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Abstract

In N. V. Krylov, Approximating value functions for controlled degenerate diffusion
processes by using piece-wise constant policies, Electron. J. Probab., 4(2), 1999, it is
proved under standard assumptions that the value functions of controlled diffusion
processes can be approximated with order 1/6 error by those with controls which are
constant on uniform time intervals. In this note we refine the proof and show that
the provable rate can be improved to 1/4, which is optimal in our setting. Moreover,
we demonstrate the improvements this implies for error estimates derived by similar
techniques for approximation schemes, bringing these in line with the best available
results from the PDE literature.
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1 Introduction

In this paper we derive improved error estimates for approximations of value functions
of stochastic optimal control problems. Let (Ω,F , {Ft}t≥0,P) be a complete filtered
probability space, (Wt)t≥0 a p-dimensional {Ft}-Wiener process on (Ω,F ,P), and A the
set of progressively measurable processes with values in a set A ⊆ Rm. For any α ∈ A,
x ∈ Rd, t ∈ [0, T ] (with T > 0), let X· = Xα,t,x

· be the (controlled) Itô diffusion which
satisfies

Xs = x+

∫ s

0

bαr
(t+ r,Xr) dr +

∫ s

0

σαr
(t+ r,Xr) dWr for s ≥ t. (1.1)

Here we use the notation ϕa(·, ·) = ϕ(·, ·, a) for any a ∈ A and function ϕ. For a given
terminal cost function g and running cost f , the optimal control problem consists of
maximizing over α ∈ A the expected total cost

Jα(t, x) := Eαt,x
[ ∫ T−t

0

fαr
(t+ r,Xr) dr + g(XT−t)

]
. (1.2)
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Order 1/4 convergence of piecewise policies

The indices on the expectation E indicate that the law of the process depends on the
starting point and control. Finally, the value function of the optimal control problem is
defined by

v(t, x) := sup
α∈A

Jα(t, x). (1.3)

We consider the following set of assumptions:

(H1) A is a compact set;

(H2) b : [0, T ]×Rd × A→ Rd and σ : [0, T ]×Rd × A→ Rd×p are continuous functions.
For ϕ ∈ {b, σ}, there exists C0 ≥ 0 such that for every t, s ∈ [0, T ], x, y ∈ Rd, a ∈ A:

|ϕ(t, x, a)− ϕ(s, y, a)| ≤ C0

(
|x− y|+ |t− s|1/2

)
and |ϕ(t, x, a)| ≤ C0;

(H3) g : Rd → R and f : [0, T ] × Rd × A → R are continuous functions. There exists
C1 ≥ 0 such that for every t, s ∈ [0, T ], x, y ∈ Rd, a ∈ A:

|g(x)− g(y)| ≤ C1|x− y|,

|f(t, x, a)− f(s, y, a)| ≤ C1

(
|x− y|+ |t− s|1/2

)
and |f(t, x, a)| ≤ C1.

Observe that under assumptions (H1), (H2), and for any α ∈ A, there exists a unique
strong solution of equation (1.1). For simplicity, we assume data and coefficients to be
Lipschitz continuous in space and 1/2-Hölder continuous in time, and have included no
discount factor, but it is not difficult to extend our results to include discounting and a
lower Hölder regularity for f and g. Moreover, as in [8], we assume the boundedness of
data. It should be possible to extend the results to the case of linear growth in x of b, σ,
f and g, obtaining local estimates growing polynomially in the space variable.

We aim to estimate the error introduced by approximating the set of measurable
controls A by piecewise constant controls. Let h > 0 be the discretization parameter
and Ah the subset of A of processes which are constant in the intervals [nh, (n+ 1)h) for
n ∈ N.1 The value function associated with this restricted set of controls is defined by

vh(t, x) := sup
α∈Ah

Jα(t, x). (1.4)

Note that the definition of vh in (1.4) under the “shifted” dynamics in (1.2) and (1.1)
implies that the control discretisation is always centered at t. This will be important
for establishing a dynamic programming principle. This is not, though, how one would
compute vh in practice, as discussed in the penultimate paragraph of this section.

From a probabilistic perspective, it is clear that 0 is a lower bound for v − vh since
Ah ⊆ A. Under our assumptions, an upper bound on v − vh of order h

1
6 is given in [8].

An indication that the order 1/6 from [8] might be improved is the fact that under
the same regularity assumptions as above it is shown in [5] that a fully discrete semi-
Lagrangian scheme applied to the corresponding HJB equation has order 1/4 in the
timestep for an Euler approximation. This scheme does not distinguish between constant
or other controls over individual timesteps. It would therefore be somewhat surprising if
the scheme which employs further approximations was closer to the original problem
than the one which only holds the policies constant over timesteps.

A slightly different angle to the problem is provided in [3], where the authors con-
struct from (1.4) a subsolution to the HJB equation corresponding to (1.3) by a second

1Note that in [8] the length of intervals is h2, however, in absence of further discretisations, we use h for
simplicity.
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Order 1/4 convergence of piecewise policies

order local expansion in t. This results in an order 1 error bound in the case of smooth
solutions, in contrast to 1/2 which would be obtained in the smooth case by the method
in [8] (see also Section 2.3 below). However, in the general non-regular case, the order
in [3] is limited by a switching system approximation of order ε1/3 (for a switching cost
chosen of order ε), which, combined with an error term of the regularised system of
order h/ε3 (for regularisation parameter ε), results in an order 1/10 error by optimisation
of ε.

In this paper, we combine the advantages of both methods to obtain order 1/4. The
reason we can improve the error estimates of Krylov is that we use a higher order
expansion when we derive the truncation error. Our discussion (see Subsection 2.3) also
shows that no further improvement can be obtained in this way: our new proof uses the
maximal possible order of the truncation error.

Piecewise constant policy time stepping has been used in a numerical method for
solving Hamilton-Jacobi-Bellman equations in [13], where the computational advantage
comes from the fact that over the time intervals in which the policy is constant, only
linear PDEs have to be solved. This has been extended to mixed optimal stopping and
control problems with nonlinear expectations and jumps in [6]. A further benefit lies
in the inherent parallelism so that the linear problems with different controls can be
solved on parallel processors. A proof of convergence is given in these works using
pure viscosity solution arguments, but no rate of convergence is provided. Early results
on this type of approximation can be found in [10] and an extension with “predicted”
controls is proposed in [7].

In the remainder of this article, we give in Section 2 a proof of the order 1/4 conver-
gence of the piecewise constant policy approximation, and deduce the linear convergence
in the case of sufficiently regular solutions and data. We then outline in Section 3 the
improved orders which can be derived for approximation schemes by similar techniques.

2 Main result

We begin by stating the main result. Throughout the entire section we work under
assumptions (H1)–(H3).

Theorem 2.1. For any s ∈ [0, T ], x ∈ Rd, and h > 0, we have

0 ≤ v(s, x)− vh(s, x) ≤ Ch1/4, (2.1)

where the constant C only depends on the constants in Assumptions (H2) and (H3).

A major difficulty in the proof of Theorem 2.1 is the fact that typically v and vh are
not smooth. Even in the non-degenerate case where v is C2+δ, vh is still not smooth
in general. A simple example is the Black-Scholes-Barenblatt equation resulting from
an uncertain volatility model (see [11]). Here, the control is of bang-bang type and the
optimal control problem for piecewise constant policies reduces to taking the maximum
of two smooth functions at the end of each time interval, so that for t on the time mesh,
vh(t, ·) will only be Lipschitz (in the spatial argument).

Since the proof of Theorem 2.1 relies on repeated use of the Itô formula, we need
to work with smooth functions, both for the coefficients and value functions v and vh.
This means that we need to introduce several regularization arguments and use Krylov’s
method of shaking the coefficients.

2.1 Background results and regularisation

In this section, we introduce Krylov’s regularization and give related preliminary
results. Some of the proofs are given in [8] and not repeated here; see also [1, 2] for
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Order 1/4 convergence of piecewise policies

analogous results proved with PDE arguments. In order to apply Itô’s formula twice,
σ, b, f, g, v, and vh must be regularized. Let ε > 0 and the mollifier ρε be defined as

ρε(t, x) :=
1

εd+2
ρ

(
t

ε2
,
x

ε

)
, (2.2)

where

ρ ∈ C∞(Rd+1), ρ ≥ 0, supp ρ = (0, 1)× {|x| < 1},
∫
supp ρ

ρ(e) de = 1.

For any function ϕ : [0, T ] × Rd → R, we define ϕ(ε) ∈ C∞([0, T ] × Rd) to be the
mollification of a suitable extension of ϕ to [−ε2, T ]

ϕ(ε)(t, x) := (ϕ ∗ ρε)(t, x) =

∫
0≤s≤ε2

∫
|y|≤ε

ϕ(t− s, x− y)ρε(s, y) dsdy.

We can always take an extension which preserves the Hölder continuity in time and
Lipschitz continuity in space of ϕ. Then standard estimates for mollifiers imply that

‖ϕ− ϕ(ε)‖∞ ≤ Cε and
∥∥∥∂mt Dk

xϕ
(ε)
∥∥∥
∞
≤ Cε1−2m−k for k +m ≥ 1. (2.3)

Let X̃· be the solution of (1.1) with coefficients replaced by b(ε) and σ(ε). Then
we denote by ṽ and J̃α the solution and cost function of the optimal control problem
(1.1)–(1.3) where X· is replaced by X̃· and f, g by f (ε), g(ε).

Proposition 2.2. There exists C ≥ 0 such that for any t ∈ [0, T ], x ∈ Rd

|v(t, x)− ṽ(t, x)| ≤ Cε.

Proof. The result follows from the definitions of v and ṽ since by standard continuous
dependence results for SDEs and Lipschitz and Hölder continuity of f, g, b, σ,

Eαt,x

[
sup

s∈[0,T−s]
|Xs − X̃s|2

]
≤ C(‖b− b(ε)‖2∞ + ‖σ − σ(ε)‖2∞) ≤ Cε2

for some constant C independent of the control α.

To avoid heavy notation, we will use (f, g, b, σ) instead of (f (ε), g(ε), b(ε), σ(ε)) in the
rest of the paper, keeping in mind estimates (2.3) for their derivatives. We now proceed
with the regularisation of the value function vh. Let Eh be the set of progressively
measurable processes e ≡ (e1, e2) with values in (−ε2, 0)×Bε(0) (where Bε(0) denotes
the ball of radius ε in Rd) which are constant in each time interval [nh, (n+ 1)h). Letting
S = T + ε2, we define for any s ∈ [0, S], x ∈ Rd the following “perturbed” value function

uh(s, x) := sup
α∈Ah,e∈Eh

E(α,e)
s,x

[ ∫ S−s

0

fαr
(s+ r, X̂r) dr + g(X̂S−s)

]
, (2.4)

where X̂· = X̂
(α,e),s,x
· is the solution of the following SDE with (mollified and) “shaken

coefficients”:

X̂· = x+

∫ ·
0

bαr
(s+ r + e1,r, X̂r + e2,r) dr +

∫ ·
0

σαr
(s+ r + e1,r, X̂r + e2,r) dWr. (2.5)

Proposition 2.3. There exists a constant C ≥ 0 such that

|vh(t, x)− uh(t, x)| ≤ Cε
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Order 1/4 convergence of piecewise policies

for any t ∈ [0, T ], x ∈ Rd, and

|uh(t, x)− uh(s, y)| ≤ C(|x− y|+ |t− s|1/2)

for any t, s ∈ [0, S] and x, y ∈ Rd. Moreover, for any s ∈ [0, S−h], uh satisfies the following
dynamic programming principle (DPP):

uh(s, x) = sup
a∈A

0≤η≤ε2,|ξ|≤ε

E(a,(η,ξ))
s,x

[ ∫ h

0

fa(s+ r, X̂r) dr + uh(s+ h, X̂h)
]
. (2.6)

Proof. These are standard results. The first two inequalities can be found e.g. in [8,
Corollary 3.2], while (2.6) is a consequence of [8, Lemma 3.3].

Following the notation introduced above we consider the regularised (mollified)
function u(ε)h .

Proposition 2.4. The function u(ε)h belongs to C∞([0, T ]×Rd). There exists a constant
C ≥ 0 such that ∣∣uh(t, x)− u(ε)h (t, x)

∣∣ ≤ Cε (2.7)

for t ∈ [0, T ], x ∈ Rd, and∥∥∥∂mt Dk
xu

(ε)
h

∥∥∥
∞
≤ Cε1−2m−k for k +m ≥ 1. (2.8)

Moreover, u(ε)h satisfies the following super-dynamic programming principle

u
(ε)
h (t, x) ≥ Eat,x

[ ∫ h

0

fa(t+ r, X̃r) dr + u
(ε)
h (t+ h, X̃h)

]
(2.9)

for any a ∈ A, 0 ≤ η ≤ ε2, |ξ| ≤ ε, t ∈ [0, T − h], x ∈ Rd.

Proof. The first part follows from Proposition 2.3 and (2.3), while (2.9) follows by the
definitions of u(ε)h , X̂t, X̃t, and the inequality

∫
sup(· · · ) ≥ sup

∫
(· · · ). See [8, bottom

of page 9] for more details. Here αt ≡ a constant over t ∈ [0, h] by a slight abuse of
notation.

2.2 Proof of Theorem 2.1

1) Upper bound on Lau
(ε)
h + fa. By two applications of the Itô (or Dynkin) formula,

Eas,x[u
(ε)
h (s+ h, X̃h)]

= u
(ε)
h (s, x) + Eas,x

[ ∫ h

0

(Lau
(ε)
h )(s+ t, X̃t) dt

]
= u

(ε)
h (s, x) + h(Lau

(ε)
h )(s, x) + Eas,x

[ ∫ h

0

∫ t

0

La(Lau
(ε)
h )(s+ r, X̃r) dr dt

]
for s ≤ T − h, x ∈ Rd, a ∈ A, where the generator La of the diffusion process is defined
as

La := ∂t + bTaDx +
1

2
tr[σaσ

T
aD

2
x].

Inserting this equality into the dynamic programming inequality (2.9) in Proposition 2.4,
applying Itô once to the fa-term, and dividing by h, we find that

(Lau
(ε)
h )(s, x) + fa(s, x) ≤ 1

h
sup
a∈A

(
‖Lafa‖∞ + ‖LaLau(ε)h ‖∞

)∫ h

0

∫ t

0

dr dt. (2.10)
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Order 1/4 convergence of piecewise policies

Since the leading term LaLau
(ε)
h is a sum of terms of the form φ1(∂mt φ2)(Dk

xφ3) with

φi ∈ {µ, σσT , u(ε)h } and 2m+ k ≤ 4, by (2.3) and (2.8),

(Lau
(ε)
h )(s, x) + fa(s, x) ≤ Cε−3h. (2.11)

2) Upper bound on ṽ − vh for s ∈ [0, T − h). Let α ∈ A, s ∈ [0, T − h], and x ∈ Rd. By
Itô’s formula and part 1),

Eαs,x[u
(ε)
h (T − h, X̃T−h−s)] =u

(ε)
h (s, x) + Eαs,x

[ ∫ T−h−s

0

(Lαtu
(ε)
h )(s+ t, X̃t) dt

]
≤ u(ε)h (s, x)− Eαs,x

[ ∫ T−s

0

fαt
(s+ t, X̃t) dt

]
+ TCε−3h.

From (2.7) in Proposition 2.4 and the first part of Proposition 2.3, it then follows that

Eαs,x[uh(T − h, X̃T−h−s)] ≤ uh(s, x)− Eαs,x
[ ∫ T−s

0

fαt(s+ t, X̃t) dt
]

+ C(ε+ ε−3h)

≤ vh(s, x)− Eαs,x
[ ∫ T−s

0

fαt(s+ t, X̃t) dt
]

+ C(ε+ ε−3h),

for a generic constant C. Since by definition (2.4) and the regularity of uh (Proposition
2.3),

Eαs,x[(uh(T − h, X̃T−h−s)] = Eαs,x[uh(T − h, X̃T−h−s)− uh(S, X̃T−s) + g(X̃T−s))]

≥ Eαs,x[g(X̃T−s))]− C(h1/2 + ε),

we conclude that

J̃α(s, x) = Eαs,x

[ ∫ T−s

0

fαt
(s+ t, X̃t) dt+ g(X̃T−s)

]
≤ vh(s, x) + C(ε+ h1/2 + ε−3h).

Since α ∈ A was arbitrary, by the definition of ṽ (see just before Proposition 2.2),

ṽ(s, x)− vh(s, x) ≤ C(ε+ h1/2 + ε−3h).

3) Upper bound on ṽ − vh for s ∈ [T − h, T ]. By the definition of J̃α (see just before
Proposition 2.2), Itô’s formula, the regularity of f and g, and using (2.3), there is a
constant C > 0 such that for every α ∈ A and s ∈ [T − h, T ],

|J̃α(s, x)− g(x)| =
∣∣∣Eαs,x[ ∫ T−s

0

(
fαr

(s+ r, X̃r) + Lαr
g(X̃r)

)
dr
]∣∣∣ ≤ C(1 + ε−1)h.

Then it follows from the definitions of ṽ and vh that

|ṽ(s, x)− g(x)|+ |vh(s, x)− g(x)| ≤ Cε−1h,

and hence also |ṽ(s, x)− vh(s, x)| ≤ 2Cε−1h for s ∈ [T − h, T ].

4) Conclusion: Using Proposition 2.2 and parts 2) and 3), we have that

v(s, x)− vh(s, x) ≤ ṽ(s, x)− vh(s, x) + Cε ≤ C(ε+ h1/2 + ε−3h)

for s ∈ [s, T ] and x ∈ Rd. Taking ε = h1/4 then concludes the proof of the right-hand
inequality in (2.1). The left-hand inequality is immediate since Ah ⊆ A.
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Order 1/4 convergence of piecewise policies

2.3 The maximal rate and comparison with [8]

If the data and value functions are smooth enough, we can adapt the proof of Theorem
2.1 to obtain the maximal rate of the approximation, which is 1. More specifically, if
we assume vh and f sufficiently smooth, we have in (2.10) supa∈A(‖La(Lau

(ε)
h )‖∞ +

‖Laf‖∞)≤ C <∞ with C independent of ε. Therefore, instead of (2.11), the conclusion
of step 1) in the previous proof gives

(Lau
(ε)
h )(s, x) + fa(s, x) ≤ Ch,

for some constant C independent of a ∈ A and ε. Moreover, if we assume that b, σ and f
are Lipschitz in t uniformly in x and a, and g belongs to C2

b (Rd), then by standard results
uh will be Lipschitz in t. Hence, we find in step 2) that

ṽ(s, x)− vh(s, x) ≤ C(ε+ h).

Sending ε to zero then gives that ṽ converges to v, and we have the following result:

Proposition 2.5. Additionally to assumptions (H1)-(H3), let b, σ and f be Lipschitz con-
tinuous in t uniformly with respect to x and a, and g ∈ C2

b (Rn). If supa∈A(‖La(Lavh)‖∞ +

‖Laf‖∞) <∞, then there exists C > 0 such that for any s ∈ [0, T ], x ∈ Rd, and h > 0, we
have

0 ≤ v(s, x)− vh(s, x) ≤ Ch. (2.12)

This is the maximal rate that this approximation can reach. The reason is that the
order obtained by applying Itô twice in step 1) of the proof cannot be improved. This can
easily be checked by repeatedly applying Itô to obtain higher order error expansions
and then noting that all such expansions contain terms of order h.

Step 1) of the proof also explains why Krylov in [8] got a less sharp result than ours.
After one application of Itô, he used the moment bound E[|x−Xr|] ≤

√
E[|x−Xr|2] ≤

C
√
r to get ∣∣∣ 1

h
Eas,x

[ ∫ h

0

(Lau
(ε)
h )(s+ t, X̃t) dt

]
− (Lau

(ε)
h )(s, x)

∣∣∣
≤ C‖Dx(Lau

(ε)
h )‖∞h1/2+‖∂t(Lau(ε)h )‖∞h.

This estimate requires only three derivatives in space of u(ε)h but gives the lower rate 1/2.
The conclusion of step 1) of the proof then becomes

Lau
(ε)
h (s, x) + fa(s, x) ≤ C

(
ε−2h1/2 + ε−3h

)
.

Completing the proof as in Section 2.2 then gives

ṽ(s, x)− vh(s, x) ≤ C(ε+ ε−2h1/2 + ε−3h),

and optimizing with respect to ε shows that v(s, x)− vh(s, x) ≤ Ch1/6. Note that there is
no need for regularization of the coefficients and data since Itô is applied only once. In
the case of smooth enough solutions, this approach cannot give a higher rate than 1/2.

3 Consequences on finite difference approximations

In this section, we outline the impact of the improved error bound for the control
approximation on the achievable convergence order for numerical schemes, either by
directly substituting the improved order (Section 3.1) or by applying adaptations of the
steps here using higher order estimates (Section 3.2).
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Order 1/4 convergence of piecewise policies

3.1 Improvement to Theorem 1.11 in [9]

Using the new bound for the control approximation from Section 2, one easily obtains
a sharpening of the order from 1/39 in [9, Theorem 1.11] and 1/21 in [8, Theorem 5.4] to
1/15, which holds for local, monotone schemes of consistency order 1/2. Indeed, using
Theorem 2.1 instead of [8, Theorem 2.3], the bound in the second inequality in the proof
of [8, Theorem 5.4] (on top of page 14 in [8]) becomes

v ≤ vδ,1/n + C(nδ1/3 + n−1/4),

where δ > 0 is the time discretization step used in [8] for the approximation scheme for
the value function, n the number of time intervals over which the policy is constant and
vδ,1/n is the obtained approximation of v.2 Optimizing with respect to δ gives n ∼ δ−4/15
and an estimate of order 1/15 in δ.

Assuming order 1 consistency of the scheme used instead of order 1/2 as in [9,
Theorem 1.11] and [8, Theorem 5.4], in conjunction with [9, Lemma 3.2], one gets

v ≤ vδ,1/n + C(nδ1/2 + n−1/4),

and the rate improves further to 1/10.

3.2 Improvement to Theorem 5.7 in [8]

For a wide class of numerical schemes, similar modifications as those used to prove
Theorem 2.1 can be performed to improve the error estimates given in [8, Theorem 5.7].
Following as much as possible the notation in [8], let us define for any s ≥ 0, x ∈ Rd,
a ∈ A the random variable

Y a,s,x := x+ b(s, x, a)h+ σ(s, x, a)ζ,

where ζ is an Rp-valued random variable such that

E[ζ] = 0, |E[ζiζj ]− hδij | ≤ Ch2 and E[ζk] ≤ Ch2 for any k ≥ 3. (3.1)

It is easy to check, by Taylor expansion, that for any smooth function φ the estimate in
[8, Lemma 5.10] for the truncation error of the generator becomes∣∣Laφ(s, x)− h−1E [φ(s+ h, Y a,s,x)− φ(s, x)]

∣∣ ≤ Ch
for a constant C depending only on C1 and C2 in assumptions (H2)–(H3) and the bounds
on the derivatives ∂mt D

k
xφ for 2m+ k ≤ 4.

Observe that conditions (3.1) are slightly stronger than (5.4) in [8], who only assume
accuracy of the moments to order h3/2 instead of h2 in (3.1), so that only order 1/2

consistency results instead of order 1 above. However, the higher order assumptions are
satisfied by very common schemes such as the classical semi-Lagrangian scheme [4, 5]
corresponding to the choice

P(ζi = ±h1/2) = 1/2 for i = 1, . . . , p. (3.2)

The scheme considered in [8] is then recursively defined, for any x ∈ Rd, by

v̂h(s, x) = g(x) if s ∈ (T − h, T ],

v̂h(s, x) = sup
a∈A

{fa(s, x)h+ E [v̂h(s+ h, Y a,s,x)]} if s ≤ T − h.

2Note that in Section 5 of [8], our δ above is denoted by h2. We introduce δ to avoid ambiguity with the
parameter h used in the previous sections of this paper (corresponding to h = 1/n in the present section).
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Proceeding to a perturbation and regularization of v̂h as in [8] (the notation follows
the one in Section 2.2, i.e. û(ε)h is the mollification of ûh, the solution of the scheme with
perturbed “shaken” coefficients) we get the inequality

Laû
(ε)
h + fa ≤ Chε−3

in [0, T − h]×Rd for some constant C depending only on C0, C1 in assumptions (H2) and
(H3). Arguing as in the proof of Theorem 2.1, one obtains

v̂h ≤ v + Ch1/4.

Similarly, an upper bound of order 1/4 for v− v̂h can be obtained. This aligns the bounds
for the scheme (3.2) with those obtained in [5] by PDE techniques.

4 Discussion and conclusions

In this short paper, we show a convergence rate of 1/4 for piecewise constant
control approximations to value functions of stochastic optimal control problems. This
result is robust and holds for degenerate problems with non-smooth, merely Lipschitz
continuous value functions. If the data and value function are smoother, we show that
the approximation has rate 1 and explain why this is the maximal rate.

Our rate 1/4 in (2.1) improves both the order 1/6 in [8] and the rate 1/10 achieved
in [3] by different (PDE) techniques. We also carefully explain why we can improve the
result in [8]. It is an interesting open question if the same rate could be obtained purely
by PDE techniques.

This work also opens up the possibility of improving the error estimates for other ap-
proximation schemes as outlined in Section 3. Moreover, it enables a purely probabilistic
error analysis for semi-Lagrangian schemes for HJB equations with results that are in
line with the best available results by PDE methods. We refer to [12] for the details.
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