model, the nondiagonal
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terms (often referred to as cross terms) proportional to g12
⊥ and g21

⊥ vanish, and the
spin pumping in the basis of m and n can be expressed via the relations gmm

⊥ =
gnn

⊥ = g11
⊥ + g22

⊥ and gmn
⊥ = gnm

⊥ = 0. Spin pumping from antiferromagnets and
ferrimagnets was further studied by Kamra and Belzig in Ref. [57]. The results
from the work of Kamra and Belzig differ quite significantly from those of Cheng et
al. Notably, Kamra and Belzig found that the nondiagonal (cross) terms are finite:
g12

⊥ = g21
⊥ =

√
g11

⊥ g
22
⊥ . This finding has a noteworthy effect on the transverse spin

conductance in the m and n basis. Kamra and Belzig showed that the transverse
spin conductances are then given by gmm

⊥ = (
√
g11

⊥ +
√
g22

⊥ )2, gnn
⊥ = (

√
g11

⊥ −
√
g22

⊥ )2,
and gmn

⊥ = gnm
⊥ = g11

⊥ − g22
⊥ . In the special case of a perfectly ordered compensated

interface with an isotropic contribution from both sublattices (g11
⊥ = g22

⊥ ), the models
by Cheng et al. and Kamra and Belzig yield entirely different results. One would
expect the spin pumping to be dominated by the Néel order parameter in the model
by Cheng et al., but this contribution vanishes exactly (gnn

⊥ = 0) in the model by
Kamra and Belzig. It does become finite, however, if disorder or an anisotropy in
the transverse spin conductance of the two sublattices (g11

⊥ 6= g22
⊥ ) is introduced.

The discrepancy between the two models provides a large incentive to study the
dependence of spin pumping from antiferromagnets on the sublattice structure at
the interface. The physics underlying the difference between the two models can
partly be understood through the discussion of a related problem in Chapter 6,
Section 6.3.2.

While spin pumping in ferromagnets is now a very common technique, spin
pumping has yet to be unequivocally detected from antiferromagnets. An experi-
ment studying the antiferromagnetic material MnF2 has, however, detected a small
contribution to the overall signal compatible with the behavior of spin pumping, but
further investigation is required to confirm the physical origin of the signal [62, 72].
Because of the challenges in detecting spin pumping from antiferromagnets, one has
to be able to find a way to obtain a sufficiently strong spin pumping signal before
one can study other aspects, such as how the pumped spin current depends on the
interface. The first publication in this thesis [1] studies how the spin pumping from
antiferromagnets depends on the different contributions to the micromagnetic energy
to examine how one can maximize the spin pumping signal sufficiently to be able
to detect it in experiments. We found that the spin pumping signal is expected to
be significantly enhanced near the spin-flop transition for uniaxial easy-axis antifer-
romagnets. This enhancement occurs for the low-frequency mode as the resonance
frequency approaches zero. This is in contrast to what was predicted earlier, as one
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expected the spin pumping from antiferromagnets to be large due to its fast dynam-
ics [60]. This expectation was based on the fact that the pumped spin current is
directly proportional to the frequency of the magnetization dynamics. However, as
we just showed for ferromagnets, the DC pumped spin current is also proportional
to the area enclosed by the precession of the magnetic moments. At the end of
the previous chapter, we mentioned that at resonance, the precession amplitudes
in uniaxial easy-axis antiferromagnets are inversely proportional to the resonance
frequency. In other words, the enclosed area is proportional to 1/ω2, and the DC
pumped spin current is then proportional to 1/ω. In linear response, the spin pump-
ing current is therefore expected to diverge near the spin-flop transition in easy-axis
antiferromagnets, where the resonance frequency approaches zero.

The model used in Paper [1] (as well as in Paper [2], which is discussed later
this chapter) relies on the results of Cheng et al. and considers a compensated
interface such that the spin pumping is primarily governed by the Néel order pa-
rameter. At first glance, it might appear that the discoveries of Kamra and Belzig
discussed earlier in this section could invalidate the model and results in Papers
[1, 2]. However, while the spin pumping from the Néel order parameter vanishes
exactly in the ideal case in the results of Kamra and Belzig, for a more realistic
system with some imperfections, this will still be finite, and the results in Papers
[1, 2] can then be described by a renormalization of the parameters. Moreover, if
one were to modify the system in these papers to have an uncompensated interface
instead of a compensated interface, the results would not change in a significant
manner. The dynamics and magnetic susceptibilities in the antiferromagnetic insu-
lator very weakly depend on the interface structure, as the spin pumping is merely
a perturbation of the system. Consequently, the only difference should be the spin
current pumped into (or absorbed from) the normal metal. However, this should
be similar in magnitude for an uncompensated interface in the model by Kamra
and Belzig and for a compensated interface in the model by Cheng et al. The two
models of antiferromagnetic spin pumping are also in agreement for uncompensated
interfaces, where spin pumping from antiferromagnets becomes analogous to spin
pumping from ferromagnets [60].

3.4 Spin diffusion

When a spin current is generated in a normal metal through the spin Hall effect
or by spin pumping from a magnetic insulator into the normal metal, there is a
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buildup of a nonequilibrium spin accumulation µs inside the normal metal. The
spins undergo a diffusive motion given by the spin diffusion equation [73]

∂µs(r, t)
∂t

= |γ|H0 × µs(r, t) +DN∇2µs(r, t)−
µs(r, t)
τsf

. (3.6)

Here, γ is the gyromagnetic ratio, H0 is an external magnetic field, DN is the
diffusion coefficient, and τsf is the spin-flip relaxation time. In a zero magnetic
field and when the spin-flip relaxation time is infinite, the spin diffusion equation
is analogous to the heat equation. The additional term depending on the magnetic
field is a Larmor precession of the spin accumulation, similar to the term appearing
in the LLG equation. The last term, which is inversely proportional to τsf, leads to
a decay of the spin accumulation due to decoherence from relaxation processes. If
τsf is much smaller than the other time scales in the system, such as the Larmor
precession time 1/ |γH0| and the time evolution of µs, we can approximate the spin
diffusion equation by the Helmholtz equation

∇2µs(r, t) = µs(r, t)
λ2

sd
. (3.7)

Here, we introduced the spin-diffusion length λsd =
√
DNτsf. This is often a good ap-

proximation because the spin-flip relaxation time is for many materials significantly
shorter than the time scales of the Larmor precession and magnetic resonance [74].
The differential equation is now independent of time. The time dependence of the
spin accumulation then enters through the boundary or initial conditions. This can,
for instance, be given by the spin pumping rate or by the frequency of an applied
current to the metal.

3.5 Spin-transfer torque

When there is an accumulation of spins at the interface of the magnetic insulator
due to e.g. a spin current in the adjacent layer, this leads to a torque acting on
the magnetization in the magnetic insulator. Just as the magnetic insulator can
transfer spin/angular momentum to the normal metal via spin pumping, one can
also transfer angular momentum from the normal metal to the magnetic insulator
by injecting a spin current. This reciprocal effect is known as a spin-transfer torque.
Note that this torque is not quite the same as the spin-transfer torque studied by
Berger and Slonczewski, as discussed in the introduction to this thesis. The torque
studied by Berger and Slonczewski considered the transfer of angular momentum
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from conduction electrons to the local magnetization when a polarized charge current
passes through a conducting magnetic layer. Here, however, as the magnetic material
is insulating, the spin-transfer torque results from a spin accumulation µs(t) at the
magnetic interface exerting a torque on the magnetization. The transfer of angular
momentum from the normal metal to a ferromagnetic insulator is given by the
backflow current

Ibackflow
s (t) = −Re(g⊥)

4π m(t)× [µs(t)×m(t)] . (3.8)

Note that Ibackflow
s is defined analogously to Ipump

s and describes the polarization of
the spin current rather than the direction of propagation. The propagation direction
is assumed to be along the interface normal. We again disregarded the contribution
from the imaginary part of the transverse spin conductance. In Papers [1, 2], we
use the model that generalizes this result to two-sublattice systems such as anti-
ferromagnets, where the spin-transfer on the two magnetic sublattices is treated as
independent [60, 75]:

Ibackflow
s (t) = −Re(g⊥)

4π
∑

i=1,2
mi(t)× [µs(t)×mi(t)] (3.9a)

= −Re(g⊥)
2π {m(t)× [µs(t)×m(t)] + n(t)× [µs(t)× n(t)]} . (3.9b)

This model then assumes that g11
⊥ = g22

⊥ ≡ g⊥ and g12
⊥ = g21

⊥ = 0, equivalent to the
model by Cheng et al. for spin pumping from antiferromagnets [60].

The spin current injected into the magnetic insulator due to spin-transfer
torques can have different origins. In spin pumping experiments, one can have a
backflow if the pumped spin current is injected into a normal metal that is not a
perfect spin sink. This can, for example, occur when the normal metal layer is just
a few nanometers thick. In such experiments, it is necessary to take the backflow
spin current into account to obtain accurate experimental predictions [74]. One can
also use spin-transfer torques as the dynamical source in magnetic resonance exper-
iments. By applying a voltage to the normal metal, one injects a spin current into
the magnetic insulator as the charge current is converted to a spin current through
the spin Hall effect [2, 76].

3.6 Spin-orbit torques and crystal symmetries

Spin-transfer torques originate from a transfer of angular momentum from some
source to the local magnetization. These sources can e.g. be a spin-polarized charge
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current, as in the spin-transfer torques introduced by Berger and Slonczewski [22–
28], or an accumulation of spins at a magnetic interface, as discussed in the previous
section. However, if the magnetic material also has an intrinsic spin-orbit coupling
and is electrically conducting, applying an unpolarized charge current to the material
can also induce a nonequilibrium spin density that exerts torques on the magneti-
zation that do not involve the transfer of angular momentum [77, 78]. These types
of torques are denoted as spin-orbit torques.

In Ref. [79], Hals and Brataas developed a phenomenological description of the
possible spin-orbit torques that were allowed by the underlying symmetry of the
material. According to what is known as Neumann’s principle, we must require that
[80]

“any type of symmetry which is exhibited by the point group of the crystal
is possessed by every physical property of the crystal.”

This is equivalent to requiring that the physical properties be invariant under all
the symmetry transformations of the crystal. Consequently, a spin-orbit torque τ

in the extended Landau–Lifshitz–Gilbert equation

ṁ = − |γ|m×Heff + αm× ṁ + τ (3.10)

must be invariant under the symmetry operations that define the crystal symmetry
group. Let us assume that the crystal is described by a set of unitary symmetry
operations given by R(α) (α = 1, 2, 3 . . .) such as n-fold rotations and inversions
along various axes, where we have that det(R(α)) = ±1 because all R(α) are unitary.
The physical properties of the system can depend on different tensors, and these
tensors can be divided into two main categories. These categories are polar tensors
and axial tensors, and these transform under the unitary transformation R as [80]

T polar
i′j′k′... = Ri′iRj′jRk′k(. . .)T polar

ijk... , (3.11a)

T axial
i′j′k′... = det(R)Ri′iRj′jRk′k(. . .)T axial

ijk... . (3.11b)

In the above notation, the Einstein summation convention is assumed. Examples of
polar vectors (rank-1 tensors) are position, momentum, and charge currents, whereas
examples of axial vectors are angular momentum, magnetization, and cross products
of polar vectors. By performing a tensor expansion of the spin-orbit torque to the
first order in the charge current density and higher orders in the magnetization and
the magnetization gradient, Hals and Brataas classified the symmetry relations of the
different components of the spin-orbit torque, similar to Eq. (3.11). This formalism
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can be used to identify forms of the spin-orbit torque that are not described by the
conventional LLG equation [81]. This technique was utilized in Paper [5] to describe
the current-induced spin-orbit torques for a certain symmetry classification of two-
dimensional ferromagnetic materials. We will return to this discussion in Chapter
7, where we examine the physics of Paper [5] in more detail.

3.7 Spin Hall magnetoresistance

In magnetic conductors, in addition to the charge current exerting a spin-orbit torque
on the magnetic moments, the electric resistance of the charge current depends
on the relative orientation of the current and the magnetization in ferromagnets
[82] or the Néel order parameter in antiferromagnets [83]. This effect is known
as anisotropic magnetoresistance. In hybrid structures that consist of a magnetic
insulator and a normal metal with a significant spin Hall angle, there is also a
recently discovered similar effect known as spin Hall magnetoresistance (SMR) [84,
85]. This magnetoresistance is a dependence of the resistance in the normal metal
on the orientation of the magnetic order parameter in the magnetic insulator with
respect to the current direction in the normal metal. What is peculiar about SMR
is that because the magnetic material is insulating, the current is passed through a
nonmagnetic material, and the underlying physics is therefore quite different from
that of anisotropic magnetoresistance. The origin of SMR is a combination of the
effects discussed previously in this chapter. It is a consequence of the interplay
between spin-transfer torques, the spin Hall effect, and the inverse spin Hall effect
[84]. The underlying physics of SMR is explained in Fig. 3.5.

The contribution of SMR is typically very small compared to the regular resis-
tance in the normal metal, but its contribution can easily be detected. By varying
the direction of the magnetic order parameter with respect to the current direction,
e.g. by sweeping a magnetic field 360 degrees in a plane, one can measure the angu-
lar dependence of the resistance. SMR in ferromagnets has an angular dependence
cos 2θ, where θ is the angle between the magnetization and the charge current Jc

in the normal metal, and this contribution to the resistance can then be extracted
as the regular resistance should be independent of θ. From the cos 2θ angular de-
pendence, we find that SMR only depends on which axis the magnetization points
along and is equal for the magnetization pointing along either of the two axis direc-
tions. Consequently, SMR is expected to be more or less equal for ferromagnets and
antiferromagnets because whether the spins in the magnetic insulator are parallel
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(a) (b)

MI

N −Jc −Jc
−Js

−Jabs
s

−Js
−Jbf

s

Ô
Ô

Figure 3.5. A charge current in a thin film of normal metal induces a spin current
perpendicular to the film through the spin Hall effect. (a) When the spin of the
electron in the normal metal is perpendicular to the magnetic order parameter Ô
in the magnetic insulator (magnetization for ferromagnets, Néel order parameter for
antiferromagnets), a spin current Jabs

s can be absorbed into the magnetic insulator.
(b) When the electron spin in the normal metal is parallel to Ô, there is no spin current
injected into the magnetic insulator. Part of this is instead reflected as a backflow
spin current Jbf

s into the normal metal. Due to the inverse spin Hall effect, this is
then transformed into a charge current along the original charge current, thereby
enhancing the conductivity in N for this configuration. This illustration is based on
a figure in Ref. [84].

or antiparallel is irrelevant. However, the angular dependence of SMR in antifer-
romagnets is phase shifted by π/2 compared to ferromagnetic and ferrimagnetic
materials when measuring SMR by sweeping a strong magnetic field [86–89]. This is
explained by the magnetic field coupling to the magnetization of the antiferromagnet
in a canted or spin-flopped state, whereas the SMR in antiferromagnets is primarily
due to the Néel order parameter. As indicated by Eq. (2.2), the magnetization and
Néel order parameter are perpendicular to each other, explaining the π/2 phase shift
in antiferromagnets compared to ferromagnets [86–89].

3.7.1 Spin Hall magnetoresistance at magnetic resonance

SMR has primarily been used to obtain information about static magnetization
configurations, but it can also be used to collect information about the magnetization
dynamics in magnetic insulators. When the magnetic moments precess at resonance,
there is a time-dependent oscillation of the resistance in the normal metal as the
direction of the magnetic moments with respect to the current in the normal metal
is constantly changing. If the current in the normal metal is also oscillating with
the same frequency as the magnetic moments, e.g. if we are in a scenario where the
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magnetic resonance is driven by injection of an AC spin current from the normal
metal via the spin Hall effect and spin-transfer torques, there will be a mixing of the
oscillating resistance and the oscillating current. Depending on the phase difference
between the two oscillations, this can lead to a nonzero time-averaged voltage that
can be measured and that contains details about the magnetic resonance, such as
the resonance frequency and linewidth [90].

In Paper [2], we generalize the work in Ref. [90] to the case of bilayers consisting
of a heavy metal and an antiferromagnetic insulator. Building upon the results in
Paper [1], we show that the measured signal is also enhanced near the spin-flop
transition for exactly the same reasons as we discussed for spin pumping. When
the magnetic resonance in these bilayer systems is driven by an injection of a spin
current from the normal metal, the magnetic resonance signals originating from
the SMR and spin pumping have the same characteristics and an opposite sign.
Consequently, the signals compensate each other, which results in a weaker net
signal [90]. In Paper [2], we propose a method to separate the signals originating
from SMR and spin pumping by utilizing trilayer systems, which can otherwise be
extremely challenging in bilayer systems.

3.8 Boundary conditions

We have now independently described the spin dynamics in both the magnetic and
nonmagnetic layers. To comprehensively discuss the spin dynamics in heterostruc-
tures, we need to connect the spin dynamics in the various layers. This is achieved
through the boundary conditions at the interfaces between the different layers of the
system.

3.8.1 Spin current continuity

The main boundary condition that we apply is that we assume the spin current to
be continuous across interfaces in the heterostructure [91]. The spin current in the
magnetic insulator has contributions from spin pumping and spin-transfer torques,
as we considered earlier in this chapter. The spin current in the normal metal also
has two main contributions. These contributions are a spin current created through
the spin Hall effect by applying a voltage bias to the metal and a spin current due
to a gradient in the spin accumulation µs(r, t). At interfaces between magnetic
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insulators and normal metals, we then have the condition

IMI
s (t)

∣∣∣∣∣
MI|N
≡
[
Ipump

s (t) + Ibackflow
s (t)

]
MI|N

=
[
ISHE

s (t)− ~σA
4e2 ∇µs(r, t)

]
MI|N
≡ IN

s (t)
∣∣∣∣∣
MI|N

. (3.12)

Here, ISHE
s (t) is the spin current in the normal metal due to the spin Hall effect and

A is the interface area between the magnetic insulator (MI) and normal metal (N).
All currents are evaluated at the interface.

Another type of interface is an interface with vacuum or a substrate. We assume
that there is no spin current in either. For the spin current to be continuous across
such interfaces, we must therefore require that the spin current in the magnetic
insulator or normal metal vanishes at the edge, i.e.

IMI
s (t)

∣∣∣∣∣
MI|Vacuum

= 0 , and IN
s (t)

∣∣∣∣∣
N|Vacuum

= 0 . (3.13)

Consequently, there is no leaking of the spin current to the environment. The spin
current will, however, decay as it propagates through the heterostructure.

3.8.2 Standing spin waves

In Chapter 2, we examined the spatially uniform magnetization dynamics in an
antiferromagnetic insulator. This will be the dominant type of dynamics when the
dynamical source is spatially uniform, such as an oscillating magnetic field. However,
in heterostructures, as we are considering here, we can also have dynamical sources
that are not spatially uniform. An example of this is by exciting the magnetization
dynamics via spin-transfer torques, i.e. by injecting a spin current into a magnetic
insulator from a normal metal. The dynamical source is then only at the interface,
and the magnetization dynamics then does not have to be uniform in the direction
perpendicular to the said interface.

To determine which types of boundary conditions we have for the spatial de-
pendence of the magnetization dynamics, we can integrate the LLG equation in an
infinitesimally thin volume around the interface. If we focus on an antiferromagnetic
insulator and integrate the LLG equation in Eq. (2.15) and for now disregard inter-
facial effects such as spin pumping and spin-transfer torques, we obtain the relations
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N = 0

N = 1

N = 2

Js

x

0 dAF

Figure 3.6. A nonuniform dynamical source in the form of a spin current Js injected
into the right side of the antiferromagnetic insulator can induce standing wave reso-
nance modes of the Néel order parameter. Here, we show the three lowest (N = 0, 1, 2)
standing wave modes, with N being the number of nodes in the standing wave. This
figure is reproduced from [2].

±
∣∣∣J̃ex

∣∣∣ (Ma

2

)2
[m(r, t)× ∂n̂m(r, t) + n(r, t)× ∂n̂n(r, t)]r∈A = 0 , (3.14a)

±
∣∣∣J̃ex

∣∣∣ (Ma

2

)2
[m(r, t)× ∂n̂n(r, t) + n(r, t)× ∂n̂m(r, t)]r∈A = 0 . (3.14b)

Here, n̂ is a direction normal to the interface, and A is the interface cross section.
These boundary conditions are due to the spin stiffness in the exchange interaction
in Eq. (2.5). The sign of the boundary condition depends on which side of the
interface the antiferromagnetic insulator is, but this only becomes significant when
spin pumping and spin-transfer torques are taken into account.

In the exchange approximation in linear response, we can neglect all con-
tributions to the boundary conditions above, except for the term that goes as
n(r, t) × ∂n̂n(r, t). This is because the magnetization is typically quite small com-
pared to the Néel order parameter. The boundary conditions in Eq. (3.14) are then
reduced to n(r, t)× ∂n̂n(r, t) = 0, which is satisfied if the spatial derivative of n in
the direction normal to the interfaces vanishes. For an antiferromagnetic film with
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a thickness dAF, the Néel order parameter will then be of the form

n(r, t) = n0 + 1
2
{
δn cos [kN (x− dAF)] eiωt + δn∗ cos [kN (x− dAF)] e−iωt

}
. (3.15)

Here, we have assumed that the x axis is perpendicular to the interface. The fluctu-
ations δn are perpendicular to the equilibrium direction n0. The wave numbers kN

take on the values kN = Nπ/dAF (N = 0, 1, 2, . . .). This solution describes a set of
standing waves of the Néel order parameter inside the antiferromagnetic insulator,
as illustrated in Fig. 3.6. The more nodes N that the standing wave resonance
mode has, the higher is its resonance frequency. In Paper [2], the source of the
magnetic resonance is an injection of a spin current across the interface between the
antiferromagnetic insulator and the normal metal. Because the source is spatially
inhomogeneous, one can excite these standing waves in the setup considered in Pa-
per [2], unlike in Paper [1], where the source of the magnetic resonance is a spatially
uniform oscillating magnetic field. The excitation and detection of these standing
waves are studied in more detail in Paper [2].





4
Quantized spin excitations in

antiferromagnets

Up to this point, we have considered a microscopic description of magnetization
dynamics and spin transport in magnetic systems. However, in some cases, such as
when one is studying interactions between the excitations in the system, it can be
necessary or more intuitive to consider a quantum mechanical description instead.
When moving to the quantum regime, computations tend to become more difficult.
In this chapter, we will examine some very useful elementary techniques that will
greatly simplify our calculations in the quantum regime. We will not discuss any
direct aspects of my own research in this chapter. However, this chapter will lay the
groundwork for the Papers [3–5], which will be discussed later in Chapters 5, 6, and
7.

4.1 Magnons: quantized spin waves

A very useful trick when describing the spin dynamics of a many-body system in the
quantum limit is to map the spin operators to a different set of bosonic operators.
At first, this statement might be somewhat perplexing. If we are studying a many-

47
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body system of electrons, which are fermionic particles, why are we then talking
about bosons? When studying many-body systems, which consist of a vast sea of
particles, it is generally more practical to describe the ripples and waves on that sea
instead of every particle in the sea itself. Although these ripples and waves are not
particles themselves, we can treat them as some fictional particle: a quasiparticle.
These quasiparticles are weakly interacting, and it is therefore much more favorable
to describe a system of these quasiparticles on top the ground state of our system
rather than a system consisting of a vast amount of strongly interacting particles.
Ultimately, both methods of describing the system will yield the same result. Note
that these quasiparticles are only sensible to discuss in the context of the many-body
system. A wave at sea is a very real object, but if you take all the water molecules
away, it no longer makes sense to discuss the water wave.

In a many-body system consisting of spins, the ripples in the system will appear
as spins pointing slightly away from the equilibrium position. These ripples can be
thought of as spin waves, and the elementary quasiparticle excitation is called a
magnon. In Figures 4.1 and 4.2, we present examples of how a localized and a
nonlocalized magnon can be thought of, respectively. In the remaining sections of
this chapter, we will discuss how we can model these quasiparticle excitations in
a quantum formalism, as well as what type of magnon will be the lowest-energy
excitation in an antiferromagnet.

4.2 The Holstein–Primakoff transformation

Although there are several ways of describing the quasiparticles in a many-body
system of spins, a transformation that is often very convenient is the Holstein–
Primakoff transformation (HPT) [92]. This transformation is particularly useful
when we are studying magnetization dynamics not far from equilibrium, e.g., linear
response. This transformation is defined by the following on sublattices A and B of
an antiferromagnet:

sA
i,+ =

√
2s− a†

iaiai , sA
i,− = a†

i

√
2s− a†

iai , sA
i,z = s− a†

iai , (4.1a)

sB
j,+ = b†

j

√
2s− b†

jbj , sB
j,− =

√
2s− b†

jbjbj , sB
i,z = b†

jbj − s . (4.1b)

Here, s is the dimensionless spin number, i and j are lattice sites, a(†) is a magnon
annihilation (creation) operator on sublattice A, and b and b† are similar magnon
operators on sublattice B. We have also introduced s± = sx ± isy. This transfor-
mation satisfies the spin commutation relation [si, sj] = iεijksk, with εijk being the
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(a)

(b)

(c)

Figure 4.1. (a) The ground state of an antiferromagnetic spin chain. (b) An excited
state where one spin is flipped with regard to the ground state. (c) The quasiparticle
picture of the excited state in (b), where we have the ground state plus a localized
magnon. As (b) and (c) must be equivalent, the magnon must have a spin of +~,
thereby being bosonic like.

(b)

(a)

λ

Figure 4.2. (a) Periodical precession of antiferromagnetic spins in a chain with
wavelength λ. (b) The quasiparticle picture of (a), where a magnon with wavelength
λ is passing through the ground state of the spin chain.

Levi-Civita tensor, if a, a†, b, and b† obey the bosonic commutation relations, where[
ai, a

†
j

]
=
[
bi, b

†
j

]
= δij and all other commutators are zero. In general, the square

roots can make the HPT somewhat cumbersome. However, if we have few magnons
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in our system compared to the spin (〈a†a〉 , 〈b†b〉 � 2s), we can perform a Taylor
expansion of the square roots and only keep terms to some order in the magnon
operators. In linear response, we only keep terms to the second order in the magnon
operators, which means that we can simply neglect the magnon operators inside the
square roots in this approximation.

4.3 Local vs collective excitations

In Section 4.1, we showed two different types of spin excitations in our antiferro-
magnetic system. In Figure 4.1, we considered a localized magnon, where we flipped
the spin of a single electron. In Figure 4.2, however, we considered a collective ex-
citation, where all the spins in the system are no longer at equilibrium. We will
now perform a quick exercise to determine which of the two costs the least amount
of energy and will therefore be the most favorable excitation in our system. For
simplicity, we consider an isotropic Heisenberg Hamiltonian, given by

H = |J |
∑
〈i,j〉

Si · Sj + E0 . (4.2)

Here, J is the coupling constant between the spins, and E0 is a constant energy level
that we choose such that the ground state of the system has zero energy. For the
localized magnon, the excitation energy becomes 2z |J | ~2s2, where z is the number
of nearest neighbors. For the collective excitations, we consider periodic waves. To
describe these, we perform a Fourier transform of our magnon operators, defined by

ai = 1√
N/2

∑
q
aqe

−iq·ri , bj = 1√
N/2

∑
q
bqe

−iq·rj . (4.3)

Here, the sum over the wave vector q goes over the Brillouin zone for each sublattice,
and N is the number of spins or lattice sites in the system. In terms of the Fourier-
transformed operators, the Heisenberg Hamiltonian becomes

H = z |J | ~2s
∑

q

[
a†

qaq + b†
qbq + γq

(
aqb−q + b†

−qa
†
q

)]
, (4.4)

with γq being defined by

γq = 1
z

∑
δ

eiq·δ = γ−q , (4.5)

and δ being a vector between two nearest neighbors. Here, we assumed that the
material is inversion symmetric.
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We note that the Hamiltonian in Eq. (4.4) is not diagonal in the bosonic oper-
ators that we have introduced. Consequently, the aq and bq magnons from the HPT
are interacting quasiparticles. We therefore want to diagonalize this Hamiltonian
such that we can determine the energy cost of the noninteracting eigenexcitations.
We can accomplish this by introducing new bosonic operators, which we define to
be

αq = uqbq + vqa
†
−q , βq = uqaq + vqb

†
−q . (4.6)

Because we enforce these operators to also obey bosonic commutation relations,
we have the restriction |uq|2 − |vq|2 = 1. By choosing uq and vq such that our
Hamiltonian becomes diagonal, we then find that

H = z |J | ~2s
∑

q

√
1− γ2

q

[
α†

qαq + β†
qβq

]
. (4.7)

If we now consider the case of a 1D spin chain, where z = 2 and γq = cos qa (a
being the lattice spacing between the spins), the energy cost of the localized magnon
is 4 |J | ~2s2, whereas for the collective excitation, it is 2 |J | ~2s |sin qa|. We then see
that the collective excitation is more energetically favorable if |sin qa| < 2s. For s =
1/2, the collective excitation is then always more or equally energetically favorable.
For long-wavelength magnons, the collective excitations have a significantly lower
excitation energy and will therefore be the most prevalent excitation in this system.

4.4 The Bogoliubov transformation

In the previous section, we diagonalized our Hamiltonian by introducing new bosonic
operators in Eq. (4.6) that were a linear combination of our initial HPT bosonic
operators. This transformation is known as a Bogoliubov transformation and was
initially introduced in the case of fermionic operators to solve the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity [93, 94]. The new operators introduced
through this transformation are the eigenexcitations of the system. These are a su-
perposition of creation and annihilation operators of other particles or quasiparticles.

In the previous section, we considered the Bogoliubov transformation of a simple
Heisenberg antiferromagnet. In general, we consider a system that also has other
interactions, which may make the Hamiltonian harder to diagonalize. For most of
the work presented in this thesis, the Hamiltonian of our system can be described
by

HAF = |J |
∑
〈i,j〉

Si · Sj + γ
∑

i

H0 · Si −
k‖

2
∑

i

S2
i,z + k⊥

2
∑

i

S2
i,x + E0 , (4.8)
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where H0 = H0ẑ is an external magnetic field along the easy axis and k‖ and k⊥

are the easy- and hard-axis anisotropy constants, respectively. After performing an
HPT of the spin operators and a Fourier transform of the magnon operators, this
Hamiltonian becomes second order in the magnon operators

HAF =
∑

q

[
A

2 a
†
qaq + B

2 b
†
qbq + Cqaqb−q +Daqa−q +Dbqb−q + H.c.

]
, (4.9)

where we have introduced

A = ~
(
ωE − ωH + ω‖ + ω⊥

2

)
, (4.10a)

B = ~
(
ωE + ωH + ω‖ + ω⊥

2

)
, (4.10b)

Cq = ~ωEγq , (4.10c)

D = ~
ω⊥

4 , (4.10d)

as well as the frequencies ωE = |J | ~sz, ωH = γH0, ω‖ = k‖~s, and ω⊥ = k⊥~s. If
the coefficient D vanishes (i.e., there is no hard axis in our system), we can perform
a Bogoliubov transformation of this Hamiltonian, similar to the one performed in
Eq. (4.6) in the previous section. For this case (ω⊥ = 0), the Bogoliubov coefficients
become

uq =
√
Γq + 1

2 , vq =
√
Γq − 1

2 , (4.11)

where we have introduced

Γq =
1−

(
ωEγq

ωE + ω‖

)2
−1/2

. (4.12)

With the presence of the hard-axis anisotropy, the new eigenexcitations become
more complicated, and we must generalize the 2 × 2 Bogoliubov transformation in
Eq. (4.6) to a 4× 4 Bogoliubov transformation. This can be expressed as

µk =


αk

β†
−k

α†
−k

βk

 =


uα,a vα,b vα,a uα,b

v∗
β,a u∗

β,b u∗
β,a v∗

β,b

v∗
α,a u∗

α,b u∗
α,a v∗

α,b

uβ,a vβ,b vβ,a uβ,b




ak

b†
−k

a†
−k

bk

 ≡ B4mk , (4.13)

where k runs over half the vector space of q [92, 95]. This is to avoid operators with
momentum k and −k interacting, which will simplify our calculations. Although
the constraints on the new Bogoliubov coefficients become more complicated than
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previously, the principle behind the constraints remains the same: the new operators
must also satisfy bosonic commutation relations. The constraints can be expressed
compactly as [95]

Y =
[
µk,µ

†
k

]
= B4

[
mk,m†

k

]
B†

4 = B4Y B
†
4 , (4.14)

where Y is the matrix

Y =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (4.15)

The most important constraint that we need to know is

|uµ,a|2 − |vµ,b|2 − |vµ,a|2 + |uµ,b|2 = 1 , (4.16)

with µ = α, β. The excitation energy of the eigenexcitations can be found through
the eigenvalue problem [95]

A −Ck −2D 0
Ck −B 0 2D
2D 0 −A Ck

0 −2D −Ck B




uµ,a

vµ,b

vµ,a

uµ,b

 = εµ,k


uµ,a

vµ,b

vµ,a

uµ,b

 , (4.17)

which is obtained from the constraint [µk,HAF] = εµ,kµk. The Bogoliubov coef-
ficients can then be found from the eigenvectors of this eigenvalue problem, with
the scaling constant restraint from Eq. (4.16). For the simpler case of an easy-axis
antiferromagnet (ω⊥ = 0), the energies become

εα,k = ~
(√

(1− γ2
k)ω2

E + ω‖(2ωE + ω‖) + ωH

)
, (4.18a)

εβ,k = ~
(√

(1− γ2
k)ω2

E + ω‖(2ωE + ω‖)− ωH

)
. (4.18b)

Note that in the long-wavelength limit (k = 0 =⇒ γk → 1), this result is in
agreement with the resonance frequencies of the uniform precession mode that we
found from the classical treatment through the linear response of the LLG equation
in Eq. (2.22). This result is as expected because we are also performing a type of
linear response when we only keep terms to second order in the magnon operators
from the HPT in our Hamiltonian.
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Figure 4.3. The spins of the α and β eigenexcitations as a function of external
magnetic field H0 along the easy axis of NiO.

4.5 The eigenexcitation spin

In Fig. 4.1, we argued that magnons are spin-one quasiparticles (S = ±~), and
therefore, they behave as bosons. However, we have now seen that the eigenexci-
tations of the system are linear superpositions of magnons with spins +~ and −~.
These new magnons can have spins that are neither half integer nor integer, which
was recently shown by Kamra et al. [95]. Kamra et al. noted that the Bogoliubov
coefficients that combine annihilation and creation operators of the same mode (in
our notation, vα,b and vβ,a) lead to squeezing (elliptical precession) and an increase
in the eigenexcitation spin. Coefficients that combine annihilation (or creation) op-
erators of different modes (in our notation, uα,a and uβ,b) lead to a hybridization
between magnons with different spins and a decrease in the eigenexcitation spin.
The spins of the α and β eigenexcitations are [95]

Sα = +~
[
1 + 2

(
|vα,b|2 − |uα,a|2

)]
, (4.19a)

Sβ = −~
[
1 + 2

(
|vβ,a|2 − |uβ,b|2

)]
. (4.19b)

As shown, if the squeezing and hybridization effects do not compensate each other,
the eigenexcitations can have a noninteger spin.

Note that for the easy-axis antiferromagnet (ω⊥ = 0), the precessions remain
circular, and the eigenexcitations have integer spin (Sα = +~, Sβ = −~). This
requires perfect uniaxial symmetry, and if this symmetry is broken by, e.g., a small
anisotropy perpendicular to the uniaxial anisotropy, the magnons will hybridize
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and the spin of the eigenmagnons changes. In the general case of an easy- and
hard-axis antiferromagnet, the precessions become elliptical, and the spins of the
eigenexcitations are no longer integer. This is illustrated in Fig. 4.3 for the magnons
in the easy-plane antiferromagnet NiO. In a zero magnetic field, the eigenmagnons
have a linear polarization and zero spin. The effect of the varying spin of the
eigenmagnons in NiO can also be observed in a classical calculation using the LLG
equation. This can e.g. readily be seen in the results of Paper [1]. In Figs. 2(e)
and 2(f) of Paper [1], the pumped spin current vanishes exactly for the right-handed
polarization of the microwave source at H0 ≈ 3.5 T, which is explained by Fig. 4.3,
because at this magnetic field strength, the low-energy β eigenmagnons have spin
S = −~. The eigenmagnons at this point therefore purely consist of left-handed
magnons, which cannot be excited by a right-handed microwave source, thereby
suppressing the magnetization dynamics and spin pumping for these parameters.





5
Cavity spintronics

The magnon quasiparticle introduced in Chapter 4 can interact with other
(quasi)particles and cause interesting physical phenomena. In this chapter, we will
study the case where the magnon interacts with other bosons, with an emphasis on
one boson in particular: the photon. The magnon and the photon can, for instance,
couple to one another via the magnetic field quanta of the photons. The interac-
tion between magnetic matter and photons inside electromagnetic resonators is the
foundation for the emerging field of cavity spintronics. Inside these resonators, the
photons have discrete frequencies, and if the photon frequency matches the mag-
netic resonance frequency of the magnons, the magnon and photon can strongly
hybridize to form new excitations of the system. When several magnetic subsys-
tems are placed within the electromagnetic resonator, the photons can mediate a
nonlocal interaction between the magnetic systems [96, 97], which in turn can be
used to manipulate spin currents over macroscopic distances [98].

In this chapter, we will first briefly examine the fundamental concepts and mod-
els in quantum optics underlying the interactions between light and matter. We will
then present a simple example of an electromagnetic resonator, known as a cavity,
and study the magnon-photon system in detail. The last section of this chapter will
act as a supplementary material to Paper [3] by providing an in-depth walkthrough

57



58 Chapter 5. Cavity spintronics

of the methods used therein. In this paper, we show how these electromagnetic
resonators can be used to obtain a nonlocal interaction between antiferromagnetic
and ferromagnetic materials, inspired by the results of Refs. [96–98]. This is quite
interesting because prior to this work, to the best of my knowledge, the only known
magnetic interactions between antiferromagnets and ferromagnets were local inter-
actions such as the exchange bias [38].

5.1 Interacting harmonic oscillators

The field of cavity spintronics is based on the concept of interacting harmonic os-
cillators. Before proceeding to the physical system, we will first briefly consider an
illustrative example such that we can see what occurs in a system consisting of cou-
pled harmonic oscillators. Let us consider a Hamiltonian that is dependent on some
externally adjustable parameter x. This Hamiltonian consists of two harmonic oscil-
lators that couple with each other by a coupling strength g, and it can be expressed
as

H(x) = ~ωa(x)a†a+ ~ωb(x)b†b+ ~g
(
a†b+ b†a

)
(5.1a)

=
(
a† b†

)~ωa(x) ~g
~g ~ωb(x)

a
b

 . (5.1b)

In general, we could also imagine the Hamiltonian containing interaction terms
that go as ab + b†a†. We will later argue why these terms contribute less than the
interaction terms a†b+ b†a in many cases. Through a Bogoliubov transformation as
discussed in Section 4.4, this Hamiltonian can be diagonalized1 to the form

H(x) = Ψ†

~ω− 0
0 ~ω+

Ψ , (5.2)

where ω± =
(
ωa(x) + ωb(x)±

√
[ωa(x)− ωb(x)]2 + 4g2

)
/2 are the energies of the

noninteracting system and Ψ† =
(
ψ†

− ψ†
+

)
is a vector of the diagonal eigenstates.

If we consider a special case, where ωa(x) = ωb(x) ≡ ω(x0), the vector Ψ becomes

Ψ =
ψ−

ψ+

 = 1√
2

−a+ b

a+ b

 . (5.3)

1For bilinear bosonic Hamiltonians with terms only consisting of one creation operator and one
annihilation operator that are normal ordered as in Eq. (5.1b), the Bogoliubov transformation is
equivalent to a standard matrix diagonalization H ≡ Φ†MΦ = Φ†PDP−1Φ ≡ Ψ†DΨ. Here, M
is a general Hermitian matrix, and the matrix D is a diagonal matrix of the eigenvalues of M .
Imposing bosonic commutation relations leads to the constraint P−1 = P †.
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Figure 5.1. Dispersion relations for two coupled harmonic oscillators. The uncoupled
dispersion relations are shown in dashed lines, with ωa(x) = 1 − x and ωb(x) = x.
We consider dimensionless frequencies for simplicity in this illustrative example. The
solid lines are the new eigenstates ω± (where ω+ is the upper band, and ω− is the
lower band) of the system with a coupling strength g = 0.1. The color gradient of
the solid lines shows the composition of the eigenstates ω± in terms of the uncoupled
harmonic oscillators ωa,b(x). The coupling leads to an anticrossing gap of 2g in the
dispersion relations.

The new eigenstates of the coupled system in this scenario are superpositions of
both harmonic oscillators, with energies ~ω± = ~ω(x0)± ~g.

Let us now consider a simple example of the dispersion relations ωa,b(x) and
plot the new eigenstate energies of the system together with the energy of the un-
coupled eigenstates in Fig. 5.1. We observe that at the crossing point between the
initial dispersion relations, the interaction between the harmonic oscillators leads
to an anticrossing gap that is linear in the coupling strength between the harmonic
oscillators. This is a common feature of interacting harmonic oscillators.

Considering the ω+ eigenstate, Fig. 5.1 shows that it behaves more or less like
the uncoupled harmonic oscillator a far to the left of the crossing point, whereas it
behaves like the uncoupled harmonic oscillator b far to the right of the crossing point.
This is consistent with what we found when we diagonalized the Hamiltonian at the
crossing point: the new eigenstates of the system are superpositions of the harmonic



60 Chapter 5. Cavity spintronics

oscillators and have the properties of both. The anticrossing marks a crossover in
behavior where the new eigenstate goes from mostly having the properties of one
harmonic oscillator to having the properties of the other.

We have encountered this hybridization between harmonic oscillators previ-
ously in this thesis. In Chapter 4, Section 4.5, we observed that when the rotational
symmetry of the easy-axis antiferromagnet is broken by e.g. a magnetic anisotropy
perpendicular to the easy axis, the eigenmagnons with spin ±~ hybridize and form
new linearly polarized spin-0 eigenmagnons. This hybridization has been recently
studied experimentally in the ferrimagnet gadolinium iron garnet close to its com-
pensation temperature, where it becomes analogous to an antiferromagnet [99]. In
addition to the new eigenmagnons being linearly polarized, the hybridization also
leads to a similar anticrossing feature of the magnon dispersion relations as in Fig.
5.1. For the uniaxial easy-axis antiferromagnet, we observed in Eq. (4.18) that the
two magnon bands with spin ±~ cross at zero magnetic field. When the rotational
symmetry is broken and the magnon modes hybridize, the degeneracy at zero mag-
netic field is broken, and one will find an anticrossing gap between the two magnon
modes at zero magnetic field.

5.2 Jaynes–Cummings model and Rabi oscilla-
tions

The simple example Hamiltonian in Eq. (5.1a) that we studied in the previous
section is very reminiscent of a system called the Jaynes–Cummings model [100].
This model was introduced to describe the interaction of a two-level atom with
quantized radiation fields and can be expressed as

HJC = ~ωcc
†c+ ~ωσ

σ̂3

2 + ~Ω
2
(
cσ̂+ + c†σ̂−

)
. (5.4)

Let the two-level atom have a ground state |g〉 and an excited state |e〉 separated
by an energy ~ωσ. We then have that σ̂3 = |e〉〈e| − |g〉〈g|, σ̂+ = |e〉〈g|, and σ̂− =
|g〉〈e|. The operators c and c† describe the annihilation and creation operators of the
quantized radiation field, which has an energy ~ωc, and ~Ω describes the interaction
strength between the two-level atom and the radiation field. If we assume that we
have n radiation quanta in the system, with a frequency ωc = ωσ + ∆, which is
detuned from the excitation energy of the atom by a frequency ∆, the energy levels
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of this system can be found to be [101]

E± = ~ωc

(
n+ 1

2

)
± 1

2~ΩR . (5.5)

Here, we have introduced the Rabi frequency [101]

ΩR =
√
∆2 +Ω2 (n+ 1) . (5.6)

Let us now consider a case where we place a single two-level atom in its ex-
cited state inside a constrained space with perfectly reflective boundaries such that
radiation quanta cannot be lost from the system. We can determine the wave func-
tion |ψ(t)〉 that describes the state of the two-level atom and the radiation field by
solving the time-dependent Schrödinger equation

i~
d
dt |ψ(t)〉 = HJC|ψ(t)〉 . (5.7)

Studying the solution for |ψ(t)〉, we find that the state of the system oscillates be-
tween the initial state with n radiation quanta and the atom in the excited state
and a state where the atom has relaxed to the ground state and emitted a radia-
tion quanta. The probability of finding the system in a state where the atom has
spontaneously emitted a radiation quanta oscillates between zero and [101]

Pmax
emitted = Ω2(n+ 1)

∆2 +Ω2(n+ 1) = Ω2(n+ 1)
Ω2

R

(5.8)

with the Rabi frequency ΩR. The periodical process in which the system emits
and reabsorbs a radiation quanta is called a Rabi oscillation. We note that in the
resonant case where the energy of the radiation quanta equals the excitation energy
of the atom (∆ = 0), the probability oscillates between zero and one, and at certain
times, we are therefore guaranteed to find the atom in a state where it has emitted
a radiation quanta. The reason for this oscillation is that due to the interaction
between the atom and the radiation field, the eigenstate of the system is no longer
a state with a fixed number of radiation quanta but rather a superposition of the
states where the atom is in the excited or ground state and thereby emitted or
absorbed a radiation quanta. Consequently, if we prepare the system in a state with
a fixed number of radiation quanta (e.g. an excited atom in a vacuum), we are
in a quantum superposition of two eigenstates that evolve temporally at different
frequencies. The interference between the wave functions causes the Rabi oscillations
in the probability of measuring the atom in the ground state or the excited state.

If we compare the example model in Eq. (5.1a) in the previous section to the
Jaynes–Cummings model, we find that 2g plays the role of the resonant vacuum
Rabi frequency Ω. In other words, the coupling strength g provides some indication
of how often a Rabi-like oscillation occurs between two coupled harmonic oscillators.
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5.3 Coherence and coupling regimes

5.3.1 Coherence

Although the coupling strength g is an important figure of merit in light-matter in-
teraction systems, it does not contain all the information of interest about a system.
In addition to knowing how strongly the light interacts with the matter, we also
wish to know about the coherence in the system.

Consider a case where we have a system of N two-level atoms in a constrained
region (the model describing the coupling between N two-level atoms and the radi-
ation field is called the Dicke model [102] or the Tavis–Cummings model [103, 104]).
We then excite all the atoms coherently by e.g. sending a laser pulse into the
system. The N atoms will then undergo coherent Rabi oscillations. That is, the in-
dividual Rabi oscillations of the atoms will have a constant phase difference between
themselves (which we assume to be zero directly after the laser pulse is applied).
However, there will be effects in a physical system that will introduce decoherence
by changing the individual phases of the Rabi oscillations or through loss from the
system. One such effect is the spontaneous decay of the atom to its ground state,
which emits a radiation quantum. While this sounds similar to the process in a
Rabi oscillation, a spontaneous emission will occur at random times, whereas the
periodic Rabi oscillations are due to a stimulated emission of the radiation quanta,
which we achieve by e.g. exciting the system by a coherent laser pulse. Since the
spontaneous decay also emits a radiation quantum, which can later be reabsorbed,
the spontaneous emission will only cause a phase shift in the Rabi oscillation. As
the atoms will undergo spontaneous decay at different times, this will introduce a
phase shift between the Rabi oscillations and thereby a decoherence to the system.
Another process that will cause decoherence is the leaking of radiation from the
constrained region with the atoms, leaving fewer radiation quanta for the atoms to
absorb to continue their Rabi oscillations.

5.3.2 Cooperativity as a figure of merit

One way to measure coherence is by the cooperativity of the system. The coopera-
tivity estimates how many Rabi oscillations e.g. an atom will go through on average
before it spontaneously decays or the emitted radiation is no longer reabsorbed. The
cooperativity will therefore behave as

C ∼ g2

Γκ
, (5.9)
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where Γ is the spontaneous decay rate of the two-level system and κ is the loss
rate of the radiation. The cooperativity is often a more relevant figure of merit in
experiments than the coupling strength g because it also provides some indication
about the loss and decay rates of the system.

5.3.3 Coupling regimes

Based on the value of the cooperativity and the coupling strength of the system, we
can classify the system to be in different coupling regimes [105]. When the coupling
strength g is much smaller than the loss rates Γ and κ of the system, i.e. C � 1, we
are in a weak coupling regime. Similarly, when g is much larger than the loss rates
(⇒ C � 1), we are in a strong coupling regime. In the strong coupling regime, the
system will on average undergo many Rabi oscillations before decoherence becomes
significant, unlike the weak coupling regime. The number of coherent Rabi cycles
increases with cooperativity.

When the coupling strength g becomes so large that it is comparable to the
frequency of the radiation field (g/ωc ' 0.1 [105]), we are in a so-called ultrastrong
coupling regime. In this coupling regime, common approximations such as neglecting
the contribution from rapidly rotating terms (e.g. a contribution ∼ ~ga†b† + ~gba
to Eq. (5.1a)) no longer hold. (This approximation is called the rotating wave
approximation and will be discussed in more detail later in Section 5.5.2). In this
thesis, we will assume that we are in the strong coupling regime.

5.4 The magnon polariton

Now that we have examined the general case of the coupling between two harmonic
oscillators and obtained a physical intuition for this coupling, we will proceed to
cavity spintronics, where the harmonic oscillators under consideration are magnons
and photons. Magnons are quantized spin fluctuations that we introduced previously
in Chapter 4, whereas photons are quantized electromagnetic waves. We will specif-
ically consider electromagnetic waves in microwave cavities. The microwave cavity
photons are essentially what we considered in the Jaynes–Cummings model with
the radiation quanta in an enclosed region. The microwave cavities are enclosed
regions, where the boundary of the region consists of an approximately perfectly
conducting material. Due to the boundary condition at the perfectly conducting
material, which requires that the component of the electric field parallel to the in-
terface vanishes, there are only certain modes that can exist inside the microwave
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L
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Figure 5.2. A simple sketch of a microwave cavity and the quantized magnetic field
within. The cavity consists of two perfectly conducting plates separated by a distance
L. Inside the cavity, only the wavenumbers nπ/L (n = 1, 2, . . .) perpendicular to
the plates are allowed within the cavity. Each mode has two possible polarizations.
Here, only one of the circular polarizations is shown, but both circular polarizations
(clockwise and counterclockwise) are allowed for each mode n.

cavity. The electromagnetic field is then quantized. This quantization procedure can
be found in introductory textbooks to quantum optics, such as Ref. [101].

A simple model of a cavity can be two parallel conducting plates separated by
a distance L in the z direction. This is illustrated in Fig. 5.2. If we only consider
photons propagating perpendicular to the plates, the quantized magnetic field inside
the microwave cavity becomes

Hp(r) = i
∑
n,λ

√
~ωnµ0

V
ẑ×

(
pn,λêλ − p†

n,λê∗
λ

)
cos (knz) . (5.10)

Here, ẑ is the propagation direction of the photon, kn = nπ/L (n = 1, 2, . . .) are
the allowed wave numbers, ωn = knc is the photon frequency (with c being the
speed of light), V is the volume of the cavity, and µ0 is the vacuum permeability.
The operator p(†)

n,λ is the photon annihilation (creation) operator for the mode with
quantum number n and polarization λ. The vectors êλ are the polarization vectors,
which satisfy êλ · k̂ = êλ · ẑ = 0 and |êλ|2 = 1, as well as having to form a per-
pendicular basis. We will consider a circular polarization basis, where λ = ± and
ê± = (x̂± iŷ)/

√
2.

Recall from Section 2.2 that the magnetization, and thereby spins, interact with
magnetic fields through what is called the Zeeman interaction. Consequently, there
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will be an interaction between the magnetic field quanta of the photons in Eq. (5.10)
and the spins in a magnetic material, which can be expressed as

Hm-p =
∑

i

γSi ·Hp(ri) . (5.11)

Let us first consider the simple case where we only have a single spin interacting
with the photons and apply a Holstein–Primakoff transformation as defined in Eq.
(4.1); assuming that the spin is located at a point where cos(knz) = 1, we find that

Hm-p =
∑

n

~γ
√
~ωnµ0

2V

[(
pn,+ − p†

n,−

)
a†
√

2s− a†a+
(
p†

n,+ − pn,−
)√

2s− a†aa
]
.

(5.12)

If we assume a sufficiently large spin for the particle under consideration that makes
the linearized HPT valid (2s � 〈a†a〉) and only consider the λ = + polarization
(we will argue in the next section why we can neglect the λ = − polarization in this
case), this can then be reduced to

Hm-p =
∑

n

~γ
√
~ωnµ0s

V

(
pn,+a

† + p†
n,+a

)
≡
∑

n

~g(1)
n

(
pn,+a

† + p†
n,+a

)
. (5.13)

We then see that this resembles the interaction term that we considered for the two
general coupled harmonic oscillators in Eq. (5.1a), and the localized magnon and
photon will therefore hybridize in this system. The resulting new excitations of the
system that provide a basis in which the Hamiltonian is diagonal are called magnon
polaritons.

We will now scale up our system to a case where we have N spins interacting
with the photons. For simplicity, we will consider a single-sublattice model, i.e. a
ferromagnet. Recall from Chapter 4 that the collective spin excitations (magnons)
are the low-energy excitations in magnetic systems. We therefore proceed to a
momentum-space basis where

ai = 1√
N

∑
q
aqe

−iq·ri . (5.14)

We perform the same approximations as in the single-spin example and only consider
HPT of the spin operators to the second order, as well as only consider the λ = +
polarization of the photons. We also note that the speed of light is much greater
than the magnon group velocity, and the photons will therefore primarily couple to
the long-wavelength magnons to conserve energy and momentum. We assume that
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the photons will only couple to the |q| ≈ 0 magnons. We then find that the Zeeman
interaction between the magnons and photons is

Hm-p =
∑

n

~g(1)
n

(
pn,+a

†
0 + p†

n,+a0
)∑

i

1√
N

=
∑

n

~
√
Ng(1)

n

(
pn,+a

†
0 + p†

n,+a0
)
.

(5.15)

Note that this is a very important result. In theN -spin system, the coupling strength
to the cavity photons is enhanced by a factor of

√
N compared to the single-spin

case. This is a general feature that is not restricted to the spin system [106]. In the
ferrimagnetic material YIG, which is commonly used in spintronics due to its low
damping, the spin density is ∼ 2 ·1022 cm−3 [107]. If we then have a macroscopically
sized sample of YIG, the factor of

√
N can enhance the coupling strength by many

orders of magnitude.
The first prediction of magnon polaritons was made a decade ago [108]. A

few years later, experiments detected hybridization between ferromagnetic magnons
and microwave resonators [109], microwave photons [110], and later optical photons
[111–114]. The dispersion relation of ferromagnetic magnons can be tuned externally
by applying a magnetic field. By properly choosing the dimensions of the microwave
cavity, there will be a crossing point between the dispersion of the ferromagnetic
magnons and the cavity photons as a function of the external magnetic field. The
hybridization strength between the magnons and the cavity can then be found by
measuring the anticrossing gap, as illustrated in Fig. 5.1. This anticrossing gap
can e.g. be measured through the transmission and reflection coefficients of the
microwave cavity. In the initial experiments, the coupling between the many-body
spin system and the photons was on the scale of hundreds of MHz, whereas the
coupling strength of the single spin was merely on the order of 38 mHz - 5 Hz
[109, 110]. In more recent experiments, coupling strengths of several GHz and a
cooperativity of 107 have been measured [115], moving into the ultrastrong coupling
regime. It has also been recently predicted that antiferromagnetic magnons can
couple to microwaves in cavities [116].

5.5 Magnon hybridization between antiferromag-
nets and ferromagnets

It has been demonstrated experimentally that microwave cavities can be used to
obtain a coupling of the magnons in two spatially separated ferromagnets [96, 98].
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Whether the same principle can be used to obtain a coupling between an antifer-
romagnet and a ferromagnet is also of interest. In this section, we will discuss
some of the key concepts and results in Paper [3] and elaborate on some of the
approximations and methods used in the paper.

5.5.1 System Hamiltonian

Let us consider a Hamiltonian that can be divided into the following four parts:

H = HAF +HF +Hp +Hm-p , (5.16)

where the first part describes the antiferromagnet, the second describes the ferro-
magnet, the third describes the microwave cavity, and the last part describes the
interaction between the magnons in both magnets and the cavity photons. In Section
4.4, we observed how spin Hamiltonians can be diagonalized through a Bogoliubov
transformation for antiferromagnets. The Bogoliubov transformation can also be
applied to the ferromagnetic case. We will assume that the magnetic Hamiltonians
have already been diagonalized. We will also only consider one of the cavity modes
and assume that the cavity has been designed such that the n = 1 frequency is
relatively close to both the antiferromagnetic and ferromagnetic frequencies. The
noninteracting parts of the Hamiltonian can then be written as

H0 ≡ HAF +HF +Hp = ~ωαα
†α + ~ωββ

†β + ~ωηη
†η + ~ωp

∑
λ=±

p†
λpλ . (5.17)

Here, α(†) are the diagonal annihilation (creation) operators for the high-energy
antiferromagnetic mode, and β, β†, η, and η† are equivalent operators for the low-
energy antiferromagnetic mode and the ferromagnetic mode, respectively.

Our goal is to couple the antiferromagnetic and ferromagnetic magnons indi-
rectly, mediated by the direct coupling to the cavity photons. Therefore, we wish
to study a crossing point in the dispersion relation between the antiferromagnetic
and ferromagnetic magnons. Fig. 5.3 shows for the simple example of an easy-axis
antiferromagnet and a Zeeman-like ferromagnet that a crossing point exists between
the low-energy antiferromagnetic magnons and the ferromagnetic magnons. Hence-
forth, we will therefore only consider the β magnons in the antiferromagnet and
completely ignore the α magnons. From Eq. (5.12), we can then define a general
form of the magnon-photon interaction Hamiltonian:

Hm-p =
∑
λ=±

~
{
pλ

[
gλ

AFβ
† +

(
gλ

AF

)∗
β + gλ

Fη
† +

(
gλ

F

)∗
η
]}

+ H.c. , (5.18)
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Figure 5.3. Magnon dispersion relations for an easy-axis antiferromagnet and a
Zeeman-like ferromagnet as a function of external magnetic field. There is only one
type of ferromagnetic magnon with a right-handed polarization with respect to the
applied magnetic field but two types of antiferromagnetic magnons with left- and
right-handed polarizations.

where g±
AF/F is the coupling strength between the antiferromagnet/ferromagnet and

the ± polarization of the cavity mode. The magnitudes of these coupling strengths
are given in Paper [3].

5.5.2 Rotating wave approximation

The magnon-photon interaction Hamiltonian in Eq. (5.18) contains 16 individual
coupling terms. Before we do anything further with our system Hamiltonian, we
wish to see if we can simplify this interaction by determining whether any of the
interaction terms can be neglected. If we consider the Hamiltonian in the interaction
picture, where we have split the Hamiltonian into the noninteracting and interacting
parts H = H0 +Hm-p, we have

HI = eiH0t/~He−iH0t/~ = H0 + eiH0t/~Hm-pe
−iH0t/~ . (5.19)

Moreover, in the interaction picture, the bosonic operators are given by

βI(t) = e−iωβtβ , ηI(t) = e−iωηtη , pλ,I(t) = e−iωptpλ , (5.20)

as well as their Hermitian conjugates. Note that the terms in the interacting part
of the Hamiltonian Hm-p that pairs a creation operator with an annihilation op-
erator have a time dependence such as exp

[
±i(ωβ/η − ωp)t

]
, whereas the terms
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that consist of two creation or two annihilation operators have a time dependence
exp

[
±i(ωβ/η + ωp)t

]
. If we assume that

∣∣∣ωβ/η − ωp

∣∣∣ � ∣∣∣ωβ/η + ωp

∣∣∣, the rapidly os-
cillating terms that consist of pairs of creation or annihilation operators will quickly
average out to zero compared to the slowly oscillating terms. This inequality can
be enforced by choosing the frequency of the cavity photons to be close to the
frequency at the crossing point between the antiferromagnetic and ferromagnetic
dispersion relations. By discarding the rapidly oscillating terms from the Hamil-
tonian and returning to the Schrödinger picture, the magnon-photon interaction
Hamiltonian becomes

HRWA
m-p ≈ ~

[
p+
(
g+

AFβ
† + g+

F η
†
)

+ p−
(
g−

AFβ
† + g−

F η
†
)]

+ H.c. (5.21)

This approximation is known as the rotating wave approximation (RWA) [101].

5.5.3 Unitary transformation

We have now simplified the Hamiltonian in the picture where we have an interaction
between the magnons and the photons. However, our goal is to determine whether
this magnon-photon interaction can mediate an indirect magnon-magnon interaction
between the antiferromagnetic and ferromagnetic magnons. To determine whether
this is the case, we perform a unitary transformation of the Hamiltonian. A uni-
tary transformation does not change the eigenvalues of the Hamiltonian [117], and
consequently, the physics is also unchanged. On the other hand, by performing a
unitary transformation of the Hamiltonian, one can obtain a form where a possi-
ble magnon-magnon coupling would be more apparent and easy to identify, as we
will see shortly. The magnon-magnon interaction will be the largest where their
energies are the same, i.e. at the point where ωβ = ωη. We also assume that the
frequency of the cavity photons is detuned from this crossing point by a frequency
∆ = ωp−ωβ,η. We will then consider the unitary transformation H′ = UHU †, where
we have defined

U = exp
∑

λ=±

pλ

(
gλ

AFβ
† + gλ

Fη
†
)
− p†

λ

(
gλ

AFβ + gλ
Fη
)

∆

 ≡ exp {û} . (5.22)

We have assumed that the coupling constants gλ
AF/F are real.

In the dispersive limit, where the cavity detuning is assumed to be significantly
larger than the magnon-photon coupling strengths (i.e. ∆� g±

AF,F), we can perform
a series expansion of the Hamiltonian to the second order in g±

AF,F/∆. To perform
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this series expansion, we take advantage of the Hadamard Lemma, which states that

eÂB̂e−Â ≈ B̂ +
[
Â, B̂

]
+ 1

2!
[
Â,
[
Â, B̂

]]
+ 1

3!
[
Â,
[
Â,
[
Â, B̂

]]]
+ . . . (5.23)

Introducing H∆ = ~∆
(
p†

−p− + p†
+p+

)
, we note the following commutator relations:

[û,H0 −H∆] = 0 , [û,H∆] = −HRWA
m-p . (5.24)

Consequently, to the second order, we have

H′ ≈ H0 + 1
2
[
û,HRWA

m-p

]
(5.25a)

= ~

ωβ −

(
g−

AF

)2
+
(
g+

AF

)2

∆

 β†β + ~

ωη −

(
g−

F

)2
+
(
g+

F

)2

∆

 η†η

+ ~

ωp +

(
g−

AF

)2
+
(
g−

F

)2

∆

 p†
−p− + ~

ωp +

(
g+

AF

)2
+
(
g+

F

)2

∆

 p†
+p+

− ~
(
g−

AFg
−
F + g+

AFg
+
F

∆

)(
β†η + η†β

)
. (5.25b)

In the last line of the above equation, we see that we have a magnon-magnon cou-
pling between the antiferromagnetic and ferromagnetic magnons if (i) the magnons
couple to the same polarization of the cavity photons and if (ii) the two polarization
contributions do not cancel each other out. The other correction terms describe a
shift in the frequency of the magnons and photons due to the interactions. Notably,
the above unitary transformation replaced the explicit magnon-photon couplings by
an explicit magnon-magnon coupling.

5.5.4 Geometrical aspects of polarization-dependent cou-
pling

We have now found that we can achieve an indirect magnon-magnon coupling if both
the antiferromagnetic and ferromagnetic magnons can couple to the same microwave
polarization. However, this constitutes a problem; as shown in Fig. 5.3, the crossing
point between the dispersion relations is between the left-handed mode of the an-
tiferromagnetic magnons and the ferromagnetic mode, which is right-handed. This
means that at the crossing point, the antiferromagnetic magnons and ferromagnetic
magnons have opposite spins! Consequently, if we consider a circular polarization
basis, the antiferromagnetic magnons will couple to the left-handed circular polar-
ization and not to the right-handed one, whereas the ferromagnetic magnons will
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Figure 5.4. Illustration of an antiferromagnet (AF) and ferromagnet (F) inside a
microwave cavity, given by two perfectly conducting plates separated by a distance L.
A magnetic field H0 tunes the magnon frequencies, and the magnetic component Hp of
the quantized electromagnetic field mediates a coupling between the antiferromagnetic
and ferromagnetic magnons. Figure taken from Paper [3].

couple to the right-handed polarization and not to the left-handed one. Therefore,
in this case, there can be no indirect magnon-magnon coupling mediated by the
microwaves because the two polarizations are independent of each other.

The above conclusion assumes that the magnons have integer spin (S = ±~).
However, if we have a case where one of the magnon modes is significantly
squeezed or hybridized (through e.g. dipolar interactions or nonuniaxial magnetic
anisotropies), the magnons will have noninteger spin, as shown in Section 4.5. It
can be shown that if a magnon has a noninteger spin, it can couple to both polar-
izations and not just one. However, it will generally couple much more strongly to
one polarization than the other, and the main difference from the integer-spin case
is that instead of not coupling to one of the polarizations at all, there is now a small
coupling present. Although the case where either (or both) the antiferromagnetic
magnons or ferromagnetic magnons have a spin that is noninteger will lead to an
indirect magnon-magnon coupling, this coupling will be rather weak.

In addition to considering the polarization of the microwaves, one can also
consider the propagation direction of the photons relative to the magnetic moments.
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(a) (b) (c) (d)

Figure 5.5. Coupling between microwaves (blue circular arrows) and ferromagnetic
magnons (red circular arrows) for different microwave polarizations and microwave
propagation directions. In (a) and (b), the propagation direction of the microwaves is
parallel to the magnetization (red arrow), whereas in (c) and (d), it is perpendicular
to the magnetization. The right-handed polarization in (a) couples strongly to the
magnon, whereas the left-handed polarization in (b) does not couple to the magnon
at all. In (c) and (d), both polarizations couple equally strongly to the magnons.
This is because the microwaves primarily couple to the transverse component of the
magnetization, and the transverse projection of the microwaves (blue arrows) is the
same for both polarizations.

In Eq. (5.10), we chose the geometry where the propagation direction of the photons
was parallel to the magnetic moments (z direction). We can also consider a geometry
where the propagation direction of the photons is perpendicular to the magnetic
moments, e.g. a propagation along the x direction. Such a geometry is illustrated
in Fig. 5.4. We can then choose a new set of circular polarization vectors, given
by ê± = (ẑ ± iŷ)/

√
2. The microwaves will now also couple to the longitudinal

z-component of the magnetic moments, unlike before. Mathematically, this will
introduce terms in the magnon-photon interaction Hamiltonian Hm-p that are linear
in the photon annihilation/creation operators, as well as terms that contain one
photon operator and two magnon operators (e.g. ∼ p†

n,+ηη). If we assume that
|ωp − ωβ,η| � ωp, the linear terms can readily be discarded in the RWA. However,
we need to be somewhat more careful with the cubic terms. In principle, these terms
can oscillate slowly enough to be significant in the RWA if the magnons couple to
the n = 2 mode of the microwaves, which has twice the frequency of the cavity mode
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that we previously considered. We note that by the following heuristic argument:

∑
i

η†
i ηi = nmagnons → 〈η†

i ηi〉 = nmagnons

NF
→ 〈η(†)

i 〉 ∼
√
nmagnons

NF

→ 〈
∑

i

η
(†)
i 〉 ∼

√
nmagnonsNF → 〈∑i η

(†)
i η

(†)
i 〉

〈∑i η
(†)
i 〉

∼
√
nmagnons

NF
, (5.26)

trilinear terms in the Hamiltonian such as ∼ p†
n,+ηη contribute, on average, a factor

of
√
nmagnons/NF less than bilinear terms such as ∼ p†

n,+η, where NF is the number of
spins in the ferromagnet. Because we assume that the number of magnons (nmagnons)
in the system is much smaller than the number of spins, we conclude that the
cubic coupling term’s contribution to the magnon-photon coupling can be neglected
compared to the contribution from the quadratic coupling term. Consequently, the
microwaves effectively do not couple to the longitudinal part of the magnetization to
the second order in the magnon operators, and only the transverse projection of the
microwaves couple to the magnons. In Fig. 5.5 (c) and (d), we see that this means
that both polarizations will have the same coupling to the magnons. Together with
our previous result in Eq. (5.25b), this means that in this choice of geometry, we
have a significant magnon-magnon coupling!

5.5.5 Full dispersion in the rotating wave approximation

Now that we have established that we can obtain a coupling between antiferromag-
netic magnons and ferromagnetic magnons inside a microwave cavity by carefully
choosing the geometry, it can be useful to investigate how such a coupling will ap-
pear in the dispersion relation of the system. In Section 5.1, we found that the
interaction between harmonic oscillators typically appears as an anticrossing gap
where there would normally be a crossing point in the dispersion relations if the os-
cillators did not interact. Therefore, a coupling between the antiferromagnetic and
ferromagnetic magnons will appear as an anticrossing at the crossing point between
their dispersion relations. We will now solve the system exactly and see if this is
the case.

The Hamiltonian in Eq. (5.16) can be written as

H =
(
β† η† p†

− p†
+

)

~ωβ 0 ~g−

AF ~g+
AF

0 ~ωη ~g−
F ~g+

F

~g−
AF ~g−

F ~ωp 0
~g+

AF ~g+
F 0 ~ωp




β

η

p−

p+

 , (5.27)
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Figure 5.6. Example of how direct and indirect couplings manifest in the dispersion
relations. The dashed lines are the dispersion relations without interaction in the
system, and the solid lines are the new dispersion relations with the magnon-photon
interaction present. We consider the case where ωβ = 1 − x, ωη = x, and ωp = 0.4.
We use dimensionless frequencies for simplicity in this illustrative example. In (a),
both magnons β and η couple equally to both polarizations of the cavity, with g±

F ≡
gF = 0.05 and g±

AF ≡ gAF = gF/3. This leads to an indirect coupling between the
magnons, as shown by the anticrossing of magnitude gmm ≈ 2gAFgF/∆. In (b), we
have chosen g+

F = gF, g−
AF = gF/3, and g−

F = g+
AF = 0. We find that this does not lead

to an indirect magnon-magnon coupling because the magnons couple to independent
cavity modes. The difference of

√
2 between the gap in (a) and (b) is due to the

coupling to two polarizations in (a) rather than just one polarization in (b).
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assuming a rotating wave approximation. Note that this Hamiltonian only contains
explicit couplings between the magnons and the photons and that there is no ex-
plicit coupling between the antiferromagnetic and ferromagnetic magnons. Because
the Hamiltonian only contains quadratic terms in the bosonic operators, it is pos-
sible to diagonalize this Hamiltonian exactly. Diagonalization of this system yields
very complicated analytical expressions but can be illustrated nicely in a plot given
some numerical values of the energies and coupling strengths. We present a simple
example of this case in Fig. 5.6, which illustrates how the magnon-photon interac-
tion affects the dispersion relations and how one can observe the different coupling
strengths in the dispersion relations.

In Paper [3], we find that for certain material combinations, it is possible to
achieve a significant coupling between antiferromagnetic magnons and ferromagnetic
magnons. This coupling strength can be on the order of hundreds of MHz.

5.5.6 Coupling strength and cooperativity of antiferromag-
nets

We have now seen that in principle, one can couple antiferromagnetic magnons
both directly to microwave photons and indirectly to ferromagnetic magnons. How-
ever, the coupling strength of antiferromagnetic magnons to photons is weaker than
the interaction between ferromagnetic magnons and photons due to vanishing mag-
netization. In easy-axis antiferromagnets, the coupling strength is reduced by an
inefficiency factor from the anisotropy to exchange interaction ratio [3]

gAF

gF
∝
(
ω‖

ωE

)1/4
, (5.28)

assuming that the frequency and spin density are identical for the ferromagnet and
antiferromagnet.

For the cooperativity in the system, which describes the coherence, we have
C ∼ g2/(Γκ) as defined in Eq. (5.9). Here, Γ describes the decay rate of the spins
and is proportional to the linewidth of the system. In ferromagnets, the linewidth
is proportional to αω, while in antiferromagnets, it is proportional to αω

√
ωE/ω‖

[2]. Noting that the resonance frequency of the antiferromagnetic magnons is on the
order of √ω‖ωE, the cooperativity of an antiferromagnet is reduced by a factor of

CAF

CF
∝
ω‖

ωE

(5.29)
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compared to a ferromagnet under similar conditions. The reduction in coopera-
tivity is therefore much more significant than the reduction in coupling strength
because the ratio ω‖/ωE is typically very small. It can, however, be as large as
7.4% in materials such as NaNiO2 [118]. Note that this reduction in cooperativity
also does not account for differences in spin density, Gilbert damping, and so forth.
It is not inconceivable that antiferromagnetic materials where these factors would
be favorable when taken into account exist, but the lack of experimental data for
antiferromagnetic materials makes it difficult to note a general trend here compared
to ferromagnetic materials. Experiments have been able to achieve cooperativities
as high as C ∼ 107 using YIG [115], which does not have a particularly high spin
density compared to other magnetic materials due to the complex structure of its
unit cell. With this taken into consideration, the reduction in cooperativity from
the anisotropy to exchange ratio needs not necessarily stand in the way of obtaining
significant cooperativity values in antiferromagnetic cavity spintronics. The coop-
erativity values of antiferromagnets should, however, in all likelihood be lower than
those of ferromagnets for the most reasonable scenarios.



6
Magnon-mediated fermion interactions

Magnons not only interact with other bosonic quasiparticles but also interact with
fermionic particles via their spin. In this chapter, we will study how such inter-
actions can mediate an interaction between two separate fermions. When these
magnon-mediated interactions cause the fermions to interact attractively, we can
obtain highly exotic states of matter, such as superconductors [119–121]. One way
to describe these interactions and the resulting physical phenomena is through ther-
mal quantum field theory. This chapter will introduce this formalism and provide
the basis for the results presented in Paper [4]. We will also more closely exam-
ine how the magnon-fermion interaction depends on the interface structure of the
antiferromagnetic insulator. Since antiferromagnetic insulators have more than one
sublattice, these sublattices can form various types of magnetic interfaces, as we
have seen previously. In the case of spin pumping in Chapter 3, we observed that
the different types of interfaces can lead to very different results. In this chapter,
we will more closely examine the underlying physics to better understand how some
phenomena highly depend on the magnetic interface structure.

77
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6.1 Thermal quantum field theory

In Paper [4], we use a very useful technique in condensed matter theory to study
how fermions can interact via an exchange of magnons. This technique is the use of
path integrals in thermal quantum field theory, where we are studying fermionic and
bosonic fields in thermal equilibrium. We will start by providing a brief overview of
the basic ideas in this formalism. However, we leave the mathematical derivations to
the textbooks, as there are several good introductory books to this field, e.g. Refs.
[45, 122]. The basic introduction to the path integral formalism in this section is
based on the description in these textbooks.

Let us start by considering a system described by the Hamiltonian H(t) pre-
pared in a state |Ψi〉 at some time ti. We focus on many-body systems given by
Hamiltonians in a second-quantization representation. The probability amplitude
of finding the system in some state |Ψf〉 at time tf is then given by the following
matrix element of the time evolution operator Û(tf , ti):

〈Ψf |Û(tf , ti)|Ψi〉 ≡ 〈Ψf |T exp
[
− i
~

ˆ tf

ti

dtH(t)
]
|Ψi〉 , (6.1)

where T is the time-ordering operator. We will focus on the special case where we
work in a basis consisting of coherent states. It will soon become apparent why we
are free to work in such a basis and why this greatly simplifies the situation. A
coherent state has the peculiar property that it is an eigenstate of the annihilation
operator:

φ̂|φ〉 = φ|φ〉 , 〈φ̄|φ̂† = 〈φ̄|φ̄ . (6.2)

Here, φ is the eigenvalue of the annihilation operator φ̂, and φ̄ is the complex conju-
gate of φ. The coherent state basis is overcomplete and is therefore not an orthonor-
mal basis where 〈φ̄i|φj〉 = δij. Although this can occasionally make the situation
more complicated, the advantages of the coherent state greatly outweigh its disad-
vantages in this case. As long as the Hamiltonian is normal ordered, i.e. all the
annihilation operators are to the right of all the creation operators, we can exchange
all the operators in the Hamiltonian in Eq. (6.1) with their eigenvalues. For bosonic
operators, this corresponds to exchanging the operators with complex numbers. For
fermionic operators, the operators can be replaced by so-called Grassman numbers
that satisfy a Grassman algebra. This means that the numbers anticommute with
themselves and other fermionic operators but commute with observables [45].

The idea of the path integral formalism is that the expectation value in Eq. (6.1)
can be calculated by summing over each possible path in the phase space spanned
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φ̄

φ
|Ψi(ti)〉

|Ψf(tf)〉

Figure 6.1. A state |Ψi(ti)〉 can evolve to a state |Ψf (tf )〉 via many different paths
in a phase space spanned by the canonical coordinates φ̄ and φ. The most probable
path is the path of least action, which is often described as the classical path.

by the canonical coordinates that connect the initial and final states, as illustrated
in Fig. 6.1. In a coherent state basis, the eigenvalue φ of the annihilation operator
and its complex conjugate φ̄ effectively play the roles of the canonical coordinates
of the system. The contribution of each path to the expectation value in Eq. (6.1)
is weighted by the action of the path [45]

〈Ψf |Û(tf , ti)|Ψi〉 =
ˆ

paths |Ψi〉→|Ψf 〉
DφDφ̄ exp

[
iS
(
φ̄, φ

)
/~
]
, (6.3)

where S
(
φ̄, φ

)
is the action given by

S
(
φ̄, φ

)
=
ˆ tf

ti

dtL(φ̄, φ, t) =
ˆ tf

ti

dt
[
i~φ̄∂tφ−H(φ̄, φ, t)

]
. (6.4)

Here, L(φ̄, φ, t) is the Lagrangian of the system. One of the beautiful aspects of the
coherent state path integral formalism is that time ordering occurs automatically
[45, 122]. Since we replace the operators by their eigenvalues (which are complex
numbers and Grassman numbers for bosonic and fermionic operators, respectively)
and since these are evaluated at each time step starting at time ti to time tf in
chronological order along the path, we can simply ignore the time-ordering operator
when calculating the expectation value in Eq. (6.1) in the way given in Eq. (6.3).

Let us now move beyond the use of path integrals for the purpose of evaluating
the time evolution of quantum states and consider how we can use them to describe
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the statistical properties of a system in thermal equilibrium. The primary quantity
that we wish to calculate in statistical physics is the partition function of the sys-
tem. This function contains most of the information of interest about the system in
thermal equilibrium, meaning that once we have calculated the partition function,
we can fairly easily study the properties of the system. The partition function Z is
given by a trace over the Boltzmann weight [45]

Z = Tr [exp (−βH)] =
∑

λ

〈λ| exp (−βH) |λ〉 , (6.5)

where β = 1/(kBT ), with kB being the Boltzmann constant and T being the tem-
perature of the system. When calculating the trace over the Boltzmann weight, we
can use any basis of wave functions that we wish, leaving us free to operate with the
coherent states introduced in Eq. (6.2). Interestingly, note that one can relate the
partition function in Eq. (6.5) to the time evolution probability amplitude in Eq.
(6.1). In thermal equilibrium, the Hamiltonian of the system is independent of time
because we do not have any time-dependent driving sources. We then find that each
term contributing to the sum on the right-hand side of Eq. (6.5) can be written as
a time evolution probability amplitude under the substitution (tf − ti)→ −i~β. In
other words, by evolving the initial state to some imaginary time, we can use the
path integrals to obtain the partition function and thereby the information about
the system at thermal equilibrium. The paths contributing to the partition function
are periodic, as shown in Eq. (6.5). In a coherent state basis, the partition function
can be found to be [45]

Z =
∑

φ

〈±φ̄| exp (−βH) |φ〉 , (6.6)

where the positive sign is when the state is a coherent state of bosons and the
negative sign is when we have a coherent state of fermions. This negative sign is
due to the Grassman algebra of the eigenvalues of the fermionic fields [45, 122]. In
other words, for bosons, we sum over all periodic paths that are symmetric under
the time evolution to an imaginary time tf = ti− i~β, whereas for fermions, we sum
over all antiperiodic paths that are antisymmetric under the same time evolution. In
the path integral language of Eq. (6.3), the partition function can then be expressed
as

Z =
ˆ

all (anti)periodic paths
DφDφ̄ exp

[
−S̃

(
φ̄, φ

)
/~
]
. (6.7)

The action is now expressed in imaginary time as

S̃
(
φ̄, φ

)
=
ˆ ~β

0
dτ
[
~φ̄∂τφ+H(φ̄, φ)

]
, (6.8)
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with τ = it being imaginary time. Any expectation value of a time-ordered func-
tion depending on the bosonic or fermionic fields can then be calculated using the
partition function through the identity [45]

〈T f(φ̂†, φ̂)〉 = 1
Z

ˆ
all (anti)periodic paths

DφDφ̄ exp
[
−S̃

(
φ̄, φ

)
/~
]
f(φ̄, φ) . (6.9)

To satisfy the periodic boundary conditions of the path integrals, it is of-
ten beneficial to work in a Matsubara basis of the canonical coordinates φ̄ and
φ. Bosonic fields are restricted to obey φB(τ = ~β) = +φB(τ = 0) and sim-
ilarly for its conjugate, whereas fermionic fields have the antisymmetric relation
φF (τ = ~β) = −φF (τ = 0). This periodicity can be enforced by performing a
Fourier series expansion of the fields, given by

φB(τ) =
∞∑

n=−∞
φB(iωn)e−iωnτ , φF (τ) =

∞∑
n=−∞

φF (iνn)e−iνnτ (6.10)

for bosonic and fermionic fields, respectively. This series expansion is known as a
Matsubara expansion and is given in terms of the bosonic Matsubara frequencies
ωn = 2nπ/(~β) and fermionic Matsubara frequencies νn = (2n + 1)π/(~β). The
inverse relations of the Matsubara expansion are given by

φB(iωn) = 1
~β

ˆ ~β

0
dτφB(τ)eiωnτ , φF (iνn) = 1

~β

ˆ ~β

0
dτφF (τ)eiνnτ . (6.11)

Similarly, it is often beneficial to perform a Fourier transform of any spatial depen-
dence of the fields to a momentum representation.

6.2 Emission and absorption of magnons at mag-
netic interfaces

Now that we have a means to calculate the expectation values of bosonic and
fermionic fields at thermal equilibrium, the next step in determining how magnon-
mediated fermion interactions behave is studying interactions between a single
fermion and a magnon. Fermions, such as electrons, can interact with the spin
at magnetic interfaces via the s-d interaction [123, 124]

Hs-d = −
∑

ri∈A
Js-d(ri)ρ̂(ri) · S(ri) . (6.12)

Here, Js-d(ri) is the strength of the interfacial s-d exchange coupling at position
ri (which lies in the interface cross section A), S(ri) is the spin in the magnetic
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(a) (b) (c)

ψ−σ(k− q; iνm − iωn)

ψσ(k; iνm)

φ2σ(q; iωn)

ψσ(k + q; iνm + iωn)

ψ−σ(k; iνm)

φ2σ(q; iωn)

ψσ(k; iνm)

ψσ(k; iνm)

φ2σ′(q; iωn)

Figure 6.2. Feynman diagrams illustrating the different interaction processes be-
tween fermions ψ (straight black lines) and magnons φ (red wavy lines) at magnetic
interfaces. The indices σ, σ′ = ±~/2 denote the (quasi)particle spin; the indices k,
q and so forth denote the (quasi)particle momentum; and iνm and iωn are the Mat-
subara frequencies. (a) A fermion flips its spin and thereby emits a magnon with
momentum q and spin 2σ. (b) A fermion absorbs a magnon with momentum q and
spin 2σ. (c) A fermion instantly emits and reabsorbs a virtual magnon.

insulator, and ρ̂(ri) is the electronic spin density operator defined as

ρ̂(ri) = 1
2
∑
σ,σ′

ψ†
σ(ri)σσσ′ψσ′(ri) , (6.13)

where σ = (σx, σy, σz) is a vector of the Pauli matrices and ψ(†)
σ (ri) annihilates

(creates) a fermion with spin σ at position ri. The s-d interaction in Eq. (6.12)
considers the exchange interaction between an itinerant fermion and a localized spin
operator. This describes the case at an interface between a nonmagnetic conducting
material, such as normal metals and semiconductors where we have freely moving
electrons, and magnetic insulators where the electrons are localized. To consider
the interaction between a fermion and a magnon, we can perform a "bosonization"
of the spin operators S(ri) to a magnon basis, for instance, with the Holstein–
Primakoff transformation (HPT) introduced in Section 4.2. If we use the HPT and
only keep terms to the second order in the magnon operators, we obtain interaction
processes between the fermions and the magnons, as illustrated by the Feynman
diagrams in Fig. 6.2. As shown, fermions and magnons can interact at magnetic
interfaces via spin flips of the fermions and a corresponding emission or absorption
of a magnon. For ferromagnetic insulators, we only have magnons with one spin
value in such processes, whereas for antiferromagnetic insulators, these processes
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can involve magnons with spins ±~.

6.3 Effective magnon-mediated potential

6.3.1 Perturbation theory at thermal equilibrium

We now know how a single fermion and magnon can interact. To describe how
such processes that involve the emission and absorption of magnons can lead to a
magnon-mediated interaction between two fermions, we can treat the interaction
between the single fermion and magnon as a perturbative interaction. To obtain
a scenario where a magnon can mediate an interaction between two fermions, we
need to expand at least to the second order in the processes illustrated in Fig. 6.2.
When only considering the dominant contribution to the magnon-mediated fermion-
fermion interaction, it is also sufficient to expand to the second order in the fermion-
magnon interaction. By studying the vertices in Fig. 6.2, we find that there is only
one combination that can lead to an interaction between two separate fermions that
is mediated by a magnon. This combination is when the vertices in Fig. 6.2 (a)
and Fig. 6.2 (b) are combined. All other combinations will either have vanishing
expectation values or only lead to a renormalization of the single-fermion energies
due to the presence of the magnons. In other words, from perturbation theory, we
find that two fermions can interact through one of them emitting a magnon that is
absorbed by the other. Then, by applying the techniques from thermal quantum field
theory introduced in Section 6.1, we can perform a thermal average of the magnons
in the system when we have thermal equilibrium at some temperature T . This allows
us to express the process of two fermions interacting via the exchange of a magnon
in terms of some effective interaction potential Uσ(q, iωn), as illustrated in Fig. 6.3.
We derived this effective magnon-mediated potential between two fermions in Paper
[4] for antiferromagnetic magnons. In this manuscript, we applied the potential to
study the condensation of so-called indirect excitons, where electrons and holes form
a coherent state across an insulating barrier. In the remainder of this chapter, we
will take a closer look at the behavior of this derived magnon-mediated potential.

6.3.2 Interface structure dependence

Because the fermions interact with magnons at a magnetic interface through their
spin, the form of the magnon-mediated fermion-fermion interaction is highly depen-
dent on the magnetic structure at the interface(s) to the fermion reservoir(s). This
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ψ−σ(1out)

ψσ(1in)

ψσ(2out)

ψ−σ(2in)
φ2σ(q; iωn)

ψ−σ(1out)

ψσ(1in)

ψσ(2out)

ψ−σ(2in)
Uσ(q; iωn)

Thermal
equilibrium

Figure 6.3. Two fermions interact via an emission and absorption of a magnon
that transfers a momentum q and a Matsubara frequency ωn in addition to a spin
2σ from one fermion to the other. The states Nin/out (N = 1,2) denote the initial
and output states of each of the two fermions. By considering the thermal average
of the magnons in the system, we can express the interaction via the emission and
absorption of magnons in terms of an effective potential Uσ(q, iωn) between the two
fermions.

is particularly true for multi-sublattice magnets such as antiferromagnets, where
different types of magnetic ordering at the interface are possible, as illustrated in
Fig. 3.4.

Let us consider the general case of a compensated interface of an easy-axis
antiferromagnetic insulator, where both sublattices are present at the interface, as
illustrated in Fig. 3.4 (c). The conclusions for the specific cases of a perfectly
compensated interface (equal coupling to both sublattices) and an uncompensated
interface (only coupling to one of the sublattices) will naturally follow from this dis-
cussion. Note that we will only consider perfectly matched interfaces, where there
is a one-to-one matching of the atoms in the nonmagnetic layer and the antifer-
romagnetic layer. To account for the multiple sublattices present at the interface
and that these may couple unequally to the fermion spins via the s-d interaction,
we split the s-d interaction coupling strength Js-d into two parts. These parts are
defined such that they take on the value Js-d,A (Js-d,B) if the nearest neighbor spin in
the magnetic layer is with sublattice A (B) and zero otherwise. For a compensated
interface, these coupling constants then have a spatial dependence. This can, for
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Table 6.1. Momentum and Matsubara frequencies of the incoming and outgoing
fermionic fields before and after scattering via the magnons for different components
of the scattering potential.

ss′ 1ss′
in 1ss′

out 2ss′
in 2ss′

out

−− k; iνm k− q; iνm − iωn k′; iνl k′ + q; iνl + iωn

−+ k; iνm k− q + q(1)
AF; iνm − iωn k′; iνl k′ + q; iνl + iωn

+− k; iνm k− q; iνm − iωn k′; iνl k′ + q + q(2)
AF; iνl + iωn

++ k; iνm k− q + q(1)
AF; iνm − iωn k′; iνl k′ + q + q(2)

AF; iνl + iωn

instance, be described by the functions

Jλ
s-d,A(r) =

Jλ
s-d,A

2

[
1 + cos

(
π

a
y
)

cos
(
π

a
z
)]

=
Jλ

s-d,A

2

1 + 1
4
∑
qAF

eiqAF·r

 , (6.14a)

Jλ
s-d,B(r) =

Jλ
s-d,B

2

[
1− cos

(
π

a
y
)

cos
(
π

a
z
)]

=
Jλ

s-d,B

2

1− 1
4
∑
qAF

eiqAF·r

 , (6.14b)

where r is a vector located in the interface plane, which we consider to be the yz
plane. The exact form of the functions is not crucial to the following discussion; the
essential part is that these functions have a periodicity that is determined by the
antiferromagnetic sublattice wave vector qAF = π(jyŷ + jzẑ)/a, where jy, jz = ±
and a is the antiferromagnetic lattice spacing. We have also added a label λ to
the s-d interaction coupling strengths that denotes which fermion the magnetic spin
couples to since we in general can have a magnon-mediated interaction between two
distinct types of fermions. This can, for instance, be used to describe fermions in
different reservoirs, e.g. in a trilayer structure where the antiferromagnetic insulator
is sandwiched between two distinct fermion reservoirs, a system that we will consider
in more detail later in this chapter. Using the techniques discussed previously in
this chapter, we can express the contribution of the magnon-mediated interactions
to the fermionic action as

~β
∑
λλ′

η=α,β

∑
σ=↑,↓
s,s′=±

∑
lmn
kk′q

∑
q(1)

AF,q(2)
AF

Uη,ss′

σ,λλ′(q, iωn)ψ̄−σ,λ′(1ss′

out)ψ̄σ,λ(2ss′

out)ψ−σ,λ(2ss′

in )ψσ,λ′(1ss′

in ) .

(6.15)

A more detailed calculation showing this in the case of uncompensated interfaces
can be found in the Supplementary Material to Paper [4]. The scattering states
1ss′

in/out and 2ss′

in/out of the fermionic fields are listed in Table 6.1. The strength of the
interaction between the fermions is given by the effective magnon-mediated potential
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Uη,ss′

σ,λλ′(q, iωn), which is found to be

Uα,ss′

σ,λλ′(q, iωn) = − ~2S

32N
1

−σi~ωn + εα,q
J̃s

α,λ(q)J̃s′

α,λ′(q) , (6.16a)

Uβ,ss′

σ,λλ′(q, iωn) = − ~2S

32N
1

σi~ωn + εβ,q
J̃s

β,λ(q)J̃s′

β,λ′(q) . (6.16b)

Here, S is the dimensionless spin number of the magnetic atoms in the antiferro-
magnetic insulator, N is the number of magnetic atoms in the antiferromagnetic
insulator, and εα/β,q is the energy of an α/β eigenmagnon with momentum q, which
is given in Eq. (4.18). Note that in the above notation, σ =↑ is given by σ = +1
and σ =↓ by σ = −1. We have also introduced the effective coupling constants

J̃±
α,λ(q) ≡ 1

2
(
uqJ

λ
s-d,A ± vqJ

λ
s-d,B

)
, (6.17a)

J̃±
β,λ(q) ≡ 1

2
(
vqJ

λ
s-d,A ± uqJ

λ
s-d,B

)
, (6.17b)

where uq > 0 and vq > 0 are the Bogoliubov coefficients for an easy-axis antiferro-
magnet defined in Eq. (4.11).

As shown in Table 6.1, the magnon-mediated interaction potential has three
distinct scattering processes:

1. Normal scattering of both fermions by a momentum transfer q (contribution
from ss′ = −− in Eq. (6.15)).

2. One fermion undergoes normal scattering, whereas the other undergoes an
Umklapp scattering process with the antiferromagnetic sublattice wave vec-
tor qAF (contributions from ss′ = −+,+− in Eq. (6.15)). The Umklapp
scattering process is possible when the antiferromagnetic layer has a different
periodicity than the nonmagnetic layer. Here, the different periodicity causes
the reduced first Brillouin zone of the antiferromagnet to be half the size of
the first Brillouin zone in the nonmagnetic layer, assuming a compensated
perfectly matched interface.

3. Both fermions undergo an Umklapp scattering process with the antiferromag-
netic sublattice (contribution from ss′ = ++ in Eq. (6.15)).

The scattering processes in Table 6.1 are illustrated in Fig. 6.4 for two different
Fermi surfaces. We note that the magnon-mediated fermion interactions are only
significant if all the scattered states lie within a thin shell around the Fermi surface,
where the thickness of the shell is decided by the magnon energy εα/β,q. This is
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(a) (b)

kyky

kzkz

k

k′

−q

+q+qAF
k

k′
−q

+q

+qAF +qAF

−π/a 0 π/a
−π/a

0

π/a

−π/a 0 π/a

Figure 6.4. Illustration of the possible magnon-induced scattering processes in Table
6.1 for different Fermi surfaces. Here, the beige area indicates the occupied states
within the Fermi surface of the fermions, and the outer black square is the first
Brillouin zone. In (a), the Fermi surface is a circle, whereas in (b), the Fermi surface
overlaps with the reduced Brillouin zone of the antiferromagnetic sublattices. The
dashed lines around the Fermi surface indicate the thin shell where the magnon-
mediated interaction is the most significant. The thickness of this shell is proportional
to the magnon energy εα/β,q. Note that only two out of four possible Umklapp
scattering processes are illustrated (in solid and dashed blue arrows). The reverse
processes (+qAF → −qAF) are also possible and will end up in the same point in the
Brillouin zone as the two Umklapp processes that are illustrated.

because we need to pair two populated states (i.e. within the surface) with two un-
populated states (outside the surface), and the relevant magnon scattering energies
are typically much lower than the Fermi energy. We must then find a set of momenta
k, k′, and q such that all the scattered states are within the thin shell. For normal
scatterings, the main contributions will come from the case where k′ = −k. This is
because for any state k−q that lies within the thin shell around the Fermi surface,
the state k′ + q will also lie within the shell (at least if the material is inversion
symmetric), as shown in Fig. 6.4 (a). This is the ansatz used in the Bardeen–
Cooper–Schrieffer (BCS) theory of superconductivity [125]. However, the situation
starts to become complicated when taking processes such as 2 and 3 in the above list
into consideration, as we then need to fit states that have undergone an Umklapp
scattering with the antiferromagnetic lattice into the thin shell around the Fermi
surface. This problem is illustrated in Fig. 6.4 (a) for a circular Fermi surface. For
a general Fermi surface, there can be very few, if any, scattering processes where
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it is possible to find a set of states within the thin shell. One exception is when
the Fermi surface overlaps with the reduced Brillouin zone of the antiferromagnetic
sublattices, as illustrated in Fig. 6.4 (b). For such Fermi surfaces, one can still ob-
tain a significant magnon-mediated fermion-fermion interaction, as was theoretically
studied in Ref. [126]. In the work presented in this thesis, we will focus on fermions
that are well described by a quadratic dispersion, meaning we that are far away from
the case of half filling that is illustrated in Fig. 6.4 (b). Because processes involving
Umklapp scattering will typically not be significant for small circular Fermi surfaces
for the reasons discussed above, it is most pertinent to instead focus on the normal
scattering process in this scenario.

As shown in Table 6.1 and Eq. (6.16), normal scattering processes are pro-
portional to J̃−

η,λ(q)J̃−
η,λ′(q) (η = α, β), which is also somewhat problematic. For

most antiferromagnetic materials, we have that uq ∼ vq, meaning that if the s-d
coupling strengths Jλ

s-d,A and Jλ
s-d,B to the two antiferromagnetic sublattices take on

similar values, the effective coupling constants J̃−
η,λ(q) become very small. However,

if Jλ
s-d,A and Jλ

s-d,B are very different, J̃−
η,λ(q) can in fact become very large. One way

to make these very different is by considering uncompensated interfaces instead of
compensated interfaces, as illustrated in Figs. 3.4 (a) and 3.4 (b). The fermions
then primarily couple to the spins of the sublattice present at the interface, and
we can then neglect the coupling to the other sublattice by setting either Jλ

s-d,A or
Jλ

s-d,B to zero. The effective coupling constant J̃−
η,λ(q) then becomes proportional

to either Jλ
s-d,A or Jλ

s-d,B and is also enhanced by a Bogoliubov coefficient uq or vq,
which can typically be a relatively large number. This enhancement occurs because
the fermions couple to the spin fluctuations on a single antiferromagnetic sublattice
instead of coupling directly to the net spin of the eigenexcitations in the system.
The spin fluctuations within each antiferromagnetic sublattice can be quite large,
which can be verified rather straightforwardly by studying the inverse of the Bogoli-
ubov transformation in Eq. (4.6). By taking the expectation value of the number of
sublattice magnons aq and bq living on sublattices A and B, respectively, we find

〈a†
qaq〉 = |uq|2 〈β†

qβq〉+ |vq|2 〈α†
−qα−q〉 , (6.18a)

〈b†
qbq〉 = |uq|2 〈α†

qαq〉+ |vq|2 〈β†
−qβ−q〉 . (6.18b)

For each eigenmagnon αq, there is an average number of |vq|2 sublattice magnons on
sublattice A and an average number of |uq|2 sublattice magnons on sublattice B. A
similar result is obtained for the eigenmagnons βq. Using the Bogoliubov coefficients
in Eq. (4.11), we find that in the long-wavelength limit in an exchange approxima-
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tion (anisotropy [ω‖]� exchange [ωE]), the number of sublattice magnons per eigen-
magnon is |u0|2 ≈ |v0|2 ≈ 2−3/2

√
ωE/ω‖. Because the ratio ωE/ω‖ can be quite large,

this leads to large spin fluctuations on the antiferromagnetic sublattices. When one
can couple directly to these large excitations existing on the antiferromagnetic sub-
lattices, which can be achieved using uncompensated interfaces as mentioned earlier,
this can induce strong interactions between fermions that are mediated by the an-
tiferromagnetic magnons. This idea is exploited in Paper [4], where by utilizing
uncompensated interfaces, we achieve an enhanced magnon-fermion interaction and
thereby an enhanced fermion-fermion interaction mediated by the magnons. This
can be used to obtain significant condensation temperatures for e.g. indirect exciton
condensates.

The enhancement by coupling to individual magnetic sublattices in antiferro-
magnets was suggested in a recent work by Kamra et al. in Ref. [127]. Therein, it
is shown that the ground state and eigenexcitations in easy-axis antiferromagnetic
insulators are highly squeezed Fock states, with an analogy to squeezed states in
quantum optics, and that each eigenexcitation consists of a large excitation at each
of the antiferromagnetic sublattices.

Let us briefly return to the discussion of the two different models for spin
pumping at antiferromagnetic interfaces in Section 3.3.2, Chapter 3. The present
discussion of the interface dependence of the magnon-fermion interaction explains
the difference between the two models of spin pumping for antiferromagnets because
spin pumping is also a result of magnon-fermion interactions at magnetic interfaces.
In the model proposed by Kamra and Belzig [57], they only consider normal scat-
tering processes between the magnon and the fermion. As we noted in the previous
paragraph, this interaction becomes quite weak for perfectly compensated interfaces.
However, in the model proposed by Cheng et al. [60], they include the Umklapp
scattering processes and consider a tight-binding model at half filling, which leads
to a Fermi surface as in Fig. 6.4 (b). Consequently, the results presented above ex-
plain how Cheng et al. are able to find significant spin pumping from compensated
interfaces in their considered case.

6.3.3 Controlling the sign of the interaction by interface
design

In addition to having the benefit of enabling strong magnon-mediated interactions,
uncompensated interfaces also have another interesting effect when the fermions
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couple to the magnons at two distinct magnetic interfaces. An example of such a
system is a trilayer system in which an antiferromagnetic insulator is sandwiched
between two fermion reservoirs, as illustrated in Fig. 6.5. As we will soon see,
in such systems, it is possible to control whether the magnon-mediated interaction
between the two fermion reservoirs is attractive or repulsive by varying the thickness
of the antiferromagnet by a single atomic layer. This allows for more variation in
the applications of the magnon-mediated interactions. For instance, we can tune
the system between having attractive effective electron-electron interactions to the
opposite case where the magnons cause the electrons in the two reservoirs to further
repel each other. The latter case is investigated in Paper [4]. Moreover, when
the magnon-mediated interaction is combined with other interactions, such as the
Coulomb interaction, this can be used to control the spin state of the two interacting
fermions. Although the Coulomb interaction is independent of spin, the magnon-
mediated interaction only works in one spin channel: the Sz = 0 spin-triplet channel
[4] (i.e. [| ↑↓〉+ | ↓↑〉] /

√
2). Assuming that the Coulomb and magnon-mediated

interactions can work in the same momentum channels, which is the case for indirect
exciton condensation [4], one can then make the Sz = 0 spin-triplet pairing more/less
favorable by tuning the magnon-mediated potential between being attractive or
repulsive.

We will now show how one obtains this tunability of the sign of the magnon-
mediated interaction in trilayer systems where an antiferromagnetic insulator is
sandwiched between two fermion reservoirs, as shown in Fig. 6.5. Now that we
study uncompensated interfaces, the coupling constants to the magnetic sublattices
can for simplicity be treated as spatially uniform within each interface, unlike for
the case of a compensated interface as in Eq. (6.14). For uncompensated interfaces
where we have a perfect one-to-one matching of the atoms in the nonmagnetic and
antiferromagnetic layers, the only contribution to the magnon-mediated fermion
interaction in Eq. (6.15) is from normal scattering1 (i.e. ss′ = −−). The magnon-
mediated potential for uncompensated interfaces can be written as the potential
Uη,−−

σ,λλ′ in Eq. (6.16) under the substitution J̃−
η,λ(q)J̃−

η,λ′(q)→ Jλ
η (q)Jλ′

η (q), where we
have introduced the new effective coupling constants

Jλ
α(q) = vqJ

λ
s-d,A − uqJ

λ
s-d,B , (6.19a)

Jλ
β (q) = vqJ

λ
s-d,B − uqJ

λ
s-d,A . (6.19b)

1In this case, the nonmagnetic and antiferromagnetic layers have the same periodicity and the
same first Brillouin zone, and the fermion momentum is therefore invariant under an Umklapp
scattering with the antiferromagnetic lattice
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Figure 6.5. Interaction of two fermions via the exchange of a magnon through an
antiferromagnetic insulator sandwiched between two fermion reservoirs. In (a), a spin
+~ magnon (α eigenmagnon) propagates from left to right, whereas in (b), a spin
−~ magnon (β eigenmagnon) propagates from right to left. The effective coupling
strengths Jλ

α/β(q) between the fermions in the left and right reservoirs (denoted by
λ = L and λ = R, respectively) to the eigenmagnon are given above and below the
interface for the right and left reservoirs, respectively. The figures are reproduced
from Paper [4].

The label λ on the coupling constant now indicates whether it is the s-d interaction
at the left interface of antiferromagnetic layer (λ = L) or the s-d interaction at the
right interface of the antiferromagnetic layer (λ = R). Since we have an uncompen-
sated interface, only one of Jλ

s-d,A and Jλ
s-d,B is nonzero for a given λ. Note that uq

and vq are positive and real according to their definitions in Eq. (4.11). These new
effective coupling constants are now defined such that they take on the same sign
as Jλ

s-d,A/B if the spin of the eigenmagnon is in the same direction as the spin of the
magnetic atoms at the uncompensated interface of the antiferromagnetic insulator.
Similarly, Jλ

α and Jλ
β have the opposite sign as Jλ

s-d,A/B if the eigenmagnon spin is
antiparallel to the spins at the uncompensated interface. This is illustrated in Fig.
6.5. As an example, Jλ

α has the same sign as Jλ
s-d,A at interfaces with sublattice A,

as the α eigenmagnons have spin Sz = +~, and spins on sublattice A point along +ẑ
in equilibrium. Here, we have assumed that Sz > 0 on sublattice A and Sz < 0 on
sublattice B, in accordance with the definitions in Chapter 4 (e.g. in the Holstein–
Primakoff transformation in Eq. (4.1)). Note that the sublattices in Paper [4] are
defined oppositely to this, thereby leading to a slightly different definition of the
effective coupling constants in the thesis compared to that in the manuscript.
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As shown in Eq. (6.19) and Fig. 6.5, when we have two magnetic interfaces,
the coupling constants Jλ

α/β(q) at the two interfaces can take on opposite or equal
signs, as illustrated in Fig. 6.5 (a) and Fig. 6.5 (b), respectively. Since the magnon-
mediated potentials Uη,−−

σ,LR and Uη,−−
σ,RL are proportional to the product of the cou-

pling constants at the two individual interfaces, we can then have situations where
Uη,−−

σ,λλ′ < 0 and Uη,−−
σ,λλ′ > 0, depending on what interfaces we have. From Eq. (6.16),

U
α(β),−−
σ,λλ′ < 0 if Jλ=L

α(β) (q) and Jλ′=R
α(β) (q) have the same sign, and U

α(β),−−
σ,λλ′ > 0 if

Jλ=L
α(β) (q) and Jλ′=R

α(β) (q) have the opposite sign. In other words, if both fermions
couple ferromagnetically (JL,R

α/β (q) > 0) or antiferromagnetically (JL,R
α/β (q) < 0) to

the same eigenmagnon, the potential has the opposite sign with respect to the case
where one fermion couples ferromagnetically to the eigenmagnon, and the other
fermion couples antiferromagnetically to the same eigenmagnon. Notably, whether
the fermions have a symmetric or asymmetric coupling to the eigenmagnons can
readily be enforced by designing the interfaces. This result can be observed by
considering two different types of structures:

1. The left and right interfaces are with the opposite sublattices, e.g. the left
interface is with sublattice B and the right interface is with sublattice A. We
assume here and in the next point that Jλ=L,R

s-d,A/B > 0 for simplicity. The α

eigenmagnon then couples antiferromagnetically to the fermions in the left
reservoir and ferromagnetically to the fermions in the right reservoir. The
inverse is true for the β eigenmagnons. The couplings are therefore asymmetric
for both eigenmagnons, as illustrated in Fig. 6.5 (a).

2. The left and right interfaces have the same sublattice. Considering the case
where only sublattice A is present at both interfaces, we have that the α

eigenmagnon couples ferromagnetically to the fermions in both reservoirs and
that the β eigenmagnon couples antiferromagnetically to the fermions in both
reservoirs. The couplings are therefore symmetric for both eigenmagnons, as
illustrated in Fig. 6.5 (b).

In both of the above scenarios, the contributions from the two eigenmagnons always
add constructively (i.e. both eigenmagnons either mediate an attractive or repulsive
interaction between the reservoirs). Consequently, one can then find that in the case
of uncompensated interfaces, one can vary the potential from attractive to repulsive,
or vice versa, by changing the thickness of the antiferromagnetic insulator by a single
atomic layer. This allows for great tunability of the magnon-mediated interactions,
as discussed previously.



7
Ferromagnetism in two dimensions

Up to this point, we have primarily examined the use of antiferromagnetic insulators
in spintronics. However, one of the research papers in this doctoral work, Paper [5],
does not directly fall under the scope of the title of this thesis. Instead, this paper
focuses on selected ferromagnetic conductors in two dimensions. Specifically, the
results of this research show how one can use spin-orbit torques in these materials
to control the magnetic phases of the material by applying a charge current. The
methods and techniques utilized in this paper have been discussed in the previous
chapters of this thesis. To provide a better understanding of the topic itself and of
the results presented in Paper [5], this chapter will instead serve as an introduction
to the theory of magnetic phases and phase transitions in two dimensions and some
key models thereof. We will see that one of these phase transitions can also quite
interestingly yield information about the superfluid phase of the indirect exciton
condensate briefly mentioned in Chapter 6 and discussed in more detail in Paper
[4].

93
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7.1 Mermin–Wagner theorem

When studying phases and phase transitions in lower dimensions, a common rule
of thumb that states whether a phase transition exists at a finite temperature in a
certain dimension is the so-called Mermin–Wagner theorem. Mermin and Wagner
studied the isotropic Heisenberg model in Eq. (2.3) for various dimensions, and in
1966, they published a paper with the following conclusions [128]:

“It is rigorously proved that at, any nonzero temperature, a one- or two-
dimensional isotropic spin-S Heisenberg model with finite-range exchange
interaction can be neither ferromagnetic nor antiferromagnetic. The method
of proof is capable of excluding a variety of types of ordering in one and two
dimensions.”

While they focused on the isotropic Heisenberg model, as they state, one can use
similar arguments to exclude other types of long-range ordering in one and two
dimensions [129]. A more general form of the theorem is that there is no phase tran-
sition of a local order parameter at finite temperatures in the form of a spontaneous
breaking of a continuous symmetry of the system if the interaction effectively has a
finite range and the system is strictly a one- or two-dimensional system.

The key element for the Mermin–Wagner theorem is that fluctuations are much
more prevalent in lower dimensions than in higher dimensions, making the energy
cost to destroy the order of the system much smaller. This is nicely demonstrated
by the density of states of the fluctuations for different dimensions. Consider a
quadratic dispersion of the fluctuations in the system (i.e. the excitations from
the ordered state have an energy that scales as (E − Egap) ∝ |k|2), for which the
density of states is plotted for one to three dimensions in Fig. 7.1. Here, the
energy gap Egap is the energy cost to excite the lowest-energy fluctuation, which
for the quadratic dispersion is the infinite wavelength fluctuation (|k| = 0). For
the isotropic Heisenberg model, the excitations, which are magnons as discussed
in Chapter 4, are gapless for both ferromagnets and antiferromagnets. This was
observed for the antiferromagnetic case in our example calculation of the magnon
spectrum of the isotropic Heisenberg model in Section 4.3. One can increase the
energy gap required to excite the low-energy magnons by e.g. introducing an easy-
axis magnetic anisotropy to the system.

As shown in Fig. 7.1 (a), in one dimension, there is a considerable amount of
available excited states just above the energy gap. The density of states actually
diverges at the energy gap. In two dimensions, the density of states is just a constant
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Figure 7.1. Density of states DdD(E) as a function of energy for a quadratic disper-
sion ([E − Egap] ∝ |k|2) in d dimensions for (a) d = 1, (b) d = 2, and (c) d = 3. For
the quadratic dispersion, the density of states scales as (E − Egap) d−2

2 . The figures
do not share a common y axis.

above the energy gap. In three dimensions, however, the number of low-energy
fluctuations above the gap is suppressed compared to the one- and two-dimensional
cases. Here, the density of states instead increases with the energy such that more
energy is required to excite enough fluctuations to destroy the system order. This
enables a phase transition at finite temperatures in three dimensions. The following
quote from Ref. [46] nicely summarizes the above discussion and captures the essence
of the Mermin–Wagner theorem:

“The Mermin–Wagner theorem can be understood as the statement of a
competition of energy and entropy.”
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7.2 Magnetic phases and phase transitions in two
dimensions

Despite the pessimistic outlook from the perspective of the Mermin–Wagner the-
orem, there are several loopholes to the theorem that indeed allow for magnetic
phase transitions in two dimensions. We will now briefly go through some of the
basics of phase transitions before we study two of the most famous magnetic phase
transitions in two dimensions: the 2D Ising model and the 2D XY model. These
models exhibit phase transitions at finite temperatures that more or less circumvent
the Mermin–Wagner theorem in different manners, which shall be explained later.

7.2.1 Phase transitions

A phase transition describes a fundamental change in the qualitative ordering or
behavior of a state of matter. Most of us are familiar with phase transitions in
every day life, such as the melting of ice to water and the boiling of water to steam.
There is a plethora of such phase transitions in condensed matter physics, and
examples include transitions between different magnetic orders and the transitions
to a superconducting or superfluid state. In this chapter, we are primarily interested
in magnetic phase transitions in ferromagnetic materials, but we will later see that
these transitions also yield considerable information about other phase transitions
in nonmagnetic materials.

Phase transitions are typically described by a change in the order parameter of
the system. For instance, a ferromagnetic phase is described by the magnetization
as an order parameter. Once the ferromagnet undergoes a phase transition to a
so-called paramagnetic phase, where there is no magnetic ordering in the absence of
an external magnetic field, the average magnetization changes from having a finite
value in a certain direction to being zero in all directions. We can classify the
ferromagnetic and paramagnetic phases, as well as the phase transition, by studying
the behavior of the order parameter: the magnetization. This phase transition
from the ferromagnetic phase to the paramagnetic phase is caused by the thermal
excitation of magnons. At some temperature, the cost of exciting these thermal
fluctuations becomes so low that the amount of thermal fluctuations in the system
destroys the ferromagnetic ordering. For the ferromagnetic phase transition, this
temperature is known as the Curie temperature.

Similar to ferromagnets, antiferromagnets have an order parameter that de-
scribes the antiferromagnetic phase and phase transitions, which is the Néel order
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Figure 7.2. Underlying the spin-flop transition in antiferromagnets, there are two
competing states as a function of an applied magnetic field H along the easy axis:
collinear ordering or a flopped/canted ordering. (a) Below the spin-flop field HSF, the
collinear state is most favorable, whereas above HSF the ground state is flopped state.
The ground state free energy follows the lowest of the two curves in (a). There is
therefore a discontinuity in the first derivative of the free energy at the spin-flop field
HSF, causing a discontinuous jump in the order parameters in (b). This is known as
a first-order phase transition.

parameter1. However, to distinguish a collinear antiferromagnetic phase from a
canted antiferromagnetic phase or a ferrimagnetic phase (where one also has a net
magnetization in both cases), one would have to use two order parameters: the Néel
order parameter and the magnetization. The relative orientation between the two
then decides whether we have a canted antiferromagnet or a ferrimagnet. The spin-
flop transition studied in Section 2.3 is a phase transition where the antiferromagnet
transitions from a collinear state to a canted state by varying the external magnetic
field along the easy axis of the antiferromagnetic insulator. The variation of the
free energy and order parameters in the spin-flop transition is studied in Fig. 7.2.
As we discussed in Section 2.5.3, the susceptibility of the order parameters in the
collinear phase with respect to an applied magnetic field perpendicular to the order
parameters becomes very large at the spin-flop transition; in fact, it diverges in a
linear response ansatz. This enhancement or divergence of the susceptibility at the
phase transition is a common artifact or signature of phase transitions, which we
exploited to amplify the signals that one could obtain from e.g. spin pumping and
spin Hall magnetoresistance, as discussed in Sections 3.3.2 and 3.7.1.

1Why the staggered magnetization also has this name is now perhaps more apparent
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7.2.2 Ising model

Moving to two-dimensional models of ferromagnetism, we will start by considering
the Ising model. The Hamiltonian of the Ising model [130] can be written as

HIsing = −J
∑
〈i,j〉

Si,zSj,z . (7.1)

We consider the ferromagnetic Ising model, where J > 0 for nearest-neighbor in-
teractions only. The Ising model does not exhibit a phase transition at finite tem-
peratures in one dimension, but quite interestingly, it exhibits one if we move to
two dimensions. How can this be the case without violating the Mermin–Wagner
theorem? For the Ising model in Eq. (7.1), we note that this model only considers
the spins in the z direction. In other words, the spins in the Ising model either
point up or down, meaning that there is a discrete and not a continuous symmetry
of the system, unlike the isotropic Heisenberg model. This key difference allows us
to circumvent the Mermin–Wagner theorem. To obtain a physical intuition of why
this is the case, we can consider the following. The Ising model can be viewed as a
Heisenberg model with an infinite easy-axis anisotropy along the z axis. This then
completely suppresses any small fluctuations away from equilibrium where the spin
has a small component in the xy plane. Returning to the discussion in Section 4.3
regarding the energy cost of local fluctuations vs collective excitations, the long-
wavelength magnons will no longer be the lowest-energy excitations in the system,
and the local spin-flip excitations will instead take this role. As we observed for
the antiferromagnetic case in Section 4.3, the local spin-flip excitations cost much
more energy than the long-wavelength magnons for the isotropic Heisenberg model.
Essentially, this means that in the Ising model, the energy gap for the excitations
(see Fig. 7.1 (b)) that destroy the ferromagnetic phase becomes significant such
that at sufficiently low temperatures, there are not enough thermal fluctuations to
destroy the magnetic order.

Not only does the two-dimensional Ising model exhibit a phase transition at
finite temperatures but it also has an analytical solution, as was derived by Lars
Onsager in 1944 [131]. The full temperature dependence of the magnetization (M ∝
〈Sz〉) in the two-dimensional Ising model was found to be [132]

|M |
MS

=
[
1− 1

sinh (2βJ)4

]1/8

, (7.2)

where β = 1/(kBT ) and Ms is the saturation magnetization (i.e. value of the mag-
netization when all spins point in the same direction). The magnetization vanishes
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Figure 7.3. Normalized magnetization as a function of temperature. The magne-
tization falls off quickly as it approaches the Curie temperature Tc, and it vanishes
completely above it.

above the Curie temperature Tc = 2J/
[
kB ln

(
1 +
√

2
)]

[131]. The magnetization in
the two-dimensional Ising model is plotted as a function of temperature in Fig. 7.3.
Notably, if one compares the behavior of the magnetization in the Ising model in Fig.
7.3 to the behavior of the antiferromagnetic order parameters in Fig 7.2 (b) around
their respective critical points, one finds that their behavior is qualitatively different.
There is a discontinuous jump in the order parameters at the critical point in the
antiferromagnetic spin-flop transition; however, in the two-dimensional Ising model,
the order parameter is a continuous function of the temperature, but its derivative
is discontinuous at the critical point. The phase transition in the two-dimensional
Ising model is thus a second-order or continuous phase transition. If one introduces
the normalized temperature deviation from the Curie temperature ∆τ ≡ (Tc−T )/Tc

and performs a series expansion of the order parameter (magnetization) just below
the critical point to the lowest order in ∆τ , one finds that

|M |
Ms

∣∣∣∣∣
T →T −

c

∝ ∆τB +O
(
∆τB+1

)
(7.3)

with B = 1/8. Here, B is a critical exponent, describing the leading order behavior
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of the order parameter close to the critical point2.
This power-law dependence close to the critical point is not unique to the

order parameter. For continuous phase transitions, one can describe many prop-
erties of the system by such power laws close to the critical point. For instance,
as mentioned earlier, the susceptibility of the system often diverges at the criti-
cal point. In the two-dimensional field-free Ising model, the susceptibility diverges
as χ ≡

(
∂M
∂h

)
h→0
∝ |∆τ |−γ directly above and below the critical temperature, with

γ = 7/4 being the critical exponent for the susceptibility [133]. Here, h is a magnetic
field along the spin axis. Another quantity of interest is the spatial dependence of
the correlation function

G(r− r′) ≡ [〈Sz(r)Sz(r′)〉 − 〈Sz(r)〉〈Sz(r′)〉] ∝ 1
|r− r′|d−2+η exp(−|r− r′|

ξ
) , (7.4)

which is a measure of the correlation between the fluctuations in the order parameter
at positions r and r′ [133]. Generally, the correlation between the fluctuations
decays exponentially, but exactly at the critical point T = Tc, the correlation length
ξ diverges as ξ ∝ |∆τ |−ν , where ν = 1 is the value of the critical exponent for
the two-dimensional Ising model. At the critical point, we then go from having an
exponential decay of the correlation in the fluctuations to an algebraic dependence
∝ |r− r′|−(d−2+η), with d being the number of dimensions, and η is the critical
exponent known as the anomalous dimension. The anomalous dimension is the
deviation in the algebraic power scaling from what one would obtain using mean field
theory. For the two-dimensional Ising model, the anomalous dimension is η = 1/4.
What the divergence in the correlation length means is that while a typical length
scale in the fluctuations exists above and below the critical temperature, this is not
the case at the critical point. At the point of the phase transition, fluctuations occur
at all length scales, and the fluctuations have a long-range correlation over the entire
system. This behavior occurs despite the fact that the Ising model we considered
only has short-ranged nearest-neighbor interactions! This feature is not only the
case for the Ising model but also for all continuous phase transitions.

2Normally, the symbol β is used to describe the critical exponent of the order parameter, but
B is used here instead to avoid confusion with the inverse temperature β = 1/(kBT )
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7.2.3 XY model

Let us now complicate our model and move from the two-dimensional Ising model
to the two-dimensional XY model, given by the Hamiltonian

HXY = −J
∑
〈i,j〉

(Si,xSj,x + Si,ySj,y) . (7.5)

We now allow the spins to lie in a plane instead of just along one axis, as in the Ising
model. As in the previous subsection, we consider the ferromagnetic case (J > 0)
with nearest-neighbor interactions only. The XY model then describes e.g. an easy-
plane ferromagnet, but it can also describe physical effects such as superfluidity [134].
For the two-dimensional Ising model, we argued that the discrete values of the order
parameter allowed us to circumvent the Mermin–Wagner theorem. However, now
that we have allowed for continuous values of the order parameter within a plane,
how do we circumvent the Mermin–Wagner theorem for the two-dimensional XY
model? Answer: the Mermin–Wagner theorem is not circumvented and thereby
forbids true long-range magnetic order in this model, meaning that in an infinite
system, we have 〈S〉 = 0 and a vanishing net spin for finite temperatures. Because
the average spin/magnetization is zero in any given direction, the magnetic phase of
the XY model does not spontaneously break the continuous spin symmetry in the
isotropic xy plane. This does not mean, however, that the model does not exhibit
interesting magnetic phases or phase transitions. Notably, the two-dimensional XY
model exhibits a very interesting phase transition that is very distinct from the more
conventional phase transitions in e.g. the Ising model.

We observed in the previous subsection that the phase transition in the Ising
model is characterized by the continuous change in the order parameter (magneti-
zation) from a finite value below the Curie temperature Tc to vanishing above Tc.
This does not occur for the XY model, as the net spin/magnetization is zero for
any finite temperature. Instead, the phase transition manifests itself in other prop-
erties of the system. For instance, by studying the generalization of the correlation
function in Eq. (7.4) to the two-dimensional XY model,

G2D
XY (r− r′) ≡ 〈S(r) · S(r′)〉 − 〈S(r)〉 · 〈S(r′)〉 = 〈S(r) · S(r′)〉 , (7.6)

one finds that it behaves very differently at low and high temperatures. At low
temperatures, this correlation function follows an algebraic power law ∼ |r− r′|−η

with η = kBT/4πJ for sufficiently large |r− r′| [135, 136], whereas for high tem-
peratures, the correlation follows an exponential decay ∼ exp(− |r− r′| /ξ). As it is
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impossible to asymptotically match the power law with the exponential decay, the
correlation function has to undergo a qualitative transition at some finite transition
temperature. This transition is quite different from the one in the two-dimensional
Ising model. In the Ising model, we observed in the previous subsection that the
correlation length diverged both above and below the phase transition and that
the correlation function in Eq. (7.4) was described by a power law exactly at the
Curie temperature. In the XY model, however, the correlation function in Eq.
(7.6) is described by a power law in the entire low-temperature phase. This power
law is described by the anomalous dimension η, which actually depends on the
temperature of the system. The correlation length ξ only diverges from the high-
temperature side of the phase transition as ξ ∝ exp(const/

√
T − TBKT) [137], which

diverges much faster than the algebraic divergence in the Ising model described by
the critical exponent ν. Here, TBKT = πJ/kB [136] is the critical temperature of the
Berezinskǐi–Kosterlitz–Thouless (BKT) phase transition. Note that at the tempera-
ture TBKT, the anomalous dimension in the XY model and Ising model take on the
same value, η = 1/4. By comparing the correlation functions for the Ising model
and the XY model, we find that the entire low-temperature phase in the XY model
has similarities to the Ising model exactly at the critical point, such as the power
law dependence and divergent correlation length. In some sense, one can therefore
think of the entire low-temperature phase of the XY model as being critical. In
addition to the divergence of the correlation length at TBKT, there is also a jump
in the spin-wave stiffness (also known as helicity modulus) or the superfluid density
[134, 138]. These can then be used as a measure of the order parameter in the BKT
phase transition and can also be used in its experimental detection [139].

The peculiar phase transition in the two-dimensional XY model did not fit
into the framework of more conventional phase transitions, such as the melting
of ice, or the magnetic phase transitions in the two-dimensional Ising model or
three-dimensional isotropic Heisenberg model. The phase transition in the two-
dimensional XY model was described by Berezinskǐi, Kosterlitz, and Thouless in
the early 1970s [135–137, 140], and hence the name BKT phase transition. In 2016,
Thouless, Kosterlitz, and Haldane won the Nobel prize “for theoretical discoveries of
topological phase transitions and topological phases of matter” [141], where Thouless
and Kosterlitz’s description of the phase transition in the two-dimensionalXY model
was an important part of the reason for them winning the prize. What makes the
phase transition in the XY model topological? Berezinskǐi, Kosterlitz, and Thouless
described the phase transition in terms of spin vortices and antivortices, as illustrated
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(a) (b)

Figure 7.4. (a) Spin vortex with winding number +1 and (b) spin antivortex with
winding number -1. The winding number is defined as how many multiples of 2π the
spins rotate along an enclosed path around the vortex or antivortex cores, illustrated
with red and blue dots, respectively. At the (anti)vortex core, there is a singularity,
and the spin is not defined.

in Fig. 7.4. These individual spin structures are topologically protected, meaning
that no small perturbation can destroy the topological charge associated with the
winding number of the (anti)vortex. What Berezinskǐi, Kosterlitz, and Thouless
discovered was that at low temperatures, the vortices and antivortices form tightly
bound vortex-antivortex pairs that have little to no effect on the spin ordering
far from the pair. However, at the critical temperature TBKT of the BKT phase
transition, entropy makes it favorable to break up the vortex-antivortex pairs, which
causes long-range spin-spin correlations to start dropping exponentially. Above this
temperature, it is also energetically favorable to add more vortex-antivortex pairs to
the system, which can be done because a topologically trivial state (e.g. a spatially
uniform spin structure) is topologically equivalent to a vortex-antivortex pair as
the sum of the topological charges is equal to zero for both systems. In the high-
temperature phase, vortex-antivortex pairs are then spontaneously created and can
then break apart from one another. This process is illustrated in Fig. 7.5.

In the two-dimensional Ising model, we have what is known as true long-ranged
order ; thus, the spin-spin correlation 〈S(r) ·S(r′)〉 is finite regardless of the distance
|r− r′|. This can be understood intuitively by recalling that below the Curie tem-
perature, all spins would like to point in the same direction, and consequently, all
spins are correlated with each other. Although true long-ranged order does not exist
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(a) (b)

(c) (d)

Figure 7.5. Illustration of the BKT phase transition in the two-dimensional XY
model. (a) Illustration of what a low-temperature phase of the XY model might look
like for a section of the system. In (b), we have a tightly bound vortex-antivortex pair
(the cores illustrated with red and blue circles, respectively) on top of a uniform spin
field. This pair causes an energy cost in an area close to the pair, but far away from
the pair, the spins are not affected by them due to the cancellation of the topological
charges. At the BKT phase transition temperature TBKT, the pairs start unbinding,
as shown in (c), causing larger fluctuations in the system. In a high-temperature
phase, we then have a "gas" of free vortices and antivortices, as shown in (d), that
make any spin-spin correlations decay exponentially.

in the two-dimensional XY model, there is a so-called quasi long-ranged order at low
temperatures. We see that when kBT � 4πJ (η � 1), the spin-spin correlation is
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very weakly decaying as a function of the separation between the spins. This means
that while for infinite distances the spin-spin correlation goes to zero, spins can still
be highly correlated over very large distances. In other words, while we must have
that the net spin of the system vanishes for infinite systems, if we just focus on a
smaller segment of the system, we can have a finite value for the net spin. However,
the expectation values of such segments that are significantly spatially separated
will point in different directions because the Mermin–Wagner theorem forbids any
spontaneous breaking of the symmetry for the global system as a whole.

7.2.4 Universality classes

Some readers might have been reading about the Ising and XY models and been
thinking “this is all well and good, but why should we care that much about the
phase transitions in idealistic models such as these? Systems with an infinitely
strong easy-axis anisotropy or a perfectly isotropic easy plane will surely not be
found in any realistic physical system.” This is where the concept of universality
classes comes in and the theory of phase transitions starts to become really inter-
esting. It turns out that the phase transitions in the Ising and XY models can
describe critical phenomena in entirely different systems if they belong to the same
universality class. In practice, this means that phase transitions in the same uni-
versality class share the same critical exponents and behavior close to the critical
point. The universality class is decided by the dimensionality of the system and the
dimensionality of the order parameter. For the Ising model, we have a scalar order
parameter of dimensionality one. Naturally, a uniaxial ferromagnet will have the
same dimensionality of the order parameter as the Ising model, even if the uniaxial
anisotropy is finite, and they therefore belong to the same universality class. The
same applies to a wide variety of nonmagnetic systems, e.g. in the liquid-gas phase
transition, we also have a scalar order parameter: the density. Consequently, a
liquid-gas phase transition in d spatial dimensions belongs to the same universality
class as the Ising model in d spatial dimensions [46].

The reason why such different systems behave exactly the same near a phase
transition is that systems are scale invariant at this critical point. This is illustrated
by the divergence of the correlation length between the fluctuations at the phase
transition. Consequently, the microscopic details and mechanisms of the ordering
become irrelevant to the asymptotic behavior of the system as a whole. Note,
however, that this universality only applies to the system behavior near the critical
point. The location of the critical point depends on the microscopic details, and it is
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therefore not universal. As a simple example, a two-dimensional Ising ferromagnet
will have a different Curie temperature from a uniaxial ferromagnet with a finite
anisotropy. This can be intuitively understood as the Curie temperature has to go
to zero when the anisotropy vanishes because an isotropic Heisenberg model has no
phase transition in two dimensions according to the Mermin–Wagner theorem.

While the topological BKT phase transition in the two-dimensional XY model
is very different from phase transitions in models such as the Ising model, the same
concept can be found here, and it constitutes its own universality class. The BKT
phase transition appears in a number of exotic systems, including the transition in a
two-dimensional Coulomb gas from a state of tightly bound electric dipoles (taking
the role of the vortex-antivortex pairs) to a plasma of freely moving charged particles
[142] and the transition from a normal to superfluid state in two dimensions [139].
In the previous chapter, we briefly discussed the concept of condensation of indirect
excitons via magnon-mediated interactions. The indirect exciton condensate also
exhibits a BKT phase transition, and it is closely related to the two-dimensional
Coulomb gas3 and superfluids, as a condensate of excitons can have a dissipation-
less superfluid transport [143]. Note, however, that the critical phase transition
temperature calculated in Paper [4] is not that of the BKT phase transition where
the excitons form a superfluid but rather the temperature where the bound pairs of
electrons and holes start forming a coherent state. These temperatures are, on the
other hand, very similar in the weak coupling limit [144].

7.3 Current control of magnetic phases in two-
dimensional Fe3GeTe2

The two-dimensional Ising and XY models in magnetic systems have long primarily
been of theoretical interest, as manufacturing two-dimensional magnetic materials
for experiments has been understandably quite challenging. However, the successful
isolation of the two-dimensional material graphene in 2004 [145] paved the way
for isolating and studying various two-dimensional materials. Over the past two
to three years, one has been able to manufacture two-dimensional materials that
exhibit a magnetic ordering at finite temperatures [146–153]. These materials are
so-called van der Waals materials, consisting of weakly bound layers. In one of these
materials, Fe3GeTe2 (FGT), experimentalists were able to manufacture samples of

3An exciton after all is a bound pair of a negatively charged electron and a positively charged
electron hole
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Figure 7.6. Crystal structure of two-dimensional Fe3GeTe2. The crystal structure
can be seen to have an inversion symmetry along the y and z axes, as well as a
threefold rotational symmetry around the z axis. The figure is taken from Paper [5]
and redrawn after Ref. [153].

various layer thicknesses down to the monolayer limit and study the layer dependence
of the critical exponent B in the Ising model, as defined in Eq. (7.2). They found
that B varied from taking on a value close to the estimate from the three-dimensional
Ising model in the multilayer limit to estimating a range for B for the monolayer
limit that included the value in the two-dimensional Ising model [152]. This shows
that they were able to study the crossover from three to two dimensions of the
critical exponents in the Ising model. FGT has also been shown to be an interesting
material, as other experimentalists have been able to tune the Curie temperature of
the monolayer up to room temperature via an ionic gate [153].

In Paper [5], we use Neumann’s principle and the method introduced by Hals
and Brataas in Ref. [79], as discussed in Section 3.6, to study the spin-orbit torques
allowed by symmetry in FGT. The crystal structure of FGT is illustrated in Fig.
7.6, and it is invariant under the symmetry operations [5]

Ry =


1 0 0
0 −1 0
0 0 1

 , Rz =


1 0 0
0 1 0
0 0 −1

 , R3z = 1
2


−1

√
3 0

−
√

3 −1 0
0 0 1

 . (7.7)

We found that to the first order in the charge-current density and to the second
order in the magnetization, the spin-orbit torque can be written as [5]

τ = − |γ|m×HSOT ≡ − |γ|m× Γ0


mxJx −myJy

−myJx −mxJy

0

 (7.8)

for a spatially uniform magnetization. Here, Jx and Jy are the x and y components
of the charge-current density, respectively, and Γ0 is a free parameter describing
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the strength of the spin-orbit interaction. Note that this form of the spin-orbit
torque not only applies to FGT but also to all materials with the same symmetry
classification D3h, which includes other two-dimensional magnetic materials [154].
In Paper [5], we noted that the spin-orbit torque in Eq. (7.8) could be written as a
torque originating from an effective free energy density given by

fSOT = MsΓ0

[
Jymxmy −

1
2
(
m2

x −m2
y

)]
= −MsΓ0 |J |

2 sin2 θ cos (2φ+ φJ) , (7.9)

where (mx,my,mz) ≡ (sin θ cosφ, sin θ sinφ, cos θ), |J | =
√
J2

x + J2
y , and tanφJ ≡

Jy/Jx. The effective field resulting from this effective free energy density as defined
in Eq. (2.11) results in the same spin-orbit torque as defined in (7.8). Notably, this
particular spin-orbit torque is controlled by only a single free parameter Γ0 and can
be interpreted as in-plane current-induced magnetic anisotropies. These anisotropies
scale linearly with the applied current density, and the anisotropy axes depend on
the direction of the applied current. The anisotropies come in the form of a pair of
magnetic easy and hard axes, which are perpendicular to each other. In addition to
the current-induced anisotropies, FGT also has a strong easy-axis anisotropy out of
the plane, which makes it an Ising-like ferromagnet that also allows for ferromagnetic
order in two dimensions.

In Fig. 7.7, we study how the magnetic anisotropies of FGT look for different
charge-current density magnitudes. Notably, as we increase the current density, we
go from having an out-of-plane easy axis to an in-plane easy axis, and at some
critical current density, we obtain a magnetic easy plane. FGT is thus a promising
playground for studying the BKT transition in a magnetic XY -like system, as well
as the crossover from an Ising-like to an XY -like system in two dimensions, both
of which have not yet been done in magnetic systems to the best of our knowledge.
Moreover, as the Curie temperature and TBKT take on similar values for a given
exchange coupling J , this shows great potential for observing the BKT transition
at elevated temperatures in FGT because of its relatively high Curie temperature
∼ 130 K [152]. This indicates that the low-temperature phase of easy-plane FGT
could potentially be accessed by using liquid oxygen or liquid nitrogen.

The transition from an Ising-like to an XY -like system can also be seen by
studying the magnon gap (lowest excitation energy of the system) and the Curie
temperature as a function of the applied current, as shown in Fig. 7.8. We recall
from the discussion in Section 7.2.2 that the finite Curie temperature in the two-
dimensional Ising model was due to the suppression of the low-energy fluctuations
in the form of an energy gap in the fluctuations (magnons). As shown in Fig. 7.8, in
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|J| = 0 |J| < |Jc| |J| = |Jc| |J| > |Jc|

Figure 7.7. At zero applied current, FGT has an out-of-plane magnetic easy axis
illustrated by the green arrows. The light blue square indicates the plane of the
FGT layer. By passing a charge current through the plane, one breaks the magnetic
isotropy in the plane and creates a pair of in-plane easy and hard axes, as illustrated
by the blue and red arrows, respectively. However, for low current densities, these
anisotropies remain smaller than the equilibrium out-of-plane anisotropy, and the in-
plane anisotropy is therefore just an intermediate anisotropy axis (shown in blue to
distinguish from the material’s easy axis in green). At a critical current density |Jc|,
the in-plane anisotropy equals the out-of-plane anisotropy, and we obtain a magnetic
easy plane, shown by the opaque green square. Above the critical current density,
the in-plane anisotropy becomes the easy axis of the system, and the out-of-plane
anisotropy becomes an intermediate anisotropy axis.
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Figure 7.8. (a) Magnon gap εgap relative to the equilibrium out-of-plane anisotropy
εz, and (b) Curie temperature of FGT as a function of applied in-plane current. Note
that the Curie temperature is only an estimate calculated from linear response theory,
which is explained in greater detail in Paper [5]. Figure (b) is taken from Paper [5].

two dimensions, the Curie temperature, below which we can have a spontaneous net
magnetization, is strongly correlated with the magnon gap of the system. As the
magnon gap vanishes at the critical current density, so does the Curie temperature
since the Mermin–Wagner forbids any spontaneous breaking of symmetry in the
easy-plane phase in two dimensions. At this point, we can instead observe the BKT
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phase transition. This finding allows for an experimental approach for tuning a
system between the Ising and XY universality classes in two dimensions, which
should host an abundance of interesting and exotic physics.



8
Conclusion

We have provided the basis for understanding the fundamental concepts that are
utilized and discussed in the five research papers in the remaining part of the thesis.
These research papers cover a variety of topics of interest for future investigations
and applications of antiferromagnetic insulators and two-dimensional ferromagnets.

A focus has been on the electrical detection and generation of spin currents
in antiferromagnetic insulators in heterostructures with nonmagnetic conductors.
While the theory of spin current detection and generation in ferromagnetic insu-
lators is fairly well understood, similar phenomena with their antiferromagnetic
counterpart is still actively under investigation. For instance, spin pumping from
antiferromagnets has yet to be unequivocally detected. We have here investigated
what materials and conditions are optimal for amplifying the pumped spin current
from antiferromagnets, so that experimental detection becomes conceivable. We
suggest that easy-axis antiferromagnets with a high anisotropy to exchange ratio
near the spin-flop transition are great candidates for spin pumping experiments.
This is because the susceptibility of the magnetic moments is significantly enhanced
near this phase transition, which leads to a remarkable increase in the pumped spin
current. While there has already been an experiment studying the easy-axis anti-
ferromagnet MnF2 near the spin-flop transition without the observation of a clear
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spin pumping signal [62, 72], we also suggest other means of enhancing the signal
by optimizing the polarization of the microwave source and the film thickness of
the nonmagnetic conductor. We also show that the electrical generation of spin
currents in antiferromagnetic insulators is enhanced for the same type of easy-axis
antiferromagnetic insulators near the spin-flop transition.

We have seen that there exist different models of spin pumping from antiferro-
magnets with very different predictions [57, 60]. The different predictions indicate
that spin pumping from antiferromagnets strongly depends on the structure of the
magnetic interface. Once spin pumping from antiferromagnets has been experimen-
tally verified, an interesting next step is to investigate the dependence of the spin
pumping signal on the interface structure. Such measurements would yield critical
information regarding the validity of the models of spin pumping in different regimes
and grant a deeper understanding of spin dynamics in antiferromagnetic insulators.

In addition to studying the interface between antiferromagnetic insulator spin-
tronics and conventional electronics, we have also studied a possible bridge between
antiferromagnetic and ferromagnetic spintronics. Microwave cavities can induce a
nonlocal interaction between distant magnetic systems mediated by the microwave
photons in the cavity [96–98]. We have shown how this concept can also cause a non-
local interaction between a ferromagnet and an antiferromagnet over macroscopic
distances, even when the ferromagnetic and antiferromagnetic magnons have oppo-
site spins. This shows great promise for integrating antiferromagnetic spintronics in
various hybrid systems.

Antiferromagnetic materials have also shown to have very interesting appli-
cations other than their utilization in transport and storage of spin information.
Recent proposals suggest that the large magnetic fluctuations in antiferromagnets
can be utilized in the formation of quantum matter, such as superconductors. We
have considered the interaction between two fermion reservoirs mediated by inter-
actions with antiferromagnetic magnons in an antiferromagnetic insulating barrier,
and derived an effective potential that describes this interaction. Interestingly, we
show that this interaction can be tuned between being attractive and repulsive by
varying the thickness of the antiferromagnetic material by a single atomic layer.
Utilizing this, we show how an atomically thin antiferromagnetic insulator sand-
wiched between two doped two-dimensional semiconductors can be used to generate
an indirect exciton condensate, a macroscopic coherent state of electrons and holes
separated by an insulating barrier. The magnon-mediated interactions are able to
achieve significant condensation temperatures, and can furthermore cooperate with
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other interactions such as the Coulomb potential. Due to the strength and tunability
of the interaction mediated by the antiferromagnetic fluctuations, antiferromagnetic
materials have great potential in future research on strongly correlated fermion sys-
tems.

While theoreticians have been fond of modelling two-dimensional systems for
a long time, putting the theories to the test has not always been feasible. Recent
experimental advances have now made it possible to isolate two-dimensional mag-
netic materials, enabling the testing of various predictions. In light of this exciting
experimental progress, we have analyzed the current-induced spin dynamics in one
of these two-dimensional magnetic materials. We show that by tuning the magni-
tude of the applied charge current it is possible to create a magnetic easy plane in
the ferromagnetic material Fe3GeTe2. This makes it possible to study the famous
Berezinskǐi–Kosterlitz–Thouless phase transition in the magnetic XY model, which
will reveal information about e.g. the superfluid phase transition of the indirect
exciton condensate mentioned previously, but presumably at significantly higher
temperatures that can be accessed by using liquid nitrogen or liquid oxygen.
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[140] V. L. Berezinskǐi, “Destruction of Long-range Order in One-dimensional
and Two-dimensional Systems Possessing a Continuous Symmetry Group. II.
Quantum Systems,” Soviet Phys. JETP, vol. 34, p. 610, 1972.



128 Chapter 9. Bibliography

[141] “Press release: The Nobel Prize in Physics 2016.” https://www.nobelprize.
org/prizes/physics/2016/press-release/. Accessed: 22/05/2019.

[142] J. Fröhlich and T. Spencer, “The Kosterlitz-Thouless transition in two-
dimensional Abelian spin systems and the Coulomb gas,” Communications
in Mathematical Physics, vol. 81, pp. 527–602, Dec 1981.

[143] Y. E. Lozovik and V. I. Yudson, “Feasibility of superfluidity of paired spatially
separated electrons and holes; a new superconductivity mechanism,” JETP
Lett., vol. 22, no. 274, 1975.

[144] D. V. Fil and S. I. Shevchenko, “Electron-hole Superconductivity (Review),”
Low Temp. Phys., vol. 44, no. 9, pp. 867–909, 2018.

[145] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomi-
cally Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.

[146] J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park,
J.-G. Park, and H. Cheong, “Ising-type magnetic ordering in atomically thin
FePS3,” Nano Lett., vol. 16, pp. 7433–7438, Dec 2016.

[147] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L.
Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao,
D. Xiao, P. Jarillo-Herrero, and X. Xu, “Layer-dependent ferromagnetism in a
van der Waals crystal down to the monolayer limit,” Nature, vol. 546, pp. 270–
273, Jun 2017.

[148] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang,
Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, “Discov-
ery of intrinsic ferromagnetism in two-dimensional van der Waals crystals,”
Nature, vol. 546, pp. 265–269, Apr 2017.

[149] D. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, L. Yunqiu, C. H. Lee, M. R.
Brenner, S. Rajan, J. A. Gupta, D. W. McComb, and R. K. Kawakami, “Room
temperature intrinsic ferromagnetism in epitaxial manganese selenide films in
the monolayer limit,” Nano Lett., vol. 18, pp. 3125–3131, Feb 2018.

[150] K. S. Burch, D. Mandrus, and J.-G. Park, “Magnetism in two-dimensional van
der Waals materials,” Nature, vol. 563, pp. 47–52, Nov 2018.



129

[151] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eg-
gers, H. R. Gutierrez, M.-H. Phan, and M. Batzill, “Strong room-temperature
ferromagnetism in VSe2 monolayers on van der Waals substrates,” Nat. Nan-
otechnol., vol. 13, pp. 289–293, Apr 2018.

[152] Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao,
D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J.-H. Chu, and X. Xu,
“Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2,”
Nat. Mater., vol. 17, pp. 778–782, Sep 2018.

[153] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu,
S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, “Gate-tunable room-
temperature ferromagnetism in two-dimensional Fe3GeTe2,” Nature, vol. 563,
pp. 94–99, Nov 2018.

[154] K. M. D. Hals and K. Everschor-Sitte, “Twists in ferromagnetic monolayers
with trigonal prismatic symmetry,” Phys. Rev. B, vol. 99, p. 104422, Mar
2019.





Paper [1]

Øyvind Johansen and Arne Brataas

“Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets”

Physical Review B 95, 220408(R) (2017)





RAPID COMMUNICATIONS

PHYSICAL REVIEW B 95, 220408(R) (2017)

Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

Øyvind Johansen* and Arne Brataas
Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 13 February 2017; published 20 June 2017)

Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance
frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance
frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations
as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field
perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2, FeF2, and NiO. Near the
spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for
the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin
pumping is independent of the external magnetic field when the driving field has the optimal circular polarization.
In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

DOI: 10.1103/PhysRevB.95.220408

Spin pumping is a versatile tool for probing spin dynamics
in ferromagnets [1–6]. The magnitude of the pumped spin
currents reveals information about the magnetization dynamics
and the electron-magnon coupling at interfaces [7–9]. The
precessing spins generate a pure spin flow into adjacent con-
ductors. Inside the conductor, the resulting spin accumulation
and currents give insight into the spin-orbit coupling. The
inverse spin Hall effect (ISHE) is often used to convert the pure
spin current into a charge current, which is detected [10,11].
Additionally, the induced nonequilibrium spins can be probed
with x-ray magnetic circular dichroism measurements [12,13].

Antiferromagnets differ strikingly from ferromagnets [14].
There are no stray fields in antiferromagnets, making them
more robust against the influence of external magnetic
fields. The recent discovery of anisotropic magnetoresistance
[15–17], spin-orbit torques [18], and electrical switching
of an antiferromagnet [19] demonstrate the feasibility of
antiferromagnets as active spintronics components.

The real benefit of antiferromagnets is that they can enable
terahertz circuits. Unlike ferromagnets, the resonance fre-
quency of antiferromagnets is also governed by the tremendous
exchange energy. We recently demonstrated that the transverse
spin conductance, a governing factor of spin pumping, is as
large in antiferromagnet–normal metal junctions (AF|N) as in
ferromagnet–normal metal junctions [20]. Furthermore, this
result is valid even when the magnetic system is insulating.
The firm electron-magnon coupling at the interface opens the
door for electrical probing of the ultrafast spin dynamics in
antiferromagnets [20,21].

Precessing spins in antiferromagnets generate terahertz
currents in adjacent conductors. This ability opens new
territory in high-frequency spintronics. Such studies could
become influential in gathering vital insight into fast electron
dynamics and eventually for a broad range of applications.
These electric signals also provide further knowledge about the
less explored field of antiferromagnetic spin dynamics. This
potential requires thorough exploration; we need to establish
several critical aspects.

The manner in which spin pumping generates ac and dc
inverse spin Hall voltages has yet to be studied in detail.

*Corresponding author: oyvinjoh@ntnu.no

Furthermore, there is a large variety of antiferromagnets and
external field configurations that require knowledge beyond
the first predictions of the magnitude of the pumped spin
current of Ref. [20]. Recently, researchers explored spin
transport through, e.g., the insulating antiferromagnets NiO
and MnF2. Unlike the treatment of Ref. [20], in NiO, there
are two significant anisotropies to consider. As a starting
point in the exploration of high-frequency spintronics, it
is also important to tune the resonance frequencies to a
lower gigahertz range for easier detection by conventional
electronics. The application of an external magnetic field can
lower the resonance frequency. However, the details of the
magnetic field and its ac component polarization dependence
also remain to be classified, a task that we will perform
here.

In this Rapid Communication, we compute the inverse spin
Hall ac and dc voltages generated by spin pumping. We hope
that our studies will further motivate these voltages to be exper-
imentally measured. Such studies will provide a needed deeper
insight into antiferromagnetic resonance phenomena, features
much less explored than their ferromagnetic counterparts in
recent decades.

We consider an insulating antiferromagnet–normal metal
bilayer, as illustrated in Fig. 1. We also consider a variety
of magnetic anisotropies and magnetic field configurations
and strengths. Therefore, the results apply to more complex
systems such as biaxial antiferromagnets with elliptical pre-
cessional modes. The model also accounts for spin backflow
due to the spin accumulation in the metal. We also study how
the inverse spin Hall voltages depend on the polarization of the
ac magnetic field for different systems, which we find to have
a strong influence on the resulting signal. Our main findings
are that, when applying an external magnetic field along the
easy axis close to the spin-flop transition, we can decrease
the resonance frequency while simultaneously significantly
increasing the inverse spin Hall signal. The increase in the
signal can even overcome the previously anticipated limiting
factor in antiferromagnet spin pumping: the ratio of the
anisotropic energy to the exchange energy [20].

We consider a small antiferromagnet in the macrospin
limit whereby all spin excitations are homogeneous. The
antiferromagnet has two sublattices, with temporal magne-
tizations M1 and M2. The dynamics are described by the

2469-9950/2017/95(22)/220408(5) 220408-1 ©2017 American Physical Society
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FIG. 1. The precession of m and n around their equilibrium values
pumps spins into the adjacent normal metal of thickness dN . In turn,
the spin accumulation μN

s in the normal metal causes a backflow of
spins into the antiferromagnet. The spin current in the normal metal
causes ac and dc electric fields in the x and z directions, respectively,
through the inverse spin Hall effect.

staggered magnetizations L = (M1 − M2)/2 = Ln and the
magnetization M = (M1 + M2)/2 = Lm. These fields satisfy
the constraints n2 + m2 = 1 and n · m = 0. At equilibrium,
the sublattice magnetizations are antiparallel. An ac magnetic
field, with a general polarization, drives the magnetic moments
at resonance.

The antiferromagnets that we consider are described by the
free energy

F =LV

γ

[
ωE(m2 − n2) + ω⊥

(
m2

z + n2
z

) − ω‖
(
m2

x + n2
x

)
− 2ωxmx − 2ωymy − 2ωzmz

]
, (1)

where γ is the gyromagnetic ratio, V is the volume of
the antiferromagnet, ωE � 0 is the exchange frequency, and
ω⊥ � 0 and ω‖ � 0 are the hard axis (z axis) and easy axis (x
axis) anisotropy frequencies. The frequency ωx quantifies the
influence of the external magnetic field along the easy axis,
whereas ωy and ωz quantify the influence of the ac magnetic
field in the yz plane. In Table I, we list the exchange and
anisotropy frequencies for MnF2, FeF2, and NiO.

The dynamic Landau-Lifshitz-Gilbert (LLG) equations that
describe the precession of n and m are

ṅ = 1
2 (ωm × n + ωn × m) + τ n, (2a)

ṁ = 1
2 (ωn × n + ωm × m) + τm, (2b)

TABLE I. Exchange and anisotropy frequencies.

Material ωE (1012 s−1) ω‖ (1012 s−1) ω⊥ (1012 s−1)

MnF2 [22] 9.3 1.5 × 10−1

FeF2 [23] 9.5 3.5
NiO [24,25] 1.7 × 102 2.3 × 10−3 1.3 × 10−1

with the effective fields ωn = −(γ /L)∂F/∂n and ωm =
−(γ /L)∂F/∂m. The dissipation and spin-pumping torques
are

τ n = α[n × ṁ + m × ṅ], (3a)

τm = α[n × ṅ + m × ṁ], (3b)

where the total Gilbert damping coefficient α is a sum of the
intrinsic damping and the spin-pumping-enhanced damping:
α = α0 + αSP [20,26].

A linear response expansion around the equilibrium values
of n and m determines the antiferromagnetic resonance
(AFMR) frequencies. For simplicity, we only present the
resonance frequencies in the exchange limit ω‖,ω⊥ � ωE .
This limit is valid for many antiferromagnets but not for FeF2

due to a large anisotropy. In our numerical calculations below,
we do not make this approximation. In the exchange limit, the
four resonance frequencies below spin flop are [27]

ω2
res ≈ ω2

x + ω2
0 ±

√
ω2

Eω2
⊥ + 4ω2

xω
2
0, (4)

where ω2
0 = ωE(2ω‖ + ω⊥). The critical field strength at which

the spin-flop transition occurs is |ωcrit
x | = √

ω‖(2ωE + ω‖)
in both uniaxial and biaxial antiferromagnets. We will only
consider magnetic fields below this value.

Herein, we focus on the right-handed low-energy mode
since we want to decrease the resonance frequency. In the
absence of an external magnetic field, the resonance frequency
of this mode is 0.27 THz for MnF2, 1.41 THz for FeF2,
and 0.14 THz for NiO. By applying a magnetic field close
to the spin-flop transition, we can reduce these resonance
frequencies down to the gigahertz range. Such a reduction
should enable detection of AFMR and the resulting significant
spin-pumping-induced ac and dc ISHE voltages.

The pumped spin current from a dynamical antiferromagnet
into a normal metal is [20]

Ip
s = h̄g⊥

2π
(n × ṅ + m × ṁ), (5)

where g⊥ is the transverse (“mixing”) conductance. The
spin pumping from the antiferromagnetic insulator causes
a spin accumulation in the normal metal, which in turn
produces a spin backflow current [11]. In antiferromagnetic
insulators, the backflow spin currents within the sublattices
add constructively [20,28]:

Ib
s = − g⊥

2π

[
m × (

μN
s × m

) + n × (
μN

s × n
)]

, (6)

where μN
s is the spin accumulation in the normal metal.

The most significant contributions to the spin current are
second order in the deviations from equilibrium along the
easy axis and first order along the perpendicular directions.
Nevertheless, the leading-order terms in the total spin current
only depend on the first-order deviations of the magnetic
moments from their equilibrium values, n0 = ex and m0 =
0. It is therefore sufficient to consider the linear response
expansions

n = n0 + 1
2 (δneiωt + δn∗e−iωt ), (7a)

m = 1
2 (δmeiωt + δm∗e−iωt ), (7b)
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where the transverse deviations are δn = δnyey + δnzez and
δm = δmyey + δmzez. ω is the driving frequency of the ac
magnetic field.

The spin accumulation μN
s is a solution of the spin diffusion

equation

∂μN
s (r,t)
∂t

= γNHex × μN
s + DN

∂2μN
s

∂y2
− μN

s

τN
sf

, (8)

where the terms on the right-hand side of Eq. (8) are properties
of the normal metal such as the diffusion coefficient DN , the
gyromagnetic ratio γN , and the spin-flip relaxation time τN

sf ,
and Hex is the external magnetic field. The boundary conditions
for μN

s require that the spin current vanishes at the outer edge of
the normal metal (y = dN ) and that the current is continuous
across the antiferromagnet–normal metal interface (y = 0).
The diffusion equation can be solved in position-frequency
space [11,29] in terms of the Fourier components of the total
spin current IN

s = Ip
s + Ib

s at y = 0.
The spin current in the normal metal causes a charge current

perpendicular to the spin current’s direction and polarization
through the ISHE. This charge current is given by [30,31]

jISHE
c (y,t) = θN

2e

Ah̄
ey × IN

s (y,t), (9)

where θN is the spin Hall angle in the normal metal and
A is the area of the AF|N interface. Since the system is
an open circuit, the charge current accumulates charges at
the interfaces. In turn, a generated electric field ensures that
the net charge current through the metal vanishes. To determine
this electric field, we integrate the charge current jISHE

c over the
metallic system to find the electric field needed to cancel the
charge current. See the Supplemental Material [32] for the full
derivation. The dc component of this electric field becomes

Edc
z = εN

(
1 − 1

cosh
(
dN/λN

sd

)
)

μx
0, (10)

the first harmonic ac component is

Eac
x (t) = εNRe

[(
μz

1 + iμ
y

1

cosh [κ3(ω)dN ]

+ μz
1 − iμ

y

1

cosh [κ2(ω)dN ]
− 2μz

1

)
eiωt

]
, (11)

and the second harmonic ac component is

Eac
z (t) = 2εNRe

[(
1 − 1

cosh [κ1(2ω)dN ]

)
μx

2e
2iωt

]
. (12)

Here, we have introduced the conversion coefficient εN =
θNeνDN/(σNdN ), where σN is the conductivity of the normal
metal. The factors μ

x/y/z
n are the nth Fourier components of the

spin accumulation at the AF|N interface (y = 0). We compute

that they are

μ
y

1 = − ih̄ωg⊥
4π

[
�2(ω) + g⊥

2π

]
δnz + �3(ω)δny[

�2(ω) + g⊥
2π

]2 + �2
3(ω)

, (13a)

μz
1 = ih̄ωg⊥

4π

[
�2(ω) + g⊥

2π

]
δny − �3(ω)δnz[

�2(ω) + g⊥
2π

]2 + �2
3(ω)

, (13b)

μx
2 = g⊥

4π�1(2ω)

(
μ

y

1δny + μz
1δnz

)
(13c)

for the first and second harmonic ac components, and

μx
0 = g⊥

2π�1(0)

[
Re

(
μ

y

1δn
∗
y + μz

1δn
∗
z

)
− h̄ω Im

(
δn∗

yδnz + δm∗
yδmz

)]
(14)

for the dc component. All other components of the spin accu-
mulation vanish. The components of the spin accumulation of
Eqs. (13) and (14) are expressed in terms of the functions

�1(ω) = 1
2 h̄νADN�1(ω), (15a)

�2(ω) = 1
4 h̄νADN [�2(ω) + �3(ω)], (15b)

�3(ω) = i
4 h̄νADN [�2(ω) − �3(ω)], (15c)

with �i(ω) = κi(ω) tanh [κi(ω)dN ]. Here, we have defined
κ2

1 = (1 + iωτN
sf )/(λN

sd)2, κ2
(2,3) = κ2

1 ∓ iγNHex/DN , the spin

diffusion length λN
sd =

√
DNτN

sf , and the one-spin density
of state ν. Note that μx

2 and consequently Eac
z vanish in

the absence of a magnetic field [�3(ω) = 0] and when
the precession of the staggered magnetization is circular
(δnz = ±iδny).

We will now use our model to compute the ISHE signal as
a function of external magnetic fields in an AF|Pt bilayer. By
inserting the linear response ansatz of Eq. (7) into the LLG
equations in Eq. (2), we determine the functions δn and δm.
The components of the ac magnetic field that drives these
perturbations are given by ωj = |ωj | exp(iωt + iθj ) for j =
y,z. The phase difference θz − θy determines the polarization
of the ac field, and significantly affects the resulting spin
current. In our calculations, we let |ωy | = |ωz|.

As the material properties of Pt, we use τN
sf = 0.01 ps

[11], ν = 4.55 × 1047 J−1 m−3 [33], σN = 5 × 106 (� m)−1

[34], λN
sd = 1.5 nm, and θN = 0.075 [35]. These properties

are at 10 K. The transverse spin conductance g⊥ is of
the same order of magnitude as that of a ferromagnetic or
ferrimagnetic material [20]. We therefore estimate this to be
g⊥/A = 3 × 1018 m−2 [36,37]. Experimental measurements
of g⊥ are needed and are further motivated by the present
calculations.

The magnitude of the ISHE signal depends on the thickness
of the Pt layer. It increases approximately linearly with
dN for dN/λN

sd � 1 and is inversely proportional to dN for
dN/λN

sd 	 1. This qualitative behavior is similar to that in
ferromagnetic/normal metal bilayers (cf. Fig. 3(a) in Ref. [11]).
The peak of the ISHE signal is at some value dN ∼ λN

sd, and for
our choice of parameters, it peaks at dN ≈ 0.8λN

sd = 1.2 nm.
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FIG. 2. dc and first harmonic ac components of the ISHE electric
field for MnF2 [(a) and (b)], FeF2 [(c) and (d)], and NiO [(e) and
(f)] as a function of external magnetic field along the easy axis for
different polarizations of the ac magnetic field. The ac field is 1 mT,
and α = 0.01.

We use this thickness of the Pt layer for the remaining
calculations. The optimal thickness dN weakly depends on
the value of g⊥/A and should therefore be determined
experimentally.

Figure 2 plots the dc and the first harmonic ac components
of the ISHE electric field as a function of the magnetic
field. In the uniaxial antiferromagnets, MnF2 and FeF2, one
contribution to the dc signal is independent of the ac magnetic
field polarization, and the other contribution is proportional
to sin(θz − θy). At high magnetic fields, these contributions
are equal in magnitude but add constructively or destructively,
depending on the circular polarization of the ac magnetic field.

Reference [20] demonstrated that the pumped dc spin
current in uniaxial antiferromagnets at resonance is suppressed
by the factor

√
ω‖/ωE . Since

√
ω‖/ωE is significantly larger

in FeF2 (0.61) than in MnF2 (0.13), it was believed that FeF2

gives a stronger signal than does MnF2. However, with our
present additional insight, we reach the opposite conclusion
at finite magnetic fields. We find that when ωx → ωcrit

x , the
dc signal diverges as (ωcrit

x − ωx)−1. The utilization of the
divergence is a better route toward enhancing the ISHE signal
than increasing

√
ω‖/ωE . This implies that MnF2 is a more

promising candidate than FeF2 because the spin-flop field of
MnF2 (9.5 T) is easier to achieve experimentally than is that
of FeF2 (50.4 T).

The dc signal diverges because the linear response model
breaks down close to the spin-flop transition. By analyzing
the magnitude of |δn| we find that it is 0.01 at ωx ≈ 0.95ωcrit

x

and 0.1 at ωx ≈ 0.995ωcrit
x for the uniaxial antiferromagnets.

Consequently, linear response is a good approximation fairly
close to the divergence. The enhancement of the dc spin
pumping close to the spin-flop transition is therefore a real

phenomenon. We find that the breakdown of the linear
response theory is even softer for the biaxial NiO.

Unlike the dc component, the first harmonic ac component
is independent of the ac magnetic field polarization in the
absence of a uniform external magnetic field and converges
toward a finite value as ωx → ωcrit

x . The signal when the
polarization is circular (θz − θy = π/2) gives the largest dc
signal (and ac signal for sufficiently large magnetic fields).
Furthermore, this curve becomes independent of the magnetic
field. The origin of this is a complicated compensation between
the diverging contributions from the out-of-equilibrium fields
and the vanishing resonance frequency around the spin-flop
transition.

In NiO, the dominant ac magnetic field contribution is
linear in the polarization, which is proportional to cos(θz − θy).
Such a feature appears when there is a hard axis, and the
precession is in the easy plane. The linear contribution dom-
inates when ω⊥/

√
ωEω‖ 	 α. In biaxial antiferromagnets,

we find that the pumped current is governed by the scaling
factor αω‖/ω⊥ instead of

√
ω‖/ωE . In discussing the strength

of the spin-pumping signals, we should also note that, in
both uniaxial and easy-plane antiferromagnets, the signal is
inversely proportional to ωE . Since ω‖/ω⊥ ∼ 0.02 and since
ωE is exceptionally large in NiO, the dc spin pumping signal is
weak in comparison to that of MnF2 and FeF2. In addition, the
dc signal in NiO does not exhibit a divergence as ωx → ωcrit

x .
We do not present the second harmonic ac voltage since it
is minimal (and in many cases identically zero). Our results
imply that uniaxial antiferromagnets are preferred candidates
for the observation of spin pumping compared to hard-axis
antiferromagnets such as NiO.

Reference [22] conducted preliminary spin-pumping ex-
periments for a MnF2|Pt system. However, they attributed the
dominant dc signal to microwave rectification and not spin
pumping. Nevertheless, they observed a small change in the
signal upon reversal of the magnetic field, which is consistent
with spin pumping.

We propose a different experimental geometry to enhance
the spin-pumping signal. The use of the ac magnetic field
in a plane perpendicular to the easy axis and a polarization
θz − θy = π/2 increases the dc ISHE signal by a factor of
4. Additionally, by reducing the thickness of the Pt layer
from 7 nm to the thickness where the ISHE signal attains
its maximum (in our calculations, this is 1.2 nm), we can
further amplify the signal by a factor of 2. Together, these
improvements will increase the signal strength by an order of
magnitude. Whether the signal is due to spin pumping can
then easily be tested by the dependence on the polarization
of the ac magnetic field according to our model. A circular
polarization with θz − θy = π/2 doubles the signal strength
compared to a linear polarization. On the other hand, a
circular polarization with θz − θy = −π/2 results in no dc spin
pumping. In contrast, microwave rectification effects should
be much less sensitive to the polarization.

In summary, we computed the inverse spin Hall signal as a
result of spin pumping and spin backflow in an AF|N bilayer.
Our results apply to any polarization of the ac magnetic field
and precessional motion of the magnetizations, and the results
can also be used in more complex biaxial antiferromagnets. We
demonstrate that the dc signal increases substantially near the
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spin-flop transition in uniaxial antiferromagnets. Furthermore,
the signal strongly depends on the polarization of the ac
magnetic field. We also suggest an improved experimental
geometry that considerably enhances the dc signal resulting
from spin pumping.

The research leading to these results has received funding
from the European Research Council via Advanced Grant No.
669442 “Insulatronics”, EU FET “Transpire” via Grant No.
737038, and The Research Council of Norway via Grant No.
239926.
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Abstract

Precessing spins can induce currents between antiferromagnetic insulators and normal metals.

We compute these AC and DC spin currents across the interface, including the effects of spin

backflow. We also calculate the resulting AC and DC inverse spin Hall electric fields in the normal

metal. We express all currents and fields in terms of the dynamics of the staggered field and the

magnetization.

1



TOTAL SPIN CURRENT AND INVERSE SPIN HALL VOLTAGES

Spin-pumping is the emission of spin-currents into adjacent conductors from precess-

ing spins. Ref. 1 introduced a quantitative theory for the resulting spin-current through

ferromagnet-normal metal interfaces. The spin flow causes a spin accumulation in the nor-

mal metal. Ref. 2 computed the resulting DC spin accumulation. There are also AC com-

ponents and Ref. 3 studied these in detail, and furthermore, included the inverse spin Hall

effect in the normal metal. We will generalize this approach by replacing the ferromagnets

with antiferromagnetic insulators.

We disregard the imaginary part of the transverse (”mixing”) conductance since it is

likely to be small in most circumstances4. Then, the pumped spin-current is4

Ips =
~g⊥
2π

(n× ṅ+m× ṁ) , (1)

where g⊥ is the transverse conductance, n = (m1 −m2)/2 is the staggered field and m =

(m1+m2)/2 is the magnetization. At equilibrium, the staggered field is along the easy axis,

n0 = ex, and the magnetization vanishes.

Next, we need to take into account the backflow spin current into the antiferromagnet

resulting from the spin accumulation. In antiferromagnets, the backflow spin current is

similar to the case of ferromagnets since the spin currents from the two sub-lattices add

constructively

Ibs = −g⊥
4π

[
m1 ×

(
µN

s ×m1

)
+m2 ×

(
µN

s ×m2

)]
, (2a)

=
g⊥
2π

[
m

(
µN

s ·m
)
+ n

(
µN

s · n
)
− µN

s

]
, (2b)

where µN
s is the spin accumulation in the normal metal. The backflow spin current of Eq.

(2b) and the pumped spin current of Eq. (1) are related by Onsager reciprocity relations4.

To compute the spin backflow we need to determine the spatiotemporal variation of

the spin accumulation in the normal metal. This spin accumulation should fulfil the spin

diffusion equation
∂µN

s (r, t)

∂t
= γNHex × µN

s +DN
∂2µN

s

∂y2
− µN

s

τNsf
, (3)

where the terms on the right hand side of Eq. (3) are properties of the normal metal such as

the diffusion coefficient DN , the gyromagnetic ratio γN , the spin-flip relaxation time τNsf , and

the external magnetic field Hex = exωx/γAF . We have disregarded the small off-resonance

2



AC component of the magnetic field. As a consequence, the magnetic field only causes spin

precession that couples the transverse, y- and z-components of the spin accumulation.

The spin diffusion equation of Eq. (3) needs to be supplemented by boundary conditions.

At the outer edge of the normal metal, y = dN , the spin current vanishes. In contrast, the

spin current is continuous across the antiferromagnet-normal metal interface, where y = 0.

We carry out a Fourier transformation of the spin accumulation in time. With the two

boundary conditions, the solution to Eq. (3) is3,5:

µN
s (y, ω) =

3∑

i=1

ei
cosh [κi (y − dN)]

sinh [κidN ]

2jis (y = 0, ω)

~νDNκi

. (4)

In Eq. (4), we use a circular basis, e1 = ex, e2 = e− = (ey − iez)/
√
2, e3 = e+ = (ey +

iez)/
√
2. In this basis, we introduce the spin current density components at the interface:

j1s = Ixs /A, j2s = (Iys + iIzs ) /
(√

2A
)
and j3s = (Iys − iIzs ) /

(√
2A

)
, where A is the interface

cross section and I
x/y/z
s =

[
Ips(y = 0, ω) + Ibs(y = 0, ω)

]
· ex/y/z are the cartesian Fourier

components of the total spin current at the interface. We have also defined the quantities

κ2
1 =

(
1 + iωτNsf

)
/
(
λN
sd

)2
, κ2

(2,3) = κ2
1 ∓ iγNωx/ (γAFDN) and the spin diffusion length λN

sd =
√
DNτNsf .

Temporal variations of the staggered field and the magnetization drive the spin currents.

We characterize the out-of-equilibrium deviations of these fields by a perturbation param-

eter δ. We will now consider how the different components scale with the small variations

proportional to δ during the spin dynamics. Since m1 and m2 are real unit vectors, n and

m must fulfil n2 +m2 = 1 and n ·m = 0. These conditions are satisfied to second order in

the perturbation parameter δ when we expand the fields as

n =
(
1− δ2n(2)

x (t)
)
ex +

(
δn(1)

y (t) + δ2n(2)
y (t)

)
ey +

(
δn(1)

z (t) + δ2n(2)
z (t)

)
ez, (5a)

m = −δ2m(2)
x (t)ex +

(
δm(1)

y (t) + δ2m(2)
y (t)

)
ey +

(
δm(1)

z (t) + δ2m(2)
z (t)

)
ez, (5b)

where the second order longitudinal corrections δ2n
(2)
x (t) and δ2m

(2)
x (t) must obey

δ2n(2)
x (t) =

1

2

[(
δm(1)

y (t)
)2

+
(
δm(1)

z (t)
)2

+
(
δn(1)

y (t)
)2

+
(
δn(1)

z (t)
)2]

, (6a)

δ2m(2)
x (t) = δm(1)

y (t)δn(1)
y (t) + δm(1)

z (t)δn(1)
z (t). (6b)

We can now insert the expansion of Eq. (5) into the expression for the spin-pumping

current in Eq. (1). For the spin current component polarized along the easy axis ex, we
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find that the leading order corrections are of second order in δ. On the other hand, for the

spin current components that are polarized transverse to the easy axis, the leading order

corrections are first order in δ. Furthermore, all leading order terms only depend on δn
(1)
y (t),

δn
(1)
z (t), δm

(1)
y (t) and δm

(1)
z (t), which simplifies the following discussions considerably.

To leading order, it is then sufficient to only consider the linear corrections in n and m.

In the following analysis, we therefore only use the linear response expansion of the fields

that are driven at the frequency ωAC of the AC magnetic field

n = n0 +
1

2

(
δneiωACt + δn∗e−iωACt

)
, (7a)

m =
1

2

(
δmeiωACt + δm∗e−iωACt

)
. (7b)

The out-of-equilibrium deviations δn = δnyey + δnzez and δm = δmyey + δmzez are per-

pendicular to n0 = ex. In general, these deviations depend on the AC field frequency and

the free energy. Their magnitudes are significant only close to the resonance frequencies.

Next, we will consider the contributions to the spin backflow current of Eq. (2b). We

note that the backflow current results from the primary source, the pumped spin current

of Eq. (1). Therefore, the backflow current cannot exceed the leading order in the pumped

spin current. In turn, this implies that the spin accumulation µN
s (y, ω) component along

the x-direction is of a second order in δ. On the other hand, the leading contribution to

the spin accumulation is of a first order in the spin deviations along the transverse y- and

z-directions.

To proceed, we expand the pumped spin current in a Fourier series

Ips =
∑

n

Ipne
inωACt. (8)

In this series, we decompose the spin-current into a DC term, first AC harmonics, and higher

AC harmonics. The pumped DC spin current is of a second order in the deviations from

the equilibrium spin configuration and it is polarized along the easy axis:

Ip0 =
i~ωACg⊥

4π

(
δn∗

yδnz − δn∗
zδny + δm∗

yδmz − δm∗
zδmy

)
ex . (9)

The polarization of the first AC harmonic pumped spin current is transverse to the easy

axis,

Ip1 =
i~ωACg⊥

4π
(δnyez − δnzey) (10)
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and Ip−1 = (Ip1)
∗. To the second order in the spin deviations, the higher harmonics vanish,

Ipn = 0 when (|n| ≥ 2).

In the expression for the spin backflow current of Eq. (2b), we can disregard the depen-

dence on m since m(µN
s · m) is a third order correction. By including terms only up to

second order in δm and δn, we can then approximate the spin backflow current of Eq. (2b)

as

Ibs ≈
g⊥
2π

[
ex

(
µN

s · n
)
− µN

s

]
. (11)

Similar to the spin current, we also Fourier transform the spin accumulation at the

interface (y = 0) into DC and AC components:

µN
s (t) =

∑

n

µne
inωACt. (12)

The spin backflow current can also be expanded as

Ibs =
∑

n

Ibne
inωACt , (13)

where the harmonic components Ibn are

Ibn =
g⊥
2π




1
2

[
µy
n−1δny + µz

n−1δnz + µy
n+1δn

∗
y + µz

n+1δn
∗
z

]

−µy
n

−µz
n


 . (14)

Note that (Ibn)
∗ = Ib−n, µ

∗
n = µ−n. The product µ

y/z
n−1δny/z (µ

y/z
n+1δn

∗
y/z) is an n-th harmonic

contribution since δny/z (δn∗
y/z) contains the first harmonic factor factor eiωACt (e−iωACt).

We find a closed set of equations for the spin accumulation in the following way. We

invert the relation of Eq. (4) to find the total spin current in terms of the spin accumulation.

In this inversion process, it is useful to introduce the functions

Γ1(y, ω) =
1

2
~νADNκ1(ω)

sinh [κ1(ω) (dN − y)]

cosh [κ1(ω)dN ]
, (15a)

Γ2(y, ω) =
~νADN

4

[
κ2(ω)

sinh [κ2(ω) (dN − y)]

cosh [κ2(ω)dN ]
+ κ3(ω)

sinh [κ3(ω) (dN − y)]

cosh [κ3(ω)dN ]

]
, (15b)

Γ3(y, ω) =
i~νADN

4

[
κ2(ω)

sinh [κ2(ω) (dN − y)]

cosh [κ2(ω)dN ]
− κ3(ω)

sinh [κ3(ω) (dN − y)]

cosh [κ3(ω)dN ]

]
, (15c)

and Γi(ω) = Γi(y = 0, ω) (i = 1, 2, 3). The resulting expression for the total spin current

should equal the sum of the pumped spin current of Eq. (9) and Eq. (10), and the backflow
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spin current of Eq. (14). Moreover, the expressions must hold for each component of the

Fourier expansion since they should be valid at all times. Then, we find that the spin

accumulation along the easy axis at the interface is:

µx
n =

1

Γ1 (nωAC)

[
Ip(x)n +

g⊥
4π

(
µy
n−1δny + µz

n−1δnz + µy
n+1δn

∗
y + µz

n+1δn
∗
z

)]
. (16)

We see that the components along the easy axis are coupled to the perpendicular components

in the yz-plane due to the backflow current in Eq. (14). The magnetic field aligned along

the easy axis couples the transverse components of the spin accumulation in the diffusion

equation (3). Hence, to find the perpendicular components of the spin accumulation at the

interface, we have to solve the matrix equation for the transverse components


Γ2(nωAC) +

g⊥
2π

Γ3(nωAC)

−Γ3(nωAC) Γ2(nωAC) +
g⊥
2π





µy

n

µz
n


 =


I

p(y)
n

I
p(z)
n


 = In(y = 0, nωAC)− Ibn(y = 0, nωAC) .

(17)

In the absence of a magnetic field Γ3(ω) → 0, the coupling between the transverse compo-

nents µy
n and µz

n vanishes. We solve Eq. (17) for µy,z
n and find that


µy

n

µz
n


 =

1
(
Γ2 (nωAC) +

g⊥
2π

)2
+ Γ2

3 (nωAC)


Γ2 (nωAC) +

g⊥
2π

−Γ3 (nωAC)

Γ3 (nωAC) Γ2 (nωAC) +
g⊥
2π





I

p(y)
n

I
p(z)
n


 .

(18)

Since
(
Γ2 (nωAC) +

g⊥
2π

)2
+Γ2

3 (nωAC) is finite for the parameters of interest and I
p(y,z)
n = 0 for

|n| 6= 1, we find that µy,z
n = 0 for |n| 6= 1. We have then determined the spin accumulation

at the interface in the normal metal along the transverse y and z directions:

µy
1 = −i~ωACg⊥

4π

(
Γ2 (ωAC) +

g⊥
2π

)
δnz + Γ3 (ωAC) δny(

Γ2 (ωAC) +
g⊥
2π

)2
+ Γ2

3 (ωAC)
, (19a)

µz
1 =

i~ωACg⊥
4π

(
Γ2 (ωAC) +

g⊥
2π

)
δny − Γ3 (ωAC) δnz(

Γ2 (ωAC) +
g⊥
2π

)2
+ Γ2

3 (ωAC)
. (19b)

These transverse solutions can then be used to obtain the solutions for the longitudinal

component, µx
n, from Eq. (16). The pumping component I

p(x)
n is only non-zero when n =

0, thereby only contributing to the DC component µx
0 . However, there are also second

harmonics in the longitudinal component of the spin accumulation. This is caused by the

coupling with µy,z
±1 from the backflow, the only finite components of µy,z

n . In summary, we

find that µx
n is finite when n = 0,±2, and zero for all other values of n.
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The Fourier components of the total spin current at the interface (y = 0) then become

I0 = Γ1 (0)µ
x
0ex, (20a)

I1 = [Γ2 (ωAC)µ
y
1 + Γ3 (ωAC)µ

z
1] ey + [Γ2 (ωAC)µ

z
1 − Γ3 (ωAC)µ

y
1] ez, (20b)

I2 = Γ1 (2ωAC)µ
x
2ex (20c)

and all higher harmonics vanish, In = 0 (|n| ≥ 3). Also, I−n = (In)
∗. The total spatiotem-

poral spin current in the normal metal is then

INs (y, t) =

[
Γ1 (y, 0)µ

x
0 + 2Re

(
Γ1 (y, 2ωAC)µ

x
2e

2iωACt
)]
ex

+ 2Re
[
Γ2 (y, ωAC)µ

y
1e

iωACt + Γ3 (y, ωAC)µ
z
1e

iωACt
]
ey

+ 2Re
[
Γ2 (y, ωAC)µ

z
1e

iωACt − Γ3 (y, ωAC)µ
y
1e

iωACt
]
ez. (21)

We will now use this result to compute the inverse spin Hall effect (ISHE) to the lowest

order in the spin-Hall angle. The charge current in the normal metal generated by the ISHE

is6,7

jISHE
c (y, t) = θN

2e

A~
ey × INs (y, t), (22)

where θN is the spin Hall angle in the normal metal. This charge current causes a build-

up of charge accumulation at the interface. In turn, the charge accumulation generates a

counter diffusion charge flow so that the net charge current in the open system vanishes.

This electric field is then

E(t) = − 2θNe

A~σNdN
ey ×

∫ dN

0

INs (y, t)dy = EAC
x (t)ex +

(
EDC

z + EAC
z (t)

)
ez, (23)

where σN is the conductivity of the normal metal. From this we find that the DC electric

field becomes

EDC
z =

θNeνDN

σNdN

(
1− 1

cosh (dN/λN
sd)

)
µx
0 . (24)

The first harmonic AC component is

EAC
x (t) =

θNeνDN

σNdN
Re

[(
1

cosh (κ3(ωAC)dN)
− 1

cosh (κ2(ωAC)dN)

)
iµy

1e
iωACt

−
(
2− 1

cosh (κ2(ωAC)dN)
− 1

cosh (κ3(ωAC)dN)

)
µz
1e

iωACt

]
(25)

Finally, the second harmonic AC component is

EAC
z (t) =

2θNeνDN

σNdN
Re

[(
1− 1

cosh (κ1(2ωAC)dN)

)
µx
2e

2iωACt

]
. (26)
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While the DC component and the second harmonic AC component are quadratic in the spin

deviations, the first harmonic AC component is linear in the perturbations.
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Currents can induce spin excitations in antiferromagnets, even when they are insulating. We investigate how
spin transfer can cause antiferromagnetic resonance in bilayers and trilayers that consist of one antiferromagnetic
insulator and one or two metals. An ac voltage applied to the metal generates a spin Hall current that drives
the magnetic moments in the antiferromagnet. We consider excitation of a sublattice macrospin mode and of
transverse standing-spin-wave modes. By solving the Landau-Lifshitz-Gilbert equation in the antiferromagnetic
insulator and the spin-diffusion equation in the normal metal, we derive analytical expressions for the spin-Hall-
magnetoresistance and spin-pumping inverse-spin-Hall dc voltages. In bilayers, the two contributions compensate
each other and cannot easily be distinguished. We present numerical results for a MnF2|Pt bilayer. Trilayers
facilitate separation of the spin-Hall-magnetoresistance and spin-pumping voltages, thereby revealing more
information about the spin excitations. We also compute the decay of the pumped spin current through the
antiferromagnetic layer as a function of frequency and the thickness of the antiferromagnetic layer.

DOI: 10.1103/PhysRevB.97.054423

I. INTRODUCTION

Antiferromagnets have many qualities that make them at-
tractive for use in spintronic devices. For example, the absence
of stray fields allows for dense storage of components without
undesired cross talk between the active elements. The most
interesting feature of antiferromagnets is that their high reso-
nance frequencies pave the way toward terahertz circuits [1].

Current-induced spin-transfer torques (STTs) can induce
ferromagnetic resonance [2] in both metallic and insulating
ferromagnets [3,4]. An antidampinglike STT is even under
magnetization reversal [5]. Consequently, the magnetic
moments in the two sublattices of a collinear antiferromagnetic
insulator experience the same STT, which enables STT-driven
spin dynamics in antiferromagnets. Current-induced STT is a
powerful method for probing the magnetization dynamics in
magnetic layers [6,7]. An electric signal can simultaneously
drive and detect the magnetization dynamics. An ac voltage
leads to an alternating spin current through the spin Hall
effect [8], which drives the magnetic moments at resonance.
Subsequently, the spin Hall magnetoresistance (SMR) and
spin pumping (SP) induce dc voltages through the inverse
spin Hall effect (ISHE) [9].

SMR [10,11] is the dependence of the normal-metal re-
sistance on the orientation of the magnetic moments in an
adjacent magnetic layer relative to the applied current. When
the magnetic moments precess, the resistance of the metal
correspondingly oscillates. The mixing of the oscillating
resistance and charge current generates a dc voltage bias
that can provide insights into the magnetization dynamics.
Recent experiments have indicated that SMR also occurs
in antiferromagnetic-insulator/normal-metal (AF|N) bilayers
[12–16]. Theoretical predictions have also been made for
conducting antiferromagnets [17].

*Corresponding author: oyvinjoh@ntnu.no

Similar to ferromagnets, SP is also active in antiferromag-
nets [18]. However, to the best of our knowledge, there are
no direct experimental detections of antiferromagnetic SP.
The lack of direct experimental signatures is possibly due
to the high resonance frequencies and low susceptibilities of
the magnetic moments in antiferromagnets, which make ex-
perimental detection challenging. However, we have recently
theoretically shown that the susceptibilities and thus the dc
SP substantially increase near the spin-flop transition, where
the resonance frequency is low [19]. Therefore, we expect that
antiferromagnetic SP will be a prominent effect if we drive our
system close to the spin-flop transition.

In this paper, we compute the dc voltages resulting from
SMR and SP in antiferromagnetic-insulator/normal-metal bi-
layers. The driving source is an ac voltage bias on the normal
metal. We consider the excitation of a sublattice macrospin
mode, henceforth referred to as the macrospin mode, where
the magnetization dynamics within each sublattice is spatially
uniform throughout the antiferromagnet. In addition to the
macrospin mode, we also consider the excitation of transverse
standing spin waves. These standing waves have a higher
resonance frequency than that of the uniform precession
modes, and these waves can be excited by tuning the frequency
of the applied voltage bias. The detection of such waves would
reveal a wide variety of properties of the antiferromagnetic
material. The resonance frequencies can be used to determine
contributions to the free energy of the antiferromagnet, such
as exchange and anisotropy frequencies and the exchange
lengths of the sublattices. The amplitudes and linewidths of
the resonance peaks can also be used to determine both the
intrinsic and SP-induced damping and thus the transverse
spin conductance of the AF|N interface. Finally, we also
show how the SMR and SP dc voltages can be separated
by sandwiching the antiferromagnetic material between two
metals and measuring the dc biases in the metals independently.

2469-9950/2018/97(5)/054423(9) 054423-1 ©2018 American Physical Society



JOHANSEN, SKARSVÅG, AND BRATAAS PHYSICAL REVIEW B 97, 054423 (2018)

FIG. 1. An ac voltage applied to a normal metal with strong
spin-orbit coupling generates spin currents that flow into the antifer-
romagnetic insulator, exciting the magnetic moments. The direction
of the applied voltage and the easy axis of the antiferromagnet are
parallel to the AF|N interface, and there is an angle of θ between
them. An external field H0 along the easy axis of the antiferromagnet
controls the resonance frequency and the magnetic susceptibilities.

This approach requires that the dissipation of the pumped spin
current through the antiferromagnet is negligible. We therefore
study for what thicknesses of the antiferromagnetic layer and
for what resonance frequencies this is a valid assumption.

The remainder of this paper is organized as follows.
In Sec. II, we present the model that describes the
magnetization dynamics in an antiferromagnetic insulator and
the accumulation of spins in an adjacent nonmagnetic metal.
In that section, we primarily focus on an AF|N bilayer, as
illustrated in Fig. 1. The solution of the model for the bilayer
system is then presented in Sec. III. This solution is used to
obtain analytical expressions for the dc voltages resulting from
SP and SMR, given by Eq. (31). These expressions are our
main result for the bilayer system. In Sec. IV, we extend the
solution of the model presented in Sec. II to a N|AF|N trilayer
system (as illustrated in Fig. 4 below). For the trilayer system,
our main contribution is illustrating how this system can be
used to measure the SP and SMR voltages independently.
These contributions cannot be distinguished in the bilayer
system because they have the same frequency dependence.

II. MODEL

A. Equations of motion

The sublattice magnetizations of the antiferromagnetic
insulator are M1 and M2. We describe the dynamics of these
magnetizations in terms of the dimensionless average mag-
netization and Néel order parameter vectors m and n, which
are defined as Lm = (M1 + M2)/2 and Ln = (M1 − M2)/2,
where L is the saturation magnetization of each sublattice.
These vectors satisfy the constraints m2 + n2 = 1 and m · n =
0. The coupled equations of motion for m and n are given by

the Landau-Lifshitz-Gilbert (LLG) equations

ṁ = 1
2 (ωm × m + ωn × n) + τGD

m + τ SP
m + τ STT

m , (1a)

ṅ = 1
2 (ωm × n + ωn × m) + τGD

n + τ SP
n + τ STT

n . (1b)

In the LLG equations (1), the Gilbert damping torques are

τGD
m = α0(m × ṁ + n × ṅ), (2a)

τGD
n = α0(m × ṅ + n × ṁ), (2b)

the interfacial SP torques are

τ SP
m = α′dAFδ(y)(m × ṁ + n × ṅ), (3a)

τ SP
n = α′dAFδ(y)(m × ṅ + n × ṁ), (3b)

and the STTs are

τ STT
m = α′

h̄
dAFδ(y)

{
m × [

m × μN
s (y,t)

]
+ n × [

n × μN
s (y,t)

]}
, (4a)

τ STT
n = α′

h̄
dAFδ(y)

{
m × [

n × μN
s (y,t)

]
+ n × [

m × μN
s (y,t)

]}
. (4b)

Here, we have introduced the SP-induced enhanced damp-
ing parameter α′ = h̄γg⊥/(4πLAdAF), and α0 is the intrinsic
Gilbert damping parameter. A is the AF|N interface area, γ is
the gyromagnetic ratio, g⊥ is the transverse spin conductance
at the AF|N interface, and dAF is the thickness of the antifer-
romagnetic layer. The STTs depend on the spin accumulation
μN

s in the normal metal.
The frequencies ωm,n corresponding to the effective fields

are ωm = −(γ /L) · δf/δm and ωn = −(γ /L) · δf/δn, where
f is the free-energy density in a continuum approximation,

f = L

γ

{
ωE(m2 − n2) − 2ωH mx

− ω‖
[
m2

x + n2
x − λ2(∇m)2 − λ2(∇n)2

]}
. (5)

Here, ωE is the exchange frequency, ω‖ is the easy-axis
anisotropy frequency,ωH is the frequency that describes the ex-
ternal magnetic field along the easy axis, and λ is the exchange
length. The exchange length is defined as λ2 = a2ωE/(4ω‖)
[20], where a is the length of the antiferromagnetic unit cell.

We will compute the induced dc voltages to the second order
in the spin excitations. For this purpose, computing the spin
excitations to the first order in their deviations from equilibrium
is sufficient. For simplicity, we assume an ideal compensated
antiferromagnetic-insulator-metal interface. In this case, we
can excite only standing waves in the transversal direction,
along the interface normal. Impurities, an uneven interface, or a
sufficiently high temperature can also facilitate the excitations
of waves in other directions. Within our assumptions, we
linearize the LLG equations and use a harmonic transversal
standing-wave ansatz of the solutions:

m(y,t) = 1
2 [δm(y)eiωt + δm∗(y)e−iωt ], (6a)

n(y,t) = n0 + 1
2 [δn(y)eiωt + δn∗(y)e−iωt ], (6b)
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FIG. 2. Standing waves of the Néel order parameter in the
transversal direction of the antiferromagnet (y ∈ [−dAF,0]) in the
limit when φy,z

m,n = 0 and ky,z
m,ndAF = Nπ .

where ω is the frequency of the dynamical source, n0 = x̂, and

δm(y) = δmy cos
[
ky
m(dAF + y) + φy

m

]
ŷ

+ δmz cos
[
kz
m(dAF + y) + φz

m

]
ẑ, (7a)

δn(y) = δny cos
[
ky
n (dAF + y) + φy

n

]
ŷ

+ δnz cos
[
kz
n(dAF + y) + φz

n

]
ẑ. (7b)

Here, δmy,z and δny,z are complex precession amplitudes,
k

y,z
m,n are the wave numbers of the standing waves, and φ

y,z
m,n

are relative phases. Figure 2 illustrates the different standing
waves.

B. Spin accumulation

The spin-diffusion equation determines the spatiotemporal
evolution of the spin accumulation μN

s (r,t) in the normal metal,

∂μN
s (r,t)
∂t

= γNH0 × μN
s + DN

∂2μN
s

∂y2
− μN

s

τN
sf

, (8)

where γN is the gyromagnetic ratio in the normal metal, H0 is an
external magnetic field, DN is the diffusion constant, and τN

sf is
the spin-flip relaxation time. When τN

sf is considerably smaller
than the other time scales of the system (applied ac voltage
frequency and characteristic magnetic field frequency ωH =
γN|H0|), the spin-diffusion equation can be approximated to
be static. This approximation is true for metals such as Pt,
which has a spin-flip relaxation time that is as low as 0.01 ps
[21]. We use this simplification in our calculations, leaving us
with a one-dimensional Helmholtz equation characterized by
the spin-diffusion length λN

sd =
√
DNτN

sf , with solutions given
by hyperbolic functions.

The source of the spin accumulation in the normal metal
is an ac voltage. This ac voltage leads to an ac charge current

I0
c(t) = I 0

c (t)x̂′ in the metal, which generates an oscillating
spin current through the spin Hall effect [8]. We consider a
harmonic ac current with frequency ω. The total spin current
in the normal metal is then

IN
s (y,t) = h̄θSH

2e
I 0
c (t)ẑ′ − h̄σA

4e2

∂μN
s (y,t)

∂y
, (9)

where θSH is the spin Hall angle and σ is the conductivity of
the normal metal.

The boundary conditions that μN
s must satisfy are that

the spin current across the normal-metal-vacuum interface
must vanish [IN

s (y = dN,t) = 0, where dN is the thickness
of the metallic layer] and that the spin current across the
AF|N interface is continuous [IN

s (y = 0,t) = IAF
s (y = 0,t)].

The spin current in the antiferromagnetic insulator is given
by contributions from SP and STTs, and it is approximated as

IAF
s (t) ≈ g⊥

2π

[
h̄(n × ṅ) + n × (

n × μN
s

)]
y=0 (10)

to the leading order in the applied ac voltage bias. We have
disregarded contributions from the imaginary part of the trans-
verse spin conductance since it is small in most materials. We
also consider the exchange limit (ω‖ � ωE), which is a good
approximation for many antiferromagnetic materials. In the
exchange limit, the antiferromagnet is approximately collinear
also at resonance, which means that the net magnetization is
negligible. Any SP contributions from the magnetization will
therefore be insignificant compared to the SP from the Néel
order parameter. By solving the spin-diffusion equation (8)
with the boundary conditions, we find that

μN
s (y,t) = μs0(t)

sinh
[
(2y − dN)

/(
2λN

sd

)]
sinh

[
dN

/(
2λN

sd

)] ẑ′

+ 1

1 + ξ

cosh
[
(y − dN)

/
λN

sd

]
cosh

[
dN

/
λN

sd

]
× [h̄(n × ṅ) − μs0(t)n × (n × ẑ′)]y=0, (11)

where we have introduced the dimensionless parameter

ξ = [
πh̄σA tanh

(
dN

/
λN

sd

)]/(
2g⊥e2λN

sd

)
(12)

and a characteristic spin accumulation

μs0(t) = 2θSHeλN
sd tanh

(
dN

/
2λN

sd

)
I 0
c (t)/(Aσ ). (13)

C. Magnetization dynamics

The magnetization dynamics in the antiferromagnet can
be divided into two separate regions: the dynamics at the
interfaces and the dynamics in the bulk. At the AF|N interface,
the STTs τ STT

m,n drive the dynamics, and there are also dissipative
SP torques τ SP

m,n. By integrating the LLG equations (1) in a
low volume around the AF|N interface, we find the boundary
conditions for n:

dAFα
′
{

n × ṅ + 1

h̄

[
n × (

n × μN
s

)]}
y=0

+ ω‖[λ2n × ∂yn]y=0 = 0. (14)

We assume that the other interface (y = −dAF) connects to
vacuum or a substrate with neither SP nor spin transfer.
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Subsequently, there is only a contribution to the boundary
conditions from the exchange stiffness, which requires that
the spatial derivative in the transversal direction vanishes.

By linearizing the boundary condition in Eq. (14) with the
ansatz in Eq. (6), we obtain the following constraint on the
wave number kz

n:

kz
ndAF tan

(
kz
ndAF

) = i
d2

AFα
′ω

λ2ω‖
κ, (15)

where we have introduced

κ =
[

1 + 2e2g⊥λN
sd coth

(
dN

/
λN

sd

)
Aπσ h̄

]−1

= ξ

ξ + 1
. (16)

When the term on the right-hand side of Eq. (15) is small, we
can expand the solution around the roots where k

y,z
m,ndAF ≈ Nπ

(N = 0,1,2, . . .) to determine the wave numbers. This limit
corresponds to the low-damping limit where the decay of the
standing waves in the antiferromagnetic layer is negligible.
Note that the opposite (high-damping) limit implies that the
precessions at the interface (and thus the SP and SMR voltages)
become small; therefore, this limit is of little interest.

The constraint from the boundary conditions in Eq. (14) on
the wave number k

y
n depends on an amplitude of δn,

δny

[
λ2ky

nω‖ sin
(
ky
ndAF

) − idAFα
′κω cos

(
ky
ndAF

)]
= dAF cos θα′κ|μs0|/h̄. (17)

Another equation is required to find solutions for δny and k
y
n ;

therefore, we must solve the LLG equations in the bulk of the
antiferromagnet.

In the bulk (−dAF < y < 0), the LLG equation becomes
a 4 × 4 matrix equation. A nontrivial solution requires the
determinant of this matrix to be zero because there is no
dynamical source in the bulk. The dynamics enters through the
boundary conditions at the interface. Because the determinant
is independent of the precession amplitudes δm and δn, we
can use this condition to determine the solutions for k

y
n that

allow a nontrivial solution of the precession amplitudes. The
amplitude δny can then be determined from Eq. (17), and the
remaining amplitudes δmy , δmz, and δnz can be determined
from the eigenvectors of the LLG bulk equations.

III. SPIN-TRANSFER-TORQUE-INDUCED
ANTIFERROMAGNETIC RESONANCE

A. Frequency spectrum and susceptibilities

When we are in both the low-damping and exchange limits,
the resonance frequencies of the N -node standing-wave mode
are |ω(N)

± | = ω
(N)
0 ± |ωH |, where

ω
(N)
0 = ω0

√
1 +

(
Nπλ

dAF

)2

(18)

and ω0 ≈ √
2ωEω‖ is the gap frequency. The solutions of

Eq. (17) around the k
y,z
n dAF = Nπ roots are approximately

complex Lorentzians,

δn
(N)
y,±(ω) ≈ (−1)N+1α′(N)κ cos θ |μs0|√ωE/

(
2h̄

√
2ω‖

)
|ω| − |ω(N)

± | + i�ω
(N)
± /2

,

(19)
where we have introduced the linewidth

�ω
(N)
± = 2(α0 + α′(N)κ)|ω(N)

± |
√

ωE

2ω‖
. (20)

We have also introduced the effective SP damping parameter
α′(N) for the N -mode spin wave, where α′(N=0) = α′ and
α′(N 
=0) = 2α′, which is analogous to the result for ferromag-
netic spin waves [22].

The Lorentzian approximation in Eqs. (19) and (20) is
valid to the lowest order in α0 and α′ under the assumption
that λ/dAF � 1. If the antiferromagnet is so thin that the
thickness becomes comparable to the exchange length, then
the gap between the resonance frequencies of the macrospin
mode and the higher-order standing-wave modes approaches
the exchange frequency ωE . This is the upper bound of the
resonance frequency; thus, in the limit dAF ∼ λ, we can excite
only the macrospin mode. Because we also want to study
the higher-order standing waves, we consider only the limit
where dAF � λ.

Note that even though the linewidth is enhanced by a factor
of

√
ωE/ω‖, the maximum amplitude of the precessions is not

suppressed by the inverse of this factor. This differs from the
case where the source of the dynamics is a magnetic field,
where the amplitudes are suppressed by a factor of

√
ω‖/ωE .

For the spin-transfer-driven case, the only suppression arises
from the high resonance frequencies of the antiferromagnet,
and this suppression is also present in the magnetic-field-driven
case in addition to the

√
ω‖/ωE factor.

The z component of the Néel order parameter is related to
the y component by

cos
(
kz
ndAF

)
δn

(N)
z,± = ∓sgn(ωH )i cos

(
ky
ndAF

)
δn

(N)
y,±. (21)

This is obtained through the eigenvectors of the bulk LLG
equations in Eq. (1) in the region where −dAF < y < 0. The
magnetization δm also has a circular polarization for uniaxial
antiferromagnets, and its amplitude is suppressed by a factor
of ∝√

ω‖/ωE compared to the Néel order parameter. This
suppression factor justifies our discarding the contributions
from the magnetization in the antiferromagnet to the spin
accumulation in the metal. We now assume that the separation
between the resonance frequencies |ω(N)

± | is considerably
greater than the linewidths |�ω

(N)
± | and that the real part of the

eigenfrequency is much greater than the imaginary part. The
frequency spectrum for, e.g., δny(ω) can then be approximated
by a sum of the complex Lorentzians in Eq. (19):

δny(ω) =
∞∑

N=0

∑
i=±

δn
(N)
y,i (ω), (22)

with similar notation for the other amplitudes.

B. Spin Hall magnetoresistance and spin pumping dc voltages

We can now use our solutions of the spin accumulation in
Eq. (11) and precession amplitudes in Eqs. (19) and (21) to
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determine the total charge current resulting from the applied
voltage and interaction with the antiferromagnet driven at
resonance. This charge current density is [11]

jc(y,t) = I 0
c (t)

A
x̂′ + θSHσ

2e
ŷ × ∂μN

s (y,t)

∂y
. (23)

By averaging over the normal metal, jc(t) = d−1
N

∫ dN

0 jc(y,t)dy,
we find that the contributions to the x ′ direction are

jc(t) · x̂′ = jSMR
c,x ′ (t) + jSP

c,x ′ (t), (24)

where

jSMR
c,x ′ (t) = I 0

c (t)

A

[
1 − �ρ0

ρ
− �ρS

ρ

(
1 − n2

z′
)]

y=0

, (25)

jSP
c,x ′ (t) = −θSHh̄σ

2dNe
η[(n × ṅ)z′]y=0. (26)

Here, we have introduced

�ρ0 = −ρθ2
SH

2λN
sd

dN
tanh

(
dN

2λN
sd

)
, (27)

η = 1

1 + ξ
tanh

(
dN

2λN
sd

)
tanh

(
dN

λN
sd

)
, (28)

and the SMR �ρS = −η�ρ0/2. ρ = 1/σ is the resistivity of
the normal metal. The contributions from both the SMR and
the SP induce a dc component in the resulting ISHE voltage in
the normal metal. Assuming that I 0

c (t) = I 0
c cos(ωt), we find

that 〈
jSMR
c,x ′ (t)

〉
t
= �ρSI

0
c

2ρA
sin 2θRe

[
δnz cos

(
kz
ndAF

)]
. (29)

To find the dc contributions from SP, we study the dc compo-
nent of 〈(n × ṅ)z′ 〉t , and we compute that

〈(n × ṅ)z′ 〉t = − ωIm
{[

δny cos
(
ky
ndAF

)]∗

× δnz cos
(
kz
ndAF

)}
sin θ. (30)

Let us now compare the results for the dc components of
jSMR
c,x ′ and jSP

c,x ′ in Eqs. (25) and (26) to the ferromagnetic case
[3]. We observe that the results are exactly the same when
n ↔ M̂ and Gr → 2Gr , where M̂ is the magnetization unit
vector in the ferromagnet and Gr is the real transverse spin
conductance in Ref. [3].

Experiments measuring the SMR in NiO|Pt heterostruc-
tures indicate that the SMR is negative for antiferromag-
nets [13–16]. Because the only key difference between the
antiferromagnetic case and the ferromagnetic case is that the
Néel order parameter, not the magnetization, causes the SMR,
the negative sign must be due to some property of the Néel
order parameter. This is in agreement with the reasoning in
Ref. [14], where the negative SMR is explained by the coupling
of the Néel order parameter to the magnetic field. They
typically couple perpendicularly to each other, whereas for
ferromagnets, the magnetization couples along the magnetic
field. The perpendicular coupling gives rise to a π/2 phase
shift relative to the ferromagnetic case and a negative sign in
the measured SMR.

If we consider the case in which the susceptibility of the
Néel order parameter is of the same order of magnitude as

the susceptibility of the magnetization in a ferromagnet, then
the SMR and SP voltages in an antiferromagnet should be
comparable to those in a ferromagnet. Equation (19) shows
that the susceptibility scales with the inverse of the resonance
frequency. The susceptibility of the Néel order parameter
therefore becomes comparable to that of the magnetization in
a ferromagnet when the system is driven close to the spin-flop
transition, where the resonance frequency is small [19].

Inserting our solutions of the frequency-dependent ampli-
tudes in Eqs. (19) and (21), the dc voltages as a function of
applied ac voltage frequency become approximately

V SMR
dc (ω) = sgn(ωH )K sin 2θ cos θ

(
I 0
c

A

)2

×
∞∑

N=0

∑
j=±

α′(N)

2(α0 + κα′(N))

jL
(N)
j (ω)∣∣ω(N)
j

∣∣ , (31a)

V SP
dc (ω) = −sgn(ωH )κK sin 2θ cos θ

(
I 0
c

A

)2

×
∞∑

N=0

∑
j=±

[
α′(N)

2(α0 + κα′(N))

]2 jL
(N)
j (ω)∣∣ω(N)
j

∣∣ , (31b)

where V SMR/SP
dc = lρ〈jSMR/SP

c,x (t)〉t and l is the length of the
bilayer in the direction of the applied voltage. We have also
introduced the symmetric Lorentzian

L
(N)
± (ω) =

(
�ω

(N)
±

/
2
)2(|ω| − ∣∣ω(N)

±
∣∣)2 + (

�ω
(N)
±

/
2
)2 (32)

and the constant

K = lκηθ3
SHe

(
λN

sd

)2

h̄dNσ 2
tanh2

[
dN

2λN
sd

]
. (33)

In our model, the SMR and SP voltages as functions of fre-
quency are described via symmetric Lorentzians. However, we
have not included the contributions from the Oersted field to the
dynamics. The charge current causes an oscillating magnetic
field that leads to an antisymmetric Lorentzian component [3].
One therefore needs to filter out the antisymmetric component
before comparing experimental data with our model. We did
not take the Oersted field in the free energy into account since
the susceptibility associated with this magnetic field is a factor
of ∼√

ω‖/ωE smaller than the susceptibility associated with
the spin accumulation [23]. Moreover, because the Oersted
field is approximately uniform in a sufficiently thin antiferro-
magnetic film, it can couple only to the N = 0 mode. The sym-
metric Lorentzian can therefore be expected to be the dominant
component of the signal for most antiferromagnetic materials
and should be the only component for the N 
= 0 modes.

Next, we will compute the dc voltages for a MnF2|Pt bilayer
using the parameters in Tables I and II. Direct measurements

TABLE I. Material parameters for MnF2.

ωE (s−1) [24] ω‖ (s−1) [24] L (A/m) [25]

9.3 × 1012 1.5 × 1011 47 862
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TABLE II. Material parameters for Pt.

θSH [26] λPt
sd (nm) [27] σ ([� m]−1) [28]

0.12 1.5 5 × 106

of some of the parameters are lacking. We therefore use these
missing material parameters from similar systems. We use the
Gilbert damping of NiO, α0 = 2.1 × 10−4 [29]. The transverse
conductance at AF|N interfaces has been predicted to be of
the same order of magnitude as the conductance at interfaces
consisting of ferromagnets or ferrimagnets and a normal
metal [18]. We therefore use a typical value of the transverse
conductance for ferromagnet-normal-metal systems, g⊥/A ∼
3 × 1018 m−2 (ferromagnet|Pt [30]). MnF2 has a tetragonal
crystal structure and therefore two lattice constants. The length
a of the antiferromagnetic unit cell is therefore not uniquely
defined for this material. The value of a used to evaluate
the exchange length λ [given by λ2 = a2ωE/(4ω‖)] will be
the length of the unit cell in the propagation direction of
the spin waves, i.e., the y direction in our geometry. In our
calculations, we use the average of the two lattice constants for
our characteristic length a. The two lattice constants for MnF2

are a1 = 4.88 Å and a2 = 3.32 Å [31], providing the average
value a = 4.10 Å. This value results in an estimated exchange
length of 1.6 nm. We note, however, that this value depends on
the orientation of the antiferromagnet. The exchange length
should therefore be estimated by measuring the separation
between the resonance peaks.

The results obtained using these parameters are presented
in Fig. 3, where we have used l = 100 μm, dN = 2λPt

sd, and
I 0
c /A = 1010 A/m2. For the angle θ between the applied

voltage and the easy axis of the antiferromagnetic material,
we use a value of θ = 35◦. Optimally, one would have the ac
voltage source along the easy axis direction and another pair of
electrodes for detecting the resulting dc voltage perpendicular
to the easy axis. However, realizing such an experimental
setup with two pairs of electrodes may be impractical. When
measuring the signal along the same direction as the applied
voltage source, as considered here, θ ≈ 35◦ is the most efficient
angle for simultaneously exciting and detecting the resonance.
The SMR and SP dc voltages always have opposite signs,
whereas their frequency dependence is exactly the same.
The partial cancellation leads to a smaller net signal. The
contributions from SMR and SP cannot be distinguished from
one another in this bilayer system. We also observe that the SP
voltage is always smaller than the SMR voltage. For a given
direction of the external magnetic field, here assuming that
ωH > 0, the signs of the dc signals depend solely on whether
the precessions are right handed (ωres > 0, + mode) or left
handed (ωres < 0, − mode). The dc voltages resulting from the
higher-energy modes are not particularly large for our choice
of parameters. This is primarily due to the high resonance
frequencies of these modes. The standing waves will be easier
to detect in materials with a gap frequency ω0 lower than that of
MnF2. Examples of antiferromagnets with a low gap frequency
are RbMnF3, which has a gap of ω0/2π = 9 GHz [32], and
GdFe3(BO3)4, which has a gap of ω0/2π = 29 GHz [33]. For
comparison, the gap frequency of MnF2 is ω0/2π = 267 GHz.

FIG. 3. Resonance spectrum for a MnF2 film of thickness dAF =
20 nm in an external magnetic field ωH = 0.97ω0 (|H0| = 9.24 T).
The dc voltages for the low-energy macrospin mode (0−) are shown
in (a), while some of the higher-energy left-handed N− modes are
shown in (b).

As an alternative to finding materials with lower resonance
frequencies, one can apply a stronger voltage to enhance the
signals because the measured dc voltages are quadratic in the
applied ac voltage.

In the next section, we will discuss a trilayer system that
allows separating the SMR and SP voltages. Separating these
voltages yields more information about the system, such as
the ratio between the intrinsic damping and the SP-enhanced
damping.

IV. SEPARATION OF SPIN-HALL-MAGNETORESISTANCE
AND SPIN-PUMPING VOLTAGES

A. N|AF|N system

We now extend and generalize our considerations to an
antiferromagnetic insulator sandwiched between two normal
metals, as illustrated in Fig. 4. We apply an ac voltage with a
constant amplitude to an active normal metal as in the previous
sections. Additionally, we use a passive normal metal to detect
the SP contributions from the antiferromagnet. Because the
passive normal metal does not exhibit any SMR dc voltage to
the leading order in the applied voltage source, we measure the
SMR and SP voltages independently.
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FIG. 4. An antiferromagnet sandwiched between two normal
metals. Magnetization dynamics in the antiferromagnet is induced by
applying an ac voltage with a constant amplitude on the normal metal
to the right, which leads to a spin current into the antiferromagnet. A
spin current is then pumped into the left normal metal, which induces
a charge current through the inverse spin Hall effect.

Taking advantage of the symmetry of our system, the spin
accumulation in the passive normal metal can readily be
obtained from Eq. (11). Because the only source for the spin
accumulation is SP from the antiferromagnet, we find the spin
accumulation to be

μNL
s (y,t) = h̄

1 + ξL
[n × ṅ]y=−dAF

(
cosh

[
dNL

/
λ

NL
sd

])−1

× cosh
[
(y + dNL + dAF)

/
λ

NL
sd

]
. (34)

Here, the index L implies that the value should be evaluated
using the properties of the passive normal metal NL and the
NL|AF interface. These parameters are defined analogously
to those of the bilayer system but will potentially take on
different values than the active normal metal NR and the
AF|NR interface. Consequently, the average charge current in
the passive normal metal along the x ′ direction becomes

jL
c,x ′ (t) = jL

c (t) · x̂′ = θL
SHh̄σL

2dNLe
ηL[(n × ṅ)z′ ]y=−dAF . (35)

If we, for simplicity, assume no decay of the spin current in
the antiferromagnet, then we can observe from Eq. (26) that

〈
jL
c,x ′ (t)

〉
t
= − θL

SHσLηLdNR

θR
SHσRηRdNL

〈
jSP
c,x ′ (t)

〉
t
. (36)

In other words, when the properties of both metallic layers
are known, we can indirectly measure the SMR dc voltage by
measuring the ratio of the dc voltage in the passive normal
metal NL relative to the dc voltage in the active normal metal
NR. This indirect measurement of the SMR voltage assumes
that the decay of the pumped spin current is insignificant. We
will now determine in what region this approximation holds.

B. Spin-current decay

The nonzero spin current across the left AF interface implies
that the boundary conditions at y = −dAF must be extended to
include SP and STTs:

dAFα
′
L

{
n × ṅ + 1

h̄

[
n × (

n × μNL
s

)]}
y=−dAF

− ω‖[λ2n × ∂yn]y=−dAF = 0. (37)

The boundary conditions at y = 0 remain unchanged and are
given by Eq. (14). As a result of the new boundary conditions
at y = −dAF, the solutions for the phases φ

y,z
m,n in our linear

response ansatz in Eq. (7) are no longer zero as they were in
the bilayer system. The phases will now have a finite correction
in α′. We can rewrite our boundary conditions at y = 0, − dAF

as the following constraints on the wave numbers and phases:

ky,z
n dAF tan φy,z

n = −i
d2

AFω

λ2ω‖
α′

LκL, (38a)

kz
ndAF tan

(
kz
ndAF + φz

n

) = i
d2

AFω

λ2ω‖
α′

RκR. (38b)

We can decouple the above equations to obtain constraints that
are dependent on only the wave number kz

n,

tan
(
kz
ndAF

)[
kz
ndAF + 1

kz
ndAF

(
d2

AFω

λ2ω‖

)2

α′
Lα′

RκLκR

]

≈ kz
ndAF tan

(
kz
ndAF

) = 2i
d2

AFω

λ2ω‖
α′κ, (39)

where we have introduced α′κ = (α′
LκL + α′

RκR)/2. This con-
straint is similar to the constraint for the AF|N bilayer in
Eq. (15) to the lowest order in α′, except that α′κ → 2α′κ .
The enhanced damping due to SP is because we now pump
spins across two interfaces rather than across one interface.
The last constraint on k

y
n is equivalent to Eq. (17), where we

now also have to take the nonzero phase φ
y
n into account; thus,

the boundary condition becomes

dAF cos θα′
RκR

∣∣μR
s0

∣∣/h̄ = δny

[
λ2ky

nω‖ sin
(
ky
ndAF + φy

n

)
− idAFα

′
RκRω cos

(
ky
ndAF + φy

n

)]
.

(40)

The decay of the spin current in the antiferromagnetic
insulator is related to the imaginary components of dAFk

y,z
n .

At resonance and to the lowest order in α′ and α0, we find
these to be

∣∣Im(
dAFk

z
n,N=0

)∣∣ =
√

d2
AFα

′κω

λ2ω‖
, (41a)

∣∣Im(
dAFk

y

n,N=0

)∣∣ =
√

d2
AF(α′κ + α0)ω

λ2ω‖
(41b)

for the macrospin mode and

∣∣Im(
dAFk

z
n,N>0

)∣∣ = 2d2
AFα

′κω

λ2Nπω‖
, (42a)

∣∣Im(
dAFk

y

n,N>0

)∣∣ = d2
AF

(
2α′κ + α0

)
ω

λ2Nπω‖
(42b)

for the standing-wave modes, respectively.
Let us now study how the imaginary components in

Eqs. (41) and (42) scale with dAF and the resonance frequency
ω. Since the SP-induced damping α′ ∝ 1/dAF, Im(dAFk

z
n,N )

scales as ∝ (dAFω)ζ , where ζ = 1/2 for the macrospin mode
and ζ = 1 for the standing waves (N > 0). In the limit where
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FIG. 5. Ratio of the spin pumping at the passive AF|N interface
relative to the spin pumping at the active AF|N interface as a function
of dAF for three of the low-energy left-handed N− modes at ωH =
0.97ω0 (|H0| = 9.24 T).

α0 � α′, when the bulk damping is small compared to the
interface damping, Im(dAFk

y

n,N ) scales as Im(dAFk
z
n,N ). How-

ever, when α0 becomes large compared to α′, the bulk damping
dominates, and Im(dAFk

y

n,N ) scales as ∝(d2
AFω)

ζ
. We can then

observe, as expected, that the spin current decays faster as
a function of dAF for thicker films where the bulk damping
dominates. Based on these scaling relations, we observe that
we can minimize the decay of the spin current, thereby keeping
the magnitude of the SP at the two interfaces similar to each
other, by (i) keeping the antiferromagnetic layer sufficiently
thin and (ii) reducing the resonance frequency by driving the
system close to the spin-flop transition.

Assuming that the SP is dominated by the dynamics of n,
which is a good assumption for most collinear antiferromag-
nets, the transmission of the pumped spin current through the
antiferromagnetic layer can be defined as

T
(N)

SP =
∣∣∣∣ 〈(n × ṅ)y=−dAF

〉t
〈(n × ṅ)y=0〉t

∣∣∣∣. (43)

This describes the ratio of the SP at the passive interface
relative to the active interface where we excite the dynamics
by injecting a spin current. When this ratio is close to unity,
it is a good assumption that we are in the low-decay regime,
and the pumped spin current across the two interfaces will be
approximately the same. In the low-decay regime, the SMR and
SP dc voltages can be separated by measuring the dc voltage
in both normal metals independently.

We plot the transmission of the pumped spin current as a
function of dAF in Fig. 5 for the three lowest energy modes.
We use the same values for the system parameters as for the
bilayer system in Sec. III B, and for simplicity, we let the
properties of both metallic layers be identical. As shown, the
pumped spin current of the modes with the lowest energy
exhibits the fastest decay with increasing thickness of the
antiferromagnetic layer. This result is as expected from the
scaling behaviors in Eqs. (41) and (42), as d2

AFωα′κ/(λ2ω‖) is
a small dimensionless number for the choice of parameters that
we have previously considered. If d2

AFωα′κ/(λ2ω‖) is of order
unity or larger, then we are in the large-damping limit, and we

can therefore expect the decay of the spin-wave amplitudes
to become significant. We also observe that the N > 0 modes
decay in both the thin-film limit (dAF ∼ λ) and in the thick-film
limit (dAF � λ), in contrast to the behavior of the macrospin
mode. This result is due to the high resonance frequencies
of the standing waves when the thickness of the AF layer
approaches the exchange length, as one can see from Eq. (18).
As the standing waves (N > 0 modes) decay considerably due
to a high resonance frequency in the thin-film limit and due to
the long transport distances in the thick-film limit, there will
be a finite optimal-transmission thickness for these modes, as
indicated by the transmission peaks in Fig. 5. For the macrospin
mode, T

(N)
SP ≈ 1 is a good approximation when the thickness

of the antiferromagnetic layer is comparable to the exchange
length. For the standing-wave modes there is always a notable
decay for our choice of parameters. However, a transmission
close to 90% is possible for thin AFs if the resonance frequency
is relatively low.

To study the cause of the decay of the spin current, we
compare the different contributions to the damping. For our
choice of parameters, we have that α′ = α0 at dAF = 440
nm. As shown in Fig. 5, there is a significant decay of the
spin current well below this thickness. This means that for
our choice of parameters, the observed decay of the spin
current is not primarily due to the intrinsic Gilbert damping
in the bulk of the antiferromagnet. The noteworthy decay
observed for relatively thin films is a consequence of the short
exchange length of MnF2. The spin waves are rather soft in this
material. For stiffer materials with longer exchange lengths,
i.e., materials with a larger exchange to anisotropy ratio, it
is expected that the decay lengths will also be longer. The
disadvantage of having long exchange lengths, however, is
that this will also increase the resonance frequencies of the
standing-wave modes, thereby making their detection more
challenging. This is not the case for the macrospin mode, where
the exchange length affects only the decay length of the spin
waves.

Based on our results, one can observe thatT (N)
SP ≈ 1 is a good

approximation when Im(dAFk
y,z
n ) � 1. We can then utilize

the analytical expressions for these imaginary components in
Eqs. (41) and (42) to evaluate whether we are in a low-decay
regime, where the SMR and SP dc voltages can be separated.

V. CONCLUSIONS

We have studied STT-induced antiferromagnetic resonance
in bilayers that consist of an antiferromagnetic insulator and
a normal metal and in a metal-antiferromagnetic-insulator-
metal trilayer. We considered excitations of the uniform mode
and of the transverse standing waves. The dc voltages have
contributions from the SMR and SP, similar to ferromagnetic
systems. In the antiferromagnetic system, the dynamics of the
Néel order parameter causes these effects. A challenge in an
antiferromagnetic system is the weak signals due to the low
susceptibility of the Néel order parameter. We demonstrate
how the signals are enhanced by driving the system close to the
spin-flop transition, where the resonance frequency is lower.
In trilayer systems, the contributions due to SP and SMR can
be separated when the antiferromagnetic layer is thin.
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Note added. Recently, an independent study of spin-transfer
antiferromagnetic resonance was reported [23]. Reference [23]
computes the spin accumulation and frequency dependence
of the conductivity in the normal metal for the macrospin
mode. A main point and difference in our work is that
we consider a magnetic field that importantly reduces the
frequency and enhances the output signal. This facilitates
experimental detection in an experimentally feasible frequency
range. Additionally, we study the excitation of standing spin

waves and a trilayer system that can be utilized to separate the
output signals resulting from SP and SMR.
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Microwaves couple to magnetic moments in both ferromagnets and antiferromagnets. Although the
magnons in ferromagnets and antiferromagnets radically differ, they can become entangled via strong
coupling to the same microwave mode in a cavity. The equilibrium configuration of the magnetic moments
crucially governs the coupling between the different magnons, because the antiferromagnetic and
ferromagnetic magnons have opposite spins when their dispersion relations cross. We derive analytical
expressions for the coupling strengths and find that the coupling between antiferromagnets and
ferromagnets is comparable to the coupling between two ferromagnets. Our findings reveal a robust
link between cavity spintronics with ferromagnets and antiferromagnets.

DOI: 10.1103/PhysRevLett.121.087204

Magnets and photons can couple strongly and coherently
on the quantum level [1]. This coupling has been observed
as hybridizations between ferromagnetic magnons and
either microwave resonators [2], microwave photons [3],
or optical photons [4–7]. Together, these findings constitute
the birth of cavity spintronics, a new interdisciplinary field
with roots in spintronics, cavity quantum electrodynamics,
and quantum optics. Shortly after the initial observations of
magnon-photon hybridization, experiments also achieved
ultrastrong coupling between magnons and microwaves
[8–11]. One can tune the coupling strength by changing the
temperature of the system [12,13]. The cooperativity of the
hybridization, namely, the ratio of the coupling strength to
the loss rates, is a measure of the coherence in the system
and can be as large as 107 [10]. The transmission and
reflection coefficients of a cavity are measures of the
magnon-photon coupling. Brillouin light scattering [14]
or spin pumping [15–17] can provide additional informa-
tion. Although the focus thus far has been placed on the
hybridization between ferromagnetic magnons and pho-
tons, theory predicts that there should also be a significant
coupling between antiferromagnetic magnons and photons
[18]. Recently, a robust coupling between microwave
photons and antiferromagnetic fluctuations in an organic
magnet has been observed [19].
When two ferromagnets or ferrimagnets couple to the

same cavitymode or the same photons, a nonlocal interaction
between the magnons emerges [20,21]. The quantized
magnetic field of the cavity mode or photons mediates this
indirect coupling. In turn, this coupling facilitates the
coherent transport of magnons over macroscopic distances.
The magnons in ferromagnets and antiferromagnets

strongly differ. Nevertheless, we will demonstrate that a
strong nonlocal coupling can also arise between the
magnons in an antiferromagnet and those in a ferromagnet.

This link opens the door toward long-range spin commu-
nication between antiferromagnetic and ferromagnetic
spintronic devices. Such a connection has so far been
elusive, because the vanishing magnetization of the anti-
ferromagnet renders it invisible to dipolar interactions with
the ferromagnet. The need for and interest in such a long-
range coupling between dissimilar magnetic materials have
increased with the recent emergence of antiferromagnetic
spintronics [22–26]. Our findings open a path toward
integrating these new components with existing ferromag-
netic ones.
To study the cavity-mediated coupling between an

antiferromagnet and a ferromagnet, we consider the setup
depicted in Fig. 1. The Hamiltonian consists of four
components:

AFM

FM

FIG. 1. A microwave cavity consisting of two perfect con-
ductors separated by a distance L. The magnons in an anti-
ferromagnet (with sublattice spins SA and SB) and those in a
ferromagnet (with spins SC) couple via the quantized magnetic
field Hp. An external magnetic field H0 along the equilibrium
direction of the magnetic moments tunes the resonance frequen-
cies of the magnons to be in the same frequency range.
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H ¼ HAFM þHFM þHph þHm-ph; ð1Þ

where HAFM describes the antiferromagnet, HFM the
ferromagnet,Hph the cavity modes, and Hm-ph the coupling
of the magnons in both the antiferromagnet and the
ferromagnet to the cavity modes. We consider an anti-
ferromagnet described by the Hamiltonian

HAFM ¼ J
X

hi;ji∈AFM
Si · Sj þ jγj

X
i∈AFM

H0 · Si

−
Kk
2

X
i∈AFM

ðSzi Þ2 þ
K⊥
2

X
i∈AFM

ðSxi Þ2; ð2Þ

where J > 0 is the exchange coupling between the spins S,
γ is the gyromagnetic ratio, H0 ¼ H0ẑ is an external
magnetic field (in units of Tesla) along the easy axis,
and Kk > 0 and K⊥ ≥ 0 are the easy- and hard-axis
anisotropy constants, respectively. For the ferromagnet,
we consider energy contributions from the Zeeman and
dipolar interactions. It will become clear that the photons
couple only to homogeneous magnetic excitations. We can
therefore use a simplified expression for the dipolar
interaction, resulting in a ferromagnetic Hamiltonian of

HFM ¼ jγj
X
i∈FM

H0 · Si þ
μ0
2

Z
VFM

dV
X
i¼x;y;z

NiM2
i : ð3Þ

Here, Nx;y;z are the elements of the diagonal demagneti-
zation tensor, VFM is the volume of the ferromagnet, μ0 is
the vacuum permeability, and Mi is the ith component of
the magnetization. The magnetization is related to the spins
by M ¼ −jγjPi∈FMSi=VFM.
Now, let us rewrite the two magnetic Hamiltonians in

terms of magnon operators. We perform a Holstein-
Primakoff transformation [27] of the spin operators Si,
retaining terms of up to second order in themagnonoperators
in the resulting Hamiltonian. Following this procedure, we
perform a Fourier transformation from spatial coordinates
into a momentum representation. To diagonalize the anti-
ferromagnetic and ferromagnetic Hamiltonians, we also
perform Bogoliubov transformations.
In terms of the initial Holstein-Primakoff antiferromag-

netic magnon annihilation (creation) operators að†Þq and bð†Þq

within sublattices A and B, respectively (see Fig. 1), the
Bogoliubov transformation into the diagonal eigenmode

magnons αð†Þq and βð†Þq is [28]

0
BBBBB@

αq

β†−q

α†−q

βq

1
CCCCCA

¼

0
BBBBB@

uα;a vα;b vα;a uα;b
v�β;a u�β;b u�β;a v�β;b
v�α;a u�α;b u�α;a v�α;b
uβ;a vβ;b vβ;a uβ;b

1
CCCCCA

0
BBB@

aq

b†−q

a†−q
bq

1
CCCA: ð4Þ

Here, q is the wave vector of the magnons. To determine the
elements of the Bogoliubov transformation, we impose the

requirement that the operators αð†Þq and βð†Þq must satisfy
bosonic commutation relations as well as the relations
½αq; HAFM� ¼ ℏωααq and ½βq; HAFM� ¼ ℏωββq. Here, ωα;β

are the eigenfrequencies of the antiferromagnet. The
excitations in the antiferromagnet are then

HAFM ¼
X
q

ðℏωαα
†
qαq þ ℏωββ

†
qβqÞ: ð5Þ

Let us define the frequencies ωE ¼ ℏJsZ, ωH ¼ jγjH0,
ωk ¼ ℏsKk, and ω⊥ ¼ ℏsK⊥, where s is the spin number
and Z is the number of nearest neighbors in the anti-
ferromagnet; then, we can express the eigenfrequencies as

ω2
� ≈ ωEð2ωk þ ω⊥Þ þ ω2

H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
Eω

2⊥ þ 4ω2
HωEð2ωk þ ω⊥Þ

q
; ð6Þ

where ωα ¼ ωþ and ωβ ¼ ω−. For simplicity, we have here
included only terms to the lowest order in the anisotropy
frequencies ωk=⊥, as these are typically much smaller than
the exchange frequency ωE. We also assume that the
wavelength of the magnons is much larger than the atomic
length scale.
In the long-wavelength limit (q ¼ 0), the quantized

ferromagnetic Hamiltonian can be expressed as [28,29]

HFM ¼ AFMc†cþ BFMðccþ c†c†Þ; ð7Þ

where AFM ¼ ℏ½ωH þ ωMðNxz þ NyzÞ=2� and BFM ¼
ℏωMNxy=4. Here, we have defined ωM ¼ jγjμ0Ms, where
Ms is the saturation magnetization of the ferromagnet, and
Nij ¼ Ni − Nj. We have also introduced the ferromagnetic
magnon annihilation (creation) operator cð†Þ from the initial
Holstein-Primakoff transformation for the ferromagnet.
This Hamiltonian can be diagonalized through a
Bogoliubov transformation defined by η¼uFMcþvFMc†.
Imposing bosonic commutation relations on ηð†Þ yields the
constraint u2FM − v2FM ¼ 1. The elements of the Bogoliubov
transformation are [29]

vFM ¼ 2BFM

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAFM þ ℏωηÞ2 − 4B2

FM

q
; ð8aÞ

uFM ¼ vFMðAFM þ ℏωηÞ=ð2BFMÞ: ð8bÞ

We assume a thin-film geometry with Nx ¼ 1 and
Ny ¼ Nz ¼ 0. The resonance frequency is then ωη ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωHðωH þ ωMÞ

p
.

Now, let us consider the cavity. We first introduce a
simple geometry. We will later argue that the simple
geometry also captures the essential physics in more
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complex cavities. We describe the microwave cavity as
two perfect conductor plates separated by a distance L in
the x direction. The plates are located at x ¼ 0 and x ¼ L.
The boundary conditions near the conducting plates cause
a quantization of the electromagnetic modes in the x
direction. The allowed wave numbers in this direction
are nπ=L (n ¼ 1; 2;…). We assume that the microwaves
propagate only in the direction perpendicular to the
conducting plates, i.e., along the x axis. The resulting
quantized magnetic field is

HpðrÞ ¼
X
n;λ

i cos

�
nπx
L

��
ℏωnμ0
V

�
1=2

× ðpn;λx̂ × êλ − p†
n;λx̂ × ê�λÞ: ð9Þ

Here, pð†Þ
n;λ is the boson annihilation (creation) operator

associated with a cavity mode with quantum numbers n
and λ. êλ is the polarization unit vector, where λ is the
polarization. V is the volume of the cavity, ωn ¼ nπc=L
is the cavity mode frequency, and c is the speed of light.
The cavity Hamiltonian is

Hph ¼
X
n;λ

ℏωn

�
p†
n;λpn;λ þ

1

2

�
: ð10Þ

The cavity modes can couple to the magnons in both
antiferromagnets [18] and ferromagnets [2,3]. The inter-
action is represented by a Zeeman term between the
quantized magnetic field Hp in Eq. (9) and the spins in
the magnetic materials. This interaction is described by the
magnon-photon Hamiltonian Hm-ph.
We use a circular polarization basis, λ ¼ � and

êλ ¼ ê� ¼ ðẑ� iŷÞ= ffiffiffi
2

p
, for the cavity modes. Since the

speed of light is much greater than the group velocity of
the magnons, the cavity modes couple only to magnons of
approximately jqj ¼ 0. For simplicity, we assume that the
cavity couples only to the q ¼ 0 modes. We also use the
rotating wave approximation (RWA) to simplify the mag-
non-photon interaction. In the RWA, rapidly oscillating
terms, e.g., pairs of creation operators or pairs of annihi-
lation operators, are disregarded, because their average
contributions quickly become small.
We tune the system size such that the n ¼ 1 cavity

mode has a frequency near the crossing of the ferromag-
netic and antiferromagnetic dispersion relations. The cou-
pling between the ferromagnet and the antiferromagnet is
significant only near this crossing region. Therefore, we
disregard any contributions from the high-energy n > 1
cavity modes and α magnons of the antiferromagnet. There
are also three-particle (and higher-order) interactions in
which pairs of magnon creation or annihilation operators
couple to the cavity mode, i.e., terms such as β†β†pn;λ

and ββp†
n;λ. Such couplings to the n ¼ 2 cavity mode, for

example, oscillate sufficiently slowly to be significant in
the RWA. However, these higher-order contributions scale
more weakly with the number of spins in the ferromagnet
or antiferromagnet (NFM=AFM) than the two-particle inter-
actions do. Such terms can therefore be safely disregarded.
With these approximations and simplifications, the

magnon-photon interaction Hamiltonian reduces to

Hm-ph ¼ ℏðg̃AFMβ† − g̃FMη†Þðpþ þ p−Þ þ H:c: ð11Þ

Here, we have introduced the ferromagnetic coupling
strength g̃FM ¼ gFMðuFM þ vFMÞ and the antiferromagnetic
coupling strength g̃AFM¼gAFMðuβ;a−vβ;bþvβ;a−uβ;bÞ=

ffiffiffi
2

p
,

where gFM=AFM ¼ jγj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωpμ0sNFM=AFM=ð4VÞ

p
, with ωp ¼

ωn¼1 being the microwave frequency. In addition, the
coupling strength in a cavity depends on the overlap
of the cavity mode with the magnetic materials [15].
More general geometries are described by substituting
gFM=AFM → ξFM=AFMgFM=AFM, where ξFM=AFM is a geomet-
rical overlap factor of order one for the ferromagnet or
antiferromagnet [13]. In the following illustrations, we
consider a perfect overlap between the cavity mode and
each magnetic material; i.e., we set ξFM;AFM ¼ 1. In
general, the elements of the Bogoliubov transformation
for the antiferromagnetic magnons (uβ;a, vβ;b, vβ;a, and
uβ;b—see Ref. [28] for how to calculate them) are com-
plicated functions of the parameters of the antiferromag-
netic Hamiltonian expressed in Eq. (2). We therefore
present the coupling strengths between the antiferromag-
netic magnons and the cavity for only two particular
scenarios. In the first scenario, the antiferromagnet is
uniaxial (ω⊥¼0), and we find that the coupling strength is

g̃AFM
gAFM

≈
�

ωk
8ωE

�
1=4

: ð12Þ

In the second scenario, the antiferromagnet has an easy-
plane anisotropy such as that in NiO, where Oðω⊥Þ ∼
Oð ffiffiffiffiffiffiffiffiffiffiffi

ωkωE
p Þ [30,31]. The coupling strength is then

g̃AFM
gAFM

≈
ωHffiffiffiffiffiffiffiffiffi

2ωE
p ð2ωEωk − ω2

HÞ1=4
: ð13Þ

The expressions given in (12) and (13) are valid to the
lowest order in ωk=ωE. Note that, for the uniaxial anti-
ferromagnet, the suppression from the anisotropy-to-
exchange ratio is rather weak (only to the power of
1=4). In spin pumping from antiferromagnets, for example,
the suppression from the large exchange interaction is
stronger (to the power of 1=2). This is promising for
achieving a significant coupling between the antiferromag-
netic magnons and the microwaves.
We consider two geometries. In the first case, themagnetic

moments of the ferromagnet and antiferromagnet are
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perpendicular to the propagation direction of the cavity
modes, as in Fig. 1. In this geometry, which is the one we
have considered so far, the magnons couple to both circular
polarizationswith the same strength, as seen in Eq. (11). This
is because, in the RWA and to leading order in the spin
fluctuations, the component of the quantized magnetic field
along the magnetic moments does not influence the dynam-
ics of the magnetic moments. Since the magnets experience
an oscillating magnetic field along only one axis, they
effectively couple to a cavity mode that is linearly polarized.
The coupling of antiferromagnetic and ferromagnetic mag-
nons requires that they couple to the same cavity mode with
quantum numbers n and λ. Linearly polarized microwaves
couple to magnons with different spins and can therefore
couple equally strongly to both antiferromagnetic and
ferromagnetic magnons. Consequently, this geometry ena-
bles a magnon-magnon interaction between an antiferro-
magnet and a ferromagnet.
In the second geometry, the magnetic moments are

collinear with the propagation direction of the cavity
modes. In such a geometry, the coupling strengths strongly
depend on the cavity mode polarization. Each magnon
couples to the microwave mode with the same spin. At the
crossing, the antiferromagnetic and ferromagnetic magnons
therefore couple to different polarization states λ of the
cavity modes. Cavity modes with different polarizations
λ ¼ � are independent. This geometry therefore does not
lead to a magnon-magnon coupling. This lack of indirect
coupling can be circumvented when at least one of the
magnon modes is squeezed or hybridized (i.e., it has a
noninteger spin [28]). In this case, the magnons have finite,
but dissimilar, couplings to both polarizations of the cavity
mode. Although this generates a finite magnon-magnon
coupling, this coupling will typically be rather weak,
because the magnons still primarily couple to different
cavity mode polarizations. We therefore focus on the
former geometry, illustrated in Fig. 1. In this geometry,
there are equally strong couplings to both polarizations and,
consequently, a stronger coupling between the magnons.
More complex cavity structures can be effectively

reduced to our planar cavity geometry when there is only
one mode with a frequency near the crossing point of the
magnon dispersion relations. The magnon-magnon cou-
pling is then dominated by this mode. The overlap factors
ξFM;AFM depend on the details of the cavity structure.
We now wish to determine the coupling strength between

the ferromagnetic and antiferromagnetic magnons. We
consider a dispersive regime, in which the frequency of
the cavity mode is slightly detuned from the crossing point
between the ferromagnetic and antiferromagnetic magnon
dispersion relations. We assume that this detuning Δ ¼
ωp − ωη ¼ ωp − ωβ is much larger than the coupling
strengths g̃FM;AFM and that the frequency of the cavity
mode is sufficiently close to the crossing point where
ωη ¼ ωβ. We can then determine the magnon-magnon

coupling by performing a unitary transformation of the
Hamiltonian given in Eq. (1) and then applying the second-
order degenerate perturbation theory, with g̃FM;AFM as the
perturbation parameters. We thus compute that, at the
crossing point between the antiferromagnetic and ferro-
magnetic magnon dispersion relations, the transformed
Hamiltonian describing the excitations is

H0 ¼ ℏ

�
ωβ −

2g̃2AFM
Δ

�
β†β þ ℏ

�
ωη −

2g̃2FM
Δ

�
η†η

þ ℏ

�
ωp þ

g̃2FM þ g̃2AFM
Δ

�
ðp†

−p− þ p†
þpþÞ

þ 2ℏ
g̃FMg̃AFM

Δ
ðβ†ηþ η†βÞ ð14Þ

to second order in g̃FM;AFM. The first three terms in Eq. (14)
describe shifts in the frequencies of both the magnon and
cavity modes, whereas the last term describes a dispersive
coupling between the ferromagnetic and antiferromagnetic
magnons. This dispersive coupling means that the eigen-
state of the system becomes a linear combination of both
magnons and can therefore no longer be described as a
purely ferromagnetic or antiferromagnetic magnon.
It is instructive to find numerical estimates of the

effective coupling strengths for different combinations of
materials. We consider a scenario in which the volume of
each of the magnetic materials constitutes 1% of the
volume of the cavity; this magnitude is similar to that in
previous experiments involving ferromagnets in spherical
cavities [20,21]. As ferromagnets, we consider yttrium-
iron-garnet (YIG) and Co-Fe alloys. These materials can
have a damping on the order of 10−4 [32,33]. The spin
density sNFM=VFM in YIG is ∼2 × 1022 cm−3 [34]. In a
Co-Fe alloy, it is possible to achieve a spin density as high
as ∼2 × 1023 cm−3, where we have estimated the magni-
tude of the spin density as Ms=μB, with μB being the Bohr
magneton. The saturation magnetizations of these ferro-
magnetic materials are μ0Ms ¼ 0.247 T for YIG [35] and
μ0Ms ≈ 2.4 T for the Co-Fe alloy [33]. As antiferromag-
nets, we consider the uniaxial antiferromagnetic materials
MnF2 and NaNiO2 as well as the easy-plane antiferro-
magnetic material NiO. Estimates of the spin densities in
MnF2, NaNiO2, and NiO yield ∼1022 [36], ∼5 × 1022 [37],
and ∼1023 cm−3 [38], respectively. The exchange and
anisotropy frequencies of the antiferromagnetic materials
are listed in Table I. Using these parameters and choosing

TABLE I. Exchange and anisotropy frequencies of the anti-
ferromagnets.

Material ωE (1012 s−1) ωk (1012 s−1) ω⊥ (1012 s−1)

MnF2 [39] 9.3 1.5 × 10−1 � � �
NaNiO2 [37] 8.4 × 10−1 6.2 × 10−2 � � �
NiO [30,31] 1.7 × 102 2.3 × 10−3 1.3 × 10−1
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the n ¼ 1 frequency mode of the cavity to lie at the crossing
point between the antiferromagnetic and ferromagnetic
dispersion relations, we obtain the coupling strengths given
in Table II. A plot of the dispersion relations and the
interpretation of the coupling constants g̃FM;AFM is given in
Fig. 2 for the material combination NaNiO2=YIG.
Our results reveal that the coupling strength of the cavity

with the antiferromagnet is typically an order of magnitude
lower than that with the ferromagnet. This is due to the
weak interaction between antiferromagnets and magnetic
fields, which gives rise to a suppression factor from the
high exchange energy, as seen in Eqs. (12) and (13).
Importantly, it is still possible to achieve a sizable magnon-
magnon coupling between the antiferromagnet and the
ferromagnet. If we detune the cavity from the crossing
point of the magnon dispersion relations byΔ ¼ 5g̃FM, then
the magnon-magnon coupling becomes ≈2g̃AFM=5. For
MnF2=Co-Fe, this would correspond to a coupling strength
of 132 MHz; for NaNiO2=Co-Fe, the corresponding value
is 200 MHz, and for NiO=YIG, it is 68 MHz. These
magnitudes are similar to the coupling strength observed
between two YIG spheres [20,21]. The inefficiency of the
coupling between the antiferromagnet and the cavity is
compensated for by the high frequency at the crossing point
between the magnon dispersion relations, with a

proportionality of g̃FM=AFM ∝
ffiffiffiffi
ω

p
. The magnon dispersion

relations cross at 148 GHz (H0 ¼ 4.2 T) for MnF2=Co-Fe,
at 36 GHz (H0 ¼ 0.6 T) for NaNiO2=Co-Fe, and at
100 GHz (H0 ¼ 3.5 T) for NiO=YIG.
Although the linewidths of many ferromagnets have been

extensively studied, there are very few similar measurements
available for antiferromagnets. It is possible that the line-
width may become larger in antiferromagnets, since the
exchange energy often dominates. If this is the case, the
cooperativity (which is a measure of the coherence within
the system) will be lower in systems involving antiferro-
magnets than in systems consisting solely of ferromagnets.
In summary, we have shown that, despite having opposite

spins, antiferromagnetic magnons and ferromagnetic mag-
nons can be coupled inside a microwave cavity. This
coupling is strongest when the magnetic moments in the
antiferromagnet and ferromagnet are perpendicular to the
propagation direction of the cavity modes at equilibrium.
In this geometry, the cavity mode couples to both the
antiferromagnetic and ferromagnetic magnons, resulting in
a robust nonlocal magnon-magnon coupling. Themagnitude
of this coupling is similar to that of the nonlocal interaction
between two ferromagnets.
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Electrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive
Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study
a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally
interact via interfacial coupling to the antiferromagnetic magnons. We show that by employing magnetically
uncompensated interfaces, we can design the magnon-mediated interaction to be attractive or repulsive by varying
the thickness of the antiferromagnetic insulator by a single atomic layer. We derive an analytical expression for the
critical temperature Tc of the indirect exciton condensation. Within our model, anisotropy is found to be crucial for
achieving a finite Tc , which increases with the strength of the exchange interaction in the antiferromagnetic bulk.
For realistic material parameters, we estimate Tc to be around 7 K, the same order of magnitude as the current
experimentally achievable exciton condensation where the attraction is solely due to the Coulomb interaction.
The magnon-mediated interaction is expected to cooperate with the Coulomb interaction for condensation of
indirect excitons, thereby providing a means to significantly increase the exciton condensation temperature range.

Introduction.—Interactions between fermions result in ex-
otic states of matter. Superconductivity is a prime example,
where the negatively charged electrons can have an overall
attractive coupling mediated by individual couplings to the
vibrations, known as phonons, of the positively charged lattice.
In addition to charge, the electron also has a spin degree of
freedom. The electron spin can interact with localized magnetic
moments through an exchange interaction exciting the magnetic
moment by transfer of angular momentum. These excitations
are quasiparticles known as magnons. Theoretical predictions
of electron-magnon interactions have shown that these can also
induce effects such as superconductivity [1–10].

Research interest in antiferromagnetic materials is surging
[11, 12]. This enthusiasm is due to the promising properties
of antiferromagnets such as high resonance frequencies in the
THz regime and a vanishing net magnetic moment. Much of
this research focuses on interactions involving magnons or spin
waves at magnetic interfaces in hybrid structures. Examples
of this are spin pumping [13–19], spin transfer [15, 20–22],
and spin Hall magnetoresistance [23–28] at normal metal
interfaces, and magnon-mediated superconductivity [9, 10].
Recently, an experiment has also demonstrated spin transport
in an antiferromagnetic insulator over distances up to 80 µm
[29]. Moreover, antiferromagnetic materials are also of interest
since it is believed that high-temperature superconductivity
in cuprates is intricately linked to magnetic fluctuations near
an antiferromagnetic Mott insulating phase [30, 31]. Thus it
is crucial to achieve a good understanding of antiferromag-
netic magnon-electron interactions, as well as electron-electron
interactions mediated by antiferromagnetic magnons.

In this Letter, we theoretically demonstrate the application
of antiferromagnetic insulators to condensation of indirect
excitons. An exciton is a bound state consisting of an electron
and a hole. The excitons interact attractively through the
Coulomb interaction due to their opposite charges [32]. Initially

predicted many decades ago [33, 34], the exciton condensate
has been surprisingly elusive. A challenge is that the exciton
lifetime is too short to form a condensate due to exciton-exciton
annihilation processes such as Auger recombination [35–38].
The problem of short exciton lifetimes can be solved by having
a spatial separation between the electrons and holes in a trilayer
system, where the electrons and holes are separated by an
insulating barrier [39–41] to drastically lower the recombination
rate. Excitons in such systems are often referred to as (spatially)
indirect excitons, and these are ideal to observe the exciton
condensate. Herein, we consider a system where the insulating
barrier is an antiferromagnetic insulator, as shown in Fig. 1.
The insulating barrier can then serve a dual purpose: in addition

(a) (b)

ẑ

L RAFI L RAFI

Figure 1. (a) An antiferromagnetic insulator (AFI) sandwiched
between two separate fermion reservoirs, denoted by L and R. We let
the spins on sublattice A (illustrated in blue) be down, and the spins
on sublattice B (illustrated in red) be up. (b) The fermions in the two
reservoirs can interact through emission and absorption of magnons.
For the process in the figure we have that either a spin-up fermion
in L emits a Sz = +~ magnon (red arrow) which is absorbed by a
spin-down fermion in R, or a spin-down fermion in R emits a Sz = −~
magnon (blue dashed arrow) absorbed by a spin-up fermion in L.
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to increasing the exciton lifetime, the spin fluctuations in the
antiferromagnet mediate an additional attractive interaction
between the electrons and the holes. This magnon-mediated
interaction cooperates with the Coulomb interaction thereby
enabling an increase of the temperature range for observing
exciton condensation in experiments.

The indirect exciton condensate has two main experimental
signatures. The first is a dissipationless counterflow of electric
currents in the two layers [42–44]. When the exciton condensate
moves in one direction, the resulting charge currents in the
individual layers are antiparallel due to the oppositely charged
carriers in the two layers. The second signature is a large
enhancement of the zero-bias tunneling conductance between
the layers [45, 46], reminiscent of the Josephson effect in
superconductors. These experimental signatures can be used to
observe the existence of the indirect condensate in our proposed
system.

The exciton condensate is expected to exist when the number
of electrons in one layer equals the number of holes in the other.
Thus far, to the best of our knowledge, experiments with an
unequivocal detection of the exciton condensate have utilized
quantum Hall systems with a half filling of the lowest Landau
level to satisfy this criterion [47–51]. Such systems rely on
high external magnetic fields. A recent experiment studying
double-bilayer graphene systems has, however, been able to
detect the enhanced zero-bias tunneling conductance signature
of indirect exciton condensation without any magnetic field,
by controlling the electron and hole populations through gate
voltages [52]. This is an indication of the possible existence
of an exciton condensate, and shows promise for finding a
magnetic-field free exciton condensate.

In this Letter, we show that the magnon-mediated interaction
between the electrons and holes can be attractive or repulsive
depending on whether the two magnetic interfaces are with the
same or opposite magnetic sublattices. In turn, this enables
an unprecedented control over the interaction nature via the
variation of the antiferromagnetic insulator thickness by a
single atomic layer. Consequently, when the magnon-mediated
interaction is paired with the Coulomb interaction, this can be
used to control the favored spin structure of the excitons. In our
model, we find that the critical temperature for condensation is
enhanced by the exchange interaction in the antiferromagnet,
and that a finite magnetic anisotropy is needed to have an
attractive interaction around the Fermi level. Our results
suggest that if one lets the insulating barrier in indirect exciton
condensation experiments be an antiferromagnetic insulator,
the magnon-mediated interactions can significantly strengthen
the correlations between the electrons and holes.

Model.—We consider a trilayer system where an antiferro-
magnetic insulator is sandwiched between two fermion reser-
voirs, as illustrated in Fig. 1 (a). We will then later consider the
case where one of these reservoirs is populated by electrons,
and the other by holes. This system can be described by the
Hamiltonian H = Hel +Hmag +Hint, where Hel describes the
electronic part of the system in the fermion reservoirs, Hmag
describes the spins in the antiferromagnetic insulator, and Hint

describes the interfacial interaction between the fermions and
magnons. We assume all three layers to be atomically thin, and
thus two-dimensional, for simplicity.

We consider a uniaxial easy-axis antiferromagnetic insulator
described by the Hamiltonian

Hmag = J
∑
〈i, j 〉

Si · S j −
K
2

∑
i

S2
iz . (1)

Here J > 0 is the strength of the nearest-neighbor exchange
interaction between the spins which have a magnitude |Si | = ~S
for all i, and K > 0 is the easy-axis anisotropy constant. Next,
we perform a Holstein–Primakoff transformation (HPT) [53]
of the spin operators on each sublattice, denoted by sublattices
A and B, as defined in Fig. 1. From the HPT, we have
that the operator a(†)i annihilates (creates) a magnon at ri

when ri ∈ A, and equivalently b(†)i annihilates (creates) a
magnon at ri when ri ∈ B. The magnetic Hamiltonian can be
diagonalized through Fourier and Bogoliubov transformations
to the formHmag =

∑
k εk

(
µ†
k
µk + ν

†
k
νk

)
. The magnon energy

is given by εk = ~
√
(1 − γ2

k
)ω2

E + ω‖(2ωE + ω‖), where k is
the magnon momentum, γ±k = z−1 ∑

δ exp (ik · δ), δ a set
of vectors to each nearest neighbor, z the number of nearest
neighbors, ωE = ~JSz, and ω‖ = ~KS. The eigenmagnon
operators µ(†)

k
and ν(†)

k
are related to the HPT magnon operators

through the Bogoliubov transformation µk = ukak + vkb†−k ,
νk = ukbk + vka†−k . The Bogoliubov coefficients uk and vk

are given by uk =
√
(Γk + 1)/2 and vk =

√
(Γk − 1)/2, with

Γk = {1 − [ωEγk/(ωE + ω‖)]2}−1/2.
The interfacial exchange interaction between the fermions

and magnons at the two magnetic interfaces is modeled by the
s-d interaction [54, 55]

Hint = −
∑
j=L,R

∑
k=A,B

∑
i∈A j

k

J j
k
(ri)ρ̂ j(ri) · S(ri) , (2)

which has been successfully applied to describe interactions at
magnetic interfaces in similar systems [19, 56–59]. HereAL(R)

k
is the interface section between the left (right) fermion reservoir
and the k-th (k = A, B) sublattice of the antiferromagnetic
insulator. The interfacial exchange coupling constants J j

k
(ri)

are defined so that they take on the value J j
k
(ri) = J j

k
if ri ∈ A j

k
,

and zero otherwise. We have also defined the electronic spin
density

ρ̂ j(ri) =
1
2

∑
σ,σ′

ψ†
σ, j(ri)σσσ′ψσ′, j(ri) (3)

with ψ(†)
σ, j annihilating (creating) a fermion with spin σ in the

j-th ( j = L, R) fermion reservoir, and σ = (σx, σy, σz) being a
vector of Pauli matrices.

Effective magnon potential.—We will now use a path integral
approach where we treat the magnon-fermion interaction as
a perturbation, and integrate out the magnonic fields that
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give rise to processes as illustrated in Fig. 1 (b) to express
the interaction as an effective potential between the fermion
reservoirs. We consider the coherent-state path integral Z =∫
D2ψLD2ψRD2µD2ν exp (−S/~) in imaginary time, where

D2µ ≡ DµDµ∗ etc. The action S is given by

S =
�⊰ ~β

0
dτ

{
~
∑
i

[ ∑
σ=↑,↓

∑
j=L,R

ψ∗
σ, j(ri, τ)∂τψσ, j(ri, τ)

+
∑
η=µ,ν

η∗(ri, τ)∂τη(ri, τ)
]
+H(τ)

}
, (4)

where τ = it is imaginary time, and β = 1/(kBT) with kB
being the Boltzmann constant and T the temperature. Note
that in the coherent-state path integral we can replace fermion
operators by Grassman numbers (e.g. ψ† → ψ∗) and boson
operators by complex numbers (e.g. η† → η∗).

We now treat Hint as a perturbation, and keep terms up to
second order. We discard any terms that only contribute to
intralayer interactions, as we are interested in the interlayer
potential between the fermion reservoirs. By discarding the
intralayer terms, we effectively assume that the interlayer in-
teractions will dominate over the intralayer interactions, which
is the case for a system designed for indirect exciton conden-
sation. Next, we integrate out the magnon fields µ(∗) and
ν(∗), and write the path integral over the fermion reservoirs
as Z ≈

∫
D2ψLD2ψR exp (−Seff/~). In the momentum and

Matsubara-frequency bases, the effective action Seff is given
by [60]

Seff = Sel + ~β
∑
σ=↑,↓

∑
lmn

∑
kk′q

Uσ(q, iωn)ψ∗
σ,L(k ′ + q, iνl + iωn)

× ψ−σ,L(k ′, iνl)ψ∗
−σ,R(k − q, iνm − iωn)ψσ,R(k, iνm) , (5)

where we have here introduced the fermionic and bosonic Mat-
subara frequencies, νn = (2n + 1)π/(~β) and ωn = 2πn/(~β)
respectively. The action Sel describes the contribution of the
fermionic fields to the action in Eq. (4), except for the contri-
butions from Hint. The latter term, Hint, is instead described
by the contribution of the magnon-mediated interlayer-fermion
potential

Uσ(q, iωn) ≡ −~
2S
N

[
JL
µ (q)JR

µ (q)
−σi~ωn + εq

+
JL
ν (q)JR

ν (q)
σi~ωn + εq

]
(6)

to the effective action, where N is the total number of spin
sites in the antiferromagnet. We assume the two magnetic
interfaces are uncompensated, i.e. each interface is only with
one of the antiferromagnetic sublattices [25, 61, 62] as shown
in Fig. 1. We compute that the coupling constants JL,R

µ,ν (q)
describing the effective exchange coupling strength between the
spin of the fermions in reservoirs L, R to the spin of the eigen-
magnons µq , νq are JL/R

µ (q) = vq JL/R
B (rL/R) − uq JL/R

A
(rL/R)

and JL/R
ν (q) = vq JL/R

A
(rL/R) − uq JL/R

B (rL/R). Since each in-
terface is with only one sublattice, JL

µ (q) = −uq JL
A if the left

interface is with sublattice A, and JL
µ (q) = vq JL

B if the left

interface is with sublattice B. We get analogous results for the
right interface. We see that the effective coupling constants
JL,R
µ,ν (q) can have the same or opposite sign as the coupling

constants JL,R
A,B

depending on which sublattice is at the interface.
This has to do with the spin projection of the eigenmagnon
relative to the equilibrium spin direction of the sublattice at the
interface. The effective coupling constants JL,R

µ,ν (q) are also
enhanced by a Bogoliubov coefficient uq or vq with respect to
the coupling constants JL,R

A,B
. These are typically large numbers.

For q = 0 we have u0 ≈ v0 ≈ 2−3/4 × (ωE/ω‖)1/4 to lowest
order in the small ratio ω‖/ωE . The enhancement is due to
large spin fluctuations at each sublattice of the antiferromagnet
per eigenmagnon in the system, since the eigenmagnons are
squeezed states [9, 63].

By studying Eq. (6), we note that we have Re[Uσ(q, iωn)] <
0 for identical uncompensated interfaces, whereas for a system
where one of the interfaces is with sublattice A and the other
with sublattice B, we have Re[Uσ(q, iωn)] > 0. Consequen-
tially, this allows us to control whether the magnon-mediated
interlayer-fermion potential Uσ(q, iωn) is attractive or repulsive
by designing the interfaces. Whether this potential is attractive
or repulsive can depend on a single atomic layer. This allows
for an unprecedented high degree of control and tunability
of the interlayer-fermion interactions. The sign difference of
the potential can be explained by how the two fermions cou-
pled by the magnon interact with the eigenmagnon spin. For
Re[Uσ(q, iωn)] < 0 we have processes where the fermions
couple symmetrically to the magnon spin, i.e. both fermions
couple either ferromagnetically or antiferromagnetically to its
spin. On the other hand, for Re[Uσ(q, iωn)] > 0 we have an
asymmetric coupling, where one fermion couples ferromagnet-
ically to the eigenmagnon spin and the other fermion couples
antiferromagnetically.

Indirect exciton condensation.—We will now study spon-
taneous condensation of spatially-indirect excitons where the
attraction is mediated by the antiferromagnetic magnons. We
consider the left (right) reservoir to be an n-doped (p-doped)
semiconductor. We describe the semiconductors by the Hamil-
tonian

Hel(τ) =
∑
j=L,R

∑
k

∑
σ=↑,↓

εj(k)ψ†
σ, j(k, τ)ψσ, j(k, τ) , (7)

with εL(k) = −εR(k) = ~2k2/(2m) − εF ≡ ε(k). Here m is the
effective electron and hole mass, which we assume to be equal,
and εF is the Fermi level. While the operator ψ†

σ,L/R creates an
electron with spin σ in the left/right layer, we note that due to
the negative dispersion in the right layer the excitations in this
layer are effectively described by electron holes. We also note
that we have not included a Coulomb interaction between the
electron and the holes in our model. The effect of the Coulomb
potential on indirect exciton condensation has been widely
studied in previous literature [64]. We will later argue why the
magnon-mediated potential is expected to cooperate with the
Coulomb potential in the case of indirect exciton condensation.

The interaction in Eq. (5) is too complicated for us to solve
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for the exciton condensation. We then do an approximation
similar to the Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity [65, 66], and assume that the dominant
contribution to the interaction arises when the excitons have zero
net momentum (k + k ′ = q), and similarly for the Matsubara
frequencies (iνl + iνm = iωn). Next, we introduce the order
parameter

∆σ(k, iνm) ≡ −
∑
n

∑
k′

Uσ(k − k ′, iνm − iνn)

× ψ∗
σ,R(k ′, iνn)ψσ,L(k ′, iνn) (8)

and its Hermitian conjugate, and perform a Hubbard–
Stratonovich transformation of the effective action. By doing a
saddle-point approximation and integrating over the fermionic
fields [60], we then obtain the gap equation

∆−σ(k ′, iνn) =
∑
m

∑
k

β−1Uσ(k − k ′, iνm − iνn)

× ∆σ(k, iνm)
|∆σ(k, iνm)|2 + ε(k)2 + (~νm)2

. (9)

We note that the magnon-mediated potential is attractive when
Uσ (q, iωn) > 0 in the case of indirect exciton condensation,
which can be seen from rearranging the fermionic fields in Eq.
(5).

We now use Eq. (9) to find an analytical expression for the
critical temperature Tc below which the excitons spontaneously
form a condensate. To obtain an analytical solution, we focus
on the case when the gap functions and the magnon-mediated
potential are independent of momentum and frequency. This
corresponds to an instantaneous contact interaction, and we
therefore assume that the gap functions have an s-wave pairing.
Moreover, we see that the gap equation in Eq. (9) only has a
solution when ∆σ and ∆−σ have the same sign. In the case
where spin-degeneracy is unbroken, it is fair to assume that
∆σ = ∆−σ , indicating triplet-like pairing. In superconductivity,
s-wave and triplet pairing are mutually exclusive for even
frequency order parameters, but in the case of indirect excitons
the same symmetry restrictions on the order parameter do not
apply, as the composite boson does not consist of identical
particles. In other words, for indirect excitons the symmetries
in momentum space and spin space are decoupled from one
another. As both the magnon-mediated potential and the
Coulomb potential are in the s-wave channel and the Coulomb
potential is independent of spin, the magnon-mediated potential
works together with the Coulomb potential enhancing the
attractive exciton pairing interaction. The fact that we can
design whether the magnon-mediated potential is attractive or
repulsive allows us to control which spin channel is the most
favorable for the excitons to condensate.

To determine Tc we perform a BCS-like calculation [60, 66]
and restrict the sum over Matsubara frequencies to a thin
shell around the Fermi level (|~νm | < ε0), where the magnon-
mediated potential is attractive. The analytical expression for

Tc is found to be

Tc =
2eγEMε0
πkB

exp

(
− 2πε0

Su0v0ma2JL
A

JR
B

)
, (10)

where γEM ≈ 0.577 is the Euler–Mascheroni constant and a the
lattice constant of the semiconductors. Here we have assumed
that the left and right magnetic interfaces consist of opposite
sublattices. This leads to an attractive exciton interaction. If
we assume the exchange energy among the spins in the bulk is
much larger than the interface coupling (~ωE � Sma2JL

A JR
B ),

the value of the anisotropy that maximizes Tc is

~ω
(opt)
‖ ≡ Sma2JL

A JR
B

16π
. (11)

The full dependence of Tc on the magnetic anisotropy is shown
in Fig. 2. The critical temperature for indirect exciton conden-
sation is largest for a nonzero and finite magnetic anisotropy.
This is because in the limit ω‖ → 0 the magnon gap in the
antiferromagnetic insulator vanishes, and consequentially so
does the thin shell around the Fermi level where the magnon-
mediated potential is attractive. In the case of a large anisotropy,
ω‖ � ω

(opt)
‖ , the enhancement of the magnon-mediated poten-

tial due to magnon squeezing is lost [63]. When the anisotropy
takes on its optimal value, the critical temperature becomes

T (opt)
c ≡

√
~ωESma2JL

A
JR
B√

2π3/2kB
eγEM−1/2 . (12)

Notably, we see that the critical temperature increases
monotonously with increasing strength of the exchange in-
teraction ~ωE . The optimal choice of an antiferromagnetic
insulator would then be a material with a magnetic anisotropy
(~ω‖) on an energy scale proportional to the exchange coupling
at the interface (~JL,R

A,B
), and a very strong exchange interaction

in the bulk of the antiferromagnetic insulator (~ωE ).
To show how high the Tc of indirect exciton condensation in

our model can be using only the magnon-mediated interaction,
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Figure 2. Dependence of the normalized critical temperature on the
strength of the normalized magnetic anisotropy.
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we give a numerical estimate for realistic material parame-
ters. Using the parameters S = 1, m equal the electron mass,
a = 5 Å, ~JL

A = ~J
R
B = 10 meV [7], ωE = 8.6 · 1013 s−1 [67],

and assuming the magnetic anisotropy takes on its optimal
value ω(opt)

‖ = 9.9 · 109 s−1, we obtain a T (opt)
c of approximately

7 K. Antiferromagnetic insulators that can be suitable for
the proposed experiment are Cr2O3 [61], α-Fe2O3 [29], and
NiO [67]. In comparison, a recent experiment studying dou-
ble bilayer graphene in the quantum Hall regime found the
Coulomb-mediated exciton condensation to have an activation
energy of ∼ 8 K [51], which was ten times higher than what
was found in an experiment using GaAs [68]. This demon-
strates that the potential mediated by the antiferromagnetic
magnons is capable of creating strong correlations between the
electrons and holes that could significantly increase the critical
temperature for condensation compared to when the excitons
are just bound through the Coulomb interaction.
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I. INTERACTING SYSTEM

In these notes we will consider a trilayer system consisting of an antiferromagnetic insulator (AFI) sandwiched between two
fermion reservoirs (FR|AFI|FR). The magnons in the AFI effectively couple the fermions in the different reservoirs. Here we aim
to calculate the magnon-mediated effective interaction between the reservoirs mediated by the magnons by using the path integral
formalism.

One interface

Let us first analyze a single fermion reservoir placed at the interface of an AFI. We will later generalize our calculation to the
trilayer system. The Hamiltonian consists of three contributions,

H = Hel +Hmag +Hint , (1)

where the first two terms describe the fermions in the reservoir and the magnons in the AFI, respectively. The interfacial coupling
between the fermions and magnons is expressed by the s-d exchange interaction

Hint = −
∑
j=A,B

∑
i∈A j

Jj(ri) ρ̂(ri) · S(ri) . (2)

Here AA (B) is the cross section of the interface with sublattice A (B). The interfacial exchange coupling constant JA/B(ri) is
defined as

Jj(ri) =
{

Jj, if ri ∈ A j

0, otherwise
, (3)

and

ρ̂(ri) =
1
2

∑
σ,σ′

ψ†
σ(ri)σσσ′ψσ′(ri) (4)

denotes the spin density. Here ψ†
σ (ψσ) creates (annihilates) a fermion with spin σ, and σ = (σx, σy, σz) is a vector of Pauli

matrices given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5)

The direction of the spin S appearing in Eq. (2) depends on the sublattice of the antiferromagnet. We perform a Holstein–Primakoff
transformation (HPT) of the spin operators in each sublattice, which for a small number of magnons (〈a†i ai〉 , 〈b†i bi〉 � 2S) yields

Sx
i,A =

~
√

2S
2

(
a†i + ai

)
, Sy

i,A
=
~
√

2S
2i

(
a†i − ai

)
, Sz

i,A
= ~

(
a†i ai − S

)
, (6a)

Sx
i,B =

~
√

2S
2

(
b†i + bi

)
, Sy

i,B =
~
√

2S
2i

(
bi − b†i

)
, Sz

i,B = ~
(
S − b†i bi

)
. (6b)
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2

We use the HPT in Eq. (6a) if ri lies in sublattice A, and the HPT in Eq. (6b) if ri lies in sublattice B. The interaction Hamiltonian
at the AFI|FR interface can then be written as Hint = H A

int +HB
int, where

H A
int = −JA

∑
i∈AA

[
~
√

2S
2

(
ψ†
↑ψ↓a + ψ†

↓ψ↑a†
)
+
~

2

(
ψ†
↑ψ↑ − ψ†

↓ψ↓
) (

a†a − S
)]
, (7a)

HB
int = −JB

∑
i∈AB

[
~
√

2S
2

(
ψ†
↑ψ↓b† + ψ†

↓ψ↑b
)
− ~

2

(
ψ†
↑ψ↑ − ψ†

↓ψ↓
) (

b†b − S
)]
, (7b)

and we are summing over the part of the sublattice cross section AA/B of sublattice A/B that is in contact with the reservoir
of fermions described by ψ. Note that the operators ψ, a and b have an implicit site index i. The interaction Hamiltonian Hint
depends on the interface structure of the antiferromagnetic insulator. In general, we can express the interaction Hamiltonian as

Hint = −
∑

i∈(AA+AB )

{
~
√

2S
2

[
ψ†
↑ψ↓

(
JA(ri)a + JB(ri)b†

)
ψ†
↓ψ↑

(
JA(ri)a† + JB(ri)b

)]

+
~

2

(
ψ†
↑ψ↑ − ψ†

↓ψ↓
)
× [

JA(ri)a†a − JB(ri)b†b + (JB(ri) − JA(ri)) S
] }
, (8)

where the sum now runs over the entire reservoir interface. The interface structure is now encoded in the spatial dependence of the
interfacial coupling constants JA,B(ri). From here on we omit the explicit notation of the r dependence of the coupling constants
JA,B(ri). In our notation, JA,B depends on ri if it is inside the sum, and it is constant if it is outside the sum.

II. PATH INTEGRAL

A. One interface

Now we calculate the coherent state integral in imaginary time

Z =
�⊰

DψDψ∗DµDµ∗DνDν∗ exp (−S/~) . (9)

where we have introduced the eigenstates µ and ν which diagonalize the two-sublattice magnetic Hamiltonian. The dependence of
these eigenstates on the Holstein–Primakoff magnons a and b will be discussed in the following section. The action of the bilayer
system is S = Sel + Smag + Sint, with

Sel =

�⊰ ~β

0
dτ

[
~
∑
i

∑
σ

ψ∗
σ(ri, τ) Ûψσ(ri, τ) +Hel

]
, (10a)

Smag =

�⊰ ~β

0
dτ

[
~
∑
i

∑
η=µ,ν

η∗(ri, τ) Ûη(ri, τ) +Hmag

]
, (10b)

Sint =

�⊰ ~β

0
dτ Hint , (10c)

where Ûη = ∂η/∂τ, τ = it (t being real time), and β = 1/(kBT) with kB being the Boltzmann constant and T the temperature. Note
that from now on ψ(∗) are Grassman variables such that ψ(†) = ψ(∗), and {µ(∗), ν(∗), a(∗), b(∗)} are complex numbers. We treat the
interaction term as a perturbation and perform an expansion up to second order in the interaction term of the action

Z =
�⊰

D2ψD2µD2ν exp
(
−Sel + Smag

~

)
exp

(
−Sint
~

)
≈

�⊰
D2ψD2µD2ν exp

(
−Sel + Smag

~

)
γint (11)

where γint = 1 − Sint/~ + (Sint/~)2/2. We from now on also use the shorthand notation D2ψ = DψDψ∗ etc. The first order term
in γint that is linear in Sint is neglected, as all the processes in Eq. (8) are only between a single fermion and a magnon. Such
processes to first order can therefore not mediate an interaction between two separate fermions, which are the processes we are
interested in later on.
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(a) (b) (c)

Figure 1. The spin structures of the atoms in the AFI in the plane closest to the fermion reservoir as seen from the fermion reservoir. (a) and (b)
are fully uncompensated interfaces with sublattices A and B respectively, where only one of the sublattices is present at the interface. (c) is a
compensated interface where both sublattices are present at the interface, in a chessboard pattern.

Let us now analyze the second order term, and evaluate

S2
int =

�⊰
dτdτ′Hint (τ)Hint (τ′) . (12)

We write ψσ ≡ ψσ(τ, ri) and ψ
σ
≡ ψσ(τ′, r j), and the same convention for a, b, and JA,B(ri). Let us first consider a general type

of interface, and use Hint in (8). The interface structure is then encoded in the spatial dependencies of JA,B(ri). Note that the two
limits of a fully uncompensated interface (either with sublattice A or sublattice B, as defined in Fig. 1) can easily be recovered
from the general expression by setting either JA or JB to zero. We then find

Hint(τ)Hint(τ′) =
∑

i, j∈(AA+AB )

[
~2S
2

(
AAAJAJA + AABJAJB + ABAJBJA + ABBJBJB

)

+
~2

4
(
BAAJAJA + BABJAJB + BBAJBJA + BBBJBJB

) ]
, (13)

where we have defined

AAA = ψ
†
↑ψ↓ψ†

↑ψ↓aa + ψ†
↑ψ↓ψ†

↓ψ↑aa† + ψ†
↓ψ↑ψ†

↑ψ↓a†a + ψ†
↓ψ↑ψ†

↓ψ↑a†a† , (14a)

AAB = ψ
†
↑ψ↓ψ†

↑ψ↓ab† + ψ†
↑ψ↓ψ†

↓ψ↑ab + ψ†
↓ψ↑ψ†

↑ψ↓a†b† + ψ†
↓ψ↑ψ†

↓ψ↑a†b , (14b)

ABA = ψ
†
↑ψ↓ψ†

↑ψ↓b†a + ψ†
↑ψ↓ψ†

↓ψ↑b†a† + ψ†
↓ψ↑ψ†

↑ψ↓ba + ψ†
↓ψ↑ψ†

↓ψ↑ba† , (14c)

ABB = ψ
†
↑ψ↓ψ†

↑ψ↓b†b† + ψ†
↑ψ↓ψ†

↓ψ↑b†b + ψ†
↓ψ↑ψ†

↑ψ↓bb† + ψ†
↓ψ↑ψ†

↓ψ↑bb , (14d)

BAA =
(
ψ†
↑ψ↑ψ†

↑ψ↑ − ψ
†
↑ψ↑ψ†

↓ψ↓ − ψ
†
↓ψ↓ψ†

↑ψ↑ + ψ
†
↓ψ↓ψ†

↓ψ↓

)
×

(
a†aa†a − Sa†a − Sa†a + S2

)
(14e)

BAB =
(
ψ†
↑ψ↑ψ†

↑ψ↑ − ψ
†
↑ψ↑ψ†

↓ψ↓ − ψ
†
↓ψ↓ψ†

↑ψ↑ + ψ
†
↓ψ↓ψ†

↓ψ↓

)
×

(
−a†ab†b + Sa†a + Sb†b − S2

)
(14f)

BBA =
(
ψ†
↑ψ↑ψ†

↑ψ↑ − ψ
†
↑ψ↑ψ†

↓ψ↓ − ψ
†
↓ψ↓ψ†

↑ψ↑ + ψ
†
↓ψ↓ψ†

↓ψ↓

)
×

(
−b†ba†a + Sa†a + Sb†b − S2

)
(14g)

BBB =
(
ψ†
↑ψ↑ψ†

↑ψ↑ − ψ
†
↑ψ↑ψ†

↓ψ↓ − ψ
†
↓ψ↓ψ†

↑ψ↑ + ψ
†
↓ψ↓ψ†

↓ψ↓

)
×

(
b†bb†b − Sb†b − Sb†b + S2

)
. (14h)

The contributions from terms that are odd in the number of magnon operators are neglected because they correspond to
disconnected diagrams whose expectation values will vanish. The terms AAB, ABA are not discarded as a and b are not



4

eigenexcitations, and the product of the two might still contain contributing terms that are even in the eigenmagnon operators.
From this point on we also disregard terms of order a4 and b4 and higher to be consistent with the linear expansion of the HPT.
Moreover, the interactions proportional to aa, ab†, bb, and their Hermitian conjugates vanish once the magnon operators are
diagonalized. This is because these processes do not conserve spin.

B. Two interfaces

We now want to generalize to the case where we have two fermion reservoirs L and R connected through the magnetic insulator.
Similar to the case with only one fermion reservoir, there is no contribution of interest from the first order perturbation in Sint as
these processes can not mediate an interaction between the two fermion reservoirs. Moreover, the processes represented by Bi j

(i, j = A, B) for the one-interface case in Eq. (14) also cannot couple the fermion reservoirs. This is because there are no processes
in Bi j where a magnon is emitted at one point and absorbed at another, only processes where a magnon is instantaneously emitted
and absorbed at the same point. These interactions (first order in Sint and processes proportional to Bi j) will only contribute to a
renormalization of the energy at each interface. As we are only interested in contributions that can mediate a coupling between the
two reservoirs, we henceforth drop all contributions that are first order in Sint or included in Bi j .

The second order contribution can be expressed as

(Sint
~

)2
=

�⊰
dτdτ′




∑
i, j=L,R

i,j

∑
k,l=A,B

∑
m∈Ai
n∈A j

Jik(rm)J
j
l
(rn) [ρ̂i(rm, τ) · S(rm, τ)]

[
ρ̂
j
(rn, τ′) · S(rn, τ′)

]

, (15)

with AL(R) = AL(R)
A
+AL(R)

B , and ρ̂i is the spin density defined in Eq. (4) in the i-th (i = L, R) fermion reservoir. For consistency
with the contributions we have previously neglected, we only sum over the contributions where the fermions are located in different
layers (i , j). We also allow for the interfaces to be different, and have generalized the definition of the interfacial exchange
couplings in Eq. (3) to

Jik(rm) =
{

Ji
k
, if rm ∈ Ai

k

0, otherwise
. (16)

From this point on, we only consider uncompensated magnetic interfaces, corresponding to either Fig. 1 (a) or (b). In other words,
if we have the left interface being an uncompensated interface with sublattice A, we have JL

A (r) = JL
A for all r ∈ AL as well as

JL
B (r) = 0 for all r ∈ AL . However, we make no assumptions about which sublattice is at the interface, and whether the two

interfaces are with identical or opposite sublattices.
We see that the result for one interface can easily be generalized to two interfaces with different fermion reservoirs. We can

define

γ
(2)
int = 1 +

S
4

�⊰
dτdτ′

∑
i, j=L,R

i,j

∑
k,l=A,B

∑
m∈Ai
n∈A j

Ai j
kl

Jik(rm)J
j
l
(rn) , (17)

where the coefficients Ai j
kl

are as in the one-reservoir case, but now with two different reservoir labels. As an example, we have

ALR
AA = ψ

†
↑,Lψ↓,Lψ†

↑,Rψ↓,Raa + ψ†
↑,Lψ↓,Lψ†

↓,Rψ↑,Raa† + ψ†
↓,Lψ↑,Lψ†

↑,Rψ↓,Ra†a + ψ†
↓,Lψ↑,Lψ†

↓,Rψ↑,Ra†a† , (18)

where ψ†
↑,L creates a fermion with spin up in the left fermion reservoir, and so on. γ(2)int takes the role of γint in the path integral in

Eq. (11) for the two-reservoir case. This path integral is also extended by an integration over the fermionic fields in the second
fermion reservoir, i.e. D2ψ → D2ψLD2ψR.

III. MAGNETIC HAMILTONIAN

Now that we have considered how the fermions interact with the magnons in the HPT-magnon basis, we wish to find how these
a and b magnons relate to the eigenexcitations of the system (the µ and ν magnons, which we integrate over in the path integral in
Eq. (9)). We consider an easy-axis antiferromagnetic insulator, which is described by the Hamiltonian

Hmag = J
∑
〈i, j 〉

Si · S j −
K
2

∑
i

S2
iz . (19)
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where J and K are the strengths of the exchange interaction and magnetic anisotropy, respetively. Performing a HPT of the spin
operators as defined in Eq. (6), disregarding any constant terms in the Hamiltonian and only keeping terms to second order in the
magnon-operators, we find

Hmag =
J~2S

2

∑
δ

[∑
i∈A

(
a†i ai + b†

i+δbi+δ + 2a†i b†
i+δ

)
+

∑
i∈B

(
b†i bi + a†

i+δai+δ + 2biai+δ
)]
+ ~2KS

(∑
i∈A

a†i ai +
∑
i∈B

b†i bi

)
. (20)

Here δ is a set of nearest-neighbor vectors from site i. Next, we perform a Fourier transformation of the magnon operators, given
by

a(ri, τ) =
1√
NA

∑
k

ak (τ)eik ·ri , a†(ri, τ) =
1√
NA

∑
k

a†
k
(τ)e−ik ·ri , (21a)

b(ri, τ) =
1√
NB

∑
k

bk (τ)eik ·ri , b†(ri, τ) =
1√
NB

∑
k

b†
k
(τ)e−ik ·ri . (21b)

where NA/B is the number of spins in sublattice A/B. The momentum k in each sum runs over the sublattice Brillouin zone. For
an antiferromagnet, we have NA = NB.

If we assume that NA is macroscopic, the terms in the Hamiltonian transform as∑
j∈A

a†(r j, τ)a(r j, τ) =
∑
k

a†
k
(τ)ak (τ) . (22)

Transforming the remaining terms in the Hamiltonian to momentum space, we find it to be

Hmag =
∑
k

{
~2S (Jz + K)

[
a†
k
(τ)ak (τ) + b†

k
(τ)bk (τ)

]
+ ~2SJz

[
γka†

k
(τ)b†−k (τ) + γ−kak (τ)b−k (τ)

] }
, (23)

where z is the number of nearest neighbours, and

γk = z−1
∑
δ

eik ·δ = γ−k . (24)

We now want to diagonalize the Hamiltonian in Eq. (23). We use a Bogoliubov transformation given by

µk (τ) = ukak (τ) + vkb†−k (τ) , νk (τ) = ukbk (τ) + vka†−k (τ) , (25)

where the new bosonic operators µ and ν also satisfy bosonic commutation relations. Introducing the quantities ωE = J~Sz and
ω‖ = K~S, we find that

Hmag =
∑
k

[
εk,µµ

†
k
(τ)µk (τ) + εk,νν†k (τ)νk (τ)

]
. (26)

The energies are

εk,µ = εk,ν ≡ εk = ~

√(
1 − γ2

k

)
ω2
E + ω‖

(
2ωE + ω‖

)
. (27)

The Bogoliubov coefficients are

uk =

√
Γk + 1

2
, vk =

√
Γk − 1

2
, (28)

where we have introduced

Γk =
1√

1 −
(

ωEγk
ωE+ω‖

)2
. (29)
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IV. MAGNON GREEN’S FUNCTIONS

Now that we can express the fermion-magnon interaction in terms of the eigenmagnons µ and ν, over which we integrate, we can
proceed by performing the integrals over the magnon fields to express the interaction as an effective fermion-fermion interaction
mediated by the magnons. Let us introduce the (inverse) Green’s function so that the partition function for the magnons becomes

Zmag =

�⊰
D2µD2ν exp

[�⊰ ~β

0
dτdτ′

∑
i, j

Φ†(ri, τ)G−1
mag(ri, τ; r j, τ′)Φ(r j, τ′)

]
, (30)

where we have

Φ†(r, τ) = (µ∗(r, τ), ν∗(r, τ)) . (31)

To describe the (imaginary) time dependence of the magnon fields we do a Matsubara expansion and go to frequency space,

µ(r, τ) = 1√
NA

∞∑
n=−∞

∑
k

µk,nei(k ·r−ωnτ) , (32)

where ωn = 2πn/(~β) is the Matsubara frequency for bosons.
In a momentum and frequency representation, the partition function can alternatively be expressed as

Zmag =

�⊰
D2µD2ν exp

(
−Smag

~

)
=

�⊰
D2µD2ν exp

[∑
k,k′

∑
n,n′
Φ†

k,n
G−1

mag(k, iωn; k ′, iωn′)Φk′,n′

]
, (33)

with

Φ†
k,n
=

(
µ∗k,n, ν∗k,n

)
. (34)

Performing the Matsubara expansion of our fields, and using our Hamiltonian as shown in Eq. (26) in terms of the Matsubara
modes, we note that the action in Eq. (10b) becomes

Smag = ~β
∑
k

∑
n

∑
η=µ,ν

(−i~ωn + εk,η
)
η∗k,nηk,n , (35)

where we have used the identity �⊰ ~β

0
dτ

ei(ωn′−ωn)τ

~β
= δn,n′ . (36)

Consequentially, we find the Green’s function in the Matsubara basis to be

Gmag(k, iωn; k ′, iωn′) = − ~
~β
δkk′δn,n′

((−i~ωn + εk,µ
)−1 0

0
(−i~ωn + εk,ν

)−1

)
= −

(〈µ∗
k,n
µk′,n′〉 0
0 〈ν∗

k,n
νk′,n′〉

)
. (37)

Now we wish to calculate expectation values such as

〈µ∗(r, τ)µ(r ′, τ′)〉 = Z−1
mag

�⊰
D2µD2ν exp

(
−Smag

~

)
µ∗(r, τ)µ(r ′, τ′) . (38)

We once again do a Fourier transform and a Matsubara expansion, and using the results above we find that

〈µ∗(r, τ)µ(r ′, τ′)〉 = 1
NA

∑
k,k′

∑
n,n′

ei(k
′ ·r′−k ·r)ei(ωnτ−ωn′τ′)Z−1

mag

�⊰
D2µD2ν exp

(
−Smag

~

)
µ∗k,nµk′,n′

=
1

NA

∑
k,k′

∑
n,n′

ei(k
′ ·r′−k ·r)ei(ωnτ−ωn′τ′)〈µ∗k,nµk′,n′〉

=
1
~βNA

∑
k

∑
n

~

−i~ωn + εk,µ
eik ·(r

′−r)e−iωn(τ′−τ)

≡
∑
k

〈µ∗k (r, τ)µk (r ′, τ′)〉 = −Gmag(r, τ; r ′, τ′) . (39)
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A similar result is obtained for 〈ν∗(r, τ)ν(r ′, τ′)〉, and all other expectation values vanish.
Previously we expressed the interaction in terms of the sublattice magnon operators a and b. The expectation values of these

magnons are related to the expectation values of the diagonal magnons by the following:

〈a∗(r, τ)a(r ′, τ′)〉 =
∑
k

[
u2
k 〈µ∗k (r, τ)µk (r ′, τ′)〉 + v2

k 〈ν∗k (r ′, τ′)νk (r, τ)〉
]
, (40a)

〈b∗(r, τ)b(r ′, τ′)〉 =
∑
k

[
v2
k 〈µ∗k (r ′, τ′)µk (r, τ)〉 + u2

k 〈ν∗k (r, τ)νk (r ′, τ′)〉
]
, (40b)

〈a(r, τ)b(r ′, τ′)〉 = −
∑
k

uk vk
[
〈µ∗k (r ′, τ′)µk (r, τ)〉 + 〈ν∗k (r, τ)νk (r ′, τ′)〉

]
, (40c)

〈a∗(r, τ)b∗(r ′, τ′)〉 = −
∑
k

uk vk
[
〈µ∗k (r, τ)µk (r ′, τ′)〉 + 〈ν∗k (r ′, τ′)νk (r, τ)〉

]
. (40d)

The other expectation values vanish.

V. EFFECTIVE POTENTIAL

Using the results found previously, we integrate out the magnons and find that

Z = Zmag

�⊰
D2ψLD2ψR exp

(
−Seff

el /~
)
≡

�⊰
D2ψLD2ψR exp (−Sel/~)

�⊰
D2µD2ν exp(−Smag/~)γ(2)int , (41)

where γ(2)int is defined in Eq. (17), and we have defined the effective action of the fermionic system:

Seff
el =

�⊰ ~β

0
dτ


~

∑
i=L,R

∑
r j ∈i

∑
σ=↑,↓

ψ∗
σ,i(r j, τ) Ûψσ,i(r j, τ) +Hel


+ ~

(
1 − γGint

)
.

We have here reintroduced the interaction term in the exponent.
The interaction term can be expressed as following:

~
(
1 − γGint

)
=

∑
i, j=L,R

i,j

�⊰
dτdτ′

∑
k∈Ai
l∈A j

∑
σ=↑,↓

V i j
σ,−σ (rk, rl, τ − τ′)ψ∗

σ,i(rk, τ)ψ−σ,i(rk, τ)ψ∗
−σ, j(rl, τ′)ψσ, j(rl, τ′) . (42)

The effective potential V i j
σ,−σ(r, r ′, τ − τ′) describes a spin-flip interaction of two fermions located in reservoirs i and j mediated

by a magnon in the magnetic insulator. One fermion flips its spin and thereby emits a magnon. This magnon is then absorbed by a
fermion that is located in the reservoir on the opposing side of the insulating barrier with respect to the fermion that emitted the
magnon. We then write down the effective spin-flip potential as

V i j

↑,↓ (r, r ′, τ − τ′) = V ji

↓,↑ (r ′, r, τ′ − τ) (43a)

= − ~S
4

[
〈a∗(r ′, τ′)a(r, τ)〉JiA(r)J j

A
(r ′) + 〈a(r, τ)b(r ′, τ′)〉JiA(r)J j

B(r ′)

+ 〈a∗(r ′, τ′)b∗(r, τ)〉JiA(r ′)J j
B(r) + 〈b∗(r, τ)b(r ′, τ′)〉JiB(r)J j

B(r ′)
]

(43b)

= − S
4βNA

∑
k

∑
n

~

−i~ωn + εk,µ

[
vk JiB(r) − uk JiA(r)

] [
vk J j

B(r ′) − uk J j
A
(r ′)

]
eik ·(r−r

′)e−iωn(τ−τ′)

− S
4βNA

∑
k

∑
n

~

−i~ωn + εk,ν

[
vk JiA(r) − uk JiB(r)

] [
vk J j

A
(r ′) − uk J j

B(r ′)
]

eik ·(r
′−r)e−iωn(τ′−τ) (43c)

We now do a Fourier transformation and Matsubara expansion of the fermionic fields, so that

ψσ,i(r, τ) =
1√
Ni

∑
n

∑
k

ψσ,i(k, iνn)eik ·r−iνnτ . (44)
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Here Ni is the number of sites in reservoir i (i = L, R), and k now runs over the Brillouin zone of the fermion reservoirs. The
Matsubara expansion of the fermionic fields is defined in terms of the fermionic Matsubara frequencies νn = (2n + 1)π/(~β).
With these transformations, we rewrite the magnon-mediated interaction as∑

i, j=L,R
i,j

∑
σ=↑,↓

�⊰
dτdτ′

∑
k∈Ai
l∈A j

V i j
σ,−σ (rk, rl, τ − τ′)ψ∗

σ,i(rk, τ)ψ−σ,i(rk, τ)ψ∗
−σ, j(rl, τ′)ψσ, j(rl, τ′)

=
∑

i, j=L,R
i,j

∑
σ=↑,↓

(~β)2
∑
lmn

∑
kk′q

V i j
σ,µν (q, iωn)ψ∗

σ,i(k ′ + q, iνl + iωn)ψ−σ,i(k ′, iνl)ψ∗
−σ, j(k − q, iνm − iωn)ψσ, j(k, iνm) . (45)

Here we have defined

V i j
σ,−σ(r, r ′, τ − τ′) ≡

∑
q

∑
n

V i j
σ,µν(q, iωn)eiq ·(r−r

′)e−iωn(τ−τ′) , (46)

with

V i j
σ,µν(q, iωn) ≡ − ~S

4~βNA

{
~

−σi~ωn + εq,µ

[
vq JiB(ri) − uq JiA(ri)

] [
vq J j

B(r j) − uq J j
A
(r j)

]

+
~

σi~ωn + εq,ν

[
vq JiA(ri) − uq JiB(ri)

] [
vq J j

A
(r j) − uq J j

B(r j)
] }

. (47)

While at first glance the potential in the above equation seemingly also depends on position, we note that since we are only
considering uncompensated interfaces (see Fig. 1 (a) and (b)) the interfacial coupling constants JL,R

A,B
(r) can only take on the

constant values JL,R
A,B

or zero for all positions r at each interface. As an example, JL
A (rL ∈ AL) = JL

A if the interface with reservoir
L is an uncompensated interface with sublattice A, but JL

A (rL ∈ AL) = 0 if the interface with reservoir L is an uncompensated
interface with sublattice B. However, if one is considering a compensated interface such as in Fig. 1 (c), the interfacial coupling
constants have a periodic spatial dependence at that interface, and they would then also need to be Fourier transformed accordingly.
Since we are only considering uncompensated interfaces, we do not have to take this into consideration.

We have previously assumed an inversion symmetry in the magnetic insulator, so that εk,µ/ν = ε−k,µ/ν . With this in mind, the
Fourier transform of the effective magnon potential has the following symmetries:

V i j
σ,µν(k, iωn) = V ji

σ,µν(k, iωn) , V i j
σ,µν(k, iωn) = V i j

σ,µν(−k, iωn) , V i j
−σ,µν(k, iωn) = V i j

σ,µν(k,−iωn) . (48)

Through these symmetries, and some relabelling of the momenta and Matsubara frequencies, one can see that the interactions in
(45) are pairwise identical. The interactions are paired through the substitutions L ↔ R, σ → −σ. Consequently, we can perform
the sums over layers (only considering interlayer interactions) in (45), and reduce the result to

2 (~β)2
∑
σ=↑,↓

∑
lmn

∑
kk′q

VLR
σ,µν (q, iωn)ψ∗

σ,L(k ′ + q, iνl + iωn)ψ−σ,L(k ′, iνl)ψ∗
−σ,R(k − q, iνm − iωn)ψσ,R(k, iνm) . (49)

To have a more intuitive form of the magnon-mediated potential, we define the quantity

Uσ (q, iωn) ≡ 2~βVLR
σ,µν (q, iωn) , (50)

which has units Joule.

VI. EXCITON INTERACTION

We will now use the effective action to look at interlayer exciton condensation. It is then advantageous to reorder the fermionic
fields on the following form:

− ~β
∑
σ=↑,↓

∑
lmn

∑
kk′q

Uσ (q, iωn)ψ∗
σ,L(k ′ + q, iνl + iωn)ψσ,R(k, iνm)ψ∗

−σ,R(k − q, iνm − iωn)ψ−σ,L(k ′, iνl) . (51)

We can simplify this further by only considering the case where the exciton has a net zero momentum (k ′ + q − k = 0). Moreover,
we assume that the electronic fields in an exciton pair has the same Matsubara frequency (iνl + iωn = iνm) as well as momentum.
The simplified interaction we consider is then

−~β
∑
mn

∑
kk′

∑
σ

Uσ (k − k ′, iνm − iνn)ψ∗
σ,L(k, iνm)ψσ,R(k, iνm)ψ∗

−σ,R(k ′, iνn)ψ−σ,L(k ′, iνn) . (52)
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VII. HUBBARD–STRATONOVICH TRANSFORMATION

To simplify the Hamiltonian, we can reduce the effective electronic Hamiltonian to a bilinear Hamiltonian by introducing an
auxiliary Hubbard–Stratonovich field. To introduce the new Hubbard–Stratonovich fields, we first multiply our path integral by a
unity path integral, given by the path integral over a white-noise field α [1]:

Zα =

�⊰
D2α exp

[
−

∑
σ

∑
mn

∑
kk′

α†
σ(k, iνm)βU−1

σ (k − k ′, iνm − iνn)α−σ(k ′, iνn)
]
. (53)

Defining the bilinears Aσ(k, iνn) = ψ∗
σ,R(k, iνn)ψσ,L(k, iνn) and its Hermitian conjugate in the fermionic fields, we can shift the

white-noise field variables by introducing the Hubbard–Stratonovich field

∆σ(k, iνm) = ασ(k, iνm) −
∑
n

∑
k′

Uσ(k − k ′, iνm − iνn)Aσ(k ′, iνn) , (54)

and its Hermitian conjugate. Noting that the inverse matrix U−1
σ (k − k ′, iνm − iνn) is defined so that it satisfies the relation∑

l

∑
k

U−1
σ (k − k ′, iνl − iνm)Uσ(k − k ′′, iνl − iνn) = δk′,k′′δm,n , (55)

we can rewrite the sum of the interaction and white-noise fields in the effective action as

− ~β
∑
mn

∑
kk′

A†
σ(k, iνm)Uσ(k − k ′)A−σ(k ′, iνn)

+ ~β
∑
mn

∑
kk′

α†
σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)α−σ(k ′, iνn)

= ~β
∑
n

∑
k

∆†σ(k, iνn)A−σ(k, iνn) + ~β
∑
n

∑
k

A†
σ(k, iνn)∆−σ(k, iνn)

+ ~β
∑
mn

∑
kk′
∆†σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆−σ(k ′, iνn) . (56)

The path integral in its entirety can then be written as

Z =
�⊰

D2∆ exp

[
−β

∑
σ

∑
mn

∑
kk′
∆†σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆−σ(k ′, iνn)
] �⊰

D2ψL

�⊰
D2ψR exp

(
− S̃eff
~

)
, (57)

where we have defined

S̃eff =

�⊰ ~β

0
dτ


~

∑
i=L,R

∑
σ=↑,↓

∑
j∈Vi

ψ∗
σ,i(r j, τ) Ûψσ,i(r j, τ) +Hel


+ ~β

∑
σ

∑
n

∑
k

[
∆†σ(k)A−σ(k, iνn) + A†

σ(k, iνn)∆−σ(k)
]
. (58)

Assuming the electron and hole Hamiltonians to be diagonalized on the form

Hel =
∑
n

∑
k

ε(k)
∑
σ

[
ψ∗
σ,L(k, iνn)ψσ,L(k, iνn) − ψ∗

σ,R(k, iνn)ψσ,R(k, iνn)
]
, (59)

we can do Fourier and Matsubara expansions of the kinetic term to write the effective electronic action as

S̃eff =~β
∑
σ,n,k

{
ψ∗
σ,L(k, iνn) [−i~νn + ε(k)]ψσ,L(k, iνn) + ψ∗

σ,R(k, iνn) [−i~νn − ε(k)]ψσ,R(k, iνn)

+ ∆†σ(k, iνn)ψ∗
−σ,R(k, iνn)ψ−σ,L(k, iνn) + ψ∗

σ,L(k, iνn)ψσ,R(k, iνn)∆−σ(k, iνn)
}
. (60)

Here ε(k) is the energy of the fermions in the left reservoir as a function of momentum, and the negative energy of the fermions in
the right reservoir.
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VIII. SADDLE-POINT APPROXIMATION

Under the path integral, the Hubbard–Stratonovich transformation is exact. We have now successfully made our action bilinear
in the fermionic fields, but this came at the cost of introducing another path integral over a bosonic Hubbard–Stratonovich
field. To simplify our calculations, we make a mean-field approximation where we assume that the path integral over the
Hubbard–Stratonovich field is dominated by the values of ∆σ(k) and ∆∗σ(k) that minimize the total action

S∆ =~β
∑
σ

∑
mn

∑
kk′
∆†−σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆σ(k ′, iνn) + S̃eff . (61)

The path integral is then approximated by

Z ≈ exp

[
−β

∑
σ

∑
mn

∑
kk′
∆∗−σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆σ(k ′, iνn)
] �⊰

D2ψL

�⊰
D2ψR exp

(
− S̃eff
~

)
, (62)

where we the Hubbard–Stratonovich fields are no longer integrated over, but now take on constant values that satisfy
δS∆/δ[∆(∗)σ (k, iνm)] = 0. This is known as the saddle-point approximation.

IX. GAP EQUATION

The effective action S̃eff now only consists of bilinear terms in the fermionic fields, and can therefore be written on the form

S̃eff = ~β
∑
n

∑
k

Ψ†(k, iνn)
[−i~νn1 + hΨ(k, iνn)

]
Ψ(k, iνn) , (63)

where 1 is the identity matrix, and we have defined

hΨ(k, iνn) ≡
©«

ε(k) ∆↑(k, iνn) 0 0
∆∗↑(k, iνn) −ε(k) 0 0

0 0 −ε(k) ∆∗↓(k, iνn)
0 0 ∆↓(k, iνn) ε(k)

ª®®®¬
. (64)

Ψ(k, iνn) is the extended Nambu spinor Ψ(k, iνn) = (ψ↓,L(k, iνn), ψ↓,R(k, iνn), ψ↑,R(k, iνn), ψ↑,L(k, iνn))T . Performing the
Gaussian integral over the fermionic fields, we can express the effective action as

S∆
~
= −

∑
k

∑
n

ln
{
det

[
β(−i~νn1 + hΨ(k, iνn))

]}
+ β

∑
σ

∑
mn

∑
kk′
∆∗σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆−σ(k ′, iνn)

= −
∑
σ

∑
n

∑
k

ln
{
β2 [|∆σ(k, iνn)|2 + ε(k)2 + (~νn)2]}

+ β
∑
σ

∑
mn

∑
kk′
∆∗σ(k, iνm)U−1

σ (k − k ′, iνm − iνn)∆−σ(k ′, iνn) . (65)

Imposing the saddle-point approximation condition that δS∆/δ[∆(∗)σ (k, iνm)] = 0, we find the gap equation to become

δS∆
δ [∆∗σ(k, iνm)]

= − ∆σ(k, iνm)
|∆σ(k, iνm)|2 + ε(k)2 + (~νm)2

+ β
∑
n

∑
k′

U−1
σ (k − k ′, iνm − iνn)∆−σ(k ′, iνn) = 0 . (66)

Inverting the above gap equation through the identity in Eq. (55), we obtain

∆−σ(k ′, iνn) =
∑
m

∑
k

β−1Uσ(k − k ′, iνm − iνn)
∆σ(k, iνm)

|∆σ(k, iνm)|2 + ε(k)2 + (~νm)2
. (67)

Solving the general case for when the gap depends on momentum and frequency is extremely challenging, as one then has to solve
for an infinite set of coupled self-consistent equations. We can reduce the complexity by only considering frequency independent
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gaps. This assumption requires that only the frequency independent part of the magnon-mediated potential contributes to the
exciton pairing. We can then consider the potential and gaps as constants when performing the Matsubara sum.

Defining Eσ(k) ≡
√
|∆σ(k)|2 + [ε(k)]2, we note that

∑
m

1
Eσ(k)2 + (~νm)2

=
∑
m

∑
±

1
2Eσ(k)

±1
i~νm ± Eσ(k)

. (68)

Using the Matsubara sum

1
~β

∑
m

1
iνm − E/~ =

1
eβE + 1

≡ nF (E) , (69)

we perform the Matsubara sum in the gap equation:

∑
m

1
Eσ(k)2 + (~νm)2

=
β

2Eσ(k)
[nF (−Eσ(k)) − nF (Eσ(k))] =

β

2Eσ(k)
tanh

[
βEσ(k)

2

]
. (70)

The gap equation is then simplified to

∆−σ(k ′) =
∑
k

Uσ(k − k ′, 0) ∆σ(k)
2Eσ(k)

tanh
[
βEσ(k)

2

]
. (71)

Note that the exciton interaction is attractive when Uσ(k − k ′, 0) > 0, which explains the sign difference from the typical form of
the normal BCS gap equation.

X. CRITICAL TEMPERATURE

We now wish to determine an analytical estimate of the critical temperature of the exciton condensation. Finding an analytical
self-consistent solution of Eq. (71) is too complicated, so we will focus on the simple limit where both the magnon-mediated
potential and the gap functions are independent of both momentum and frequency. Starting from Eq. (67), we then approximate
the gap equation as

∆−σ =β−1Uσ(0, 0)∆σ
NA

(2π/a)2
∑
n

�⊰
d2k

1
|∆σ |2 + [ε(k)]2 + (~νn)2

. (72)

Here we have gone to the continuum limit:

1
NL/R

∑
k

→ 1
Ak

�⊰
d2k , (73)

where we assume that NL/R = NA is the number of sites in one of the fermion reservoirs for an uncompensated mathced interface.
Ak = (2π/a)2 is the reciprocal area of the Brillouin zone of each fermion reservoir, with a being the lattice constant. We consider
atomically thin films such that the Brillouin zone is 2D, and consider a quadratic dispersion of ε(k) on the form

ε(k) = ~
2k2

2m
− µ (74)

so that the Fermi surface is a circular disk. Here µ is the chemical potential, which we assume to be the Fermi energy εF , and m is
the effective fermion mass. For our simplified contact interaction (independent of momentum) the magnon potential just becomes
a constant and therefore has to lead to an isotropic s-wave pairing. We can then write the momentum integral as an energy integral

�⊰
BZ

d2k → 2π
�⊰ kBZ

0
dkk → 2πm

~2

�⊰ εBZ−εF

−εF
dε → 2πm

~2
εF

�⊰ ∞

−∞
dx , (75)

where x is a dimensionless energy integral, εF = ~2k2
F/(2m) is the Fermi energy, and εBZ = ε(kBZ) is the energy at the Brillouin

zone boundary k = kBZ. We extend the integration limits on the integral over x to ±∞, as the biggest contributions come from
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near the Fermi surface (x = 0), and we will just add a small error by integrating over all energies. Noting that the energy integral
can be determined to be

εF

�⊰ ∞

−∞
dx

1
(εF x)2 + |∆σ |2 + (~νn)2

=
π√

|∆σ |2 + (~νn)2
, (76)

the gap equation simplifies further to

∆−σ = β−1Uσ(0, 0)∆σ
NA

(2π/a)2
2π2m
~2

∑
n

1√
|∆σ |2 + (~νn)2

. (77)

While the Matsubara sum in the gap equation above in principle runs over all frequencies for the approximations we have made,
the sum will be divergent. To ensure that the sum converges, we introduce some upper limit to the sum. Looking at the form
of the magnon-mediated potential in Eq. (47), we see that the potential is only attractive in a certain range of frequencies. We
assume that the interfaces are defined so that it is attractive for small frequencies, i.e. we have an interface with sublattice A on
one side and the other interface is with sublattice B. Through an analytic continuation of Eq. (47) one can see that the attractive
frequency region is then bounded by ωn = εq,µ/~ on one side, and by ωn = εq,ν/~ on the other. As we are only looking at contact
interactions (q = 0), the bounds on the attractive frequency region is given by the magnon gaps ε0,µ/ν . In the system we consider
the magnon gaps are identical, ε0,µ = ε0,ν ≡ ε0. We therefore only sum over Matsubara frequencies for n between −N and N ,
where N is defined as |~νN | = ε0. Assuming N is large, we have N ≈ βε0/(2π).

At the critical temperature the gaps ∆±σ vanish. We assume that the gaps have the same critical temperature Tc , and that they
obey the limit

lim
T→Tc

∆−σ
∆σ
= 1 . (78)

If not exactly 1, the ratio still has to be positive for there to be a solution of the gap equation. In the ideal spin-degenerate case, it is
however a sensible assumption that the ratio should be 1. With these assumptions, the gap equation simplifies to

2~2β
NAma2U±σ(0, 0)

≈
N∑

n=−N

1
|~νn |

=
β

π

N∑
n=0

1
|n + 1/2| (79)

The sum can be approximated by [2]
N∑
n=0

1
n + 1/2 ≈ ln(N) + 2 ln(2) + γEM , (80)

where γEM = 0.577 . . . is the Euler–Mascheroni constant. If we consider the scenario where we have an interface with sublattice A
on the left side and an interface with sublattice B on the right side, as this yields an attractive potential for the exciton condensation,
we obtain

2πε0
Su0v0ma2JL

A
JR
B

≡ 1
λ
≈ ln

(
βε0
2π

)
+ 2 ln(2) + γEM . (81)

Exponentiating the above equation, we find the analytical expression for Tc:

Tc =
2eγEMε0
πkB

exp

(
− 2πε0

Su0v0ma2JL
A

JR
B

)
. (82)

If we assume the exchange energy of the antiferromagnetic spins is much larger than the interface coupling (~ωE � Sma2JL
A JR

B ),
we find that the Tc is maximized for a given exchange energy by the anisotropy

ω
(opt)
‖ =

Sma2JL
A JR

B

16π~
. (83)

When the anisotropy takes on this optimal value, the critical temperature becomes

Tc =

√
~ωESma2JL

A
JR
B√

2π3/2kB
eγEM−1/2 . (84)
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The recent discovery of magnetism in two-dimensional van der Waals systems opens the door to
discovering exciting physics. We investigate how a current can control the ferromagnetic properties of
such materials. Using symmetry arguments, we identify a recently realized system in which the current-
induced spin torque is particularly simple and powerful. In Fe3GeTe2, a single parameter determines the
strength of the spin-orbit torque for a uniform magnetization. The spin-orbit torque acts as an effective
out-of-equilibrium free energy. The contribution of the spin-orbit torque to the effective free energy
introduces new in-plane magnetic anisotropies to the system. Therefore, we can tune the system from an
easy-axis ferromagnet via an easy-plane ferromagnet to another easy-axis ferromagnet with increasing
current density. This finding enables unprecedented control and provides the possibility to study the
Berezinskiı̌-Kosterlitz-Thouless phase transition in the 2D XY model and its associated critical
exponents.

DOI: 10.1103/PhysRevLett.122.217203

Introduction.—Magnetism in lower dimensions hosts
interesting physics that has been studied theoretically for
many decades. Examples include the intriguing physics of
the exactly solvable 2D Ising model [1] and the
Berezinskiı̌-Kosterlitz-Thouless (BKT) phase transition in
the 2D XY model [2–4]. However, experimentally realizing
the details of these theoretical predictions has proven
difficult. One reason for this difficulty is that fabricating
atomically thin films is challenging. The isolation of
graphene in 2004 provided a path for exploring two-
dimensional van der Waals materials [5]. Creating two-
dimensional films that have long-range magnetic order at
finite temperatures is more challenging because of the
Mermin-Wagner theorem [6]. This theorem states that long-
range magnetic order does not exist at finite temperatures
below three dimensions when the exchange interaction has
a finite range and the material has a continuous symmetry
in spin space. Consequently, realizing two-dimensional
magnetic materials requires breaking the continuous sym-
metry of the system, e.g., by a uniaxial magnetocrystalline
anisotropy. This provides an energy cost (also known as a
magnon gap) to suppress long-range fluctuations that can
destroy the magnetic order. The recent discovery of
magnetic order in two-dimensional van der Waals materials
has therefore led to a large number of studies of magnetism
in atomically thin films [7]. Magnetic order has been
reported in FePS3 [8], Cr2GeTe6 [9], CrI3 [10], VSe2
[11], MSex [12], and Fe3GeTe2 [13,14]. In addition,
multiferroicity has been identified in CuCrP2S6 [15].
These new two-dimensional magnets are amenable to
electrical control [14,16–18] and produce record-high
tunnel magnetoresistances [19].

Currents can induce torques in magnetic materials [20].
In ferromagnets with broken inversion symmetry, the spin-
orbit interaction leads to spin-orbit torques (SOTs) [21].
These torques can be present even in the bulk of the
materials without requiring additional spin-polarizing ele-
ments. The effects of SOTs are typically sufficiently large
to induce magnetization switching or motion of magnetic
textures [22]. With the rich physics that is known to exist in
two-dimensional magnetic systems, we explore how cur-
rents can provide additional control over the magnetic state
via SOTs.
Although many of the newly discovered two-

dimensional magnetic systems exhibit SOTs, we find that
in one material the torque is particularly simple and power-
ful. The form of the torque is simple because it is determined
by a single parameter. The torque is also influential in
determining the magnetic state of the system. In contrast to
many other systems, we can describe the current-induced
effects via an effective out-of-equilibrium free energy.
Therefore, the SOT enables unprecedented control over
the magnetic state via the current. We will demonstrate how
the current can drive the system from having easy-axis
anisotropy along one direction to anisotropy along a differ-
ent axis by proceeding via an intermediate state with easy-
plane anisotropy.
Interestingly, the current-induced easy-plane configura-

tion provides the possibility to study the BKT phase
transition in this system. The BKT transition is an example
of a so-called conformal phase transition in which the scale
invariance of a topologically ordered state, i.e., conformal
invariance, is lost at the (topological) phase transition [23].
When driven by a current, we realize a 2D conformal field
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theory in the low-temperature phase, with conformality
being lost [23] at the transition to the paramagnetic phase.
Additionally, it was recently discovered that an ionic gate
considerably increases the critical temperature [14].
Consequently, two-dimensional Fe3GeTe2 forms an ideal
and very rich laboratory for studying fundamental prob-
lems of broad current interest in condensed matter physics
and beyond at elevated temperatures.
System.—We consider a monolayer of Fe3GeTe2.

Figure 1 shows the crystal structure of this material.
Fe3GeTe2 crystallizes in the hexagonal system, space group
194, point group 6=m 2=m 2=m, known as D6h in the
Schönflies notation [24]. However, the basis reduces the
point group symmetry to 6̄m2 (D3h). Placing a Fe3GeTe2
monolayer on a substrate may reduce the symmetry even
further (point group 3m) if the bottom tellurium layer
hybridizes with the surface. Here, we assume that a
possible monolayer-substrate interaction is weak. In the
case of a strong monolayer-substrate interaction, we can
preserve the out-of-plane mirror symmetry by suspending
the monolayer between two electrodes [25] or encapsulat-
ing it in another van der Waals material, such as hexagonal
boron nitride.
The SOT can be written as [26]

τ ¼ −jγjm ×HSOT; ð1Þ

where γ is the gyromagnetic ratio and m is the magneti-
zation unit vector. For a spatially uniform magnetization,
the effective magnetic field HSOT due to the SOT in a
Fe3GeTe2 monolayer is [27]

HSOT ¼ Γ0½ðmxJx −myJyÞex − ðmyJx þmxJyÞey� ð2Þ

for current densities and magnetizations in any direction.
Here, mi are magnetization components, and Ji are
components of the current density. Γ0 is a free parameter
that is determined by the spin-orbit coupling.
We provide a rigorous derivation of the effective field

HSOT based on Neumann’s principle in the Supplemental
Material [27]. In Fe3GeTe2, we can understand the

dependence of the SOT on the magnetization and currents
in Eq. (2) as follows. The crystal structure in Fig. 1 is
invariant under a threefold rotation about the z axis (3z),
an inversion of the y axis (my), and an inversion of the
z axis (mz). These symmetry operations generate the point
group 6̄m2. Since HSOT only contains terms that are
quadratic in y, it is invariant under the operation my.
The operation 3z transforms ðmx;myÞ into

1

2

�
−1

ffiffiffi
3

p
−

ffiffiffi
3

p
−1

��
mx

my

�
¼ 1

2

�
−mx þ

ffiffiffi
3

p
my

−
ffiffiffi
3

p
mx −my

�
; ð3Þ

and similarly for ðJx; JyÞ and ðex; eyÞ. Backsubstitution of
the transformation in Eq. (3) into Eq. (2) shows thatHSOT is
also invariant under this operation. The effective fieldHSOT
is invariant under mz since neither mz nor ez appear
in Eq. (2).
Micromagnetics.—The magnetization dynamics can be

described by the semiclassical Landau-Lifshitz-Gilbert
equation

_m ¼ −jγjm ×Heff þ α m × _mþ τ: ð4Þ

Here, α > 0 is the dimensionless Gilbert damping param-
eter, Heff ¼ −M−1

s δf½m�=δm is an effective magnetic field
that describes the magnetization directionm that minimizes
the free energy density functional f½m�, and Ms is the
saturation magnetization. Interestingly, we note that a
functional exists that generates the effective SOT field in
Eq. (2), which is given by

fSOT½m� ¼ MsΓ0

�
Jymxmy −

1

2
Jxðm2

x −m2
yÞ
�
: ð5Þ

The out-of-equilibrium current-induced SOT can therefore
be absorbed into an effective field H̃eff that minimizes the
effective free energy density feff ½m� ¼ f½m� þ fSOT½m�.
The 2D ferromagnet Fe3GeTe2 is a uniaxial ferromagnet

with an out-of-plane easy axis [13,14,29]. The contribution
of the dipole-dipole interaction to the spin wave spectrum
can be neglected for a monolayer system [30–34]. If we
consider a spatially uniform magnetization and use a
spherical basis, ðmx;my;mzÞ¼ðsinθcosϕ;sinθsinϕ;cosθÞ,
the effective free energy becomes

feff ½θ;ϕ� ¼ −
Ms

2
½Kz cos2 θ þ Γ0jJj sin2 θ cos ð2ϕþ ϕJÞ�:

ð6Þ

Here,Kz > 0 is the out-of-plane anisotropy constant, and jJj
and ϕJ ¼ arctan ðJy=JxÞ are the magnitude and azimuthal
angle of the applied current, respectively. From this, we find
that the SOT effectively acts as in-plane magnetocrystalline
anisotropies. The anisotropy originating from the SOT
always comes in a pair of perpendicular easy and hard axes.

FIG. 1. Crystal structure of a Fe3GeTe2 monolayer. (Left) View
along ez. (Right) View along ey. a is the in-plane bond length
between FeIII and FeII. 2b is the out-of-plane distance between the
two FeIII sublattices. FeIII and FeII represent the two inequivalent
Fe sites in oxidation states þ3 and þ2, respectively. Redrawn
after Ref. [14].
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Thedirections of the anisotropy axes depend on the direction
of the applied current. For weak currents (jΓ0Jj < Kz), the
magnetization of Fe3GeTe2 remains out of plane (θ ¼ 0; π).
However, for sufficiently strong currents (jΓ0Jj > Kz), an
in-plane configuration of the magnetization becomes
more energetically favorable. Assuming that Γ0 > 0, the
effective free energy is then minimized by θ ¼ π=2 and
ϕ ¼ nπ − ϕJ=2 (n ¼ 0; 1; 2;…). When Γ0 < 0, the easy
and hard axes are interchanged, and the minima are
ϕ ¼ ðnþ 1=2Þπ − ϕJ=2. The easy and hard axes also
interchange upon reversal of the applied current.
Magnon gap.—Because the SOT can effectively be

considered a current-controlled magnetocrystalline
anisotropy, we can electrically control the magnon gap
in Fe3GeTe2. The magnon gap is governed by the energy
difference between the out-of-plane and in-plane magneti-
zation configurations, i.e., jKz − jΓ0Jjj. At the critical
current jJcj ¼ Kz=jΓ0j, the magnon gap vanishes as the
magnetic easy axis transitions from an out-of-plane axis to
an in-plane axis. Exactly at this transition point, we obtain a
magnetic easy plane. Below the critical current, the magnon
gap decreases monotonically with the applied current,
whereas it increases monotonically above the critical
current. The ability to electrically tune the magnon gap
in a 2D magnetic material opens the door for exploring a
wide variety of effects in magnetism in two dimensions.
Curie temperature.—The first effect that is characteristic

of a two-dimensional system that we will now illustrate is
the dependence of the Curie temperature on the magnon
gap. Because the Curie temperature in 2D is primarily
governed by the magnon gap, unlike in 3D [35], we will
study its behavior as we tune the SOT-controlled magnon
gap through the transition from an out-of-plane easy axis to
an in-plane easy axis. To illustrate the basic aspects of
current control of the Curie temperature, we make a few
simplifications to reduce the number of free parameters and
the complexity of the calculations. Fe3GeTe2 is an itinerant
ferromagnet, and its magnetic interactions are therefore
described by the Stoner model [29]. The Stoner model can
in our system be transformed into a Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange interaction between the
iron atoms [36]. We assume that the exchange interaction in
a Fe3GeTe2 monolayer has a finite range and therefore
obeys the Mermin-Wagner theorem. To simplify the cal-
culations, we replace the Stoner or RKKY exchange
interaction by a simple nearest-neighbor interaction
between the FeII and FeIII atoms (i.e., there is no exchange
interaction within each sublattice or between the two
different FeIII sublattices). This will also obey the
Mermin-Wagner theorem, and this system will conse-
quently also exhibit the same qualitative dependence on
the magnon gap as other finite-range interactions. We
also assume that the magnetic anisotropy constants are
identical at all sites. Consequently, we consider the model
Hamiltonian

H ¼ −
εJ
2ℏ2

X
r

X
δ

Sr · Srþδ −
εz
2ℏ2

X
r

ðSr;zÞ2

−
εx
2ℏ2

X
r

½ðSr;xÞ2 − ðSr;yÞ2�: ð7Þ

Here, εJ > 0 is an energy constant that describes the
nearest-neighbor exchange interactions of spins separated
by δ, εz > 0 is an energy constant that describes the out-of-
plane anisotropy, and εx ∝ Γ0Jx > 0 is an energy constant
that describes the effective in-plane anisotropies caused by
the SOT. Sr;i (i ¼ x, y, z) describes the ith component of the
spin operator located at position r. We split the Fe3GeTe2
monolayer into three distinct sublattices: one for the FeII

atoms, one for the FeIII atoms at z ¼ þb, and one for the
FeIII atoms at z ¼ −b.
We proceed by performing a Holstein-Primakoff trans-

formation of the spin operators around the equilibrium spin
direction. This is in the z direction below the critical current
Jc and along the x direction above the critical current.
Because of the anomalous Hall effect in Fe3GeTe2
[14,37,38], applying the current exactly along the x
direction can be experimentally challenging. However, as
can be deduced from Eq. (6), a scenario in which the
current is applied in a different direction can be achieved by
a rotation of the unit cell or Brillouin zone. Since it is the
magnons closest to the Γ point that dominate the calcu-
lation of the Curie temperature, we expect the results to be
very similar for an off-axis current.
In our calculations, we keep terms to the second order in

the Holstein-Primakoff magnon operators. We expect this
to be a good qualitative approximation, although it will not
be a very good quantitative approximation because the
magnon population diverges at the critical point. However,
keeping terms to, for instance, the fourth order in the
magnon operators to include magnon-magnon interactions
[9] would be complicated because Eq. (7) does not
conserve the magnon number for finite currents.
Following the Holstein-Primakoff transformation, we

perform a Fourier transformation of the magnon operators
to momentum space. We then diagonalize the Hamiltonian
by a Bogoliubov transformation such that it takes the
form [27]

H ¼
X
k;μ

εk;μα
†
k;μαk;μ: ð8Þ

Here, the operator αð†Þk;μ annihilates (creates) an eigenmag-
non with a momentum k and energy εk;μ. There are three
different modes (μ ¼ I; II; III) of the eigenmagnons. We
have imposed the constraint on the Bogoliubov trans-
formation that the new operators have to satisfy bosonic
commutation relations: ½αk;μ; α†k0;μ0 � ¼ δkk0δμμ0 .
From the energy spectrum of the eigenmagnons in

Fe3GeTe2, we can estimate the Curie temperature Tc. To
determine Tc, we use the fact that the magnetization along
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the equilibrium direction of the spins vanishes at this
temperature. Because we consider a monolayer system,
we only have magnons with in-plane momenta. Balancing
the magnetic moments, we find the constraint

X
ν

sν −
X
μ

1

ABZ

Z
ABZ

d2k
Sk;μ=ℏ

exp ðεk;μ=kBTcÞ − 1
¼ 0: ð9Þ

Here, sν is the dimensionless spin number of the magnetic
moments in sublattice ν (where ν ¼ 2 for the FeII atoms,
and ν ¼ 3� for the FeIII atoms located at z ¼ �b), and
ABZ ¼ ffiffiffi

3
p

π2=ð2a2Þ is the (reciprocal) area of the first
Brillouin zone. Sk;μ is the spin of the eigenmagnons, which
is not an integer for finite SOT because of magnon
squeezing [39]. The spin of the eigenmagnons depends
on the parameters of the Bogoliubov transformation and is
given in the Supplemental Material [27].
We can now calculate the Curie temperature numerically

based on Eq. (9). In our calculations, we set the out-of-
plane anisotropy constant to be εz ¼ 0.335 meV [29]. The
value of the nearest-neighbor exchange coupling is set to be
εJ ¼ 0.705 meV to reproduce the experimental Tc of a
monolayer of ∼130 K [13] (note, however, that a different
experiment determined the Tc of a monolayer to be ∼68 K
[14]). The real value of εJ is in all likelihood larger [14]
because the linear response method typically overestimates
Tc. The dimensionless spin numbers sν for the spins in
sublattice ν are s2 ¼ 2 and s3− , s3þ ¼ 5=2 [40]. We plot the
Curie temperature as a function of the applied current
in Fig. 2.
Because we only kept terms to the second order in the

magnon operators, we do not expect that our calculation of
Tc will be quantitatively correct. However, the qualitative
features of our result appear to be physically reasonable.
When we apply a SOT below the critical current jJcj, we

effectively reduce the magnon gap by creating a pair of easy
and hard axes perpendicular to the out-of-plane magneti-
zation. Because the Curie temperature in 2D materials is
governed by the magnon gap, this also reduces Tc. At the
critical current strength, we obtain a continuous symmetry
in the form of an easy plane when the in-plane easy axis
induced by the SOT becomes equal to the out-of-plane
magnetocrystalline anisotropy. Because of the Mermin-
Wagner theorem, there can be no long-range magnetic
order at finite temperatures in this scenario, and Tc drops to
zero. Above the critical current, we now increase the
magnon gap for an in-plane magnetization configuration,
and Tc increases accordingly. Tc will then saturate at the
Curie temperature of the Ising model for large currents,
which our model does not capture [41].
In addition to the current affecting the Curie temperature

through a SOT, the current will also increase the temper-
ature in the material due to joule heating, which needs to be
taken into account when measuring the Curie temperature
of the material. The joule heating increases quadratically
with the applied current. Conversely, the SOT is linear in
the applied current, but its effect on the Curie temperature
depends on whether we are above or below the critical
current. Consequently, if the critical current is sufficiently
small, then the effect of the SOT will dominate that of the
joule heating. In this case, the magnetic ordering exhibits
reentrant behavior as a function of the applied current.
Notably, above the critical current, when the magnetization
is in the plane, the easy and hard axes are interchanged
upon reversal of the current direction. A reversal of the
applied current would therefore lead to a 90° rotation of the
magnetization.
2D XY model.—Although the spontaneous magnetiza-

tion vanishes for finite temperatures at the critical current
density jJcj, this regime remains an interesting region for
studying the magnetic properties. At the critical current
density (jεxj ¼ εz), the model in Eq. (7) becomes, quite
remarkably, a 2D easy-plane ferromagnet, where the easy
plane is perpendicular to the plane of the monolayer.
Therefore, at this current density, the model features a
critical phenomenon in the universality class of the 2D XY
model. Consequently, the system has a topological phase
transition rather than the more conventional phase tran-
sition of the 2D Ising model [1]. The 2D Ising universality
class falls within the framework of the Landau-Ginzburg-
Wilson paradigm of phase transitions of an order-disorder
transition monitored by a local order parameter [42,43].
The spin-spin correlation length diverges from above
and below Tc as ξ ∼ jT − Tcj−ν, where ν is a universal
critical exponent. There is true long-range order in the
low-temperature phase, short-range order in the high-
temperature phase, and power-law spin-spin correlations
precisely at the critical point. In contrast, the 2D XY model
features a genuine phase transition with no local order
parameter. At this phase transition, the spin-spin correlation

FIG. 2. Numerical calculation of Tc for a spontaneous mag-
netization based on a simple linear response model of the magnon
spectrum. The result is identical for any direction of the applied
current J. Below jJcj, the magnetization is along the z axis,
whereas above jJcj, the magnetization is along an in-plane axis
determined by the direction of the applied current.
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length diverges as ξ ∼ expðconst= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TBKT

p Þ from the
high-temperature side only [4], where TBKT is the critical
temperature of the BKT transition. The high-temperature
phase has short-range order, and the entire low-temperature
phase is critical with a spin-spin correlation function
featuring a nonuniversal temperature-dependent anomalous
dimension η, hSr · Sr0 i ∼ 1=jr − r0jη [4].
In 2D Fe3GeTe2, we may realize this type of highly

nontrivial behavior by tuning the electric current to the
critical value and then drive the system through the phase
transition by varying the temperature. Moreover, below the
BKT transition, the temperature dependence of the non-
universal anomalous dimension η of the 2D XY model can
be mapped by varying the temperature and measuring the
spin-spin correlation function by polarized small-angle
neutron scattering, which is particularly well suited for
ultrathin films [44]. The present system is also amenable to
studying the universal anomalous dimension of the 2D
Ising model at T ¼ Tc, η ¼ 1=4 [45]. The prediction for the
2D XY model, η ¼ kBT=4πJ [4], where J is the effective
exchange coupling and kB is Boltzmann’s constant, has not
been tested in real 2D magnetic systems to our knowledge.
Examples of real physical systems with this level of

control over such phenomena are very rare, particularly for
systems where the phenomena are accessible at relatively
elevated temperatures. The most well-known example is
superfluidity in thin films of 4He, where the BKT transition
occurs below 1.2 K [46]. In that context, the remarkable
prediction and experimental verification of a universal
jump in the superfluid density of the system [46,47] is
also worth noting. We expect the corresponding physics of
a universal jump in the spin stiffness of the system to occur
at liquid nitrogen or oxygen temperatures in the system
studied here. The spin stiffness may be measured in spin
wave resonance experiments [48]. Furthermore, and in
contrast to our present case, η is not experimentally
accessible in superfluid thin films of 4He.
The parameter Γ0 determines the magnitude of the

critical current and thus the accessibility of the effects that
we discuss. This value cannot be obtained purely from
symmetry considerations but rather needs to be determined
experimentally or by ab initio calculations. In light of the
exciting physics that can be realized and the flexibility of
the system, determining its value would be very interesting.
Based on the strong magnetic anisotropy of the material,
we believe that the spin-orbit coupling is sufficiently
strong. Paired with the observation that SOTs are typically
sufficiently large to induce magnetization switching in
other materials [22], we have reason to believe that
reentrant magnetism and topological phase transitions
can be experimentally observed in Fe3GeTe2.
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I. DERIVATION OF SPIN–ORBIT TORQUES IN Fe3GeTe2

Ref. [1] has shown that in the linear response regime under
the local approximation, the current-induced torques can be
written as

τ(r, t) = −|γ |m(r, t) × HSOT, HSOT,i = ηi j Jj , (1)

where m is the magnetization unit vector, J is the current
density applied to the system, and η is a second-rank tensor.
(Summation over repeated indices is implied.) Which elements
of ηi j that are nonzero is determined by the symmetry of the
system. The tensor η can be expanded in the magnetization
components mi and their derivatives ∂imj . If we only consider
a uniform magnetization, one obtains to lowest order

ηi j = Λi j + Γi jkmk + . . . (2)

where Λi j is an axial second-rank tensor, and Γi jk is a polar
third-rank tensor.

To determine which contributions to the tensors Λi j and Γi jk
that are allowed by symmetry, Ref. [1] imposes the criterion
that these tensors must be invariant under all transformations
R in the point group G of the structure. This amounts to
demanding that the relations

Λi j = |R|Rii′Rj j′Λi′ j′, (3)
Γi jk = Rii′Rj j′Rkk′Γi′ j′k′, (4)

are fulfilled for all R ∈ G.
Monolayer Fe3GeTe2 crystallizes in point group 6̄m2

(D3h) [2]. Since this group is generated by the elements
6̄z , my , and 2x , it is sufficient to impose that ηi j should be
invariant under these operations [3]. The representing matrices
of these symmetry operations are

my =
©«
1

−1
1

ª®¬
, 2x =

©«
1

−1
−1

ª®¬
, 6̄z =

1
2
©«
−1 −

√
3√

3 −1
−2

ª®¬
.

Eq. (3) with R = 2x implies thatΛi j vanishes when x appears
an odd number of times in the indices i j. (That is,Λx j = Λix =

0 for i, j = y, z.) Similarly, R = my implies that Λi j vanishes
when y appears an even number of times in the indices i j. (That
is, Λi j = 0 for i, j = x, z and Λyy = 0.) Consequently, only

∗ oyvinjoh@ntnu.no
† vetle.k.risinggard@ntnu.no

Λyz and Λzy are invariant under the symmetry operations 2x

and my . The operation 6̄z gives

Λyz = − 1
2Λyz and Λzy = − 1

2Λzy

for these elements. These relations can only hold for Λi j = 0.
Thus we conclude that Λi j = 0 ∀ i, j.

Repeating the analysis for Γi jk with Eq. (4), R = 2x implies
that Γi jk vanishes when x appears an even number of times
in the indices i j k, and R = my implies that Γi jk vanishes
when y appears an odd number of times in the indices i j k.
Consequently, only Γyyx , Γxzz , Γxxx , and the four other ele-
ments generated by freely permuting the indices yyx and xzz
are invariant under the symmetry operations 2x and my . The
operation 6̄z gives

Γxzz = − 1
2Γxzz, Γzxz = − 1

2Γzxz, and Γzzx = − 1
2Γzzx,

which implies that Γxzz = Γzxz = Γzzx = 0. Furthermore,

Γyyx =
1
8 (− Γyyx + 3Γyxy + 3Γxyy − 3Γxxx),

Γyxy =
1
8 (+3Γyyx − Γyxy + 3Γxyy − 3Γxxx),

Γxyy =
1
8 (+3Γyyx + 3Γyxy − Γxyy − 3Γxxx),

and

Γxxx = − 1
8 [Γxxx + 3(Γyyx + Γyxy + Γxyy)].

Together these relations imply Γyyx = Γyxy = Γxyy = −Γxxx .
We conclude that Γi jk has four nonzero components, but only
one free parameter, Γxxx = Γ0. The effective field correspond-
ing to the spin–orbit torque in Fe3GeTe2 is thus

HSOT = Γ0[(mx Jx − my Jy)ex − (my Jx + mx Jy)ey]. (5)

II. MAGNON SPIN AND ENERGY SPECTRUM

Using the result that the spin-orbit torque leads to a set of
perpendicular in-plane easy and hard axes, as derived in the
manuscript, we can write a model Hamiltonian in zero-external
field,

H = − εJ

2~2
∑
r

∑
δ

Sr · Sr+δ −
εz

2~2
∑
r

(
Sr ,z

)2

− εx

2~2
∑
r

[ (
Sr ,x

)2 − (
Sr ,y

)2
]
. (6)

Here we only consider nearest-neighbour exchange interaction
between sites separated by δ, and only consider a current in
the x-direction (εx ∝ Γ0Jx > 0), as the anisotropy behaves
similarly (just with different axes) if we have a y-component of
the current.
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A. Below the critical current

Below the critical current, the equilibrium configuration is
along the z axis. We do a Holstein–Primakoff transformation
of the spin operators, defined by

Si,ν,+ = ~
√

2sνa†i,ν

√
1 −

a†i,νai,ν
2sν

≈ ~
√

2sνa†i,ν , (7)

Si,ν,− = ~
√

2sν

√
1 −

a†i,νai,ν
2sν

ai,ν ≈ ~
√

2sνai,ν , (8)

Si,ν,z = ~
(
a†i,νai,ν − sν

)
, (9)

where S± = Sx ± iSy , i is the label of the unit cell, and ν = 2,3±
indicates the sublattice of the FeII and FeIII atoms, respectively,
where sublattice ν = 3+ (ν = 3−) consists of the FeIII atoms
located at z = +b (z = −b). We assume the nearest-neighbor
exchange interaction is only between sublattice ν = 2 and
ν = 3±, and that there is no exchange interaction between the
FeIII atoms. Rewriting the Hamiltonian to the S± basis, we get

H = − εJ

2~2
∑
r ,δ

[
1
2

(
Sr ,+Sr+δ,− + Sr ,−Sr+δ,+

)
+ Sr ,zSr+δ,z

]

− εz

2~2
∑
r

(
Sr ,z

)2 − εx

4~2
∑
r

∑
m=±

(
Sr ,m

)2
. (10)

Inserting the Holstein–Primakoff transformation, keeping terms
to second order in the magnon operators, we get

H = − εJ
∑
i

∑
r j=ri+δ

∑
ν=3±

[√
s2sν

(
a†
i,2aj ,ν + a†j ,νai,2

)

− sνa†
i,2ai,2 − s2a†j ,νaj ,ν

]
+ εz

∑
i,ν

sνa†i,νai,ν

− εx
2

∑
i,ν

sν(a†i,νa†i,ν + ai,νai,ν) , (11)

disregarding any constant terms, where r j is the position of
the nearest-neighbor atom of the atom located in unit cell i
and sublattice ν = 2. Next we perform a Fourier transform to
momentum space, defined by

ai,ν =
1√
N

∑
k

ak ,νe−ik ·ri ,ν , a†i,ν =
1√
N

∑
k

a†
k ,ν

eik ·ri ,ν ,

(12)

with N being the number of unit cells, and k the wave vector
running over the first Brillouin zone. The Hamiltonian then
becomes (disregarding any constant terms)

H =
∑
k

∑
z=±

εJ

[
3s3a†

k ,2ak ,2 + 3s2a†
k ,3z

ak ,3z

− √
s2s3

(
γz−ka†

k ,2ak ,3z + γ
z
k

a†
k ,3z

ak ,2
) ]
+ εz

∑
k ,ν

sνa†
k ,ν

ak ,ν

− εx
2

∑
k ,ν

sν
(
a†
k ,ν

a†−k ,ν + ak ,νa−k ,ν
)
. (13)
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FeIII FeII Ge Te

Figure 1. Crystal structure of monolayer Fe3GeTe2. All the drawn in-
plane bindings are at a 120◦ (in-plane) angle relative the neighboring
bindings. Dashed lines denote the unit cell. Left: view along ez ; right:
view along ey . FeIII and FeII represent the two inequivalent Fe sites
in oxidation states +3 and +2, respectively. Redrawn after Ref. [4].

Here we have introduced the structure factor

γk =
∑
δ

eik ·δ , (14)

which becomes

γ±k = e±ikzb
[
e−ikxa + 2eikxa/2 cos

(√
3

2
kya

)]
(15)

for Fe3GeTe2 between the ν = 2 and ν = 3± sublattices, as can
be seen from Fig. 1. Here a is the in-plane lattice constant
between the FeII and FeIII atoms, and 2b the separation between
two FeIII atoms in the z direction. We have also used that there
are three nearest neighbors in each sublattice. We can write
the Hamiltonian on the form

H =
∑
k

(
A
2

a†
k ,2ak ,2 +

B
2

a†
k ,3−

ak ,3− +
B
2

a†
k ,3+

ak ,3+

+ Cka†
k ,2ak ,3− + Dka†

k ,2ak ,3+ +
∑
ν

Eνak ,νa−k ,ν

)
+ H.c.

(16)

The coefficients A, B, Ck , Dk , and Eν are given in Table I.
We now have to diagonalize the Hamiltonian. This can be

done by a six-dimensional Bogoliubov transformation, defined
by the matrix B6

ακ =

©«

ακ,I
ακ,II
ακ,III
α†
−κ,I

α†
−κ,II

α†
−κ,III

ª®®®®®®®®¬
= B6

©«

aκ,2
aκ,3−
aκ,3+
a†−κ,2
a†−κ,3−
a†−κ,3+

ª®®®®®®®®¬
≡ B6aκ

=
∑
ν

©«

uI,ν vI,ν
uII,ν vII,ν
uIII,ν vIII,ν
ṽ∗I,ν ũ∗I,ν
ṽ∗II,ν ũ∗II,ν
ṽ∗III,ν ũ∗III,ν

ª®®®®®®®¬

(
aκ,ν
a†−κ,ν

)
, (17)
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Table I. The coefficients for the Fourier transformed Hamiltonian in
Eq. (16) below and above the critical current |Jc |.

Coefficient |J | < |Jc | |J | > |Jc |
A 6s3εJ + s2εz 6s3εJ +

1
2 s2(3εx − εz )

B 3s2εJ + s3εz 3s2εJ +
1
2 s3(3εx − εz )

Ck −√s2s3γ
−
−kεJ −√s2s3γ

−
−kεJ

Dk −√s2s3γ
+
−kεJ −√s2s3γ

+
−kεJ

Eν − 1
2 sνεx − 1

4 sν(εx + εz )

where κ now only runs over half the vector space of k , so that
the Hamiltonian can be written as

H =
∑
κ,µ

(
εκ,µα

†
κ,µακ,µ + ε−κ,µα

†
−κ,µα−κ,µ

)
. (18)

The Bogoliubov coefficients with a tilde, e.g. ṽI,2, are evaluated
at −κ while the coefficients without tilde are evaluated at κ. To
diagonalize the Hamiltonian we impose bosonic commutation
relations ([ακ,µ, α†

κ′,µ′] = δκ,κ′δµ,µ′) as well as the relation[
ακ,µ,H

]
= εκ,µακ,µ. The bosonic commutation relation

leads to the constraint[
ακ,α

†
κ

]
= B6

[
aκ, a

†
κ

]
B†

6 = B6Y B†
6 = Y , (19)

where we have introduced the matrix

Y = diag(1,1,1,−1,−1,−1) . (20)

The relation in Eq. (19) requires the normalization∑
ν

(
|uµν |2 − |vµν |2

)
= 1 . (21)

The relation from the commutation with the Hamiltonian leads
to the eigenvalue problem

©«

A C∗
κ D∗

κ −2E2
Cκ B −2E3−
Dκ B −2E3+
2E2 −A −C−κ −D−κ

2E3− −C∗
−κ −B

2E3+ −D∗
−κ −B

ª®®®®®®¬
eµ = εκ,µeµ ,

(22)

where eµ = (uµ,2,uµ,3−,uµ,3+, vµ,2, vµ,3−, vµ,3+ )T. We note that
C−κ = C∗

κ and D−κ = D∗
κ , and all other elements in the matrix

are real and independent of κ. Consequently, we therefore
have that ũµ,ν = u∗µ,ν and ṽµ,ν = v∗µ,ν . We also have that
ε∗κ,µ = ε−κ,µ, and as εκ,µ is a real quantity, we therefore also
have ε−κ,µ = εκ,µ.

In addition to finding the energy of the eigenmagnons, we
also wish to determine their spin, as these are not integer due
to squeezing from the SOT-induced anisotropy [5]. Using
Eq. (17) and Eq. (19) we see that aκ = B−1

6 ακ = Y B†
6Y

−1. This
can be written explicitly as

aκ,ν =
∑
µ

(
uµ,νακ,µ − vµ,να

†
−κ,µ

)
, (23)

a†κ,ν =
∑
µ

(
u∗µ,να

†
κ,µ − v∗µ,να−κ,µ

)
. (24)

Together with the fact that non-diagonal expectation values of
the product of two eigenmagnon operators vanish, we see from
Eq. (9) and Eq. (21) that∑

i,ν

〈Si,ν,z〉 =
∑
κ,µ

~
∑
ν

(
|uµ,ν |2 + |vµ,ν |2

) ∑
m=±

〈α†
mκ,µαmκ,µ〉

=
∑
k ,µ

~

(
1 + 2

∑
ν

|vµ,ν |2
)
〈α†

k ,µ
αk ,µ〉 , (25)

where we have disregarded all constant terms. We can then see
that the eigenmagnon spin contribution is

Sk ,µ = ~

(
1 + 2

∑
ν

|vµ,ν |2
)
. (26)

B. Above the critical current

Above the critical current, the lowest energy configuration
of the spins is along the x axis. We therefore have to change
the Holstein–Primakoff transformation to reflect this, with the
following transformation:

S̃i,ν,+ = ~
√

2sνa†i,ν

√
1 −

a†i,νai,ν
2sν

≈ ~
√

2sνa†i,ν , (27)

S̃i,ν,− = ~
√

2sν

√
1 −

a†i,νai,ν
2sν

ai,ν ≈ ~
√

2sνai,ν , (28)

S̃i,ν,x = ~
(
a†i,νai,ν − sν

)
, (29)

with S̃± = −S̃z ± iS̃y . Using this transformation in the Hamilto-
nian in Eq. (6), we get

H = − εJ
∑
i

∑
r j=ri+δ

∑
ν=3±

[√
s2sν

(
a†
i,2aj ,ν + a†j ,νai,2

)

− sνa†
i,2ai,2 − s2a†j ,νaj ,ν

]
− εz

4

∑
i,ν

sν
(
a†i,νa†i,ν + 2a†i,νai,ν + ai,νai,ν

)

+
εx
4

∑
i,ν

sν
(
6a†i,νai,ν − a†i,νa†i,ν − ai,νai,ν

)
. (30)

We again do a Fourier transformation as before, and find the
Hamiltonian to be on the form (again disregarding any constant
terms)

H = +
∑
k

∑
z=±

εJ

[
3s3a†

k ,2ak ,2 + 3s2a†
k ,3z

ak ,3z

− √
s2s3

(
γz−ka†

k ,2ak ,3z + γ
z
k

a†
k ,3z

ak ,2
) ]

− εz
4

∑
k ,ν

sν
(
2a†

k ,ν
ak ,ν + a†

k ,ν
a†−k ,ν + ak ,νa−k ,ν

)

+
εx
4

∑
k ,ν

sν
(
6a†

k ,ν
ak ,ν − a†

k ,ν
a†−k ,ν − ak ,νa−k ,ν

)
. (31)
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From this expression we can read off the coefficients in Eq. (16),
and use the results in the previous subsection for the case below

the critical current to determine the energy and spin of the
eigenmagnons. The coefficients in Eq. (16) are given in Table I
both above and below the critical current.
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