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Abstract 
Severe hypoglycemia is the most serious acute complication for people with type 1 diabetes (T1D). 

Approximately 25% of people with T1D have impaired ability to recognize impending hypoglycemia, 

and nocturnal episodes are feared. We have investigated the use of non-invasive sensors for 

detection of hypoglycemia based on a mathematical model which combines several sensor 

measurements to identify physiological responses to hypoglycemia. Data from randomized single-

blinded euglycemic and hypoglycemic glucose clamps in 20 participants with type 1 diabetes and 

impaired awareness of hypoglycemia was used in the analyses. Using a sensor combination of 

sudomotor activity at three skin sites, ECG-derived heart rate and heart rate corrected QT interval, 

near-infrared and bioimpedance spectroscopy; physiological responses associated with hypoglycemia 

could be identified with an F1 score accuracy up to 88%. We present a novel model for identification 

of non-invasively measurable physiological responses related to hypoglycemia, showing potential for 

detection of moderate hypoglycemia using a wearable sensor system. 
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Introduction 
Even with adequate monitoring and treatment, people with type 1 diabetes (T1D) have higher 

morbidity and mortality than the general population (Livingstone et al., 2012; Secrest et al., 2010; 

Lind et al., 2014). In particular, children with T1D have a markedly increased early mortality 

associated with hypoglycemia (Gagnum et al., 2015). To avoid severe hypoglycemia, self-monitoring 

of blood glucose is of utmost importance and finger prick testing or other invasive methods are a 

prerequisite. The use of continuous glucose monitors (CGMs) is increasing, but they are costly, and 

worldwide most people with diabetes still rely on pin prick testing. The most dangerous situation for 

a person with T1D  is low blood glucose (BG), and the ability to detect hypoglycemia can be impaired 

during sleep or other situations with altered consciousness (Secrest et al., 2011; Anderbro et al., 

2010). Over time, people with T1D may develop impaired awareness of hypoglycemia (IAH), implying 

adaptation to repeated hypoglycemic episodes and loss of the ability to sense low BG (Graveling and 

Frier, 2010). The prevalence of IAH among people with T1D is reported to be 20-25%, and the 

prevalence increases with time since diagnosis (Geddes et al., 2008; Graveling et al., 2014; Olsen et al 

2014). The use of CGMs has demonstrated that hypoglycemic events in people with IAH are more 

frequent than previously known (Agesen et al., 2018), emphasizing the need for a system that warns 

them of impending hypoglycemia.  

There have been many attempts to develop a non-invasive (NI)BG meter over the last few decades, 

but barriers still remain (Lin, 2017). Likewise, there has been attempts at developing a hypoglycemia 

alarm (Schechter et al., 2012; Nguyen et al., 2014; Ling et al., 2016).  A simple system based on sweat 

and temperature sensing has been available for many years, but does not perform at a level that may 

make it widely used (Clarke et al., 1988). Most approaches so far involve simple sensor systems (i.e. 

only ECG or skin conductance), without the use of a detection model based on relevant physiology. 

Moreover, the previous studies have mainly assessed the detection of nocturnal hypoglycemias in 

people not classified as having IAH, which is less challenging than in those with IAH.  

Physiological responses to hypoglycemia are particularly difficult to detect in people with IAH, in 

whom sympathoadrenal activation occur at a lower BG level than in those with normal hypoglycemia 

awareness (Hepburn et al., 1991; Elvebakk et al., 2018). Elvebakk 2018 found that global detection 

(using the same threshold for all cases) of hypoglycemia (down to 2.5 mmol/L) in IAH subjects was 

difficult based on the magnitudes of sudomotor and ECG (heart rate (HR) and QT-interval) responses. 

The present paper introduces a different approach for detection using a global probabilistic model 

which evens out individual dependencies and is able to discern episodes of hypoglycemia with better 

accuracy. In addition, non-invasive prediction of BG is used to further improve the accuracy, 

presenting the first results on a novel non-invasive multisensory system for detection of 

hypoglycemia.  

The idea for the multisensory system is shown in figure 1. A fall in BG triggers an activation of the 

sympathetic nervous system, leading to a sudomotor response in innervated dermatomes, increased 

sympathetic output to the heart and excretion of adrenaline into the bloodstream, consequently 

increasing the HR and QT-time. Little is known about the sudomotor response to hypoglycemia, in 

particular which dermatomes of the body that are involved and the differences between individuals, 

especially between subjects with varying degrees of IAH. Tronstad et al. (Tronstad et al., 2017) 

showed that amplification of synchronous changes in sudomotor activity (SA) measured at different 

skin sites (dermatomes) and HR was useful in detecting sympathoadrenal discharge. In IAH 

sympathoadrenal responses are attenuated (Hepburn et al., 1991) and consequently more difficult to 

identify (Elvebakk et al., 2018). Thus, new tailored algorithms and adding more information (through 

sensors) may improve the ability to detect hypoglycemia in this group. One largely independent 
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source of information is skin surface sensors for non-invasive prediction of BG (NIBG). Research and 

development in NIBG has been going on for more than four decades, but the performance still 

suffers from poor accuracy, physiological time lag and calibration issues (Lin, 2017). Nevertheless, 

some indication of the BG level (i.e. high or low) and the BG trend (i.e. falling/rising) would provide 

useful information, and seems possible to obtain using wearable non-invasive sensors (Caduff et al., 

2015). Being among the most tried and tested modalities with promising results in this regard is the 

combination of optical and passive electrical tissue properties measured through the skin. For this 

application, near-infrared (NIR) and bioimpedance spectroscopy have been selected as candidates 

for the purpose of increasing the specificity of hypoglycemia detection by reducing the probability for 

hypoglycemia when the predicted glucose level is too high or lacks a preceding negative trend. In 

Tronstad et al. (Tronstad et al., 2018), the combination of NIR and bioimpedance was assessed for 

the non-invasive prediction of BG trends during hypoglycemia. The performance in predicting the BG 

level was inaccurate with an unreliable threshold-based detection of hypoglycemia, but the trend 

predictions were mostly able to reflect the fall in glucose toward hypoglycemia. Many factors not 

related to hypoglycemia may interfere with the sensor measurements, mostly leading to false 

positive signals by e.g. sympathoadrenal activation through exercise. Some of these confounders are 

to some extent possible to measure and may provide information which can be used in the algorithm 

to consider the likelihood of a detected physiological response being spurious. Such sensors include 

an accelerometer for classification of activity level, one or more skin temperature sensors (for 

correction of temperature effects in NIBG and contribution in classification of activity levels) and a 

gyroscope for differentiation between lying and upright positions (different autonomic tone). The 

accelerometer and skin temperature sensors may also provide information related to hypoglycemia 

by detection of trembling (Muhlhauser et al., 1991) and skin temperature changes when adrenaline 

levels are high (Maggs et al., 1994).  
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Figure 1. Conceptual illustration of the idea for non-invasive detection of hypoglycemia using a 

wearable multisensory system. Non-invasive sensors are shown in yellow boxes, each measuring 

properties which are likely to contribute with relevant information for identifying a hypoglycemic 

episode. All sensors except the sensors addressing confounders are assessed in the current study, 

using data from a controlled laboratory environment. (Pictures by Servier medical art 

(https://smart.servier.com) licensed under CC BY 3.0). 

The aim of this study was to develop a model for identification of physiological responses to 

hypoglycemia in people with T1D and IAH, and to assess the potential for improved non-invasive 

detection of hypoglycemia in these subjects by including the model in a wearable multisensory 

system. In this study, we consider all sensor data and knowledge acquired from a glucose clamp 

study in 20 participants with IAH. Sudomotor activity was recorded at four different skin sites, ECG 

was measured for HR and QT time, and NIR and bioimpedance spectra were acquired every five 

minutes, at the same time as blood was drawn for reference glucose measurement. The sensors for 

identifying confounders (as shown in figure 1) were not used in this study as the subjects were 

supine in a controlled laboratory environment, but they will be added to future wearable sensor 

systems and scrutinized in studies focused on detection of spontaneously occurring hypoglycemia. 
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Methods 
Participants and glucose clamps 

All sensor and BG data come from the same study of randomized single-blinded euglycemic and 

hypoglycemic glucose clamps in 20 participants with T1D and IAH, presented in a previous paper 

(Elvebakk et al., 2018). Briefly, 20 subjects were recruited at Oslo University Hospital, The Norwegian 

Diabetics Centre and through an article in the Norwegian diabetes journal for patients. Inclusion 

criteria were age 18-60 years, T1D and IAH (defined by Clarke and/or Gold score (Clarke et al., 1995; 

Gold et al., 1994)). People with known heart, lung or kidney disease, ECG pathology, other serious 

medical conditions or the use of medication that could influence any measurements were excluded 

from the study.  

Mean age was 41.1 (+/-10.9),  mean BMI 25.1 (+/-2.8), mean duration of T1D 23.0 (+/-13.8) years and 

mean HbA1c 46.4 (+/-8.2) mmol/mol. Twelve of the subjects were women. 

Signed informed consent was obtained from all participants, and the study was approved by the 

regional ethics committee in Norway (REK 2013/813). The sensor equipment setup was evaluated for 

electrical safety and approved by the appointed committee at Oslo University Hospital. 

Each subject participated in two experimental sessions, one hypoglycemic and one euglycemic 

clamp, separated by at least two weeks. The subjects did not know which type of clamp that would 

be performed, and the order was randomized so that half of the subjects underwent hypoglycemic 

clamp first. 

Participants were instructed to be extra careful to avoid hypoglycemic episodes 48 hours before each 

session and were hospitalized the night before clamps to have their BG stabilized with 

insulin/glucose infusion. 

We used a hyperinsulinemic clamp technique with a constant rate insulin infusion of 1.5 mU/kg/min, 

and BG was regulated with a variable glucose infusion (Elvebakk et al., 2018).  

During hypoglycemic clamp, BG was lowered at a steady pace to 2.5 mmol/L and stabilized at this 

level for 15 minutes before being restored to normal levels. During euglycemic clamp, target BG was 

5.3 mmol/L. BG was measured every 5 minutes (YSI 2300 STAT Plus glucose analyzer, YSI Life 

Sciences, Ohio, United States). 

Sudomotor activity  

Sudomotor activity was measured by the skin AC conductance method using a Sudologger (BioGauge 

AS, Oslo, Norway) device having four channels for simultaneous recording at different skin sites. 

Sensor electrodes of the type 1050NSPM (Covidien) were attached to the measuring sites of the 

hypothenar eminence of the left hand, the forehead, the abdomen (2 cm up and 2 cm to the right of 

the umbilicus at the T9 dermatome), and at the palmar wrist of the left arm. Skin AC conductance 

density (SC) in all channels was recorded four times per second. In order to reflect the activation of 

the sympathetic nervous system in favor of the interindividual passive electrical properties of the 

skin, the SC time-series were parameterized into the frequency of skin conductance responses (FSR) 

as in Tronstad et al. 2017 (Tronstad et al., 2017). Briefly, FSR was calculated by using a five minute 

moving window, and counting the number of peaks (representing skin conductance responses to 

sudomotor activity) in the SC time-series within this window, giving a continuous indicator of the 

average sympathetic nervous system outflow to the different dermatomes where the sensor 

electrodes were placed. With respect to analysis of detection performance, the FSR time-series were 

shifted 2.5 minutes back in time so that no yet unknown data points were used in the analysis. Some 

non-physiologic spike artefacts were present in few recordings but were removed with a custom-
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made spike-removal filter (interpolation between too sharp SC waves). Although the skin AC 

conductance was measured at the hypothenar eminence of the palm, this sensor was not included in 

the analysis of hypoglycemia detection, as the electrodermal activity at this site is very influenced by 

emotional responses and the location is very impractical for a wearable sensor system. 

ECG recording for heart rate and QT-interval  

ECG was measured continuously using a Siemens SC9000XL ECG monitor and three Ambu Q00A 

electrodes in the lead II configuration (which has been suggested as an acceptable substitute for the 

mean QT-interval from a 12-lead recording (Davey, 2000)). The raw ECG signal was acquired by 

sampling the analog output of the monitor by a DAQ-card (NI USB 6009 data acquisition device 

National Instruments, Austin, Tx, USA) connected to a laptop running a custom made LabVIEW 

(National Instruments, Austin, Tx, USA) application with a sampling rate of 300 Hz. 

The raw ECG signals were initially processed by removing any signal parts having a voltage absolute 

value larger than 1V (due to artefacts) and then low pass-filtering using a 3rd order Butterworth filter 

with a 0.25 Nyquist rate (37.5 Hz corner frequency). The R peaks of the signal were then identified 

using the Pan-Tompkins algorithm (Pan and Tompkins, 1985), and the time-distance between the 

neighboring R peaks (the RR-time) was used for the calculation of the HR. Any RR-time lower than 

500 ms or higher than 1500 ms was excluded due to most likely being an artefact. A heart-rate (HR) 

time-series was then calculated from the reciprocal of the RR time in seconds and was finally filtered 

by taking the median within a moving window of 5 minutes.  

For calculation of the QT-interval, the bottom of the Q-wave (Q-point) and the end of the T-wave (T-

point) were located from the ECG signal using a previously published method (Laguna et al., 1990). 

The QT-interval was then calculated for each heartbeat by the difference between the T-point and 

the Q-point of the same heartbeat. In order to minimize the influence of the HR variation on the QT-

interval, a correction by the Bazett formula (dividing the QT-interval by the square root of the RR-

interval in ms) was applied in order to predict the QT-interval at a reference HR of 60 beats per 

minute (QTc). The Bazett formula was selected in favor of other proposed corrections based on 

earlier work (Christensen et al., 2010) which found that this formula was most suitable for observing 

hypoglycemia-induced changes in the QT-interval. The HR-corrected QT-interval time-series were 

also median filtered using a moving window of 5 minutes. The ECG recording was influenced by some 

artefacts most likely due to muscle activity, but this influence on HR and QTc was diminished by the 

median filtering. Similar to the FSR time-series, the HR and QTc time-series were also shifted 2.5 

minutes back in time so that no unknown recordings at any time were used in the analysis of 

hypoglycemia detection. 

Skin temperature 

Skin temperature was measured using a Siemens Drager 5204669 temperature probe taped to the 

upper arm, not covered by clothing. The temperature value was acquired by the ECG monitor 

(Siemens SC9000XL) connected to the probe and was recorded every 5 minutes at the same time as 

BG measurement.  

NIR and bioimpedance 

NIR and bioimpedance spectroscopy was measured together with the physiological parameters of 

FSR, HR and QTc for the purpose of increasing the specificity of hypoglycemia. NIR absorbance in the 

880-2200 nm range was measured using a Spektron® (Prediktor AS) together with a 6.5 watt 

tungsten light source (Ocean Optics Inc., Florida, USA) and a custom-made probe attached to the 

upper arm. The custom-made probe had 6 illumination optical fibers surrounding a central pickup 

fiber with a 0.2 mm distance between pickup and illumination fibers. Bioimpedance was measured in 
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the MHz range (1-200 MHz) using a VIA Echo 2500 vector impedance analyzer (AEA Technology, USA) 

using a 2-electrode configuration with electrodes (Ambu Q00-A) attached at the palmar side of the 

underarm. During the clamp, NIR and bioimpedance spectra were recorded every five minutes, at the 

same time as the BG measurement and skin temperature recording.  These measurements were 

used to develop a global model for prediction of BG based on combining NIR, bioimpedance and skin 

temperature.  An artificial neural network regression approach was used to train, validate and test 

the model and its performance in prediction of BG levels and trends, and is described in its 

completeness in Tronstad et al. (Tronstad et al., 2019). The predicted BG time-series for each 

experiment based on the developed model was used in this study for the purpose of improving the 

specificity of hypoglycemia detection by combining the predicted BG levels and trends with the 

measured physiological responses.  

Probabilistic model for detection of hypoglycemia  

Based on the findings by Elvebakk et al (Elvebakk et al., 2018) and further inspection of the data with 

respect to temporal properties of the sensors, the model presented in figure 2 was developed. The 

function of the model is to use a short history of sensor measurements to detect significant within-

subject changes, and to combine the relevant changes from different sensors in a probabilistic 

network tuned to provide optimal sensitivity and specificity for detecting hypoglycemia.  

For each sensor, a moving window of 30 minutes of measurement history was used to determine the 

probability that a significant change is occurring. The last measurement m(i) in this window is 

compared to the mean value within the window, calculating the difference and standardized 

difference as:  

𝑑𝑖𝑓𝑓(𝑖) = 𝑚(𝑖) − 𝑚𝑒𝑎𝑛(𝑚(𝑤𝑖𝑛𝑑𝑜𝑤))                                                                                                        (1) 

𝑠𝑡𝑑. 𝑑𝑖𝑓𝑓(𝑖) =
𝑚(𝑖) − 𝑚𝑒𝑎𝑛(𝑚(𝑤𝑖𝑛𝑑𝑜𝑤))

𝑠𝑡𝑑(𝑚(𝑤𝑖𝑛𝑑𝑜𝑤))
                                                                                               (2) 

These measures are then converted to a number between 0 and 1 by a sigmoid function where the 

output p represents the probability of change: 

𝑝(𝑥) =
1

1 + 𝑒𝑘(𝑥−𝑥0)
                                                                                                                                           (3) 

Where x is the measure (diff or std.diff) and x0 is the level of x at which p(x) becomes 0.5, i.e. a 50% 

probability that the change has occurred, and k is the sharpness or sensitivity to changes around x0. 

In order to ensure that the change is not only statistically sufficient, but also sufficiently large in 

magnitude of the respective sensor, the probabilities of the difference (pdiff) and the standardized 

difference (pstd.diff) were multiplied (equivalent to a logical AND-gate) for each sensor, expressed as: 

𝑝𝑠𝑒𝑛𝑠𝑜𝑟 =  𝑝𝑑𝑖𝑓𝑓 ∙ 𝑝𝑠𝑡𝑑.𝑑𝑖𝑓𝑓                                                                                                                                (4)  

The probabilities of reactions in the sudomotor activity sensors (pforehead, pabdomen and pwrist) were 

combined into a total probability of hypoglycemia-related sudomotor activity reaction (pFSR) by 

finding the maximum pairwise product:  

𝑝𝐹𝑆𝑅(𝑖) = max(𝑝𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑(𝑖) ∙ 𝑝𝐴𝑏𝑑𝑜𝑚𝑒𝑛(𝑖), 𝑝𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑(𝑖) ∙ 𝑝𝑊𝑟𝑖𝑠𝑡(𝑖), 𝑝𝐴𝑏𝑑𝑜𝑚𝑒𝑛(𝑖) ∙ 𝑝𝑊𝑟𝑖𝑠𝑡(𝑖)) (5) 

For the heart rate, the probability of change was also determined by (1), (2) and (3) and the product 

of pdiff and pstd.diff, representing the probability of a relevant increase in HR. This probability was then 

fed through a convolution filter (right half of a Gaussian with a sigma of 7 minutes) in order to 

smooth the response curves and keep pHR elevated for a few minutes after a significant increase.  
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PFSR&HR represents the probability of a sympathetic reaction that is due to hypoglycemia based on 

combining reactions in sudomotor activity (pFSR) with heart rate in a way that increases the 

probability if there is a simultaneous heart rate reaction, but goes to zero if there is no sudomotor 

reaction, regardless of the pHR value (as just standing up will give an increase in HR): 

𝑝𝐹𝑆𝑅&𝐻𝑅 = 𝑝𝐹𝑆𝑅  ∙ (1 + 𝑘 ∙ 𝑝𝐻𝑅)                                                                                                             (6) 

,where any pFSR&HR>1 was set to 1. The probability of QT change associated with hypoglycemia was 

modeled in the same way using (1) to (4), also smoothed by convolution in the same way as pHR. PQT 

was combined with pFSR&HR by the following relation, where negative pFSR&HR&QT values were set to 

zero: 

𝑝𝐹𝑆𝑅&𝐻𝑅&𝑄𝑇 = 𝑝𝐹𝑆𝑅&𝐻𝑅 + 𝑃𝑄𝑇 − 1                                                                                                        (7) 

The last step of the model is using the NIBG predictions to filter out responses where the BG is likely 

to be either too high or lacking a negative foregoing trend. Probabilities of levels (plevel) and trends 

(ptrend) in BG associated with hypoglycemia were obtained by sigmoid activation functions as in (3). 

Due to a low precision of NIBG, the threshold level (x0 in (3)) was set to 7.5 mmol/L. The trend was 

calculated from the slope of a linear regression against time within a 30 minutes window prior to the 

current measurement, and used to calculate the probability of a relevant trend based on (3) with x0 

set to -1 mmol/L/h.  PNIBG was calculated based on plevel and ptrend as: 

𝑝𝑁𝐼𝐵𝐺 = 𝑝𝑙𝑒𝑣𝑒𝑙 − (1 − 𝑝𝑡𝑟𝑒𝑛𝑑)/ 2                                                                                                                   (8) 

This implies that pNIBG is reduced by 0.5 if the trend criterion is not met, and any negative pNIBG is set 

to zero. 

Finally, the probability of physiological responses due to hypoglycemia was modeled by: 

 
𝑝𝐻𝑌𝑃𝑂=𝑝𝐹𝑆𝑅&𝐻𝑅&𝑄𝑇∙𝑝𝑁𝐼𝐵𝐺                                                                                                                                    (9) 

In this way, pHYPO was allowed to remain high unless NIBG indicated too high BG or a lack of a 

preceding downward glucose trend.  

The k value in (3) was set to 1 for all sensors, the k value in (6) was set to 0.5, and the x0 values for 

calculating pstd.diff for all sensors were also set to 1 (one standard deviation change from the mean 

gives a pstd.diff  of 0.5). For pdiff, the x0  value was set to 2 for all sudomotor activity sensors and the QT 

interval, and 3 for the heart rate. 

All signal processing and model development were done in Matlab R2018a (Mathworks Inc).  
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Figure 2. The structure of the probabilistic model used for detection of hypoglycemia based on the 

input from noninvasive sensors.  

Performance assessment 

Based on the probabilistic model and with all sensor recordings from each experiment, PHYPO was 

calculated for each time-point from 30 minutes after the beginning of the experiment (due to the 

history window size) to the end of the recording, corresponding to the BG reference measurements. 

PHYPO was then compared to the BG reference measurements, where the intervals having a reference 

BG below 4.0 mmol/L were defined as true hypoglycemic intervals. A true positive was counted for at 

least one PHYPO above the detection threshold within this interval, else a false negative was counted. 

Within each of five euglycemic intervals (before and after the hypoglycemic interval of the 

hypoglycemic clamp, and the three intervals of the euglycemic clamp corresponding in time to the 

hypoglycemic intervals), a true negative was counted when there was no PHYPO values above the 

detection threshold, and a false positive otherwise. Only unique PHYPO responses were counted in the 

euglycemic intervals, i.e. not the tail of a response peaking within the hypoglycemic interval.  

Sensitivity (same as recall), specificity, precision, F1-score, area under the ROC curve and the median 

and interquartiles of the detection time (in minutes relative to glucose nadir) was calculated as 

performance metrics, with the F1-score used as the metric for overall detection accuracy. These 

metrics were also calculated for different reduced combinations of sensors for comparison, where 

the same model was used, only with nodes removed from the model structure (see figure 2). When 

combining only two sudomotor activity sensors, the following formula was used for pFSR: 

𝑝𝐹𝑆𝑅 = 1 − (1 − 𝑝𝐹𝑆𝑅,𝑆𝑒𝑛𝑠𝑜𝑟1) (1 − 𝑝𝐹𝑆𝑅,𝑆𝑒𝑛𝑠𝑜𝑟2)                                                                            (10) 
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Results 
The application of the model on sensor data during hypoglycemia is demonstrated in figure 3. As 

shown in the b) plot, the sudomotor activity increases around 20 minutes before glucose nadir (the 

point of lowest BG during the hypoglycemic clamps), both at the forehead and wrist sites. Even 

though the magnitude increases from nadir and onwards, it is the wave of responses around -10 

minutes that is most synchronous (between skin sites) and gives the largest probability value of 

relevant sudomotor activation, as shown in the d) plot. Shown in e) and f), the probabilities of 

relevant increases both in HR and QTc are also maxed around this time. Together, these probabilities 

satisfy the criteria for a non-zero pHYPO around nadir-10 minutes, which is not attenuated much by the 

NIBG time-series, having both a low enough predicted glucose level and preceding trend to keep pNIBG  

high around this time, as shown in g). The result is a distinct pHYPO response around nadir -10 minutes 

as shown in h). 
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Figure 3. Example of the model applied on sensor data from one hypoglycemic clamp experiment 

showing the different steps in determining the probability of hypoglycemia (pHYPO) using the 

combination of time-series representing sudomotor activity (b-d), HR (e), QT time (f) and non-

invasive prediction of BG (g). Probabilities before -80 minutes before glucose nadir are not available 

due to the window length required.  

The model was able to discern reactions during episodes of hypoglycemia based on the sensor inputs 

with a high accuracy (F1 score of 88%). As shown in figure 4, pHYPO responses were prominent around 

the time of glucose nadir in the hypoglycemic clamp (upper plot). During the euglycemic clamps, 

there were two large pHYPO responses and a few smaller, regarded as false positives depending on the 

detection threshold level.  
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Figure 4. The probability of a physiological response due to hypoglycemia based on the combination 

of all sensors, PHYPO, plotted vs time relative to glucose nadir for all hypoglycemic (above) and 

euglycemic (below) clamps plotted. PHYPO is represented in black lines together with the mean plasma 

glucose over all experiments (red dots) on the right y-axis.  
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Figure 5. Performance of detection vs threshold of detection. The black line shows the threshold 

value with the highest F1-score (88%) at PHYPO=0.10.  

 

The performance of hypoglycemia detection versus detection threshold is shown in figure 5. The 

maximum accuracy (based on the F1-score) was with a PHYPO threshold at 0.10, with an 88% accuracy 

having one false negative and four false positives. Further performance metrics at the optimal 

detection threshold is shown in table 1, also for other sensor combinations for comparison. Excluding 

NIBG reduced the accuracy to 86% (due to lower precision). Interestingly, excluding the HR sensor 

input did not change the detection performance (except for a bit lower sensitivity and higher 

precision). A large fall in accuracy was found when the QT time was excluded, hampering both the 

sensitivity and precision. Using only the abdomen and wrist SA sensors together with both ECG 

sensors provided an accuracy of 81%. Only using SA data from the wrist site together with both ECG 

sensors reduced the accuracy to 78%, mainly due to low sensitivity. The combination of only wrist SA 

together with HR had an accuracy of 55%, with very low precision.  

 

Table 1. Detection performance parameters for the model using all sensors and other selected sensor 

combinations using the same model. FSR = Frequency of Sudomotor Responses, F=Forehead, 

A=Abdomen, W=Wrist, HR=Heart Rate, QTc=HR-corrected QT-interval, NIBG = Non-Invasive Blood 

Glucose, IQR = Inter-Quartile Range. The detection time is calculated as the median and inter-

quartiles of the time when an alarm would have triggered in minutes relative to glucose nadir.  
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Sensors 

Max 
F1 

score 
[%] 

Sensitivity 
[%] 

Specificity 
[%] 

Precision 
[%] 

AUROC 
[0-1] 

Detection time 
median (IQR) 

[min] 

FSR(F+A+W)+ECG(HR+QTc)+NIBG 88 95 96 83 0.97 -2.2 (-11.6, 4.2) 

FSR (F+A+W) + ECG (HR + QTc) 86 95 95 79 0.96 -2.2 (-11.6, 4.2) 

FSR(F+A+W)+ECG(HR)+NIBG 63 65 92 62 0.87 -10.8 (-27.6, -1.0) 

FSR(F+A+W)+ECG(QTc)+NIBG 86 90 96 82 0.97 -3.0 (-11.8, 3.2) 

FSR (A+W)+ECG(HR+QTc)+NIBG 83 75 99 94 0.94 -2.2 (-9.2, 4.1) 

FSR (A+W) + ECG (HR + QTc) 81 75 98 88 0.94 -2.0 (-10.8, 6.3) 

FSR (W) + ECG (HR + QTc) 78 70 98 88 0.91 -5.3 (-11.8, 4.8) 

FSR (W) + ECG (HR) 55 75 80 43 0.80 -13.5 (-25.9, 1.3) 

ECG (HR+QTc) + NIBG 58 45 98 82 0.79 -0.83 (-6.2, 2.2) 

 

In Elvebakk et al. (Elvebakk et al., 2018), it was found that five of the 20 subjects could identify 

hypoglycemia during the clamp experiments. Reducing the sample to the remaining 15 subjects gave 

a slightly lower performance (F1 score) when using all sensors (87%), a reduction to 77% for the two 

combinations using abdomen and wrist sweating and 74% for wrist sweating, HR and QTc. A drop in 

performance was also given for the combination of only FSR wrist and HR combination (51%), for the 

combination using all sensors without QTc (59% F1 score) and for the ECG + NIBG combination (42%).  

Discussion 
Summary of findings  

We have shown that a probabilistic multiparameter model can identify physiological responses 

during hypoglycemia with a high accuracy using non-invasive sensors, even in people with IAH. Using 

three SA sensors together with ECG and NIBG, this accuracy was 88%. For a more practical sensor 

combination with respect to wearability (SA sensors from wrist and abdomen combined with ECG), 

an accuracy of 81% was obtained.  

Physiological interpretation  

Based on earlier research we were prepared to find that not all subjects would have measurable 

reactions to a BG of 2.5 mmol/L (Hepburn et al., 1991). Detecting 19/20 (95% sensitivity) 

hypoglycemias in people with IAH would be very attractive if proven to work that well in realistic 

settings. Since we rely much on a sympathetic reaction, any sympathetic reaction could potentially 

trigger an alarm. However, none of the false alarms were accompanied by increases in adrenaline or 

typical symptoms of a sympathetic reaction. The same can be said for some of the alarms during 

hypoglycemia, since many of the subjects had uncertain reactions to hypoglycemia, yet we could still 

detect small (possibly sympathetic) sensor reactions in all but one participant. It is therefore difficult 

to conclude whether our model has detected actual sympathetic reactions during euglycemia (due to 

other unknown triggers), or random triggering events.  

Clinical significance 

One out of 20 hypoglycemic episodes was not detected by our model. Since the sympathetic reaction 

to hypoglycemia is triggered at a lower BG level in IAH subjects than in people with normal 

hypoglycemia awareness, this is not surprising. But more importantly, only five out of 20 subjects 

recognized hypoglycemia during the hypoglycemic clamps. Subtracting one undetected case leaves 

14 subjects that had detectable physiological reactions without recognizing these reactions. This may 
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imply that even in people with complete hypoglycemia unawareness our device may detect 

hypoglycemia in time for them to self-treat. However, since one hypoglycemic episode was 

undetected, it may seem that not only the sympathetic reaction is shifted to a lower BG level in these 

people, but also the sensors’ ability to detect it. This could mean that in some people, it may be 

impossible to detect hypoglycemia in due time based on these sensors.  

Looking at figure 4, we observe that many of the calculated responses to hypoglycemia appear 

around 10 minutes after glucose nadir. Much, if not all of this can be explained by data processing. A 

delay of about 10 minutes is not ideal, as BG can fall 0.5 mmol/L or more during that time period, 

which might be crucial if the response should appear at around 2.0 mmol/L and the alarm alerts at 

1.5 mmol/L. The model is tuned to achieve optimal sensitivity and precision, but further testing in a 

real-world setting is needed to decide if other factors should be weighted more. 

Today, the CGMs that are available for many people with T1Dare minimally invasive, implying that 

only a very thin and short plastic catheter penetrates the skin after being inserted via a small needle. 

A small transmitter device sticks to the skin over the catheter. For many people with T1D such CGM 

devices are very useful, but  IAH continues to be a risk factor for severe hypoglycemia despite the use 

of CGM (Lin et al., 2019). Also, CGMs imply a considerable cost, and reimbursement by the health 

care system is variable. For a non-invasive alarm system to be relevant, it would have to be easy to 

use (CGMs require a minimum of technical interest/knowledge), be non-obtrusive, relatively cheap, 

and reliant. Modern CGMs are convenient and inobtrusive for most users, while some instantiations 

of the proposed system would be obtrusive and would benefit from new solutions in sensor design. 

An advantage of the proposed system is that realizations of the device would not require expensive 

components, and the use would not require regular replacement of any expensive part, in addition to 

being non-invasive. 

Sensor design 

The presented combinations of sensors may seem obtrusive for a wearable system, especially when 

using all SA sensors together with ECG and NIBG (NIR and bioimpedance). However, recent and 

future advances in sensor miniaturization and sensor network architecture will likely reduce the 

obtrusiveness of a complex multisensory system significantly, combining wireless sensor patches 

communicating in a body area network. Skin conductance (for SA) can be measured by stamp-size 

skin patches, as demonstrated by Yoon et al 2016. Miniaturized and wireless ECG patch sensors are 

already available, such as the SEEQ MCT by Medtronic and the ZIO® XT Patch by iRhythm. With 

respect to NIBG sensors, the technological development also facilitates wearable solutions for NIR 

and bioimpedance (the sensors used in this study). Bioimpedance has the advantage that being an 

electrical measurement, no other transducer than a suitable electrode is needed, allowing easy 

sensor miniaturization. ASIC solutions for bioimpedance measurement fabricated in CMOS are 

emerging (Rodriguez et al., 2016; Zamani et al., 2018; Xu et al., 2015) and wearable patch solutions 

have been found suitable for bioimpedance sensing (Rossi et al., 2017). Miniature NIR spectrometers 

in CMOS are also emerging (Hong and Sengupta, 2017), which will be beneficial for application in 

non-invasive glucose monitoring (Yadav et al., 2015). An integrated circuit for measurement and 

processing of both NIR and bioimpedance has been proposed (Song et al., 2015), and a wristwatch 

device with both sensors integrated has already been developed (Carlsen et al., 2016). Advances in 

research on stretchable materials leads to development of new flexible wearable sensor platforms 

which may be useful in this application (Kenry et al., 2016). In addition, the developments in the 

Internet of Things (IoT) will likely pave the way for new solutions in sensor fusion and predictive 

analytics (Li et al., 2014).  

Degree of IAH and personalization 
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The model used was global (equally applied to the data from all subjects and experiments in the 

study), and the detection threshold was the same for all experiments. The detection performance 

could possibly be improved by personalization with respect to the degree of IAH (i.e. lowering of the 

detection threshold due to anticipated weaker physiological responses), and a simpler model (with 

fewer sensors) may provide sufficient detection performance for people with IAH that still have a 

strong sympathetic reaction (Elvebakk et al., 2018). Studying the effect of personalization would 

require longer recordings with several hypoglycemic episodes in order to test the reproducibility of 

individual adjustments.  

Comparison to other works 

In our previous study (Elvebakk et al., 2018), we demonstrated that simple processing (as in 

(Tronstad et al., 2017)) of SA and ECG sensor data and a global threshold could provide detection of 

hypoglycemia in people with diabetes  with normal/adequate hormonal reactions to hypoglycemia 

(100% accuracy in five subjects), but had a poor detection performance in people with IAH due to 

interindividual differences in the magnitude of symptomatic responses. The probabilistic approach 

presented here leveled out this interindividual variation, mainly by the non-linear transformation in 

the sigmoid functions and also increasing the sensitivity to weaker responses by the network 

structure of the model, thereby improving the identification of hypoglycemic responses significantly. 

To the authors’ knowledge, only one previous study has been published on non-invasive detection of 

hypoglycemia in people with IAH, and several studies have assessed non-invasive hypoglycemia 

detection using different sensor systems in people with T1D, but with no consideration of 

hypoglycemia awareness (see below).  

Sejling et al. (Sejling et al., 2015) showed that hypoglycemia could be detected with EEG, and that 

there was no difference in the EEG signals between subjects with T1D with and without IAH when in 

the hypoglycemic range. A product called Hypo-Safe is under development, but as of now not 

commercially available. 

Schechter et al (Schechter et al., 2012) used a sensor system of HR, perspiration (unprocessed skin 

conductance at the fingertips), skin temperature and tremor (by accelerometer) measurements and 

obtained a sensitivity of 100% and a specificity of 85.7% in detecting nocturnal hypoglycemia in a 

pilot study in ten adolescents with type 1 diabetes. Clewett et al. demonstrated feasibility of non-

invasive EEG-based hypoglycemia warning in a single case study (Clewett et al., 2016).  

Recently, machine-learning approaches for hypoglycemia detection have also been attempted 

(Nguyen et al., 2014, Huang et al., 2011, Ling et al., 2016, Marling et al., 2016) based on similar 

sensors such as ECG, skin conductance and temperature, but are difficult to compare with the 

present study due to differences in population, study design and performance measures. It seems 

that too little data from too few studies have so far been gathered in order to evaluate the potential 

for non-invasive detection of hypoglycemia using machine-learning methods. 

Previous studies involving skin conductance (or other names thereof, such as galvanic skin reflex or 

electrodermal activity) have used the raw measurement without any parameterization. In the 

present study, signal processing of this measurement was employed in order to extract the FSR 

(frequency of sudomotor responses), reducing the between-subjects variation due to skin properties 

and more closely representing the state of sympathoadrenal activation (Tronstad et al., 2017).  

Limitations of the present study 

Although the dataset used in this study is large compared to other studies (40 glucose clamp 

experiments in 20 subjects), data scarcity is also considered a limit of this study. Especially in the IAH 
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population, large interindividual differences in hormonal reactions to hypoglycemia and the 

associated physiological responses necessitate a large sample. Although machine-learning was not 

employed in the present study, some manual tuning of several parameters (i.e. x0 in (3)) was done in 

order to translate relevant changes in sensor measurements into reasonable probabilities for their 

respective physiological parameter, implying some risk of overfitting. In addition, the structure of the 

model (figure 2) was developed by a combination of logical reasoning and optimization of global 

detection accuracy on this dataset. Hence, this is an introduction of a model for identification of 

physiological responses due to hypoglycemia, an assessment of its potential for detecting 

hypoglycemia, but not a validation of it. 

A strength of this study, however, is the participant-blinded randomized control clamp that provided 

measurements during similar conditions but at euglycemic levels, greatly reducing the chance of 

overfitting and spurious relationships. It is also not possible to know whether all detected responses 

within the hypoglycemic window are causally related to BG decrease, especially those who peak 

more than 10 minutes after glucose nadir (see figure 4). Given the latency due to signal processing, a 

possible latency in the physiological response to hypoglycemia and the lack of time-corresponding 

responses in the euglycemic clamp, we believe that they are most likely a consequence of 

hypoglycemia. Ideally, the model would be tuned further on a larger sample from the same 

population with data from several hypoglycemic episodes per subject, and then validated on a new 

sample from the same population. The measurements in this study were done during glucose clamp 

in a controlled laboratory environment in order to study the physiological responses to hypoglycemia 

as specifically as possible. Using a wearable device with the same sensors as described in figure 1, the 

detection performance can be evaluated in a more realistic setting during daily activities and during 

sleep. Further studies should also include an assessment of the potential for reductions in 

uncorrected hypoglycemic episodes and a comparison with recent CGM technology.   

Conclusion  

In conclusion, we have presented a novel model for identification of non-invasively measurable 

physiological responses related to hypoglycemia, showing potential for the detection of moderate 

hypoglycemia in people with T1D and IAH using a wearable sensor system.  
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