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Eksperimentelle og datavitenskapelige strategier for å 

identifisere synergistiske effekter av kreftmedisiner 
Kombinasjoner av kreftmedisiner er forventet å forbedre effekten av behandling ved at disse kan 

svekke kreftens vekst gjennom flere ulike mekanismer. Synergistiske kombinasjoner, det vil si 

kombinasjoner som har større effekt enn hva man ville forvente ut fra effekten av enkeltmedisiner, er 

av spesiell interesse. Det store antallet av kjemoterapier og målrettede kreftlegemidler vil imidlertid 

innebære svært mange kombinasjoner og vanskeliggjør derfor identifisering av effektive 

kombinasjonsterapier. Arbeidet i denne avhandlingen omfatter (1) eksperimentelle høykapasitets- 

analyser som kan bidra til identifisering av effektive medikamentkombinasjoner i prekliniske 

laboratorieforsøk, og (2) strategier for å benytte datamodeller og datasimulering til å forutsi hvilke 

kombinasjoner som er attraktive for testing i en gitt celletype. Målet med doktorgraden er å danne et 

grunnlag for å teste eksperimentelt bare et utvalg av alle mulige kombinasjoner, men likevel finne så 

mange som mulig av de effektive kombinasjonene. Resultatene viser at våre datamodeller kan 

simulere kreftcellenes respons på kombinasjoner av kreftmedisiner på en måte som kan gi grunnlag 

for å redusere omfanget av eksperimentell screening og likevel identifisere flere synergistiske 

kombinasjoner. I tillegg presenterer jeg strategier som kan føre til forbedring av datamodell-genererte 

prediksjoner som igjen kan brukes som et grunnlag for videre forsking. Disse strategien omfatter 

optimalisering av datamodeller, av kalibreringsdata, og identifisering av datamodell-komponenter 

som er avgjørende i kalibreringsprosessen. Få kombinasjonsterapier som oppdages i laboratoriet blir 

godkjent som behandling for pasienter. En av grunnene til dette antas å være knyttet til at 

kreftsvulster i utilstrekkelig grad representeres i kreftmodellene som i dag brukes i preklinisk 

forskning: kreftcellelinjer dyrket som flate enkeltcellelag. En strategi for å forbedre prekliniske 

kreftmodeller, er å dyrke kreftcellelinjene i tredimensjonale sfæroider. Resultater i denne avhandlinga 

viser at medikament-kombinasjoner har ulik effekt i kreftcellekulturer dyrket som sfæroider 

sammenlignet med enkeltcellelag. Flere synergistiske kombinasjoner ble kun registrert i en av de to 

forskjellige dyrkningsmetoder for en og samme cellelinje. 
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Abstract 
Drug combinations are hoped to improve treatment response to anti-cancer drugs by targeting the 

cancers vulnerabilities at diverse trajectories. With a large number of approved agents of 

chemotherapeutic and targeted therapies and several anti-cancer drugs in development, the number 

of possible combinations extensively escalates. As drug combination effects are highly influenced by 

individual traits of the cancer or cancer model system, identification of effective compound 

combinations is challenging. High-throughput screening is used to uncover effective combination 

treatments by testing them in experimental systems relevant for a large range of cancer subtypes. 

However, efficient filtering of interesting combinations for testing, such as can be provided by 

predictive computational modelling, is needed to further economise screening efforts. In the scope of 

this thesis, we advanced the use of logical modelling to identify putative effective drug combinations 

for pre-clinical screening by demonstrating the successful calibration of cancer cell line specific models 

to predict drug combination effects for four different cell lines. Testing predictions against 

experimental observations for 153 drug combinations in our large drug combination screen, indicated 

that we could have reduced the screening load considerably and increased synergy detection rate 

among the proposed combinations by 2.6-fold. Improvements in modelling strategies contributed 

through the work in this thesis pertain to optimisation of model network topology, selection of 

baseline protein activity data for model calibration as well as to approaches that can be used to 

identify subsets of nodes in the model for which accurate acquisition of baseline activity data is most 

important.  

Drug combination hits identified in vitro are met by low bench-to-bed translational efficiency, 

questioning the reliability of traditional planar (2D) cancer cell line cultures as model systems for drug 

screening. As part of this thesis, we have performed a high-throughput screen to systematically 

compare drug combination effects observed in planar (2D) and spherical (3D) cell line cultures. We 

identify combinations that act synergistically in only one but not the other culture mode.  In spheroid 

cultures a lower number of synergistic drug combinations was identified with stronger dependency 

on MEK-signalling compared to 2D cultures. This indicates that future screening platforms should 

encompass more complex cancer models to capture a broader range of therapeutic synergy landscape 

as well as highlights the relevance of signalling dynamics and activities as markers for drug response. 

This thesis offers strategies to support cell line specific logical modelling as a possible tool to 

economise pre-clinical screening efforts, and to enhance insights into design of high-quality high 

throughput combination screening for reliable detection of synergistic drug combination effects. 
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Introduction 
With an aging population and increased prevalence of chronic diseases, there is an urgent need to 

develop effective and sustainable treatment options. Several decades of research have uncovered the 

broad landscape and complexity of many human diseases, including cancer, and it is apparent that 

treatment solutions must be developed beyond a “one size fits all” treatment option. 

Different terms have been used to describe the current efforts in medicine that aim to improve 

diagnosis, prognosis, prevention and individualised therapy. Personalised medicine has become a 

buzzword and is often interchangeably used with precision medicine. P4 medicine (P4 = predictive, 

preventive, personalized and participatory) and systems medicine are aspiring similar goals, although 

they are not synonymous [1]. Personalised medicine seems to be a somewhat debatable term as 

medicine has always been focused towards providing “personalised” care for a specific patient. In 

2013, Schleidgen et al. [2] performed a systematic review and came up with the following definition 

of this term offering a clearer understanding of the difference to traditional health care: 

 “[Personalised Medicine] seeks to improve stratification and timing of health care by utilizing 

biological information and biomarkers on the level of molecular disease pathways, genetics, 

proteomics as well as metabolomics.” [2] 

While personalised medicine holds great promise to enable preventive and predictive care, concerns 

to its value and current strategies have been raised [3–5]. How will we identify which alterations 

associated with disease are clinically actionable? How can we select the right treatment? How do we 

ensure responsible data processing and sharing? While these are only a few of many challenges, they 

clearly point to the need for multi and cross- disciplinary efforts to provide good health care solutions 

[6]. 

Personalised medicine is pursued in all aspects of modern medicine. Hereafter this thesis will focus on 

the application of personalised medicine in oncology. 

Personalised Oncology 

Personalised oncology (reviewed in [7,8]) builds on the analysis of multiple data types to provide 

patient stratification. Efforts such as The Cancer Genome Atlas (TCGA) [9] and the International Cancer 

Genome Consortium (ICGC) [10] provide access to comprehensive data on patient tumour profiling, 

especially on the genomic and transcriptomic level. Systematic analysis of this data has greatly 

advanced our understanding of molecular processes in cancer, including amongst other the 

identification of driver genes [11] and shared molecular alterations across tumours types [12]. For a 
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comprehensive list of publications see 1. Some of the identified alterations were found to be 

associated with survival and therapy response and could be implemented as biomarkers in the clinic. 

For example, an oestrogen receptor signature was established as an early indicator to identify breast 

cancer patients that require adjuvant therapy [13]. In recurrent ovarian cancer BRCA mutation status 

is used as an indicator for response to PARP inhibition as subsequent-line treatment [14]. The growing 

understanding of the clinical relevance of identified molecular alterations as possible actionable 

entities in the context of patient-specific molecular profiles has led to the emergence of 

mechanistically motivated therapies, known as targeted therapies. 

Targeted Therapies 

Targeted therapies are designed to target molecular alterations in cancer cells [7]. In contrast, 

chemotherapy and radiotherapy target all fast-growing cells. Immunotherapies are a recent addition, 

aiming at potentiating anti-tumour immunity [15]. 

Targeted therapies are mainly focused on monoclonal antibodies and small molecule kinase inhibitors. 

Monoclonal antibodies typically target extracellular proteins and interfere with cellular signalling by 

blocking the interaction between receptors and ligands. This can be mediated either through direct or 

indirect mechanisms. Small molecule inhibitors on the other hand are low molecular weight 

compounds (< 900 Da) able to diffuse into cells and block intracellular proteins [16]. Kinase inhibitors, 

a sub-class of small molecule inhibitors, can roughly be classified as (1) Type I inhibitors that 

competitively bind the ATP-binding pocket of proteins, and (2) Type II inhibitors which are non-ATP 

competitive inhibitors inducing a conformational change in the target [17]. For instance, the ATP-

competitive kinase inhibitor vemurafenib targets V600E mutant BRAF. Other approved inhibitors 

include small molecule inhibitors pablociclib and ribociclib targeting CDK4/6, and monoclonal 

antibodies pembrolizumab, targeting the immune checkpoints, and cemiplimab, targeting human 

programmed death receptor-1 (PD-1) [16,18]. 

While small molecule inhibitors are designed to target specific proteins, many of them target more 

than one protein due to their unspecific mode of action. This promiscuous behaviour is in part due to 

many kinase inhibitors targeting the highly conserved ATP-binding pocket. Whereas characterisation 

of inhibitor target profiles is crucial to uncover and understand their molecular and phenotypic 

actions, such characterisation is not yet routinely done in-depth for many of the clinically used or 

investigational kinase inhibitors [19]. This has also been recently highlighted by Lin et al. [20], showing 

                                                           

1 https://gdc.cancer.gov/about-data/publications - last accessed 18/09/2019 

https://gdc.cancer.gov/about-data/publications
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that a panel of investigational and pre-clinical compounds exert phenotypic effects by off-target mode 

of action. 

Existing kinase inhibitor profiling has mostly been performed using competition binding assays 

measuring physical interaction of a compound with a protein [19,21,22], or by biochemical assays 

measuring phosphotransferase activity of a tested kinase with the use of radioactive-labelled ATP. In 

the latter type of assays, the inhibition effects of Type I kinase inhibitors, i.e. ATP competitive 

inhibitors, can be more directly quantified. This method is applied by the MRC Protein Phosphorylation 

Unit Databases evaluating target profiles of Type I kinase inhibitors [23–25] and has also been used by 

others [26,27]. Database resources collecting target and bioassay information on compounds include 

www.chemicalprobes.org, PubChem [28], ChEMBL [29,30], and Library of Integrated Network-based 

Cellular Signatures (LINCS, http://lincs.hms.harvard.edu/kinomescan).  

Targeted Therapies in Clinical Trials 

Several clinical trials evaluate the applicability of targeted therapies and assess clinical feasibility of 

molecular profiling. In so-called basket-trials, treatment is given based on mutation status 

independent of cancer type. In contrast, in umbrella trials patients with the same cancer type but 

different mutations are treated with biomarker-informed drugs [7]. Trials evaluating clinical benefit of 

biomarker guided targeted therapies are among others: 

• Initiative for Molecular Profiling in Advanced Cancer Therapy (IMPACT, NCT00851032, 

estimated completion: February 2021) 

• IMPACT/Community Molecular Profiling in Advanced Cancers Trial (COMPACT, 

NCT01505400, estimated completion: February 2020) [31] 

• Study of Personalized Cancer Therapy to Determine Response and Toxicity (UCSD_PREDICT, 

NCT02478931, estimated completion: September 2020)  [32] 

• Study of Molecular Profile-Related Evidence to Determine Individualized Therapy for 

Advanced or Poor Prognosis Cancers (I-PREDICT, NCT02534675, estimated completion: 

February 2025) [33] 

• Genomic Profiling in Phase I (NCT02437617, estimated completion: July, 2020) [34] 

• Molecular Profiling Protocol (SCRI-CA-001, NCT00530192, completed) [35] 

• Molecular Screening for Cancer Treatment Optimization (MOSCATO 01 [36], and MOSCATO 

02, NCT01566019, estimated completion: October, 2019) 

• WINTHER (NCT01856296, completed, no results available) [37,38] 

• A Randomized Phase II Trial Comparing Therapy Based on Tumor Molecular Profiling Versus 

Conventional Therapy in Patients With Refractory Cancer (SHIVA, NCT01771458) [39] 
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• National Cancer Institute Molecular Profiling-Based Targeted Therapy in Treating Patients 

With Advanced Solid Tumors (NCI-MPACT, NCT01827384, estimated completion: May 2020) 

[40] 

• Molecular Analysis for Therapy Choice (MATCH, NCT02465060, estimated completion: June 

2022) 

• N-of-1 Trial: Actionable Target Identification in Metastatic Cancer for Palliative Systemic 

Therapy (MetAction, NCT02142036, estimated completion: January 2022) 

• LEE011 for Patients with CDK4/6 Pathway Activated Tumors (SIGNATURE, NCT02187783, 

completed) 

• The Drug Rediscovery Protocol (DRUP Trial, DRUP, NCT02925234, estimated completion: 

December 2019) 

• CPCT-02 Biopsy Protocol (CPCT-02, NCT01855477, estimated completion: August 2020) 

While most of these trials are still ongoing, some few and sobering results have already been 

presented. The first comparative randomised trial with the aim of assessing the use of molecular 

matched therapy was the SHIVA trial. Approved targeted therapy was given to heavily pre-treated 

groups of patients outside of their indicated cancer type (off-label drug use) and based on genomic 

alterations in three signalling pathways (hormone receptor-, PI3K/AKT- and RAF/MEK- pathway). 

Progression-free survival did not differ between patients receiving  matched therapy versus patients 

treated according to physicians choice [39]. Also in the IMPACT/COMPACT, PREDICT and Genomic 

Profiling in Phase I trial no statistical difference in overall survival was observed between patients in 

genotype-matched treatment group vs un-matched group [31,32,34]. 

SHIVA has been criticized for weak or incorrect drug-patient matches based on the present biomarker 

profile. Specifically the drug Everolimus, a mTORC1 inhibitor, was denounced as it only weakly affects 

the PI3K/AKT/mTOR pathway [41,42], as pointed out by the Le Tourneau et al. themselves. Another 

point of criticism was the use of only monotherapy rather than combination treatments.  In cases in 

which several molecular alterations potentially relevant for treatment decision were identified, the 

authors tried to account for this by giving treatment based on the molecular target deemed to be the 

most clinically relevant by the Molecular Biology Board [39]. While this may account for mutations in 

the same pathway, this cannot account for mutations in parallel pathways, e.g. PI3K/AKT- and 

RAF/MEK- pathway, which potentially confer resistance to chosen therapy. 

In the Genomic Profiling in Phase I study [34] each patient was assigned a matching score, quantifying 

the number of matched agents to number of detected gene alterations in order to account for 

confidence of assigned treatment. Treatments were further categorised into matched-direct 
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treatment (e.g.: BRAF inhibitor for patient with BRAF mutation) or matched-indirect treatment (e.g.: 

a PI3K inhibitor for patient with PTEN mutation), including both single and combination treatment. 

While this clinical trial could not document significant difference in overall survival and time-to-

treatment failure between direct and indirect matches, patients with higher matching score showed 

significantly higher median time-to-treatment failure compared to patients with lower matching 

score, indicating that tailored targeted therapy may give clinical benefit when treatment is accounting 

for multiple alterations and high confidence drug-to-biomarker matches. 

As tumours are not strictly comparable between patients, thus rendering direct comparison of 

treatment benefit impossible, several trials have started to compare the new treatment to the 

previous treatment in the same patient, i.e. using the patients as their own control. Using this 

approach, both in the Molecular Profiling Protocol study [35] and the MOSCATO 1 trial [36] the authors 

concluded that matched therapy improved progression-free survival in at least a subset of patients. 

Also, in the I-PREDICT study patient-free survival increased when comparing matched therapy to last 

prior treatment in patients with a high matching score of given treatment [33]. 

While one might be discouraged by these results, it is important to consider that (1) most of the 

included patients have advanced and heavily pre-treated diseases, (2) most of the above-mentioned 

studies perform tumour profiling solely by DNA sequencing, and (3) most of the above-mentioned 

studies solely relied on the use of monotherapies. Further, in order to generate comparable, 

interpretable and reproducible results from these clinical trials, some common guidelines should be 

followed when planning the studies [43,44], as well as when quantifying treatment benefit. 

Le Tourneau et al. [43] also accentuate that biopsy samples used for biomarker assessment only 

represent one section of the tumour and hence possibly only a part of the mutational landscape 

Alternative profiling methods like liquid biopsies encompassing the analysis of circulating tumour cells, 

circulating tumour DNA (ctDNA) [45] and extracellular vesicles, including exosomes, are of interest as 

complementary strategies to tumour biopsies and further allow for continuous monitoring. While 

blood-based cancer diagnostic on exosomes are available [46], there are still several unknowns when 

it comes to the composition and functional role of the different types of extracellular vesicles [47,48]. 

Feasibility of molecular profiling based on ctDNA was recently evaluated by the TARGET (Tumour 

chARacterisation to Guide Experimental Targeted therapy) study reporting a high overlap between 

mutations detected in tumour samples and ctDNA [49]. 

Cell Signalling in Personalised Oncology 

Since nearly all targeted therapies are directed against signalling molecules, the importance of 

signalling biology in cancer is apparent. This is also pointed out by  Yaffe [50] who states that  “cancer 



 
 

6 
 

is primarily a signalling disease”. Various signalling pathways, like PI3K/AKT- and RTK/RAS/MAPK, have 

been flagged for their relevance in cancer development and progression. Well known oncogenes in 

these pathways include the epidermal growth factor receptor (EGFR), KRAS and BRAF, associated with 

the RTK/RAS/MAPK signalling pathway, also being used as biomarkers, and PI3KCA, which is associated 

with the PI3K signalling pathway [51]. As illustrated in Figure 1, mutations can be detected in several 

members of the signalling pathway, although they vary in frequency between different patients and 

tumour types. Specific alterations, such as V600E in BRAF leading to constitutively active BRAF, can 

confer sustained growth-promoting signalling, which is one of the hallmarks of cancer [52]. Cancer 

cells show altered signalling dynamics arising from gene mutations but also other factors eliciting  

cancer-promoting rewiring of signalling transduction [50,52]. Pharmacological targeting of signalling 

pathways aims at blocking the cancer hallmark capabilities. However, due to high signalling crosstalk, 

where signals can be integrated at different crossing points, it can be conceived that blocking only 

single protein classes may result in no or only temporary response to treatment.  

 

Figure 1 – Overview over the PI-3-Kinase and receptor-tyrosine kinase (RTK)/RAS/MAP-Kinase signalling pathway. 
Frequency of copy number alteration and mutation data from a metastatic colorectal cancer study [53] are indicated 

below the respective genes. The figure was generated using PathwayMapper [54]. 
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Drug Combinations – finding a needle in a haystack 

Combination therapies were incorporated at an early stage into clinical practice, albeit comprising 

mainly chemotherapeutic agents. Rationales for combination of treatments are (1) to increase the 

effect of a treatment thus enabling reduced dosage and reduced toxicity, (2) to protect against off-

target effects by another drug, (3) to attack multiple sites of a signalling pathway thus reducing the 

chance for resistance development and to (4) more efficiently targeting intra-tumour heterogeneity 

[55]. Improved observed effects of combination therapies might also be assigned to inter-tumour 

heterogeneity between patients purely based on a higher probability of patients responding to 

treatment [56]. In oncology, combination therapies have mainly focused on combined application of 

different chemotherapies, such as gemcitabine together with cisplatin a standard treatment for 

tumours such as bladder cancer and non-small cell lung cancer [55]. 

With the rise of small molecule inhibitors, combination treatments comprising of only targeted 

inhibitors or chemotherapies in combination with targeted drugs have become a research focus. A 

well-known example is the combination of different MEK inhibitors and BRAF inhibitors for the 

treatment of malignant melanoma [57–59] and lung adenocarcinoma [60]. Other clinically approved 

combinations include amongst others the monoclonal antibody bevacizumab against human vascular 

endothelial growth factor (VEGF) in combination with erlotinib, an inhibitor of EGFR for advanced lung 

cancer [61], and the combination of nab-paclitaxel (albumin-bound paclitaxel), a chemotherapeutic 

agent, in combination with atezolizumab, a monoclonal antibody against human programmed death 

ligand-1, for treatment of triple-negative breast cancer [62]. As discussed by Lopez and Banerji [63], 

successful implementation of combinations of targeted therapies in the clinic faces two major 

challenges; (1) Identification of effective combinations and (2) successful implementation of the 

treatment in the clinic. 

Cancer Models for Drug Screening 

A major bottleneck in the identification of effective drug combinations is the large number of targeted 

treatments that are possible with drugs available or currently in development [63]. For example, if 

one considers testing pairwise drug combinations of only the approximately 90 FDA-approved small 

molecule inhibitors for treatment of different cancer types2, one would need to test 4 005 

combinations. The number of possible drug combinations rises exponentially with increased number 

of compounds and with an even steeper curve if one considers higher order combinations. Hence, we 

need to rely on experimental systems that show characteristics similar to a patient’s disease to test 

                                                           

2 Targeted Cancer Therapies by the National Cancer Institute - https://www.cancer.gov/about-
cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet (last accessed 02/10/2019) 

https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
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and prioritize drug combinations. Over the years, different experimental systems have been 

established to test sensitivity to drugs in single or combinatorial application and to infer markers for 

drug sensitivity and resistance (Box 1, Figure 2). 

Box 1 – Cancer models 

Established Cancer Cell Lines 

Several well characterised cancer cell lines, like the NCI-60 panel, have been used over the years for single and 

combination drug screening and biomarker discovery [64–66]. Cancer cell lines can be easily cultivated and 

grown in large quantities over time. However, this has also led to selective homogeneity within the cell line 

population. Nevertheless, there is supporting evidence that a sufficiently large number of cell lines captures 

clinically relevant alterations and that pharmacogenomic screens can lead to the identification of putative drug 

sensitivity markers [51].  

To better represent the tissue architecture of a tumour, methodologies to work with 3D cell cultures, also 

called spheroid cultures, or xenograft models have been established. Spheroid cultures are in vitro models that 

more closely mimic human tumours compared to planar cell cultures, e.g. by displaying different “zones” of 

cells dominated by either proliferative, quiescent or necrotic cells (reviewed in [67]). Studies comparing 

spheroid against monolayer (2D) cultures comprise report on comparable [68], reduced [69,70] or increased 

sensitivity [68,70,71] to drug treatments as well as well as changes in cellular signalling [69,71–75]. 

Patient-Derived Cancer Models 

Patient-derived cancer models better represent the intratumor heterogeneity than established cancer cell 

lines. Patient-derived xenograft models, generated by inoculating or engrafting either patient-derived cell lines 

or tumour tissue, have been shown to faithfully recapitulate human tumour biology and been successfully 

applied in drug testing (example [76]). As maintenance of patient-derived xenograft models is high and material 

restrictions limit applicability for large-scale screens, also patient-derived xenograft cell lines have been 

established [77,78]. However, the initiation and propagation of patient-derived xenografts is demanding and 

time consuming with 2-4 months for establishment alone (reviewed in [79]). 

A practical alternative to patient-derived xenografts are spheroid or organoid cultures of patient-derived cell 

lines or tumour tissue [80–84]. While there is no defined nomenclature for different 3D cultured models, 

spheroids are generally referred to as aggregates of cells grown in non-adherent conditions. The term organoid 

on the other hand describes mini-organlike structures containing multiple self-organised cell types [67,85]. 

Other Animal Models 

Other categories of animal models besides cancer xenograft models generated by inoculating or engrafting 

cancer cell lines, comprise environmentally induced or genetically engineered animal models. Here cancer 

development is brought about by environmental factors like radiation or pathogens, or by genetic engineering 

using gene-targeting methodology to for example generate tumour suppressor knockout animals (reviewed in 

[86] for mouse). 
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Figure 2 - Schematic representation of different cancer models. 

Drug combination screens 

For discovery of new effective drug combinations, high-throughput screens testing a large panel of 

compounds are performed, typically on cancer cell lines [63]. Drug combinations can be screened in 

an unbiased manner, i.e. all drug combinations are usually tested against each other (Table 1). 

Alternatively, high-throughput screens may be hypothesis-driven, i.e. a preselected inhibitor or a 

predefined molecular target is inhibited with one or several inhibitors and tested in combination with 

a drug library (examples [87–89]). Tested drug libraries often comprise a mixture of compound classes 

such as small molecule inhibitors and chemotherapeutic agents. Attractive targets for combination 

treatment may also be identified using RNAi (examples [90–93]), or CRIPR-based screens (examples 

[94,95]). 

Table 1 – Overview of unbiased high-throughput drug combination screens in 2D cancer cell line models. Abbreviations: 
Sulphorhodamine B (SRB), Cyclin-dependent kinase 2 (CDK2), acute myeloid leukaemia (AML), chronic myeloid leukaemia 
(CML), fluorometric microculture cytotoxicity assay (FMCA). * In the study by Menden et al., a dataset of 137 screened 
cell lines was generated of which 85 cell lines had complete genomic data upon release of the study. 

Study Cell lines Nr. of compounds and 

screening format 

Read out Ref. 

Holbeck et 

al. 

59 cell lines 

(NCI-60 panel) 

105 drugs tested in 5,232 

pairwise combinations at 

5x3 or 3x3 matrix 

Growth inhibition using 

either SRB or CellTiter-

Glo® assay after 48h 

compared to 0h 

[96] 

Menden et 

al. 

137* cancer cell 

lines 

118 drugs tested in 910 

combinations at 5x5 matrix 

Cytotoxicity using SYTOX® 

Green after 120h 

[97] 

O’Neil et al. 39 cancer cell 

lines 

38 drugs tested in 583 

combinations at 4x4 matrix 

Viability using CellTiter-

Glo® after 96h 

[98] 
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Study Cell lines Nr. of compounds and 

screening format 

Read out Ref. 

Licciardello 

et al. 

1 CML cell line Primary screen: 308 drugs 

at 40,160 combinations at 

1x1 

 

Secondary screen: 20 

combinations at 4x4 matrix 

Viability using CellTiter-

Glo® after 72h 

[99] 

Friedman et 

al. 

36 melanoma 

cell lines 

108 compounds in 5,778 

combinations at 2 fixed-

dose ratio rays  

Cytotoxicity by high-

content imaging after 72h 

[100] 

Langdon et 

al. 

11 pancreatic 

carcinoma cell 

lines 

40 compounds in 780 

combinations at 3x3 matrix 

Viability using CellTiter-

Glo® after 72h 

[101] 

 

As alternatives to 2D growing cancer cell lines, drug combination screens have been performed in 

other cancer models. This includes screens performed in patient-derived xenografts [76], patient 

organoid cultures [81,102], cell line spheroid cultures [103] and transgenic animal models [104]. 

Limited patient material and a high number of potential drug combinations hamper the use of patient-

derived screening models for comprehensive drug combination screening. However, the 

establishment of patient-derived xenograft and organoid libraries [77,105–109] as well as the 

development of techniques requiring low assay volume, such as presented by Eduati et al. [110], will 

allow large scale combination testing in patient-derived samples. 

Screening format 

Drug combination studies have been performed using several different designs, as is exemplified in 

Table 1. Cells may be exposed to compounds for different durations ranging usually from 48h – 120h 

and monitored with a variety of read-outs. Drugs may be applied at different dose combinations 

applied in e.g. a ray or matrix design (Figure 3). In the latter all possible combinations of drug 

concentrations are tested in an exhaustive screen. For example, if Drug A is tested at concentrations 

0.5µM and 1µM and Drug B at 2µM and 5µM, the drug combination would result in four possible drug-

concentration combinations. In a ray design either one drug is used as a fixed concentration, for 

example at IC50, while continuous doses of the other drug are applied. Alternatively, both doses are 

varied in each dose-combination. This would result in two dose concentrations in the above-

mentioned example of Drug A and Drug B. While exploring a dose-response matrix provides a more 

comprehensive sampling of the combination, the number of possible data points increase 

exponentially with increasing number of drugs, samples and doses. For example, if one wanted to test 

eight cell lines with 19 compounds in all possible pairwise combinations, i.e. 171 combination, at five 
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doses a matrix design, this would result in 34 960 samples. In contrast, a ray design would result in 

7 600 samples, i.e. approximately 22% of a complete matrix. 

 

Figure 3 – Illustration of matrix and ray designed drug combination screen. For the ray design different vector of the 
dose-response matrix may be chosen as indicated by ray 1-3. 

Metrics for Synergy Quantification 

Different terminologies are used to describe drug combination effects as discussed in [111,112]. 

Generally, one distinguishes between synergy, additive and antagonistic effects. A combination is 

defined to act synergistically if the observed combination effect is greater than the expected additive 

effect. An antagonistic effect describes the effect being smaller than what is expected based on 

observed effects of each of the drugs alone. Definition of the expected combination effect differ 

depending on the “null” reference model used [113]. Numerous models having been proposed over 

time for the quantification of drug combination effects, with no general agreement on a standard 

reference model. Popular models comprise the Loewe additivity [114,115], Bliss independence [116], 

Highest single agent (HSA) model [117], discussed as followed and also reviewed in [111,112,118]. 

Loewe additivity 

The Loewe additivity model is based on the “sham mixture” experiment where a single drug is mixed 

with itself and no interaction effect should be observed. The model assumes the dose equivalence 

principle, meaning that one can achieve the same effect of a drug A with drug B at a certain dose of 

drug B and vice versa. Synergism, antagonism or additivity using the Loewe additivity model are 

calculated according to formula (1), where 𝑎𝐸(𝑥) and 𝑏𝐸(𝑥) are doses of drug A and B that produce an 

effect 𝐸(𝑥). The dose used of each of the single drugs that reaches the same effect 𝐸(𝑥) in the 

combination is described by 𝑎𝑝𝐸(𝑥) and 𝑏𝑝𝐸(𝑥), respectively. In other words, how much of drug A in 

the combination is needed to achieve the same effect as observed at a certain dose of drug A alone 

and vice versa for drug B. 
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 𝑎𝐸(𝑥)

𝑎𝑝𝐸(𝑥)
+

𝑏𝐸(𝑥)

𝑏𝑝𝐸(𝑥)
{

= 1, Additivity    
< 1, Synergy          
> 1, Anatagonism

 (1) 

 

The Loewe model may be extended to quantify drug combination effects of more than pairwise 

combinations. The model relies on an accurate estimation of dose response curve, commonly 

modelled using the Hill model.  Here the dose response relationship is modelled according to formula 

(2) where 𝑑 is the dose of a drug and 𝑚 is the slope of the curve. For the dose principle to hold when 

using the Hill model, a constant potency ratio, reflected in parallel log dose response curves, is 

assumed [119]. Thus, the potency ratio is the same of any point on the dose response curves of drug 

A and drug B. However, some compounds may not elicit a single-agent activity but show enhance 

effect in combination. This is for example intended for the use of a checkpoint kinase 1 inhibitors in 

combination with chemotherapy drugs [120]. 

 𝐸 =
𝐸𝑚𝑎𝑥 (

𝑑
𝐼𝐶50

)
𝑚

1 + (
𝑑

𝐼𝐶50
)

𝑚  (2) 

 

Bliss independence 

The Bliss independence is based on the theory of noninteraction between each of the drugs in a 

combination. The model assumes that a second drug B can only act on the unaffected fraction of a 

drug B. Thus, the expected affected fraction, e.g. % of killed cells, of a drug combination 𝑓𝑎𝐴+𝐵 can be 

calculated according to formula (3), where 𝑓𝑎𝐴 is the affected fraction by drug A and 𝑓𝑎𝐵 is the 

affected fraction by drug B. As affected and unaffected fraction, e.g. % of viable cells, are 

complementary, i.e. 𝑓𝑎 + 𝑓𝑢 = 1, formula (3) can be written as formula (4) when measuring the 

unaffected population. 

 𝑓𝑎𝐴+𝐵 = 𝑓𝑎𝐴  + 𝑓𝑎𝐵 − 𝑓𝑎𝐴 ∗ 𝑓𝑎𝐵 (3) 

 𝑓𝑢𝐴+𝐵 = 𝑓𝑢𝐴 ∗ 𝑓𝑢𝐵 (4) 

Whenever the observe effect of a drug combination is greater than the expected effect, or in other 

words when a higher fraction of the population is affected, then synergy is called. A drawback of the 

Bliss independence model is that is does not work with the “sham experiment” but results in a 

synergistic response if the drug shows a steep dose response curve. 
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Highest single agent 

The HSA model, also known as Gaddum's non-interaction model, states that a combination is 

synergistic if the effect is greater than that achieved by any of the single drugs alone, resulting in 

formula (5). As for the Bliss independence model, whenever the observed effect of a combination is 

greater than the expected effect, the combination acts synergistically. 

 𝐸𝑎+𝑏 = 𝑚𝑎𝑥(𝐸𝑎 , 𝐸𝑏) (5) 

Several extensions to the above-mentioned reference models have been proposed over the years. 

These include a combination of the mentioned models [121], Chou and Talalay’s model [122,123], 

Multi-dimensional Synergy of Combinations (MuSyC) [124], Combination Sensitivity Score (CSS) [125], 

and the Zero Interaction Potency (ZIP) model [126]. 

From Bench to Bedside – Challenges in Personalised Oncology  

Databases, such as the Cancer Genome Interpreter [127] and OncoKB [128] have curated information 

on biomarkers, mostly genomic alterations, associated with treatment responses for certain cancer 

types. As can be seen from these resources, little of the currently available massive tumour profiling 

data has been rendered actionable for clinical decision making. For example, of the listed biomarkers 

in the Cancer Genome Interpreter, only 91 alterations in 31 different genes/proteins are predictive of 

responsiveness to given drug(s), i.e. actionable event, per tumour type according to FDA guidelines3. 

These include BRAF (V600E), mutation in BRCA1 and 2 as well as different mutations in KRAS or EGFR. 

As few predictive biomarkers are available, similar or identical treatments are given to large patient 

groups, effectively resulting in a “one-size-fits-all” approach. This is especially problematic in highly 

heterogenous diseases such as pancreatic and colorectal cancer, where more biomarkers predictive 

of treatment response are urgently needed (reviewed in [129,130]). 

Decoding Molecular Alterations 

Molecular alterations associated with cancer, such as those identified from -omics analysis, may exert 

different effects, from having no function at all to inactivation of tumour suppressors or activation of 

oncogenes, with a large fraction of alterations not associated with any known functional significance. 

Understanding the molecular function of different tumour alterations can amongst others contribute 

to further identification of critical traits for biomarker-guided treatment. For example, in a follow up 

to the SHIVA study [39], the effect of several RTK/RAS/MAPK pathway protein variants of unknown 

significance were evaluated by in vitro reporter assay. Patients with positive survival predictions 

                                                           

3 https://www.cancergenomeinterpreter.org/biomarkers - last accessed 02/10/2019 

https://www.cancergenomeinterpreter.org/biomarkers
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inferred from the in vitro responses to molecular agents showed significantly higher median 

progression-free survival than patients with negative predictions [131]. 

While the same actionable event may be shared among different cancers [11], due to distinct genetic 

background, context-specific signalling and other molecular features of individual tumours, these 

modifications can manifest in different treatment responses  (reviewed in [132]). A well know example 

is the use of the BRAF inhibitors in BRAF mutant melanoma patients compared to BRAF mutant 

colorectal cancer patients. While melanoma patients with this mutation generally show initial 

response to this treatment, colorectal cancer patients harbouring the same mutations typically show 

no or limited treatment response. This treatment failure has been associated with activation of the 

EGFR receptor via feedback signalling. Due to the fact that this receptor is generally weakly expressed 

in melanoma tumours, inhibition of BRAF will not cause activation of EGFR as has been observed in 

colorectal cancer cells, and thus EGFR-triggered cancer growth is not observed [132,133].  

Prospective of Phosphoproteomics profiling 

Posttranslational modification of proteins, such as phosphorylation, is central in triggering molecular 

responses by relaying cellular signalling through the signalling network. Advances in mass 

spectrometry (MS) have opened up new avenues for assessment of signal transduction by shotgun 

phosphoproteomics. By enabling more direct and bulk quantification of protein kinase 

phosphorylation status without the need for antibodies, the phosphorylation status of thousands of 

phosphorylated peptides can be measured [134–136]. However, phosphoproteomics guided 

biomarker discovery is hampered by challenges related to reproducibility, sensitivity and functional 

characterization of phosphosites. The latter, necessary for inferring kinase activity status, is often 

based on kinase-substrate relationship information obtained from different databases and thus relies 

heavily on curated prior knowledge. Largely a distinct set of phosphorylated peptides is detected in 

each biological replicate due to stochastic sampling effects, related to the transient nature of 

phosphorylation’s, making reliable quantification challenging [137,138].  

Based on the idea of redundancy in cellular information fostered by proteins acting in signalling 

networks, targeted MS is pursued. While reducing the breadth of the analysis, by measuring a 

preselected subset of proteins and phosphosites using labelled peptides, robust and accurate 

quantification of selected phosphorylation sites can be achieved with small sample concentration. 

[139–141]. However, the selection of proteins to study by targeted MS still suffers under the bias for 

well-studied kinases as only in some cases, phosphorylation site-status has been deduced to protein 

activity. Needham et al. [137] indicated that there are many relevant phosphoproteins which have not 

yet been identified. Thus, there is a trade-off between quantity and quality; either one focuses on 
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studying few proteins for which activity can be accurately measured and inferred or one studies many 

to have a greater picture, albeit at reduced resolution. 

Systems Medicine for Personalised Diagnosis and Treatment 

In 2013, Yaffe stated that “the scientific community seem to be addicted to sequencing”, calling for a 

combined genomic, proteomic and signalling analysis to advance interpretation capacity for improved 

cancer therapy [142]. A number of ongoing efforts use a systems medicine approach in order to infer 

drug response from tumour profiles [64,66,143]. While systems medicine pursues similar goals as 

personalised medicine, the former term reflects the use of a systems biology approach to understand 

and treat diseases. A system can be understood as a set of interacting objects that work together to 

make it function. Thus beyond studying multiple data types, e.g. genomics and proteomics, to provide 

patient stratification, the systems approach also focuses on strategies to tackle mechanisms and 

consequences of underlying molecular interactions [1]. 

Network Medicine 

A focus area of systems medicine is network medicine, a term first introduced by Barabási in 2007 

[144]. By studying causal and molecular interactions, network analysis allows for discovery of cancer 

driver genes and disease modules and pathways. Network medicine is hoped to advance personalised 

medicine by bridging the gap between the disease phenotype and disease-associated molecular 

alterations (molecular phenotypes) identified by -omics analysis [145–147]. For example, Hofree et al. 

[148] performed tumour stratification using mutation profiles guided by network information. This 

network-based stratification led to identification of tumour subtypes predictive of patient’s survival 

for uterine, ovarian and lung cancers, while consensus clustering failed at identifying such subgroups. 

In another similar study by Wang et al. [149], network-based stratification was either highly 

correlated, weakly corresponding, or completely different compared to consensus tumour subtyping. 

This indicates that by studying mutations with respect to interaction networks, additional or new 

stratification clusters of prognostic value can be revealed. 

The Connectivity Map project [150], extended by the NIH Library of Integrated Network-Based Cellular 

Signatures Program [151], aims at decoding the function of disease-associated genetic events by 

studying cellular signatures after systematic perturbations. To optimise this, the L1000 assay was 

developed measuring the mRNA abundance of 978 so-called landmark genes [152]. Identified drug 

perturbation signatures under the Connectivity Map initiative can be employed to determine 

associations and connections between diseases, drugs, genes and pathways (reviewed in [153]). 

Comparable to the L1000 Connectivity Map project, Abelin et al. [140] presented the P100 set for 

phosphopeptides to study the effects of molecular perturbations on protein phosphorylation involved 
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in cell signalling. Litichevskiy and colleagues [154] have recently used the P100 set together with the 

L1000-assay and global chromatin profiling to generate perturbation signatures to 90 small-molecule 

compounds. Disagreements between the different assays was often related to the mode of action of 

the tested compound. For example, for compounds of the class histone modifiers, positive 

connectivity was mostly inferred in the P100 dataset, while negative connectivity was frequently seen 

in the global chromatin profile. Thus, while each of these assays can give important biological insights, 

the best readout depends on the mode of action of tested compounds. 

Prior Knowledge for Network Biology 

The foundation for network-driven approaches in systems medicine is prior knowledge of causal and 

molecular interaction. Such knowledge is available in a comprehensive number of databases and 

scientific publications, fortifying network medicine approaches and generation of mechanistic models. 

Annotated pathways and causal interaction are based on manual curation, text mining and computed 

associations from high- or low-throughput data. 

Databases with annotated causal interactions and pathways include (for a comprehensive list see 4): 

▪ The SIGnaling Network Open Resource (SIGNOR); reports on manually-annotated causal 

relationships between biological entities [155,156] 

▪ PhosphoSitePlus [157]; entity focused database that has amongst others curated kinase-

substrate relationships 

▪ Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway; collection of manually created 

signalling pathways [158] 

▪ The Reactome Knowledgebase; curated and peer-reviewed database of pathways [159] 

▪ Atlas of cancer signaling networks (ACSN); collection of cancer-related signalling and 

metabolic pathways [160] 

▪ Pathway Commons; combined knowledge from several resources including KEGG and 

Reactome [161] 

▪ IntAct molecular interaction database [162] 

▪ SignaLink 2; entity focused data base that incorporated pathway structure information thus 

reporting on multi-pathway proteins and connections between pathways [163,164] 

▪ OmniPath; collecting data, information and knowledge from several resources [165] 

                                                           

4 http://www.pathguide.org/ - last accessed 20/09/2019 

http://www.pathguide.org/
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Graph-based Properties 

The field of network medicine has both contributed and sourced from biological network knowledge. 

Networks can be broadly classified into causal and association networks. Causal interaction between 

two entities, such as proteins and genes, reflect directed functional reactions having a cause and an 

effect. Associations on the other hand merely capture functional relatedness and correlative 

behaviour without the need for direct information transfer. 

The study of network properties (Box 2), such as topological features, can give important insights into 

regulatory mechanisms and reveal amongst other potential drug targets (reviewed in [146,166,167]). 

For example, Jaeger et al. identified synergistic drug combinations for breast cancer by studying 

relative reduction of network efficiency upon removal of drug target nodes from a signalling network 

[168]. By studying frequently altered genes in a pathway-centric analysis, Sanchez-Vega et al. [169] 

identified that while tumours show multiple mutations, pairs of mutually exclusive and pairs of co-

occurring alterations occur. These results indicate interdependencies between pathways and that one 

mutation per pathway functionally suffices to alter its activity with more might being disadvantageous. 

For example, alterations promoting the RTK/RAS/MAPK signalling pathway are not co-occurring with 

alterations in the PI3K signalling pathway. 

The study of so-called disease modules, a subgraph containing all molecular determinants of a disease, 

can be useful to understand underlying molecular mechanisms as well as predict disease-disease 

relationships. Here a disease represents an altered version of an underlying disease-associated 

subgraph. This can amongst others reveal potential for drug repurposing [170–172]. 

Computational Modelling for Systems Medicine 

Computational models often play a central role in systems medicine as they can be used to enhance 

understanding of complex systems. Applications may be based on purely data-driven approaches, i.e. 

stochastic/statistical models, or they may be based on network-driven approaches, i.e. mechanistic 

models [173,174]. Purely data-driven models have been used amongst other to identify drug response 

features or predict drug sensitivity from omics data [64,66]. Network-based models allow 

computational simulations of model behaviour and can be broadly classified into quantitative and 

qualitative models, with prominent examples being Boolean models and Ordinary Differential 

Equation (ODE) based models, respectively. Modelling of biological processes can be descriptive 

(recapitulating observed biological phenomena and data) or predictive (in silico perturbation analysis), 

allowing discovery of underlying molecular processes and generation of new hypotheses [174–176]. 
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Box 2 – Network properties 

Several different graph theory-based measurements can be used to describe node and network properties. 

These can be used to extract biological insight and identify important nodes or group of nodes in a network. 

Depending on the type of network and its edges, different type of analysis can be performed. Edges can be 

broadly classified into undirected (association) or directed (causal) edges which can also have a certain weight 

associated to them. Additionally, one can distinguish different types of networks such as protein-protein 

interaction networks, metabolic networks, signalling transduction networks and gene/transcription-

regulatory networks. Below examples for informative network features are presented. [146,166,167] 

Degree 

The most general characteristic of a node is its degree, describing the number of edges (or links) a node has 

to other nodes in the network. When signed edges are used, one can distinguish between out-degree, number 

of outgoing edges, and in-degree, number of incoming edges. Highly connected nodes are also referred to as 

hubs. Some studies have shown that hubs are associated with disease genes, while others have indicated 

local hubs. 

Betweenness centrality 

Betweenness centrality of a node quantifies the fraction of shortest paths that pass through a node related 

to the total number of shortest paths linking the nodes in whose shortest path the node appears. Nodes with 

high betweenness centrality thus are important in conveying information through the network. 

Closeness centrality 

Closeness centrality quantifies how close a node is to other nodes by measuring how short the shortest path 

is to all other nodes in the network. Thus, one can express how fast the information’s flows through a given 

node to other nodes. 

Modules, motifs or cliques 

Nodes may be associated with topological or functional communities. Topologically members of communities 

typically have more edges to each other compared to other nodes associated to other communities. While 

modules describe groups of functionally related nodes, motifs and cliques are defined by topological features, 

a clique being a maximally interconnected subnetwork. However, modules may exist of highly connected 

nodes and vice versa motifs and cliques may consist of functionally related nodes. For example, in signalling 

networks entities may be associated to one or several signalling pathways. 

 

To foster collaborations and development of computational models to address biomedical questions, 

in 2005 the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project was started 

(http://www.dreamchallenges.org/). Since then multiple teams have explored different modelling 

approaches to meet challenges of systems biology and personalised medicine. This has led to several 

insights for algorithms in the field of genetics, genomics and systems biology such as (1) inclusion of 
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prior knowledge such as biological pathways seems to improve performance, (2) integration of models 

across teams produces the most robust predictions – “wisdom of the crowd” phenomenon, (3) gene 

expression and phosphoproteomics data are the best individual data types, but (4) integration of 

multiple omics data types generally improves performance [97,177,178]. 

Biological Networks Models 

Network-driven modelling approaches involve the construction of a network graph from prior 

knowledge, data-driven network inference or a combination of both. This is a cumbersome process 

due to the size, complexity and topological uncertainty of entity interactions. Especially network 

construction purely based on prior knowledge is challenging as database-annotated information 

regarding cell specific and context depended regulations and network connection logics is still scarce. 

Furthermore, networks that comprehensively capture complex biological come with increasing 

numbers of network entities,  thus increasing the numbers of indeterminable parameters and hence, 

the degrees of freedom [174,179,180].  

Data-driven network reconstruction methods can reduce network uncertainty and reveal novel 

regulatory relationships if experimental data is available [180,181]. An early approach is Modular 

response analysis (MRA) which infers both connections between signalling entities and connection 

strength from perturbation data [180,182,183]. As MRA requires perturbation of all nodes and such 

data is often hard to get by, several variants have been proposed addressing this limitation [184–187]. 

Also under the DREAM project umbrella, multiple groups have developed methods for network 

inference (examples [188–192]). Network inference has led to several insights such as (1) a large 

fraction of causal interactions is already known (for the studied cases), (2) core signalling networks are 

similar between cell lines, (3) subgraphs and edges can be context-, stimulus-, cell- and disease- 

specific. 

A benefit of network reconstruction approaches such as MRA is that model translation, verification, 

calibration and validation may be included in the network reconstruction process. However, with 

increasing network size, network reconstruction and training based on perturbation or stimulation of 

network nodes becomes impractical [180]. Large scale -omics data can help but is not always an 

efficient solution. For example, pathway reconstruction using data from standard shotgun proteomics 

techniques still suffers from this methodology’s technical limitations such as low reproducibility [181]. 

Methodologies for Simulation of Biological Networks 

Different mathematical and computational modelling approaches exist for translation of a network 

graph into a list of reactants and reactions to allow simulation of information flow. The choice of 

method depends on the extent of mechanistic detail that is required for the phenomenon being 
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investigated, the available data and the available computational resources. Available methods have 

been extensively covered in reviews and are shortly presented below [175,176,180,193]. 

Ordinary Differential Equation Modelling 

The most commonly used quantitative modelling approach relies on ordinary differential equations 

(ODEs). Based on quantity changes as described by mass action kinetics, each species is represented 

by rates of production and consumption. Conventional ODE models are deterministic and do not 

consider compartments or time. In other words, it is assumed that all reactants have equal access to 

each other. In more complex mathematical model systems based on ODEs, spatial, temporal and/or 

stochastic aspects can be considered. A limitation of ODE models is the need for accurate kinetic 

parameter. However, simplifications such as the Michaelis-Menten approximation of enzyme-

substrates kinetics have been proposed that require less data. 

Logical Modelling 

Logical modelling is a qualitative approach that was first introduced by Kauffman and Thomas 

[194,195]. In logical models the status of each entity in the network is given as a discrete value and 

represented by regulatory rules. In Boolean modelling, the simplest approach, entities can hold two 

different states: active (1) or inactive (0). The state of each entity is updated according to the activities 

of the regulating entities as defined in the regulatory rules. Regulatory rules follow the logical 

formalism AND, OR and NOT.  

The global state of the system is defined by the activities of all entities in the network. Updating of the 

global state can occur either synchronously, where the state of all entities is updated simultaneously, 

or asynchronously, where only one node is updated at each timepoint. By updating the nodes’ states 

started from an initial state, a logical model may reach a stable state, also referred to as fixed point 

where the activity of each node is stable, or a set of states that repeat themselves, i.e. cyclic attractors. 

In case of large model sizes, logical models can be computationally expensive to analyse, as the global 

state space is exponential to the number of entities in an asynchronous simulation. 

Boolean models are especially useful when data is sparse and largely qualitative. Different tools have 

been developed that can optimise and calibrate a Boolean network, if experimental data is available 

[192,196]. Petri nets represent another type of discrete modelling, based on graph-based models 

containing two types of nodes: places and transitions, connected by edges. Places can hold “tokens”, 

which can be transferred by transition nodes if the input place contains a minimum number of 

“tokens”, representing dynamic signalling transduction of the system [197].  
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Discretization of nonbinary signalling data into qualitative states is challenging and reduces the 

accuracy. Approaches such as multistate discrete models, fuzzy logic models or logic-base ODEs 

overcome this, but also require more input data [180,198–200]. Probabilistic Boolean Networks can 

further account for stochasticity and uncertainty in the network [176,201]. Other tools take 

stochasticity of signal transduction into account and can be used to simulate the evolution of network 

states evolution over time as well as the probability of network state distributions [202]. In 2018, the  

Consortium for Logical Models and Tools (CoLoMoTo) provided an interactive notebook with access 

to several integrated logical modelling tools that can be accessed and used interchangeably [203]. 

While logical models are largely qualitative, they can provide valuable insights into biological process 

such as cell differentiation [204], DNA-damage response [205] and regulatory signalling mechanisms 

[206]. 

Application for Mechanistic Models for Personalised Oncology 

In the field of personalised oncology, computational models can aid clinical decision making by 

identifying biomarkers as well as predicting effective therapies. Integration of clinical data with prior 

knowledge of signalling networks can reveal more complex matters that can amongst others lead to 

the identification of pathway biomarkers where no efficient genomic marker exists and pinpoint 

resistance mechanisms. As an example, Fey et al. [207] studied the c-Jun N-terminal kinase (JNK) 

pathway in neuroblastoma to identify response dynamics that be associated with survival. JNK 

signalling demonstrates a switch-like response that depending on stimulus and activation strength 

which can either promote cell survival and proliferation or apoptosis. The identified network structure 

that revealed both a positive feedback mechanism and AKT-mediated crosstalk, was translated into 

an ODE-based model. Patient-specific models calibrated with gene expression data could separate 

two groups according to JNK-signalling dynamics that corresponded with low and high patient survival, 

respectively. Jastrzebski et al. [208] constructed cell-line specific Bayesian-based models by 

integrating multiple baseline data sets as well as response to seven kinase inhibitors for a panel of 

breast cancer cell lines. By analysing the regulatory signalling in each cell lines in respect to each of 

the drug responses, the authors identify drug sensitivity and resistance mechanisms including both 

mutational events as well as protein expression levels. 

In another study by Eduati et al. [209], logic ODE modelling was used to study the signalling dynamics 

of a panel of colorectal cancer cell lines and identify biomarkers for drug sensitivity. Cell specific 

models were parameterised using a drug perturbation dataset for seven single inhibitors and five 

stimulating agents. For roughly half of the investigated drugs, a significant association with a model 

parameter and drug efficacy could be identified. This included nine drugs for which no significant 
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association with genomic alterations could be obtained. Interestingly, identified pathway parameters 

underpinning network dynamics were informative for discovery of drug combinations targets 

suspending resistance mechanisms, and could therefore serve as pathway dynamic biomarker. 

Fröhlich et al. [210] presented a computational approach that enabled parameterization of large-scale 

ODE-models with reduced computational cost compared to traditional approaches. Models calibrated 

to transcriptomic and genomic data were used to predict drug sensitivity for a panel of human cancer 

cell lines from 5 tissues. After application of the models to the initial data set, drug sensitivity for an 

additional panel of cell lines from different tissues as well as drug combination effect measured by 

O’Neil et al. [98] were predicted. A good correlation between predicted and observed drug responses 

was found and molecular mechanisms for sensitivity and resistance were identified. 

Béal et al. [211] used stochastic logical models to stratify breast cancer patients. By integration of 

mutation, copy-number alteration and RNA expression data to a published logical model, probabilities 

of patient’s outcomes for “proliferation” and “apoptosis” could be simulated. Patients predicted to 

have lower probability of “proliferation” had also better prognosis compared to patients with 

predicted higher probability of “proliferation”. This was vice versa observed for “apoptosis” 

probability classifications. The presented approach thus can aid in identifying patients with higher 

chance of more aggressive progression of the disease and potentially suggest intervention points. 

Computational methods further offer a reasonable alternative to preselect promising combinations 

from the large panel of all possible drug combinations both to economise preclinical screening efforts 

and eventually for clinical testing. Several groups have demonstrated the use of mechanistic models 

to predict drug combination effects using, amongst others, ODE-based [212,213], MRA-based [186] or 

logical model algorithms [209,214]. As an example, Shin et al. [215] used an ODE-based modelling 

approach to prioritize potent drug combinations from four potential targets for triple negative breast 

cancer. The model was calibrated using time-course and perturbation data for one triple negative 

breast cancer cell line. In a subsequent effort to adapt the models to predict patient response to one 

drug combination of interest, the authors integrated public gene expression data. The model 

successfully stratified patients into responders and non-responders. 

In another study by Silverbush et al. [216], the authors used a logical model to predict single and 

combination responses for a panel of acute myeloid leukaemia cells. Cell-specific models were 

calibrated using phosphoprotein data under two perturbation conditions, and mutation data. By 

incorporating genetic alterations from other cell lines, the model could be further adopted to another 

cell context. The model successfully predicted cell-specific responses to single compound treatment 
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and was able to identify synergistic combinations from a panel of five single drugs across four cell 

lines. 

In a previous effort by our group [217], logical modelling informed by baseline calibration data was 

used to predict drug combination effects of seven inhibitors in all possible pairwise combinations. The 

logical model fitted to the gastric AGS cell line, predicted five synergistic drug combinations, four of 

which were confirmed as synergistically inhibiting growth in subsequent experimental assay. 

Importantly, this approach did not rely on a priori perturbation experiments for model fitting and 

could in principle thus have significantly reduced the experimental load. 

So far two DREAM-challenges have been launched toward prediction of drug combination effects 

[97,218]. In the first challenge, teams were asked to predict the effect of 91 combinations pairs by 

ranking them from most synergistic to least antagonistic. Teams were provided with single drug 

perturbation gene-expression data from the cell line under investigation. In the second challenge, 

teams were asked to predict synergistic drug combinations and biomarkers from a panel of 910 

combinations across 85 cancer cell lines. Here the challenge was divided into multiple sub-challenges 

varying with respect to the provided data that could be used for synergy predictions. Teams were 

asked to predict 1.) continuous synergy scores and were provided with a training subset of quantified 

synergistic responses, 2.) continuous synergy scores using only mutation and copy number variation 

data, and 3.) binary synergy with no additionally provided training data. Submitted methods to both 

challenges encompassed mainly data-driven approaches. As noted also by Menden et al. [97], this 

might be related to challenges inherent to mechanistic models regarding network and model 

construction. An important aspect of the second DREAM challenge is that a specific sub-challenge was 

dedicated to prediction of drug combination effects using only baseline data. It is interesting to note 

that prediction performance from that sub-challenge was comparable to models from the first sub-

challenge where drug combination training data was provided. 

These examples collectively demonstrate the usefulness of models for prediction of drug combination 

effects although with varying success rate. They also show that different model platforms may offer 

different predictive capabilities, while this is not necessarily linked to the amount of training data used. 

Making use of prior knowledge while reducing the use of perturbation data for training, can allow a 

more economised approach to prioritization of drug combination and will be needed to offer 

optimized solutions countering the combinatorial explosion for pre-clinical screening and close the 

gap to what is possible in a clinical setting. This transition will not be trivial and will require amongst 

other comprehensive knowledge bases and optimised modelling strategies.
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Objectives of the study 
The work in this thesis was performed as part of the DrugLogics initiative5, and as such, the overall 

objective of the thesis is aligned with the overall aim of the DrugLogics initiative: To investigate and 

demonstrate how systems medicine can be used to provide experimental-computational approaches 

that enable rational screening for synergistic drug combinations and in the long-term contributes to 

future clinical decision support with respect to anti-cancer combination therapies.  Specifically, this 

thesis targets the following subobjectives: 

▪ Analyse and report results from our comprehensive high-throughput drug combination 

screen comprising 19 targeted small-molecule inhibitors tested in 171 pairwise drug 

combinations in eight cancer cell lines in compliance with the FAIR principles to support 

reuse of the dataset 
▪ Build a comprehensive pan-cancer prior knowledge network that can be used to predict 

drug combination effects across several cancer cell lines 
▪ Investigate the drug synergy prediction performance of cell-line-specific models 

calibrated with use of baseline molecular data drug synergy predictions 
▪ Identify methodological approaches and principles for network topology optimisation and 

logical model configuration 
▪ Establish and evaluate a high-throughput drug combination screening platform for cancer 

cell spheroid cultures in cooperation with the High Throughput Screening facility at 

SINTEF, Trondheim 
▪ Identify the relevance of spheroid cell cultures for combination screening by investigating 

differences in drug combination responses between planar and spheroid cultures cells 

                                                           

5 https://www.druglogics.eu/ - last accessed 21/09/19 
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Summary of papers 
Paper 1 - A high-throughput drug combination screen of targeted small molecule 

inhibitors in cancer cell lines (Å. Flobak and B. Niederdorfer et al.) 

Combinatorial therapy is envisioned to enhance cancer therapy by targeting the altered signalling in 

multiple pathway trajectories and thus improving therapy response and halting resistance 

mechanisms. Despite the interest in drug combinations, only few large-scale screening studies have 

been performed with open-access data. In his study we specifically focused on small kinase inhibitors 

that target signalling proteins involved in well described signalling pathways, such as the PI3K/AKT-, 

TGF-beta-, RAS/MAPK- pathway. In an equimolar high-throughput screen eight cancer cell lines from 

seven tissue origins were profiled against a panel of 19 drugs and all possible 171 combinations. Drug 

effects were evaluated by viability inferred from measurements of ATP content. In a secondary screen, 

six drug combinations all involving the PI3K/mTOR inhibitor PI-103 were applied in a matrix design. 

Here cell confluency estimated by brightfield imaging was used as additional readout to ATP 

measurements. To quantify drug combinations effects, we used the Bliss independence model which 

was augmented with statistical significance estimation to correct for experimental variation and 

thereby to allow for high confidence synergy quantification. We rediscovered the synergistic drug 

combinations of co-targeting of PI3K/mTOR and TAK1 and MEK- and PI3K- signalling. Additionally, we 

identified that combined targeting of PI3K/mTOR and PDPK1 is potent across multiple cancer cell lines, 

recently reported as synergistic in bladder carcinoma cells. 

Paper 2 - Analysis of logical model features that impact quality of drug synergy 

predictions across cancer cell lines (B. Niederdorfer et al.) 

While combinatorial drug treatments offer an attractive strategy for cancer therapy, the sheer size of 

possible drug combinations poses a substantial obstacle to identification of effective treatment 

options and makes experimental testing of the complete combinatorial drug space infeasible. The aim 

of this paper was to investigate the use of logical modelling to filter out ineffective drug combinations 

for pre-clinical testing. Starting from a prior-knowledge network representing 144 nodes covering 

major cancer signalling pathways, cell-line specific models were configured based on baseline protein 

activity data from unperturbed cells in four different cancer cell lines. Predictions on drug 

combinatorial effects generated by model simulation were tested against observations from our high-

throughput drug combination screen presented in Paper 1. Initial predictions showed that models 

calibrated towards baseline data leveraged from both omics-data inference and small-scale 

experiment observations reported in literature gave the best balance between true positive and false 
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negative predictions. Network and model refinement based on molecular mechanisms described in 

literature effectively decreased false negative predictions for both cell line-specific models. The cell-

line specific models generated following the above strategies predicted ~22% of combination as 

synergistic in any of the cell line models, with three of the four models demonstrating an enrichment 

of observed synergies in the predicted subset compared to the unbiased screen. Specifically, we found 

that detection rate of synergies could have been increased by ~2.6-fold when combinations were pre-

selected by in silico testing. Thus, our modelling approach effectively filtered out a substantial fraction 

of unpromising drug combinations. In ensuing in silico-based investigations mobilising large-scale 

simulation and perturbation analyses, we found that roughly one third to one half of the nodes in the 

models assert high-influence on prediction performance. Comparison of the performance of models 

calibrated to cell-specific fractions of high-influence nodes to the performance of models calibrated 

to the complete baseline data set indicated that calibration data can be focused on a pre-selected 

subset of nodes, thus offering a valuable strategy to economise experimental assessment of protein 

activity states in the cancer cell line to be modelled. In summary, our approach shows that (1) cell-

specific models can be generated by calibration toward cell-specific baseline data and can prioritize 

drug combinations for screening by omitting unpromising combinations, (2) several relevant 

regulatory mechanisms are revealed in scientific literature calling for improved curation and 

annotation of both logic and context of signalling interactions, and (3) identification of high-influence 

nodes allows effective model calibration based on focused activity assessment on only a subset of 

proteins.  

Paper 3 - High-throughput screening in 2D and 3D colorectal cancer cell cultures 

identifies synergistic drug combinations (E. Folkesson and B. Niederdorfer et al.) 

More advanced clinical models are envisaged to improve translatability of drug testing for clinical use. 

In the here presented study, we have performed a high-throughput screen testing a total of seven 

drugs in all possible combinations in both planar (2D) and spherical (3D) cultured colorectal cancer cell 

lines (HCT-116, HT-29 and SW-620). Tested drugs include five targeted small-molecule inhibitors and 

two approved chemotherapeutic drugs. The drug combination screen was guided by an initial single 

dose screen were the potency of each drug was evaluated both in 2D and 3D cultured cells. Drugs 

were subsequently combined in 21 pairwise combinations in an IC20-guided 4x4 matrix. Effect of 

pairwise and single perturbations was assessed using viability measured by ATP content in both 2D 

and 3D cultured cells, complemented by assessment of confluency (2D) and spheroid size (3D). We 

find that some of the tested compounds and compound combinations show differences in sensitivity 

depending on cell culture format, such as reduced sensitivity of spheroid cultures to oxaliplatin and 

increased sensitivity of HCT-116 spheroids to PD0325901 (MEK inhibition). Drug combination effects, 
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as evaluated by Bliss independence showed that out of the 21 combinations tested, 13 were 

synergistic in at least one cell line cultured in 2D. Synergistic effects were less frequently observed in 

3D cultured cells where only 8 combinations were found to have a higher than expected combinatorial 

effect. When taking both viability effect and synergistic strength into account, our results revealed 

that almost all effective and synergistic combinations involved the MEK inhibitor in 3D cultured cells. 

In contrast, only the top two of the effective and synergistic combinations in 2D cultured cells included 

MEK inhibition. The third most effective and synergistic combination in 2D cultured cells was co-

targeting of PI3K/mTOR (PI-103) with TAK1 (5Z-7-Oxozeanol), which showed a markedly reduced 

synergistic effect in 3D. Longer exposure of cells to selected drug combinations revealed overall 

reduced synergistic response. This could be related to already strongly compromised viability by single 

inhibitor treatment. Prolonged exposure further indicated potential recovery from drug treatment in 

HCT-116 spheroids and SW-620 planar cultured cells when treated with the PI3K inhibitor (PI-103) in 

combination with the TAK1 inhibitor (5Z-7-Oxozeanol). In summary, by testing drug combinations in 

in 3D cultures in addition to 2D cultures, we were able to identify efficacious synergistic drug 

combinations that would have been left unidentified by solely relying on screening in 2D cultures. 

Furthermore, by studying multiple readouts, we uncovered additional synergistic drug combination 

effects not identified by conventional ATP-based viability assays. This highlights the importance of 

more advanced pre-clinical screening models for drug combination screening. 
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Discussion 
Personalised oncology and systems medicine are anticipated to advance cancer therapy by providing 

biomarker-guided therapy. Rational approaches to effective treatments include application of drug 

combinations to enhance treatment response. Identification of effective drug combination treatments 

are a fundamental challenge due to the large number of possible drug combination High-throughput 

screen are routinely used to screen large panel of combinations and to identify effective putative drug 

combinations as well as markers for drug response. Computational models offer a potential 

complementary strategy by further economising screening efforts. In line with the overarching aim of 

the NTNU DrugLogics initiative, this PhD project explored the use of a systems medicine approach to 

identify effective drug combinations. In Papers 1 and 3 we carried out high-throughput screening for 

identification of drug combination effects. In Paper 3 we specifically investigated drug combination 

effects in planar (2D) versus spheroid (3D) cultured cells. Additionally, we explored different 

phenotypic readouts for studying drug combination effects. In Paper 2 we investigated the use of 

logical modelling as a tool to economise drug combination screening efforts in a cancer cell line model 

specific manner, using the observations from the screen in Paper 1 to test the predictive performance 

of the models. 

Drug synergies are a rare find with typically only a relatively minor fraction of all tested compound 

combinations showing synergistic responses, as also exemplified in our studies. In Paper 1 we 

identified 55 ‘drug combination-cell line’ conditions where synergistic reduction of cell viability was 

observed. Relating this to all 1368 tested ‘drug combination-cell line’ pairs this translates to a synergy 

prevalence of 4%, and with approximately 13% of all 171 tested drug pairs displaying synergistic 

effects in at least one cell line. In Paper 3, approximately 25% of all tested ‘drug combination - cell 

line’ pairs were found to act synergistically. Interestingly, in the 2D cultures almost twice as many 

synergistic combinatorial effects were observed compared to 3D cultures, with 14% and 38% of all 21 

tested combinations identified to be synergistic in at least one cell line in 2D and 3D, respectively. 

O’Neil et al. [98] reported a miniscule fraction of only ~0.05% of all tested 538 ‘drug combination – 

cell line’ conditions across all drug pairs and 39 cell lines to display synergistic effect. Approximately 

50% of all 583 tested combinations were synergistic in at least one of the 39 screened cell lines. In the 

NCI-ALMANAC study by Holbeck et al. [96], 1,898 of 5,232 tested drug pairs showed greater than 

additive response in at least 1 cell line (~36%). Thus, as shown in our and previous studies, a large 

number of drug pairs exhibit interesting combinatorial effects, but many of them are found to act 

synergistically in only few cell lines. Observations that only few combinations generally act 

synergistically and that drug combination effects are highly influenced by individual traits of the cancer 
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or cancer model system, further corroborates the challenge of identifying effective drug 

combinations. This also hints to challenges of combination therapy selection in personalised medicine.  

The variation in prevalence of synergies seen in our and other studies [96,98], is influenced among 

others by different classes of drugs tested (e.g. targeted therapies vs chemotherapeutic agents) as 

well as by different metrics and thresholds used for synergy calling. Vlot et al. [219] recently 

demonstrated that the choice of synergy model can influence which combinations are identified as 

synergistic with different metrics demonstrating agreements but also disagreements of synergy 

quantifications when applied to the same dataset. This study [219] thus raises the importance of 

selecting an appropriate synergy metric for quantification of drug combinations.  

While there is no consensus in the scientific community on which theoretical synergy metric gives the 

best estimation of greater than expected additive effects and thus highest validity for synergistic 

combinations, there are scenarios where not all models are suitable and thus cannot be used 

interchangeably. Use of the Highest single agent (HSA) model has been criticized for low specificity 

thus giving a higher rate of false positive synergy callings compared to other theoretical synergy 

models [219]. However, in the early stages of pre-clinical screening it may be more important to detect 

potentially synergistic drug combinations with as high sensitivity as possible, at the cost of lower 

specificity, even if a high amount of non-yielding combinations may need to be tested in the ensuing 

pre-clinical screens. The extra cost can be justified by a higher total of discovered synergies. In 

contrast, in a clinical setting seen from the patient-doctor’s point of view, it is most important to be 

able to identify verifiably effective drug combination with high specificity and thus to avoid subjecting 

patients to inefficient treatment. Since we in Paper 2 investigate the use of logical models to prioritise 

drug combinations for pre-clinical screening efforts, we relied on the HSA model for quantifying drug 

combination effects in the cell line screen used to test model performance to detect synergistic 

combinations with high sensitivity. 

As reproducibility between drug screens is heavily debated [220–223], this also questions the 

reliability of identified synergistic drug combinations and thus their validity. Especially since such a low 

percentage of drug combinations is found to act synergistically, it is important that both positive as 

well as negative hits can be identified with confidence. So far, no comprehensive comparisons 

between independent drug combination screens have been performed, possibly due to the fact there 

is yet very little data available for drug combinations being tested across the same cell lines and in the 

same dose range compared to data available for single drug screens. Menden et al. [97] have however 

specifically investigated reproducibility of synergy effects within screen replicates as well as compared 

compliance of identified synergies among the limited number of combinations tested in another 
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screen. They found an inter-replicate Spearman correlation of 0.56 for their own data set and 0.63 for 

the dataset performed by O’Neil et al. [98]. In comparison, in our screen from Paper 1, we observe an 

average inter-replicate Spearman correlation of 0.41 and 0.60 in the primary and secondary screen, 

respectively. The lower correlation in our primary screen, can be related to the fact that most 

combinations received a Bliss synergy score close to 0, thus the ranking of the numbers may vary even 

though the absolute scores may be very similar. A closer inspection of correlation between mean Bliss 

excess scores (see Figure 4) confirms this notion and shows that while ranking between replicates 

vary, a combination that is found to have a greater than expected effect in one biological replicate is 

reidentified in the other. This can be seen from the accumulation of negative Bliss excess scores 

(Synergy strength) in the left lower corner of the scatter plots in Figure 4. These findings further 

suggest a high confidence between synergy calling at least between biological screening replicates. 

 

Figure 4 – Spearman (ρ)  nd Pe  son (r) correlation between mean Bliss excess scores in the primary screen in Paper 
1 across the three biological replicates. 

In order to further assess the synergy calling between two independent screening efforts, Menden et 

al. [97] reported that for the nine ‘drug combination-cell line’ conditions tested in both their own and 

in the NCI-ALMANAC study [96], eight drug combinations found to be efficient in one study were also 

found to have a greater than expected effect in the same cell line in the respective other study. While 

the high concordance in synergy calling between the two screens is promising, with only nine 

combinations tested in the same dose range and cell line conditions, the comparison between the two 

screens is far from comprehensive and should thus be interpreted with caution. Currently, we are 

unable to broadly investigate the reproducibility of results from our screen to other independent 

studies, since to our knowledge no other high-throughput studies testing the same drug combinations 

and in this set of cell lines has been published. To nevertheless evaluate reliability of identified 

synergies in our high-throughput screening effort from Paper 1, we compared ‘drug combination-cell 

line’ conditions tested in both the primary and secondary screen. These screens have been performed 

roughly 2 years apart, with new batches of compounds for the secondary screen, and by different 
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group members. Comparison of drug combinatorial effects assessed in both the primary and 

secondary screen, identifies a Spearman correlation of 0.53 for mean Bliss excess across biological 

replicates, indicating a similar reproducibility as observed between biological replicates. 

These results collectively indicate that synergy calling is reproducible both between biological 

replicates as well as different screening efforts, at least if the same synergy definition, namely metric 

and threshold, is used. To further substantiate reproducibility of synergy calling between independent 

drug combination screens, more comprehensive and rigorous studies with many data points allowing 

for in depth comparisons are needed. Such data may also aid in formulation of standards to generate 

findable, accessible, interoperable, and reusable (FAIR) drug combination data, and to improve 

comparability between different screening efforts, as well as to economise resources invested in 

experimental screens. A first contribution in this directions has recently been made by Niepel et al. 

[220], albeit focused on single drug screening. Here, to enable evaluation of factors influencing 

reproducibility between screening facilities, five different laboratories tested sensitivity towards a 

selection of eight compounds in one cancer cell line. Although the number of tested conditions was 

relatively small, the authors detected several sources affecting reproducibility of drug response and 

formulated best practices for dose-response experiments to improve assay precision and 

reproducibility also of relevance to support reproducible and comparable in drug combination 

screening efforts, such as standardisation of reagents which include cell line identify confirmations, as 

well as standardisation of data processing. 

In pursuing standardisation of drug combination screening and comparison of drug effects across 

cancer models and testing sites, a central investigation is the significance of different readouts used 

to evaluate drug response effects as a basis for selection of relevant treatments. Substantial work 

remains to comprehensively identify molecular processes that should be targeted to cure cancer 

[224]. It is important to note that efforts to kill cancer cells can create selective bottlenecks, 

exemplified by subclonal resistant cells that proliferate because they are the “fitter” subpopulation 

when the cancer cells which respond to treatment are killed [225]. Additionally, several other 

phenotypes such as invasive and metastatic potentials of cancer cells are possible therapeutic targets 

of interest, thus calling for readouts additional to cell viability estimations that are routinely 

performed.  

Findings by us and Gautam et al. [226], clearly demonstrate that the drug combination effects may be 

distinctly observed with some readouts but not by others, highlighting the importance of inclusion of 

additional readouts beyond cell viability. Comparable to our study, Gautam et al. [226] also reported 

that several of the tested single compounds reduced cell viability while not affecting cell death. 
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Together with the observation of a strong correlation between confluency and cell viability, this 

indicates a mostly cytostatic rather than a cytotoxic response towards the tested compounds (Paper 

3). Of note, Horn et al. [224] have indicated that higher-order combinations of compounds (n > 3) 

targeting signalling pathways associated with cell growth are needed to effectively induce cell death. 

This is in accordance with our results from the follow-up screen, where we tested 3 pairwise drug 

combinations for an extended treatment interval and observed that both single and pairwise drug 

treatment more strongly affected cell confluency compared to their effect on cell death.  

Although it is an intriguing question whether high-order drug combinations may be the answer to 

more effective treatment response, it is important to note that drug effects are also highly cell, time 

and dose dependent. This is also apparent from our results and findings by Horn et al. [224]. Four of 

our five targeted inhibitors induce apoptosis at higher concentrations in certain cell lines. Some of 

these compounds such as PD0325901 (MEK inhibitor) and palbociclib (CDK4/6 inhibitor) treatment 

showed maximum increases of apoptosis at the end of our treatment window (48h), other compounds 

such as PI-103 (PI3K/mTOR inhibitor) showed maximum signal at 24h. Both HT-29 planar cultures as 

well as HCT-116 spheroids showed strong induction of apoptosis when treated with the MEK inhibitor 

for an increased duration (96h). 

Together the above-mentioned findings indicate the need for more advanced screening methods in 

regard to assessed phenotypic responses as well as time points. While inclusion of additional readouts 

in high-throughput screening will inevitably affect assay cost and lead to, amongst other, more labour-

intensive data analysis, these efforts will be worth it if they result in improved understanding of drug 

effects both in vitro as well as in vivo.  

Challenges in translation of in vitro drug testing into clinical actions, such as the failing of drugs in 

clinical trials, have seeded concern regarding the applicability of different models for pharmacology 

screening and personalised medicine. Several models have been developed to better recapitulate the 

physiology of a tumour, including spheroids, organoids, organ-on-a-chip and 3D-printed tissues 

[227,228]. Multiple studies have further shown that 2D and 3D cultured cancer cells show differences 

in sensitivity profiles to a range of compounds [229,230]. 

As multicellular architecture affects single drug responses as well as cellular signalling, it can be 

expected that drug combination effects also differ between 2D and 3D formats. In other words, choice 

of culturing format will affect which drug combinations are identified as synergistic in pre-clinical 

screening efforts and are thus deemed potentially attractive for further explorations. In Paper 3, we 

compared responses to seven single compounds and all their pairwise drug combinations in both 2D 

and 3D cultured colorectal cancer cell lines. Indeed, we observed several combinations that showed a 
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synergistic response in either 2D or 3D cultured cells. In 2D, the most effective combinations 

comprised a considerable variety of different compound pairs, while in spheroids, the MEK inhibitor 

participated in all the top five effective synergies. Several studies have previously reported that there 

is increased dependency of spheroid models on RAS/MAPK-signalling and reduced basal activity of 

PI3K/AKT-signalling to their respective 2D cultures [69,72,74,229], which could explain their higher 

sensitivity to MEK inhibitor combinations. 

What does this mean for drug combination screening? Are the drug combinations identified as 

synergistic hits only in 2D cultures but not recapitulated in spheroids in Paper 3 dismissible for follow-

up? Spheroid-based models allow for a closer resemblance to tissue structures and may thus be useful 

to pursue for solid neoplastic diseases. However, even though monoculture spheroid cultures are 

considered to represent higher order architectures of solid non-vascularized tumours [231], they are 

still highly simplified tumour model systems and do not account for multicellular aspects such as those 

found in the tumour microenvironment. The risk of dealing with inadequate cancer models associated 

with the simplifications in monocultures can be mitigated by co-culture models of cancer cell lines 

with stromal cells and endothelial cells [232]. Short-term spheroid cultures of primary tumour cells 

[80] or organoid cultures [81,82] have also been used to test responses to anti-cancer agents. The 

establishment of patient-derived cell- and organoid- culture biobanks is further expected to eventually 

remedy the problem of limited material and augment the possibilities for access to more clinically 

relevant models for drug testing. It is a timely question, whether drug sensitivity inferences from 

spheroid-models will fulfil the anticipation of being more easily translatable to in vivo responses.  

While spheroid-based models more closely resemble a solid tumours physiological condition, I would 

argue that planar cell cultures are still important for drug combination screening. In a systematic 

study, Iorio et al. [51] reported that planar cultured cancer cell lines are clinically relevant models for 

pharmacogenomic screens. Further drug discovery and large-scale drug combination screening will 

continue to rely on the use of high-throughput platforms where thousands of compounds can be 

tested in standardised assay conditions and at manageable cost. While not all cancer cell lines can 

form spheroids, we and others have established 3D models that are compatible with robotic screening 

platforms for several cancer cell lines [228–231,233,234]. To fully make use of spheroid systems, high-

content imaging platforms for real-time monitoring of drug response are of interest even though our 

own work has demonstrated challenges that remain to be solved related to the fact that with 

increasing size the uptake of molecular dyes is hampered, and the excitation and emission light are 

lower in the core than in the periphery. Thus, while we can expect to see an increasing number of 

single drug and drug combination screens performed in spheroid-cultures, work remains to fully 

implement them in automated screening approaches. 
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To come back to my initial question regarding relevance of drug combinations identified as synergistic 

hits only in 2D but not in 3D cultures in Paper 3 for further follow-up; at this stage, synergistic drug 

combinations even if observed in only one of the culture formats are of interest. Differences in drug 

sensitivity between planar and spheroid cultures of the same cancer cell line rather highlight the 

importance of capturing a large variety of cellular signalling dynamics and activities in assaying drug 

sensitivity. This pushes for the use of pathway biomarkers as a complementary strategy to the 

currently genomics dominated field of biomarker discovery for clinical decision making. 

In our efforts to develop in silico approaches to contribute to identification of effective drug 

combinations and to economise screening efforts, we built on a previous study by our group where 

logical modelling was used to discover synergistic drug combinations in the AGS gastric 

adenocarcinoma cell line [217]. In Paper 2, we pursued the use of logical modelling to predict cell line 

specific synergistic drug combinations across a panel of four cell lines from three different origins. 

Predictive models that can reduce the combinatorial multiplicity of potentially interesting drug 

combinations are needed to prioritize drug combinations for testing. When applying mechanistic 

models, these models need to be tailored to a biological system of interest, such as cell lines, and need 

to represent the signalling pathways targeted by the drugs to be tested. 

Several studies have highlighted differences in signalling dynamics between cell lines 

[186,190,209,235]. Thus, in order to achieve cell line specific modelling, these models should reflect 

decisive aspects of the status of intracellular signalling in each of the cells. Studies by our group [217] 

and by Silverbush et al. [216] have shown that cell-line specific modelling can be achieved by 

accounting for cell-specific molecular switches (such as e.g. represented by specific signalling proteins) 

in carefully curated prior knowledge networks. To efficiently reduce experimental cost associated 

measurement of model parameters, we continued to rely on molecular baseline data from 

unperturbed systems to generate cell line specific models, for which we have previously demonstrated 

good model performance [217]. The results presented in this thesis show that by informing models 

with baseline activity data, we were able to generate predictions that can successfully eliminate true 

negative drug combinations. The baseline activity profiles used for model calibration comprised of 

omics-data, inferred from copy number variations and gene expression data using the activity 

inference method PARADIGM [236], and signalling protein activity status obtained by literature 

curation. The model-generated predictions, if they had been used to prioritise drug screening, would 

have enabled an average enrichment by 2.6-fold in observed synergistic drug combinations across all 

four cell lines included in the study. Interestingly, we also observed high model plasticity between cell 

lines with only roughly half of all predicted synergistic combinations to be identical for three or more 

cell line models. We thus corroborate previous findings of baseline data as a useful source for model 
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calibration [217] and further show that cell line specific models for cell lines originating from different 

organs can be generated by taking one mechanistic prior knowledge network as a starting point for 

the logical models. 

The construction of mechanistic models encompassing signalling pathways of interest is hampered by 

the incompleteness of molecular signalling knowledge and lack of biological context annotations in 

the knowledge bases. Thus, annotations are still largely lacking information regarding for example cell-

and tissue-specific, or stimulus-depended regulations as well as the logics in which the regulations 

occur, needed to select regulatory interactions relevant for the studied system. In the case of Boolean 

models, the latter is further important for formulation of logical rules that determine model dynamics. 

If for example a node, representing a signalling protein, has multiple positive regulators, these may 

activate the node independently of each other, translating to the Boolean OR operator. Alternatively, 

the protein represented by the node may only be active if all or a certain number of positive regulators 

are active. Similar considerations apply for negative regulators. Additionally, some positive regulators 

may alleviate the negative regulation of a node. Another challenge related to current representation 

of signalling knowledge in databases is highlighted by Invergo and Beltrao [181] who point out that 

databases suffer from study bias of well-characterized proteins being favoured for studies by the 

research community. This leads to increased coverage of regulatory mechanisms for favoured 

proteins. When the information in existing pathway resources is used to generate networks, the 

biological entities which are disproportionally highly covered may appear as signalling hubs which will 

influence formulation of new hypotheses for further research and potentially clinical decision making. 

The remedy of using drug perturbation data for model optimization has been proven successful in 

overcoming some of the challenges related to uncertainties in curated regulatory interactions and has 

also been demonstrated to introduce cell line and stimulus specificity, in order words biological 

context in signalling interactions and dynamics [186,209,213]. However, due to high experimental 

cost, optimisation of causal regulatory networks based on perturbation data is not scalable to all 

contexts and perturbation conditions of interest. In Paper 2 we thus turned to literature to source 

more knowledge on signalling interactions and demonstrated the feasibility to identify several causal 

interactions deemed relevant for our model to improve our network graph and reduce false negative 

predictions. Our results show that network refinement by focused literature curation can improve 

predictive model performance. In a parallel study by Tsirvouli et al. [237], we effectively extended and 

successfully improved our prior knowledge network using multi-omics data from the TCGA Colorectal 

Adenocarcinoma (COAD) cohort which pinpointed causal interactions relevant for this cancer type. 

We observe that this aspect of our work also exemplifies the fact that relevant regulatory interactions 

have been discovered and reported in scientific literature, while the curation of this information into 
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signalling databases is still sparse. Thus, it is important to advance efforts to increase translation 

coverage of scientific literature into standardised computable knowledge [238] to support 

construction of mechanistic models 

We note that several model predictions in Paper 2 classified as false negatives for one of the cell line 

model, were predicted as synergistic by one or several of the other cell specific models. This may be 

related to uncertainties in model calibration data and/or elicited by causal interactions specific to a 

certain cell line. Both hypotheses are equally relevant and are supported by the observation that cell 

line-specific models could not be fully fitted to agree with entire calibration data. To mitigate 

uncertainty in both baseline calibration data and uncertainty of signalling interactions, ensemble of 

models could be generated to optimise fitting to calibration data while allowing for variation in the 

underlying prior knowledge graph, as presented by Thobe et al. [239]. 

Targeted phosphoproteomics mass spectrometry is a methodology that can be used to obtain 

accurate and reproducible measurements for phosphorylation status of cellular proteins and thus to 

subsequently estimate their activity [139–141]. As such, this method offers to contribute to reduce 

uncertainty in model calibration by providing accurate activity estimates for a priori specified number 

of protein kinases. Since experimental costs of targeted phosphoproteomics increases with the 

number of phosphosites measured, the essential question arises: which nodes in a model would 

benefit most from high quality activity data as benchmarked by predictive performance? Previous 

research has shown that a subset of nodes harbour higher information gain than others and can 

significantly reduce the network entropy by determining the global state of the network [240–244]. 

To contribute to optimisation of model training and calibration, we pursued in silico explorations 

where we evaluated changes in synergy predictions upon sequential fixations or inversion of activity 

for each node in the network one node at a time. This enabled us to determine which nodes in our 

model were of high influence for synergy predictions and would thus benefit most from high quality 

protein activity data. Analogous to work by others [240–244], we succeeded in identifying a subset of 

nodes that display the highest information gain in our models. It is interesting to note that our 

investigations demonstrate that predictions of models informed with baseline data for only the most 

highly ranked cell line specific high influential nodes, representing roughly a quarter of all nodes in the 

model, achieved predictive performance comparable to or even superior to models informed with the 

complete baseline data. These findings support the hypothesis that logical models can be successfully 

calibrated to baseline activity data focused on a subset of high influence nodes and further emphasize 

the relevance to continue pursuing approaches to identify such nodes for optimisation of predictive 

modelling in pre-clinical and clinical settings. 
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Interestingly, we identified that roughly a quarter of all nodes in our network were of high influence 

across all cell specific models with a similar fraction of low importance. This could be related to the 

fact that some synergies were observed across all cell lines or network nodes showing the same 

activity and logical rules between two models. Alternatively, this could point to certain prior 

knowledge network characteristics that emerge as a feature influencing the importance of a node. 

Indeed, when investigating high influential nodes with respect to features relating to network traits 

or biological function, we observed that nodes with high betweenness centrality, pathway-crosstalk 

inhibition index and closeness centrality are overrepresented among high influential nodes. While our 

high influential nodes were not found to be associated with specific biological processes or pathways, 

Puniya et al. [240] reported that influential nodes identified in their study were enriched in essential 

genes. 

Interestingly, in a later publication by the Helikar group [241] previously identified influential nodes 

were found to be overrepresented among nodes with high determinative power, defined by a 

quantification of mutual information. Mutual information is defined both by the network structure as 

well as the Boolean functions determining the network dynamics. Pentzien et al. [241] further found 

that nodes with high determinative power often also hold a high out-degree. In accordance with our 

findings, the authors also observed a non-absolute association between the highlighted network 

features and influential nodes. This indicates that nodes with high information flow offer attractive 

targets for accurate activity assessment when the model dynamics are not known or cannot be 

studied, although some influential nodes may be missed. 

Target control can be also applied to propose putative drug targets and resistance mechanisms as 

presented by Puniya et al. [240] and Yang et al. [243], further highlighting that mechanistic insights 

can be drawn from network topology. Thus, high-influential nodes such as those identified in Paper 2, 

may be further studied to identify synergy mechanisms, define biomarkers for drug combination 

effects as well as propose putative high-order drug combinations. In addition to controlling nodes, 

one could also consider controlling edges in the network. This could mitigate the effects of network 

damage induced by fixing a node to either ON or OFF, as this inevitably affects all nodes regulated by 

the node in question, with the benefit of being still applicable to large networks [245]. Applied to 

prediction of drug effects, this could be used to identify relevance of specific protein-protein 

interactions and signalling cascades as biomarkers for drug response.  

As calling of experimentally observed synergistic drug combinations is not trivial, it can be argued that 

there are also uncertainties associated with their use as validation sets for testing model predictions. 

As discussed above and by others [219,226], both the choice of readout and the choice of synergy 
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metric affect which combinations are considered to be synergistic. Thus, model-based predictions that 

are classified as false positive or false negative related to one specific combination screen, may be 

deemed true positives or negatives when tested against an alternative screen where different set ups 

for the cell assays were used. Hence, for a broadest possible basis for evaluation of model predictive 

performance and thus further development of modelling approaches, it is important to have access 

to experimental drug screening data based on several experimental read-outs and carefully chosen 

synergy calling approaches. 

The effect of drugs in single or combinatorial applications depends on the whole spectrum of their 

actions, i.e. both on their effect on recognised “main targets” and on their off-target effects. As 

pointed out by Lin et al. [20] such off-target effects may be involved in the underlying mechanisms of 

the drugs potency. Hence, any significant off-target effects can influence observed combination 

effects. This circumstance also has consequences for model-based prediction of drug combination 

effects. Especially mechanistically focused models, such as logic Boolean models, which rely heavily 

on accurate knowledge regarding compound specificity, should ideally be able to account for their off-

target effects for successful simulation of cellular effects caused by the compounds’ inhibition of 

signalling proteins. While some drugs are highly specific, others may target several other kinases and 

proteins [19]. This is also clearly seen in the compiled information on target profiles for the inhibitors 

studied in the Paper 1 screen. While the information for most inhibitors generally indicates high 

specificity, for four inhibitors, Toxoflavin (STAT3i), BI-D1870 (RSKi), PRT 062607 (SYKi), Doramapimod 

(MAPK14i), considerable off-target effects were documented. Besides affecting abilities to predict 

effect of single and higher-order perturbations, also network inference algorithms are dependent on 

accurate knowledge of target profiles when reconstructing signalling networks from perturbation 

data. This might thus further confound our knowledge on signal transductions when some of the 

observed effects are caused by off-target activities. While a wide target spectrum of a drug does not 

necessarily preclude its progression into the clinic [19], both biomarker guided drug selection based 

on molecular tumour profile as well as model-based predictions of drug- and drug combination effects 

are highly dependent on accurate knowledge regarding the drugs’ target spectra. Target 

deconvolution by improved curation and profiling of a compound’s targets will further support not 

only predictions of target combinations but also predictions of drug combinations. 

It is commonly known that models are simplified representations of an investigated system. While we 

in Paper 2 focused on categorising combinations into synergistic and non-synergistic combinations 

using a mainly Boolean logical model approach, the curated prior knowledge network could be 

translated to a more advanced model to better account for biological complexity. An interesting and 

feasible advancement would be the use of a multi-valued logical model approach, which may also 
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alleviate challenges of binarization of biological data.  For this, similar as applied by Silverbush et al. 

[216], baseline data could be discretized into a more fine-grained activity scale than just active (1) and 

inactive (0) to possibly achieve improved predictions regarding sensitivity to single drugs and 

combination treatments. A limitation of our approach is that we, also due to the large model topology, 

relied on stable state computation for evaluating perturbation effects. Thus, our model approach did 

not account for oscillating behaviour and represent time-evolution of signal propagation. To allow for 

more advanced simulations as well as for large number of targets of interest, drug combination 

simulations may be performed on combinations of modular subgraphs or pathway-centred, similar to 

Jaeger et al. [168].  
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Conclusion and Future Perspectives 
High-throughput drug combination screens in combination with computational models are central to 

handle the large amount of possible treatments and drug combinations that are approved or currently 

in development. In this work, both experimental as well as computational strategies have been 

explored to support identification of synergistic drug combinations of anti-cancer compounds. Our 

findings show that calibration of cell line specific logical models can be used to enrich for synergistic 

drug combinations among the drug pairs suggested for clinical screening. Investigations on 

optimisation of drug predictions by network refinement and by focussing application of baseline 

calibration data to a subset of high influential model nodes indicated the need for comprehensive 

knowledge databases and corroborated that a subset of nodes in the network have high information 

gain over the state of the system. This offers possibilities for focused baseline activity assessment to 

obtain high quality training data sets for configuration of cancer cell line specific model dynamics. In 

our screening efforts we identified new synergistic drug combinations and validated drug 

combinations found to be synergistic also by others. Additionally, we described differences in drug 

combination effects between planar and spheroid cultures and demonstrated that some drug 

combination effects are observed to be synergistic in only a subset of phenotypic readouts. This 

suggests the need for screening platforms encompassing multiple readouts and a variety of culturing 

modes to effectively capture a broad range of drug combination effects. 

Drug combination screens as performed in Paper 1 and 3 are valuable resources both for identification 

of putative clinically relevant drug combinations and as testing data for validating computational 

modelling approaches. Paper 3 contributes to further development of the spheroid (3D) format for 

high-throughput drug response screening. Investigations from Paper 2 offer strategies for 

optimisation of logical modelling aspects to predict drug synergies for given cancers. 

In future efforts we are planning to further implement screening on patient-derived spheroid models 

for testing of cancer drug combinations. When it comes to implementing mechanistically based in 

silico models to prioritise drug combinations to be tested in experimental screening platforms, 

integrated automated computational pipelines are required to serve the large spectrum of drugs and 

pre-clinical cancer models. Our group has developed an automated logical modelling pipeline, headed 

by Åsmund Flobak, that can be used to generate computational predictive models for any drug 

combination and any cancer model of interest, given sufficient available information on drug target 

profiles and baseline activity status of cancer model. This automated pipeline can potentially 

contribute both to economise drug combination screening efforts as well as to support clinical 

decisions on cancer treatment. Important aspects of the pipeline comprise automated construction 
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of network topology for drug targets of interest as well as training of the models to different biological 

systems such as different cancer cell lines and eventually patients.   
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A high-throughput drug 
combination screen of targeted 
small molecule inhibitors in cancer 
cell lines
Åsmund Flobak   1,2,5*, Barbara Niederdorfer   1,5, Vu To Nakstad3, Liv Thommesen4,6, 
Geir Klinkenberg3,6 & Astrid Lægreid1,6

While there is a high interest in drug combinations in cancer therapy, openly accessible datasets 
for drug combination responses are sparse. Here we present a dataset comprising 171 pairwise 
combinations of 19 individual drugs targeting signal transduction mechanisms across eight cancer 
cell lines, where the effect of each drug and drug combination is reported as cell viability assessed by 
metabolic activity. Drugs are chosen by their capacity to specifically interfere with well-known signal 
transduction mechanisms. Signalling processes targeted by the drugs include PI3K/AKT, NFkB, JAK/
STAT, CTNNB1/TCF, and MAPK pathways. Drug combinations are classified as synergistic based on the 
Bliss independence synergy metrics. The data identifies combinations that synergistically reduce cancer 
cell viability and that can be of interest for further pre-clinical investigations.

Background & Summary
Treatment of non-resectable cancer has previously mainly relied on cytotoxic chemotherapy that indiscriminately 
kills all rapidly dividing cells. With the discovery of molecular mechanisms driving cancer, a new generation 
of molecularly targeted drugs has entered the market over the last two decades. A remaining challenge in the 
envisaged transition from ‘one-size-fits all’ therapeutic approach to personalised treatment is the development of 
resistance to single-targeted drug treatment. Combinatorial therapy may be able to overcome this by co-targeting 
multiple mechanisms involved in cancer cell growth and survival1,2.

Already compelling results have been achieved with some combinations of cancer signalling inhibitors, e.g. 
the synergistic combination of MAP2K1/2 (MEK) and BRAF inhibitors for malignant melanoma3–5 and lung 
adenocarcinoma6. This has sparked a wide interest in identifying novel efficient pairs of small molecule targeted 
drugs. However, our knowledge about beneficial targeted drug combinations is still limited, partly due to the 
combinatorial complexity.

Few high-throughput screens testing multiple targeted drugs in combinations have been published with open 
access data. Examples include combinatorial screens on ovarian cancer cell lines7, melanoma cell lines8, sarcoma 
cell lines9 and lung-cancer-patient-derived cell culture models10. In a study performed by O’Neil et al., combi-
nations of around 12 targeted drugs were screened across a panel of 39 cancer cell lines. In total 22 experimental 
drugs were tested in all possible combinations and in combination with 16 approved drugs11. The National Cancer 
Institute (NCI) screened pairs of 104 FDA-approved cancer drugs against the NCI-60 cell line panel. Around 30 
of the tested compounds can be classified as small molecule targeted therapies12. In the AstraZeneca’s drug com-
bination data set of the latest DREAM challenge, 118 drugs, including 59 targeted therapies, were tested in 910 
pairwise combinations against 85 cancer cell lines13.
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In this paper, we report results from a high-throughput screen testing the effects of combining 19 
small-molecule inhibitors on cancer cell viability. The drugs target signalling proteins involved in several well 
described signalling pathways, including PI3K/AKT, NFkB, JAK/STAT, CTNNB1/TCF, and MAPK pathways. 
Inhibitors were selected for high specificity and a minimum of known off-target activities, as judged from char-
acterizations available from the MRC PPU lab (https://www.ppu.mrc.ac.uk/)14 for 15 of 19 drugs. Eight cancer 
cell lines were treated with single inhibitors and 171 pairwise combinations at equimolar concentrations from 
10–0.16 µM. Cell viability was determined after 48 hours from ATP content using CellTiter-Glo 2.0 (Promega). 
Several of the synergistic combinations involved the PI-103 inhibitor. Six of these combinations were investigated 
in a secondary screen. We here applied a matrix design allowing for synergy assessment outside the equimolar 
range and determined inhibitor effects from both viability (ATP content) and cell confluency (brightfield imag-
ing). Figure 1 gives a schematic overview of the study design.

In the here presented dataset we rediscovered previously reported synergistic combinations and discovered 
several new synergies. The synergistic reduction of cell viability resulting from jointly targeting PI3K/mTOR and 
TAK1, previously reported by us for the AGS cell line15 and later by others16, is observed in two of the tested cell 
lines. Furthermore, we rediscovered the synergistic effect of jointly targeting MEK and PI3K17–19. Recently, Sathe 
et al. have reported on increased effect of combined inhibition of PI3K/mTOR and PDPK1 in bladder carcinoma 
cells20. We identify that combined targeting of PI3K/mTOR and PDPK1 is potent across multiple cancer cell 
lines. The PI3 kinase is one of the canonical activators of PDPK1, and our dataset thus identifies this ‘vertical 
synergy’ intervention by targeting multiple points in one cascade as a potential chemical intervention for inhib-
iting PI3K-dependent cancer growth across cell line models representing different tissue types. Co-targeting of 
multiple vertical points in one cascade is also the rationale for the clinically verified ‘vertical synergy’ observed by 
jointly targeting MEK and BRAF3–6. Moreover, PI3K and PI3K/mTOR inhibitors tested in a clinical setting (e.g. 
pictilisib21 and apitolisib22) have suffered from toxic effects23,24. Thus, identification of compounds that increase 
the therapeutic index for PI3K inhibitors could enable new uses for PI3K inhibition in oncology.

The outcomes of our work contribute to expanding the available data sets on novel combinations of targeted 
drugs across a variety of cancer cell lines and can benefit the fields of cancer therapeutics, molecular signalling 
interventions and molecular cancer biology.

Methods
Cell lines and culturing.  The following eight cancer cell lines were used in this study: A498 (kidney can-
cer), AGS (gastric adenocarcinoma), COLO 205 (colorectal cancer), DU-145 (prostate cancer), MDA-MB-468 
(breast cancer), SF-295 (glioblastoma), SW-620 (colorectal cancer), and UACC-62 (melanoma). All cell lines 
used in the study are of human origin. Seven of the cell lines were obtained from the NCI-DCTD Repository, 
Frederick MD, and are part of the DTP 60 cell line panel (NCI-60 collection). The AGS cell line was obtained 
from ATCC. AGS cells were cultured in HAMS’s F12 (GIBCO, 21765-029) supplemented with 10% FBS (GIBCO, 
10270-106), 10 µg/ml penicillin-streptomycin (GIBCO, 15140-122) and 1 µg/ml fungizone (GIBCO, A11138-03). 
MDA-MB-468 were cultured in RPMI 1640 (GIBCO, 31870-025) supplemented with 5% FBS (SIGMA, F7524), 
2 mM L-Glutamine (SIGMA, G7513) and 100 U/ml penicillin-streptomycin (GIBCO, 15140-122). All other 
cells were cultured in RPMI 1640 (GIBCO, 31870-025) supplemented with 10% FBS (SIGMA, F7524), 2 mM 
L-Glutamine (SIGMA, G7513) and 100 U/ml penicillin-streptomycin (GIBCO, 15140-122). Cells were cultured 
for approximately two weeks before assay and discarded after a maximum of two months in culture. The day 
before seeding out cells for the high throughput assay, cells were sub-cultured 1:2. Due to technical reasons, this 
was not performed for biological replicate 2 and 3 of the follow-up secondary screen.

Primary screen - ray designed drug treatment.  Cell lines were treated for 48 hours with 19 
small-molecule inhibitors in single and pairwise applications, comprising a total of 171 drug combinations. All 

Fig. 1  Schematic representation of study design. Eight human cancer cell lines from different tissue origins 
were used in this study. Cells were incubated overnight prior to drug addition. In the primary screen, cells were 
screened against 19 small-molecule inhibitors in single and double application, with a total of 171 combinations. 
After 48 hours of drug exposure the assay was terminated, and cell viability was measured using CellTiter-Glo 
2.0 (Promega). In the secondary screen, cells were screened against 7 single small-molecule inhibitors and 6 
combinations for a duration of 48 hours. Drug effect was measured using automated brightfield imaging of 
confluency and CellTiter-Glo 2.0 (Promega).
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drugs were pre-diluted in DMSO to a stock concentration of 20 mM. Drugs were applied in an equimolar ray 
design from 10 µM to 0.016 µM using the following procedure: First, 2.0 mM solutions of each inhibitor and 
inhibitor combination were prepared. These were then serially diluted in DMSO (four 5-fold serial dilutions). 
The solutions were further diluted in medium (8 µl inhibitor in DMSO in a total volume of 228 µl), of which 5 µl 
were added to each cell culture well. Total cell culture volume per well was 35 µl. Highest final concentrations were 
thus 10 µM in each well. All dilutions and liquid handling were performed with robotic equipment using sterile 
and pyrogen free pipette tips. The inhibitors are listed in Online-only Table 1. Final DMSO concentration in assay 
wells was 0.5%.

Secondary screen - matrix designed drug treatment.  In the secondary screen six combinations were 
screened in a matrix designed across all cell lines. As the PI inhibitor was identified as one of the top drugs 
involved in synergistic combinations, it was chosen as the anchor drug. The inhibitor was combined with BI, 
D1, JN, G2, PD, and 5Z. Cell lines were treated for 48 hours with the seven small-molecule inhibitors in single 
application and six drug combinations in all possible combinations of doses 10, 2, 0.4, 0.08 and 0.02 µM. Drugs, 
prepared as stocks of 20 mM in DMSO, were first diluted to 400x final concentration in DMSO. The solutions 
were further manually mixed 1:1 with either DMSO, for single drugs, or combination drug and applied to a 96 
well plate. Further liquid handling was performed with robotic equipment. The solutions were diluted in medium 
(28.5x), of which 5 µl was added to each cell culture well leading to a total volume of 35 µl. We note that a new set 
of inhibitors was ordered for this screen.

High-throughput screen.  Cells were seeded in 384-well plates (CORNING, 3712) at densities shown in 
Table 1 and allowed to attach overnight, before they were treated with small-molecule inhibitors and incubated 
for another 48 hours. The cell seeding densities were selected such that the cells were in a sub confluent stage at 
the time of drug addition. The variances in doubling time between the cell lines were taken into account and 
seeding densities were adjusted so that cell cultures in wells were either in late log phase or early plateau at the 
end of the incubation period. Cell viability was measured using the commercially available CellTiter-Glo 2.0 
assay (Promega). In the secondary screen confluency was included as an additional readout and monitored by 
brightfield imaging using (SpectraMax i3x MiniMax 300 Imaging Cytometer, 2 views per well). A set of control 
wells with cells treated with 0.5% DMSO was included on all plates. The assay was performed with three biological 
replicates, if not stated otherwise.

For the first two biological replicates of the primary screen, two technical replicates are reported. Two of the 
four technical replicates assayed were excluded due to insufficient mixing of drug dilutions for these replicates. 
For the third biological replicate all four technical replicates assayed are included. For MDA-MB-468 and AGS 
cells, one or two biological replicates were performed, respectively. Some data points for the AGS cell line had to 
be excluded due to erroneous drug addition within the robotic script.

For the first biological replicate in the secondary screen, some technical replicates had to be excluded for the 
SW-620 cell line as too little drug volume was added. For the MDA-MB-468 cell line the first biological replicate 
was excluded due to low cell viability in the control wells. For the first, second and third biological replicate some 
technical replicates had to be excluded due to non-efficient cell attachment caused by an air bubble below the cell 
suspension. Additionally, some wells were excluded in the cell confluency data due to condensation of water on 
the bottom of the plate.

Data processing and representation.  Viability data - Primary screen.  For each 384-well plate, via-
bility data of treated cells was normalised to the DMSO control cells measured in the same plate. Normalised 
viability data for each biological replicate where processed using “R-script-average-of-biological-replicates.R”. 
The average viability score for each technical replicate as well as the average viability score across the biological 
replicates were calculated and exported as tab-separated values (tsv) files. Standard deviation across biological 
replicates was calculated using “R-script-calculate-mean-STDV.R”. Dose response curves were generated using 
“R-script-sensitivity-of-drugs-across-cell-lines-plot.R” (Fig. 2, and in figshare deposit25: Drug_cell_response.
pdf). Drug combination plots were generated from average viability scores with standard deviations using 

Cell line Tissue of origin
Cells/well  
(384-well plate)

Population 
doubling time (h)

Growth Media during 
drug screening

Term Accession 
Number

Term Source 
REF

A498 kidney cancer 972 66.8 RPMI 1640 10%FBS BTO:0003769 BTO

AGS gastric adenocarcinoma 800 20 HAMS’s F12 5%FBS BTO:0001007 BTO

COLO 205 colorectal cancer 3000 23.8 RPMI 1640 10%FBS BTO:0000179 BTO

DU-145 prostate cancer 2100 32.3 RPMI 1640 10%FBS BTO:0001332 BTO

MDA-MB-468 breast cancer 8100 62 RPMI 1640 5%FBS BTO:0001570 BTO

SF-295 glioblastoma 1050 29.5 RPMI 1640 10%FBS BTO:0004213 BTO

SW-620 colorectal cancer 3750 20.4 RPMI 1640 10%FBS BTO:0000675 BTO

UACC-62 melanoma 945 31.3 RPMI 1640 10%FBS BTO:0004152 BTO

Table 1.  Cell lines used in screen. Cell line density and growth media used are indicated. All media were 
supplemented with L-glutamine and penicillin-streptomycin. Population doubling time as annotated by 
provider. Cell lines are identified by BRENDA tissue/enzyme source (BTO, Version: 2016-05-05).
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“R-script-plotting-drug-combination.R” (figshare deposit25: Combination_plots_primary_screen.pdf). Data 
points with missing values (14%) are represented as NA values.

Viability and confluency data - Secondary screen.  For confluency data brightfield images were analysed using 
the SoftMax® Pro Software field analysis setting. For this, the region of the image covering the well was selected 
and confluency was reported. We note that the absolute values for confluency for very flat and long cells (e.g. 
A498, SF-295) may be underestimated while absolute confluency for round cells (e.g. MDA-MB-498) may be 
overestimated. We further want to indicate that COLO 205 are growing sub-confluent. For completeness of the 
data set, confluency is reported for this cell line. For each 384-well plate, viability and confluency data of treated 
cells was normalised to the plate-internal DMSO control. Technical replicates and averages of biological replicates 
are reported as comma-separated files (csv). These were further processed using “Biological_Average_secondary_
screen.R” to calculate the biological average, standard deviation and coefficient of variation. Drug combination 
plots were generation from average viability scores with standard deviations using “Combination_plots_second-
ary_screen.R” (figshare deposit25: Combination_plots_secondary_screen_viability.pdf). The same script was 
used to generate drug combination plots for confluency data (figshare deposit25: Combination_plots_second-
ary_screen_confluency.pdf).

Calculation of synergy and statistical significance of quantified synergy.  Bliss excess was evaluated for all doses 
and biological replicates per drug combination and cell line. We first computed all possible Bliss expectations of 
the reported technical replicates per dose per drug combination. Each technical replicate of combination dose 
responses was then compared to the average of computed Bliss expectations per technical replicate per dose in 
same biological replicate. For calculation of Bliss viability values were capped at one.

+ − ∗Bliss excess viability drug A drug B viability drug B viability drug A: ( ) ( ) ( )

In the primary screen statistical significance of the synergistic response was evaluated. For this the com-
puted Bliss excesses for each drug combination-cell line was compared to a zero-centred normal distribution. 
T-tests were performed to test for statistically significant deviations from a zero-centred distribution. When the 
null hypothesis was rejected the alternative hypothesis was accepted, which states that the distribution is not 
zero-centred, i.e. either antagonistic or synergistic. A conservative Bonferroni correction was done to adjust p 
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Fig. 2  Single dose response data of 4 out of 19 tested drugs across eight cell lines. The plot shows the viability 
of the eight tested cancer cell lines exposed to four different inhibitors in single application in a 5-fold dilution 
series from 10–0.016 µM, with standard deviation indicated by error bars. Viability was normalised to DMSO 
control. Abbreviations: PD-0325901 (PD); Ruxolitinib (RU); PI-103 (PI); SB-505125 (SB).
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values for multiple hypotheses. Combinations with average Bliss excess values ≤ −0.08 and p-value ≤ 0.05 were 
classified as synergies. Bliss excess and significance classifications were performed using “p_values_Bliss.R”. A 
synergy score heatmap and volcano plot visualising mean Bliss excess was generated using “R-script-heatmap.R” 
(Fig. 3a,b). For the secondary screen average Bliss excesses per dose, combination and cell line were computed 
using “Bliss_synergy_secondary_screen.R”. A cumulative Bliss score was calculated using the same script by tak-
ing the mean over the computed Bliss excesses per dose. Combinations with average Bliss excess value < 0 were 
considered as synergies. The lower cut-off was motivated by the fact that five times more combination concentra-
tions were tested in the secondary compared to the primary screen. Example plots of mean Bliss excess ± standard 
deviation for two combination tested in the secondary screen are illustrated in Fig. 3c.

Drug target annotation.  Online-only Table 1 lists inhibitor abbreviation, name and unique identifi-
ers (InChiKey and PubChem CID) along with the provider and primary targets as given by provider. CHEBI 
IDs are provided when available. We provide extensive target profile information in the form of bioassay infor-
mation extracted from PubChem (last accessed on 24-06-2019) and kinase profiling data from the MRC PPU 
International Centre for Kinase Profiling - Kinase Profiling Inhibitor Database (http://www.kinase-screen.mrc.
ac.uk/kinase-inhibitors, last time accessed 24-06-2019) available in our figshare deposit25.

For the inhibitors SF1670, BI605906 and 10058-F4 no bioassay information supporting targets given by the 
provider were found in PubChem or MRC PPU Inhibitor Database (proteins inhibited below 10% activity). For 
these inhibitors, we performed an exhaustive literature search to provide annotated information25.

Data Records
All data is available at figshare25, https://doi.org/10.6084/m9.figshare.9810719. Below, the file names for the dif-
ferent data sets are listed.

Viability and confluency data.  The raw luminescence data from the three biological replicates from the 
primary screen can be found in NTNU_HTS_Repl[1-3]_raw.txt within figshare25. Relative viability data per bio-
logical replicate is available in [Cell line].NTNU_HTS_Repl[1-3]_processed.tsv25. Mean viability data of techni-
cal and biological replicates are depicted in [Cell line].tech-mean_Effect.tsv25 and [Cell line].mean_Effect.tsv25. 
Example plots for drug sensitivity across the eight cell lines are shown in Fig. 2, while all plots can be found in 
Drug_cell_response.pdf25. In Fig. 4, the combination effect of selected drug combinations is visualised. Visualised 
drug combinations are based on significance and strength of synergy (see section for Calculation of synergy and 
statistical significance of quantified synergy, Fig. 3). Figure 4b shows average viability of SF-295 cells and A498 cells 
treated with Doramapimod (BI) in combination with PI-103 (PI), and SF-295 cells treated with BI-D1870 (D1) in 
combination with PI from the primary and secondary screen. The complete file with all drug combination plots 
can be found in Combination_plots_primary_screen.pdf25 for the primary screen and in Combination_plots_
secondary_screen_viability.pdf and Combination_plots_secondary_screen_confluency.pdf for the secondary 
screen for viability and confluency response, respectively25.

The raw luminescence data and relative viability data from the three biological replicates from the secondary 
screen can be found in NTNU_HTS_secondary_viability_REPL[1-3].csv25. Raw as well as relative confluency 
data can be found in NTNU_HTS_secondary_confluency_REPL[1-3].csv25. Mean viability and confluency across 
the three biological replicates are depicted in NTNU_HTS_secondary_viability_Biological_Average.tsv25 and 
NTNU_HTS_secondary_confluency_Biological_Average.tsv25, respectively.

Synergy data.  The Bliss excess values for each combination tested in the primary screen across the eight cell 
lines are represented in bliss_significance.tsv25. Synergistic drug combinations are further presented in bliss_syn-
ergies.tsv25. A visual representation of Bliss excess is depicted in Fig. 3a. Cell lines were clustered according to 
Euclidean distances of quantified synergy strengths. 4% synergies were recorded according Bliss Independence 
model.

Bliss excess values for each combination per dose tested in the secondary across eight cell lines are represented 
in bliss_synergies_secondary_screen_viability.tsv25 and bliss_synergies_secondary_screen_confluency.tsv25 from 
viability and confluency data, respectively. A visual representation of Bliss excess ± standard deviation from the 
viability data is shown in bliss_synergies_secondary_screen_plots_viability.pdf25 and in bliss_synergies_second-
ary_screen_plots_confluency.pdf25 from the confluency data. Cumulative bliss scores for the viability data can be 
found in Mean.Bliss.excess.matrix.tsv25.

Technical Validation
Cell line identity.  The seven NCI-cell lines used were received from the NCI-DCTD Repository and cul-
tivated no more than 25 passages after reception in the lab. All cell lines were validated by STR profiling per-
formed by Cell Line Authentication Service at ATCC. Eight core STR loci (TH01, D5S818, D13S317, D7S820, 
D16S539, CSF1PO, vWA and TPOX) plus amelogenin were matched to database profiles obtained from ATCC 
and Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ). For two of the cell lines, 
SF-295 and UACC-62, no database profile was available for comparison from ATCC and DSMZ. However, both 
cell lines were found to match their STR profile listed on the ExPASy website (https://web.expasy.org/cellosaurus). 
All 7 cell lines were found to be identical or similar to their database profiles with percent matches at 95–100%. 
The AGS cell line was validated by STR profiling performed by the in-house Genomics Core Facility. Eight core 
STR loci (TH01, D5S818, D13S317, D7S820, D16S539, CSF1PO, vWA and TPOX) plus amelogenin had a match 
of 81% to the ATCC profile (CRL-1739).
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Viability assay performance and variation.  The performance of the viability assays was monitored using 
a sample set of small molecule positive controls. In the ray design nine concentrations of digitonin ranging from 
100 µg/ml to 0.02 µg/ml was included in each biological replicate. In the matrix design a sample set with three 
concentrations of the positive controls digitonin, ranging from 26 µg/ml to 3 µg/ml, and staurosporine, rang-
ing from 1.6 µM to 0.18 µM, were included in each plate. The standard deviation of the plate internal reference 
groups was also monitored and was less than 10% at maximum (on average below 5%) in the ray designed screen. 
Overall, we observed a mean coefficient of variation of 8% across all biological replicates in the primary screen 
and 7% in the secondary screen for both the viability and confluency data.

To assess reproducibility between biological replicates, we calculated Pearson correlation coefficients for all 
measured data points (normalised). We observe a high correlation between all comparisons with a correlation 
of R = 0.89 between Replicate 1 vs Replicate 2, R = 0.88 between Replicate 1 vs Replicate 3 and R = 0.87 between 
Replicate 2 vs Replicate 3 of the primary screen (See Fig. 5a–c). In the viability data of the secondary screen we 
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Fig. 3  Overview of synergy scores of all drug combinations across all tested cell lines. (a) The heatmap shows 
Bliss excess across the eight cell lines tested in this study, where a negative value indicates a stronger synergy. 
Bliss excess ≤ −0.11 are coloured in blue (synergy), while values ≥ 0.11 are coloured in red (antagonism). Cell 
lines are clustered using Euclidian distances of synergy strengths, while rows are sorted according to mean Bliss 
excess across all cell lines. (b) Volcano plot showing synergy strength (Bliss excess) vs significance scores of 
synergistic responses. (c) Average Bliss excess ± standard deviation for SF-295 cells treated with Doramapimod 
(BI) in combination with PI-103 (PI) and BI-D1870 (D1) in combination with PI from secondary screen.
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observed a correlation of R = 0.98 between Replicate 1 vs Replicate 2, R = 0.97 between Replicate 1 vs Replicate 
3, and R = 0.98 between Replicate 2 vs Replicate 3. In the confluency data of the secondary screen we observed 
a correlation of R = 0.90 between Replicate 1 vs Replicate 2, R = 0.88 between Replicate 1 vs Replicate 3, and 

0.95

Fig. 4  Example drug combination plots for drug combinations found to be highly synergistic according to 
Bliss excess and p-value. (a) The graphs show viability data with standard deviation for COLO 205 cells tested 
Doramapimod (BI) and Akt Inhibitor VIII (AK) and UACC-62 cells tested with BI-D1870 (D1) and SF1670 
(SF) in the primary screen. (b) The graphs show viability data with standard deviation for SF-295 cells treated 
with drug combinations Doramapimod (BI) - PI-103 (PI) and BI-D1870 (D1) - PI, and A498 cells treated with 
BI - PI in the primary and secondary screen. The data is normalised to DMSO control.
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R = 0.95 between Replicate 2 vs Replicate 3. The average viability of shared data points between the primary and 
secondary screen showed a correlation of R = 0.92 (Fig. 5d). This variation is within the expected variation in high 
throughput cellular viability assays11,26.

Synergistic combinations in primary screen.  The primary screen led to the identification of 55 syner-
gies according to the chosen cut-off from 1368 total combinations for all cell lines. An analysis of the list showed 
that 23 unique combinations were classified as synergistic across seven unique cell lines, with no synergistic 
combination in the MDA-MB-468 cell line. The inhibitors PI (targets PIK3CA/B/D, mTOR and DNA-PK) and 
SF (target PTEN) were identified to be involved in the majority of synergistic combination. The PI inhibitor was 
identified as synergistic with BI (target MAPK14) and with D1 (target RPS6KA1/2/3/6) in more than half of the 
tested cell lines. Further synergistic drug pairs sorted by occurrence across cell lines are G2 (target PDPK1), JN 
(targets MAPK8/9/10), P5 (target SYK) and AK (targets AKT1, AKT2, AKT3).

Synergistic combinations in secondary screen.  As the PI inhibitor was identified as one of the top 
drugs involved in synergistic combinations, it was chosen as the anchor drug for the secondary screen. We com-
bined the PI inhibitor with the top four synergistic drug pairs judged by occurrence across cell lines. We also 
included PI in combination with PD (targets MAP2K1/2), to investigate synergistic behaviour of drug concentra-
tions outside the concentration ratios tested in the primary screen. This was motivated by the fact that drugs tar-
geting PI3K and MAP2K1/2 have been previously reported to be synergistic in several cell lines18,19. Additionally, 
we tested PI in combination with 5Z a combination previously identified as synergistic in the AGS cell line in a 
previous study by our group15 and Morris et al.16.

Fig. 5  Scatter plots and computed Pearson correlation values for biological replicates. (a) 1 vs 2, (b) 1 vs 3 and 
(c) 2 vs 3. The correlation between shared conditions of primary and secondary screen are shown in (d).
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Results from the secondary screen confirmed combinations as being synergistic or antagonistic in most cell 
lines. We confirmed the synergistic effect of PI-G2 in SF-295, SW-620 and UACC-62 cells. Additionally, we 
observed a synergistic response in A498 and AGS cells in the secondary screen. The combination PI-BI was also 
redetected as synergistic in five of the cell lines, while for two cell lines the combination did not show a greater 
effect compared to single drug treatment in the secondary screen. For two combinations, that were not classified 
as synergistic in the primary screen, PI-5Z and PI-PD, we could observe synergistic responses in the secondary 
matrix design screen. The PI-5Z combination was synergistic in two cell lines including AGS cells, confirming 
previous findings15,16. The PI-PD combination (targets PIK3CA/B/D, mTOR and DNA-PK - MAP2K1/2) was 
found to be synergistic in five cell lines and non-synergistic in three cell lines including the two colorectal cancer 
cell lines SW-620 and COLO 205. While colorectal cancer cell lines have been frequently observed to display syn-
ergistic response to combined inhibition of MAP2K1/2 (MEK1/2) and PI3K27–30, weaker synergy has previously 
been observed in SW-620 and COLO 205 cells28.

Usage Notes
Other users may investigate alternative methods for synergy quantification or another threshold using the pro-
vided data. To assist other researchers in visualising and analysing the dataset from the primary screen described 
herein we have prepared files that can be uploaded to the web-service CImbinator (http://rbbt.bsc.es/CImbinator/
CombinationIndex) from which several synergy metrics can be computed and visualised31.

Code availability
The data was processed using R 3.5.2 and RStudio Version 1.1.463. The following packages were used for 
data processing “tidyr” (0.8.3), “dplyr” (0.8.1), “ggrepel” (0.8.1) and “stats” (3.5.2); and data visualization 
“RColorBrewer” (1.1-2), “gplots” (3.0.1.1), “ggplot2” (3.2.0), “ComplexHeatmap”32 (1.20.0), “ggpubr” (0.2) and 
“gridExtra” (2.3).

All code applied for processing and visualising the data is provided at the figshare deposit25.
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