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ROBUST NUMERICAL METHODS FOR NONLOCAL (AND LOCAL)
EQUATIONS OF POROUS MEDIUM TYPE. PART I: THEORY\ast 

FELIX DEL TESO\dagger , J{\O}RGEN ENDAL\ddagger , AND ESPEN R. JAKOBSEN\ddagger 

Abstract. We develop a unified and easy to use framework to study robust fully discrete
numerical methods for nonlinear degenerate diffusion equations \partial tu - \frakL \sigma ,\mu [\varphi (u)] = f in \BbbR N \times (0, T ),
where \frakL \sigma ,\mu is a general symmetric diffusion operator of L\'evy type and \varphi is merely continuous and
nondecreasing. We then use this theory to prove convergence for many different numerical schemes.
In the nonlocal case most of the results are completely new. Our theory covers strongly degenerate
Stefan problems, the full range of porous medium equations, and, for the first time for nonlocal
problems, also fast diffusion equations. Examples of diffusion operators \frakL \sigma ,\mu are the (fractional)

Laplacians \Delta and  - ( - \Delta )
\alpha 
2 for \alpha \in (0, 2), discrete operators, and combinations. The observation

that monotone finite difference operators are nonlocal L\'evy operators allows us to give a unified and
compact nonlocal theory for both local and nonlocal linear and nonlinear diffusion equations. The
theory includes stability, compactness, and convergence of the methods under minimal assumptions,
including assumptions that lead to very irregular solutions. As a byproduct, we prove the new and
general existence result announced in [F. del Teso, J. Endal, and E. R. Jakobsen, C. R. Math. Acad.
Sci. Paris, 355 (2017), pp. 1154--1160]. We also present some numerical tests, but extensive testing
is deferred to the companion paper [F. del Teso, J. Endal, and E. R. Jakobsen, SIAM J. Numer.
Anal., 56 (2018), pp. 3611--3647] along with a more detailed discussion of the numerical methods
included in our theory.
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vergence, stability, a priori estimates, nonlinear degenerate diffusion, porous medium equation, fast
diffusion equation, Stefan problem, fractional Laplacian, Laplacian, nonlocal operators, distributional
solutions, existence
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1. Introduction. We develop a unified and easy to use framework for monotone
schemes of finite difference type for a large class of possibly degenerate, nonlinear,
and nonlocal diffusion equations of porous medium type. We then use this theory to
prove stability, compactness, and convergence for many different robust schemes. In
the nonlocal case most of the results are completely new. The equation we study is

(1.1)

\Biggl\{ 
\partial tu - \frakL \sigma ,\mu [\varphi (u)] = f in QT := \BbbR N \times (0, T ),

u(x, 0) = u0(x) on \BbbR N ,
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where u is the solution, \varphi is a merely continuous and nondecreasing function, f =
f(x, t) some right-hand side, and T > 0. The diffusion operator \frakL \sigma ,\mu is given as

(1.2) \frakL \sigma ,\mu := L\sigma + \scrL \mu 

with local and nonlocal (anomalous) parts,

L\sigma [\psi ](x) := tr
\bigl( 
\sigma \sigma TD2\psi (x)

\bigr) 
,(1.3)

\scrL \mu [\psi ](x) :=

\int 
\BbbR N\setminus \{ 0\} 

\bigl( 
\psi (x+ z) - \psi (x) - z \cdot D\psi (x)1| z| \leq 1

\bigr) 
d\mu (z),(1.4)

where \psi \in C2
c , \sigma = (\sigma 1, . . . , \sigma P ) \in \BbbR N\times P for P \in \BbbN and \sigma i \in \BbbR N , D and D2 are

the gradient and Hessian, 1| z| \leq 1 is a characteristic function, and \mu is a nonnegative
symmetric Radon measure.

The assumptions we impose on \frakL \sigma ,\mu and \varphi are so mild that many different prob-
lems can be written in the form (1.1). The assumptions on \varphi allow strongly degenerate
Stefan type problems and the full range of porous medium and fast diffusion equations
to be covered by (1.1). In the first case, e.g., \varphi (u) = max(0, au  - b) for a \geq 0 and
b \in \BbbR , and in the second \varphi (u) = u| u| m - 1 for any m \geq 0. Some physical phenomena
that can be modeled by (1.1) are flow in a porous medium (oil, gas, groundwater),
nonlinear heat transfer, phase transition in matter, and population dynamics. For
more information and examples, we refer the reader to Chapters 2 and 21 in [70] for
local problems and to [74, 62, 14, 71] for nonlocal problems.

One important contribution of this paper is that we allow for a very large class
of diffusion operators \frakL \sigma ,\mu . This class coincides with the generators of the symmetric
L\'evy processes. Examples are Brownian motion, \alpha -stable, relativistic, CGMY, and
compound Poisson processes [9, 69, 7], and the generators include the classical and
fractional Laplacians \Delta and  - ( - \Delta )

\alpha 
2 , \alpha \in (0, 2) (where d\mu (z) = cN,\alpha 

dz
| z| N+\alpha ), rela-

tivistic Schr\"odinger operators m\alpha I  - (m2I  - \Delta )
\alpha 
2 , and, surprisingly, also monotone

numerical discretizations of \frakL \sigma ,\mu . Since \sigma and \mu may be degenerate or even identically
zero, problem (1.1) can be purely local, purely nonlocal, or a combination.

Nonstandard and novel ideas on numerical methods for (1.1) and their analysis
are presented in this paper. We will strongly use the fact that our (large) class of
diffusion operators contains many of its own monotone approximations. This impor-
tant observation from [33] is used to interpret discretizations of \frakL \sigma ,\mu as nonlocal L\'evy
operators \scrL \nu , which again opens the door for powerful PDE techniques and a unified
analysis of our schemes. We consider discretizations of \frakL \sigma ,\mu of the form

\scrL h[\psi ](x) =
\sum 
\beta \not =0

(\psi (x+ z\beta ) - \psi (x))\omega \beta ,

or, equivalently, \scrL h = \scrL \nu with \nu :=
\sum 

\beta \not =0(\delta z\beta + \delta z - \beta 
)\omega \beta , where \beta \in \BbbZ N , the stencil

points z\beta \in \BbbR N \setminus \{ 0\} , the weights \omega \beta \geq 0, and z - \beta =  - z\beta and \omega \beta = \omega  - \beta . These
discretizations are nonpositive in the sense that \scrL h[\psi ](x0) \leq 0 for any maximum
point x0 of \psi \in C\infty 

c (\BbbR N ), and, as we will see, they include monotone finite difference
quadrature approximations of \frakL \sigma ,\mu . Our numerical approximations of (1.1) will then
take the general form

U j
\beta = U j - 1

\beta +\Delta tj
\bigl( 
\scrL h
1 [\varphi 

h
1 (U

j
\cdot )]\beta + \scrL h

2 [\varphi 
h
2 (U

j - 1
\cdot )]\beta + F j

\beta 

\bigr) 
,

where U j
\beta \approx u(x\beta , tj), \scrL h

i \approx \frakL \sigma ,\mu , \varphi h
i \approx \varphi , F j

\beta \approx f(x\beta , tj), and h and \Delta tj are the

discretization parameters in space and time, respectively. By choosing \varphi h
1 , \varphi 

h
2 ,\scrL h

1 ,\scrL h
2
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2268 F. DEL TESO, J. ENDAL, AND E. R. JAKOBSEN

in certain ways, we can recover explicit, implicit, \theta -methods and various explicit-
implicit methods. In a simple one dimensional case,

\partial tu = \varphi (u)xx  - ( - \partial 2x)\alpha /2\varphi (u),

an example of a discretization in our class is given by

U j
m = U j - 1

m +
\Delta t

h2

\Bigl( 
\varphi (U j

m+1) - 2\varphi (U j
m) + \varphi (U j

m - 1)
\Bigr) 

+\Delta t
\sum 
k \not =0

\Bigl( 
\varphi (U j - 1

m+k) - \varphi (U j - 1
m )

\Bigr) \int (k+ 1
2 )h

(k - 1
2 )h

c1,\alpha dz

| z| 1+\alpha 
.

Our class of schemes includes both well-known discretizations and many discretiza-
tions that are new in the context of (1.1). These new discretizations include higher
order discretizations of the nonlocal operators, explicit schemes for fast diffusions, and
various explicit-implicit schemes. See the discussion in sections 2 and 3 and especially
the companion paper [35] for more details.

One of the main contributions of this paper is that it provides a uniform and
rigorous analysis of such numerical schemes in this very general setting, a setting
that covers local and nonlocal, linear and nonlinear, nondegenerate and degenerate,
and smooth and nonsmooth problems. This novel analysis includes well-posedness,
stability, equicontinuity, compactness, and Lp

loc-convergence results for the schemes,
results which are completely new in some local and most nonlocal cases. Schemes
that converge in such general circumstances are often said to be robust. Numerical
schemes that are formally consistent are not robust in this generality; i.e., they need
not always converge for problems with nonsmooth solutions or can even converge to
false solutions. Such issues are seen especially in nonlinear, degenerate, and/or low
regularity problems. Our general results are therefore only possible because we have
(i) identified a class of schemes with good properties (including monotonicity) and
(ii) developed the necessary mathematical techniques for this general setting.

A novelty of our analysis is that we are able to present the theory in a uniform,
compact, and natural way. By interpreting discrete operators as nonlocal L\'evy op-
erators, and the schemes as holding in every point in space, we can use PDE type
techniques for the analysis. This is possible because in recent papers [33, 32] we have
developed a well-posedness theory for problem (1.1) which in particular allows for the
general class of diffusion operators needed here. Moreover, the well-posedness holds
for merely bounded distributional or very weak solutions. The fact that we can use
such a weak notion of solution will simplify the analysis and make it possible to create
a global theory for all the different problems (1.1) and schemes that we consider here.
At this point the reader should note that if (1.1) has more regular (bounded) solutions
(weak, strong, mild, or classical), then our results still apply because these solutions
will coincide with the (unique) distributional solution.

The effect of the L\'evy operator interpretation of the discrete operators is that
part of our analysis is turned into a study of semidiscrete in time approximations of
(1.1) (cf. (2.5)). A convergence result for these is then obtained from a compactness
argument: We prove (i) uniform estimates in L1 and L\infty and space/time translation
estimates in L1/L1

loc, (ii) compactness in C([0, T ];L1
loc(\BbbR N )) via the Arzel\`a--Ascoli

and Kolmogorov--Riesz theorems, (iii) that limits of convergent subsequences are dis-
tributional solutions via stability results for (1.1), and finally (iv) full convergence
of the numerical solutions by (ii), (iii), and uniqueness for (1.1). The proofs of the
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various a priori estimates are done from scratch using new, efficient, and nontrivial
approximation arguments for nonlinear nonlocal problems.

To complete our proofs, we also need to connect the results for the semidiscrete
scheme defined on the whole space with the fully discrete scheme defined on a spa-
tial grid. We observe here that this part is easy for uniform grids where we prove
an equivalence theorem under natural assumptions on discrete operators: Piecewise
constant interpolants of solutions of the fully discrete scheme coincide with solutions
of the corresponding semidiscrete scheme with piecewise constant initial data (see
Proposition 2.13). Nonuniform grids are a very interesting case that we leave for
future work.

The nonlocal approach presented in this paper gives a uniform way of representing
local, nonlocal, and discrete problems; different schemes and equations; compact,
efficient, and easy to understand PDE type arguments that work for very different
problems and schemes; and new convergence results for local and nonlocal problems;
it is very natural since the difference quadrature approximations \scrL h are nonlocal
operators of the form (1.4), even when (1.1) is local.

We also mention that a consequence of our convergence and compactness theory
is the existence of distributional solutions of the Cauchy problem (1.1).

Related work. In the local linear case, when \varphi (u) = u and \mu \equiv 0 in (1.1), numerical
methods and analysis can be found in undergraduate text books. In the nonlinear case
there is a very large literature, so we will focus only on some developments that are
more relevant to this paper. For porous medium nonlinearities (\varphi (u) = u| u| m - 1 with
m > 1), there are early results on finite element and finite difference interface tracking
methods in [67] and [39] (see also [64]). There is extensive theory for finite volume
schemes; see [51, section 4] and references therein for equations with locally Lipschitz
\varphi . For finite element methods there are a number of results, including results for fast
diffusions (m \in (0, 1)), Stefan problems, convergence for strong and weak solutions,
and discontinuous Galerkin methods; see, e.g., [68, 48, 49, 47, 76, 66, 63]. Note that
the latter paper considers the general form of (1.1) with \frakL \sigma ,\mu = \Delta and provides a
convergence analysis in L1 using nonlinear semigroup theory. A number of results
on finite difference methods for degenerate convection-diffusion equations also yield
results for (1.1) in special cases; see, e.g., [50, 13, 59, 57]. In particular, the results
of [50, 59] imply our convergence results for a particular scheme when \varphi is locally
Lipschitz, \frakL \sigma ,\mu = \Delta , and solutions have a certain additional BV regularity. Finally,
we mention very general results on so-called gradient schemes [42, 43, 46] for porous
medium equations or more general doubly or triply degenerate parabolic equations.

In the nonlocal case, the literature is more recent and not so extensive. For linear
equations in the whole space, finite difference methods have been studied in, e.g.,
[24, 53, 54, 19]. An important but different line of research concerns problems on
bounded domains; see, e.g., [38, 11, 65, 1, 25]. This direction will not be discussed
further in this paper. Some early numerical results for nonlocal problems came for
finite difference quadrature schemes for Bellman equations and fractional conservation
laws; see [56, 17, 10] and [40]. For the latter case discontinuous Galerkin and spectral
methods were later studied in [23, 21, 75]. The first results that include nonlinear
nonlocal versions of (1.1) were probably given in [20]. Here convergence of finite
difference quadrature schemes was proven for a convection-diffusion equation. This
result is extended to more general equations and error estimates in [22] and a higher
order discretization in [45]. In some cases our convergence results follow from these
results (for two particular schemes, \sigma = 0, and \varphi locally Lipschitz). However, the
analysis there is different and more complicated since it involves entropy solutions
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and Kru\v zkov doubling of variables arguments.
In the purely parabolic case (1.1), the behavior of the solutions and the underlying

theory is different from the convection-diffusion case (especially so in the nonlocal case;
see, e.g., [27, 28, 72, 26, 73] and [44, 18, 3, 20, 5, 55]). It is therefore important to
develop numerical methods and analysis that are specific for this setting. The first
numerical results for fractional porous medium equations seem to be [31, 37], which
are based on the extension method [15]. The present paper is another step in this
direction---possibly the first not to use the extension method in this setting.

Outline. The assumptions, numerical schemes, and main results are given in
section 2. In section 3 we provide many concrete examples of schemes that satisfy
the assumptions of section 2. We also show some numerical results for a nonlocal
Stefan problem with nonsmooth solutions. The proofs of the main results are given
in section 4, while some auxiliary results are proven in our final section, section 5.

In the companion paper [35] there is a more complete discussion of the family
of numerical methods. It includes more discretizations of the operator \frakL \sigma ,\mu , more
schemes, and many numerical examples. There we also provide proofs and explana-
tions for why the different schemes satisfy the (technical) assumptions of this paper.

2. Main results. The main results of this paper are presented in this section.
They include the definition of the numerical schemes, their consistency, monotonicity,
stability, and convergence of numerical solutions towards distributional solutions of
the porous medium type equation (1.1).

2.1. Assumptions and preliminaries. The assumptions on (1.1) are

\varphi : \BbbR \rightarrow \BbbR is nondecreasing and continuous;(A\varphi )

f is measurable and

\int T

0

\bigl( 
\| f(\cdot , t)\| L1(\BbbR N ) + \| f(\cdot , t)\| L\infty (\BbbR N )

\bigr) 
dt <\infty ;(Af )

u0 \in L1(\BbbR N ) \cap L\infty (\BbbR N ); and(Au0)

\mu is a nonnegative symmetric Radon measure on \BbbR N \setminus \{ 0\} satisfying(A\mu ) \int 
| z| \leq 1

| z| 2 d\mu (z) +
\int 
| z| >1

1 d\mu (z) <\infty .

Sometimes we will need stronger assumptions than (A\varphi ) and (A\mu ):

\varphi : \BbbR \rightarrow \BbbR is nondecreasing and locally Lipschitz; and(Lip\varphi )

\nu is a nonnegative symmetric Radon measure satisfying\nu (\BbbR N ) <\infty .(A\nu )

Remark 2.1. (a) Without loss of generality, we can assume \varphi (0) = 0 (replace
\varphi (u) by \varphi (u) - \varphi (0)), and when (Lip\varphi ) holds, that \varphi is globally Lipschitz (since
u is bounded). In the latter case we let L\varphi denote the Lipschitz constant.

(b) Under assumption (A\mu ), for any p \in [1,\infty ] and any \psi \in C\infty 
c (\BbbR N ),

(2.1) \| \frakL \sigma ,\mu [\psi ]\| Lp \leq c\| D2\psi \| Lp

\Bigl( 
| \sigma | 2 +

\int 
| z| \leq 1

| z| 2 d\mu (z)
\Bigr) 
+ 2\| \psi \| Lp

\int 
| z| >1

d\mu (z).

(c) Assumption (Af ) is equivalent to requiring f \in L1(0, T ;L1(\BbbR N ) \cap L\infty (\BbbR N )), an
iterated LP -space as in, e.g., [8]. Note that L1(0, T ;L1(\BbbR N )) = L1(QT ).

Definition 2.1 (distributional solution). Let u0 \in L1
loc(\BbbR N ) and f \in L1

loc(QT ).
Then u \in L1

loc(QT ) is a distributional (or very weak) solution of (1.1) if for all
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\psi \in C\infty 
c (\BbbR N \times [0, T )), \varphi (u)\frakL \sigma ,\mu [\psi ] \in L1(QT ) and\int T

0

\int 
\BbbR N

\bigl( 
u\partial t\psi + \varphi (u)\frakL \sigma ,\mu [\psi ] + f\psi 

\bigr) 
dx dt+

\int 
\BbbR N

u0(x)\psi (x, 0) dx = 0.(2.2)

Note that \varphi (u)\frakL \sigma ,\mu [\psi ] \in L1 if, e.g., u \in L\infty and \varphi continuous. Distributional solutions
are unique in L1 \cap L\infty .

Theorem 2.2 (Theorem 3.1 [32]). Assume (A\varphi ), (Af ), (Au0
), and (A\mu ). Then

there is at most one distributional solution u of (1.1) such that u \in L1(QT )\cap L\infty (QT ).

2.2. Numerical schemes without spatial grids. Let \scrT T
\Delta t = \{ tj\} Jj=0 be a

nonuniform grid in time such that 0 = t0 < t1 < \cdot \cdot \cdot < tJ = T . Let \BbbJ := \{ 1, . . . , J\} ,
and denote time steps by

(2.3) \Delta tj = tj  - tj - 1 for every j \in \BbbJ , and \Delta t = max
j\in \BbbJ 

\{ \Delta tj\} .

For j \in \BbbJ and x \in \BbbR N , we define

(2.4) F (x, tj) := F j(x) =
1

\Delta tj

\int tj

tj - \Delta tj

f(x, t) dt,

and we define our time discretized scheme, for h > 0, as

(2.5)

\left\{   U
j
h(x) = U j - 1

h (x) + \Delta tj

\Bigl( 
\scrL h
1 [\varphi 

h
1 (U

j
h)](x) + \scrL h

2 [\varphi 
h
2 (U

j - 1
h )](x) + F j(x)

\Bigr) 
,

U0
h(x) = u0(x),

where, formally, U j
h(x) \approx u(x, tj),

Uj
h(x) - Uj - 1

h (x)

\Delta tj
\approx \partial tu(x, tj), and

\scrL h
1 [\varphi 

h
1 (U

j
h)](x) + \scrL h

2 [\varphi 
h
2 (U

j - 1
h )](x) \approx \frakL \sigma ,\mu [\varphi (u)](x, tj).

Typically \varphi h
1 = \varphi = \varphi h

2 , but when \varphi is not Lipschitz, we have to approximate
it by a Lipschitz \varphi h

2 to get a monotone explicit method [35]. Let \varphi h
1 = \varphi = \varphi h

2 .
Depending on the choice of \scrL h

1 and \scrL h
2 , we can then get many different schemes:

(1) Discretizing separately the different parts of the operator

\frakL \sigma ,\mu = L\sigma + \scrL \mu 
sing + \scrL \mu 

bnd,

e.g., the local, singular nonlocal, and bounded nonlocal parts, corresponds to
different choices for \scrL h

1 and \scrL h
2 . Typical choices here are finite difference and

numerical quadrature methods; see section 3 for several examples.

(2) Explicit schemes (\theta = 0), implicit schemes (\theta = 1), and combinations like Crank--
Nicholson (\theta = 1

2 ) follow by the choices

\scrL h
1 = \theta \scrL h and \scrL h

2 = (1 - \theta )\scrL h.

(3) Combinations of type (1) and (2) schemes, e.g., implicit discretization of the
unbounded part of \frakL \sigma ,\mu and explicit discretization of the bounded part.

Finally, we mention that our schemes and results may easily be extended to handle
any finite number of \varphi h

1 , . . . , \varphi 
h
m and \scrL h

1 , . . . ,\scrL h
m.

Definition 2.2 (consistency). We say that the scheme (2.5) is consistent if, for
\varphi 1, \varphi 2, \varphi satisfying (A\varphi ), \mu (A\mu ), and \frakL \sigma ,\mu 

1 , \frakL \sigma ,\mu 
2 , \frakL \sigma ,\mu of the form (1.2)--(1.4),
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(i) \frakL \sigma ,\mu 
1 [\varphi 1(\phi )] + \frakL \sigma ,\mu 

2 [\varphi 2(\phi )] = \frakL \sigma ,\mu [\varphi (\phi )] in \scrD \prime (QT ) for \phi \in L1(\BbbR N ) \cap L\infty (\BbbR N ),
(ii) for all \psi \in C\infty 

c (\BbbR N ) and some k1, k2 \geq 0,

\| \scrL h
i [\psi ] - \frakL \sigma ,\mu 

i [\psi ]\| L1(\BbbR N ) \leq \| \psi \| Wki,1(\BbbR N )oh(1)
h\rightarrow 0+ - \rightarrow 0 for i = 1, 2,

(iii) \varphi h
1 , \varphi 

h
2 \rightarrow \varphi 1, \varphi 2 locally uniformly as h\rightarrow 0+.

Remark 2.3. In view of step (4) in the proof of Lemma 4.8, condition (ii) can be
replaced by the following more general consistency condition:

\| \scrL h
i [\psi (\cdot , t)] - \frakL \sigma ,\mu 

i [\psi (\cdot , t)]\| C([0,T ];L1(\BbbR N ))
h\rightarrow 0+ - \rightarrow 0 for all \psi \in C\infty 

c (QT )

and for i = 1, 2. This concept of consistency holds for all the discretizations we are
considering; see also the companion paper [35].

We will focus on discrete operators \scrL h
i , i = 1, 2, in the following class.

Definition 2.3. An operator \scrL is said to be

(i) in the class (A\nu ) if \scrL = \scrL \nu for a measure \nu satisfying (A\nu ); and

(ii) discrete if

\nu =
\sum 
\beta \not =0

(\delta z\beta + \delta z - \beta 
)\omega \beta 

for z\beta =  - z - \beta \in \BbbR N and \omega \beta = \omega  - \beta \in \BbbR + such that
\sum 

\beta \not =0 \omega \beta <\infty ; and

(iii) \scrS = \{ z\beta \} \beta is called the stencil and \{ \omega \beta \} \beta the weights of the discretization.

All operators in the class (A\nu ) are nonpositive operators; in particular, they are
integral or quadrature operators with positive weights. The results presented in this
section hold for any operator in the class (A\nu ). However, in practice, when dealing
with numerical schemes, the operators will additionally be discrete. Moreover, when
the scheme (2.5) has an explicit part, that is, \nu h2 and \varphi h

2 are not simultaneously
zero, we need to assume that \varphi h

2 satisfies (Lip\varphi ) and impose the following CFL type
condition to have a monotone scheme:

(CFL) \Delta tL\varphi h
2
\nu h2 (\BbbR N ) \leq 1,

where we recall that L\varphi h
2
is the Lipschitz constant of \varphi h

2 (see Remark 2.1). Note that

this condition is always satisfied for an implicit method where \nu h2 \equiv 0. The typical
assumptions on the scheme (2.5) are then

(ANS)

\left\{         
\scrL h
1 ,\scrL h

2 are in the class (A\nu ) with respective measures \nu h1 , \nu 
h
2 ,

\varphi h
1 , \varphi 

h
2 satisfy (A\varphi ), (Lip\varphi ), respectively, and

\Delta t > 0 is such that (CFL) holds.

Theorem 2.4 (existence and uniqueness). Assume (ANS), (Af ), and (Au0
).

Then there exists a unique a.e.-solution U j
h \in L1(\BbbR N )\cap L\infty (\BbbR N ) of the scheme (2.5).

Remark 2.5. Since U j
h is a Lebesgue measurable function, it is not immediately

clear that \varphi h
1 (U

j
h), \varphi 

h
2 (U

j - 1
h ) are \nu h1 , \nu 

h
2 -measurable and \scrL h

1 [\varphi 
h
1 (U

j
h)],\scrL h

2 [\varphi 
h
2 (U

j - 1
h )] are

pointwisely well defined. However, we could simply consider a Borel measurable a.e.
representative of U j

h; see also Remark 2.1 (1) and (2) in [4] for a discussion.
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Theorem 2.6 (a priori estimates). Assume (ANS), (Af ), and (Au0
). Let U j

h, V
j
h

be solutions of the scheme (2.5) with data u0, v0 and f, g. Then the following hold:

(a) (Monotonicity) If u0(x) \leq v0(x) and f(x, t) \leq g(x, t), then U j
h(x) \leq V j

h (x).

(b) (L1-stability) \| U j
h\| L1(\BbbR N ) \leq \| u0\| L1(\BbbR N ) +

\int tj
0

\| f(\cdot , \tau )\| L1(\BbbR N ) d\tau .

(c) (L\infty -stability) \| U j
h\| L\infty (\BbbR N ) \leq \| u0\| L\infty (\BbbR N ) +

\int tj
0

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau .

(d) (Conservativity) If \varphi h
1 additionally satisfies (Lip\varphi ),\int 

\BbbR N

U j
h(x) dx =

\int 
\BbbR N

u0(x) dx+

\int tj

0

\int 
\BbbR N

f(x, \tau ) dxd\tau .

Remark 2.7. By (b), (c), and interpolation, the scheme is Lp-stable for p \in [1,\infty ].

The scheme is also L1-contractive and equicontinuous in time. Combined, these
two results imply time-space equicontinuity and compactness of the scheme, a key
step in our proof of convergence.

Theorem 2.8 (L1-contraction). Under the assumptions of Theorem 2.6,\int 
\BbbR N

(U j
h  - V j

h )
+(x) dx \leq 

\int 
\BbbR N

(u0  - v0)
+(x) dx+

\int tj

0

\int 
\BbbR N

(f  - g)+(x, \tau ) dxd\tau .

For the equicontinuity in space and time we need a modulus of continuity:

\Lambda K(\zeta ) := 2\lambda u0,f (\zeta 
1
3 ) + CK(\zeta 

1
3 + \zeta ),(2.6)

where

\lambda u0,f (\zeta ) := sup
| \xi | \leq \zeta 

\Bigl( 
\| u0  - u0(\cdot + \xi )\| L1(\BbbR N ) + \| f  - f(\cdot + \xi , \cdot )\| L1(QT )

\Bigr) 
,(2.7)

CK := c| K| sup
h < 1,
i = 1, 2

\Bigl( 
1 + sup

| \zeta | \leq Mu0,f

| \varphi h
i (\zeta )| 

\Bigr) \Bigl( 
1 +

\int 
| z| >0

| z| 2 \wedge 1 d\nu hi (z)
\Bigr) 

(2.8)

for some constant c \geq 1, a\wedge b := min\{ a, b\} , K \subset \BbbR N compact with Lebesgue measure

| K| , andMu0,f := \| u0\| L\infty (\BbbR N )+
\int T

0
\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau . In view of (2.8), we also need

to assume a uniform L\'evy condition on the approximations,

(A\nu h) sup
h < 1,
i = 1, 2

\int 
| z| >0

| z| 2 \wedge 1 d\nu hi (z) < +\infty .

Remark 2.9. Condition (A\nu h) is in general very easy to check. For example, it
follows from pointwise consistency of \scrL h

i as we will see in [35].

Theorem 2.10 (equicontinuity in time). Assume (Af ) and (Au0
), and let (2.5)

be a consistent scheme satisfying (ANS) and (A\nu h). Then, for all j, k \in \BbbJ such that
j  - k \geq 0 and all compact sets K \subset \BbbR N ,

\| U j
h  - U j - k

h \| L1(K) \leq \Lambda K(tj  - tj - k) + | K| 
\int tj

tj - k

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau ,

where \Lambda K is as defined in (2.6).
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The main result regarding convergence of numerical schemes without spatial grids
will be presented in a continuous in time and space framework. For that reason, let
us define the piecewise linear time interpolant \widetilde Uh, for (x, t) \in QT , as\widetilde Uh(x, t) := U0

h(x)1\{ t0\} (t)

+

J\sum 
j=1

1(tj - 1,tj ](t)
\Bigl( 
U j - 1
h (x) +

t - tj - 1

tj  - tj - 1

\bigl( 
U j
h(x) - U j - 1

h (x)
\bigr) \Bigr) 
.

(2.9)

Theorem 2.11 (convergence). Assume (Af ), (Au0
), and \Delta t = oh(1), and for

all h > 0, let U j
h be the solution of a consistent scheme (2.5) satisfying (ANS) and

(A\nu h). Then there exists a unique distributional solution u \in L1(QT ) \cap L\infty (QT ) \cap 
C([0, T ];L1

loc(\BbbR N )) of (1.1) and

\widetilde Uh \rightarrow u in C([0, T ];L1
loc(\BbbR N )) as h\rightarrow 0+.

Convergence of subsequences follows from compactness, and full convergence fol-
lows from stability and uniqueness of the limit problem (1.1). The detailed proofs of
Theorems 2.4, 2.6, 2.8, 2.10, and 2.11 can be found in sections 4.1--4.3.

Remark 2.12. In this paper, we use piecewise linear interpolation to ensure that\widetilde Uh belongs to C([0, T ];L1
loc(\BbbR N )). Moreover, we obtain an equicontinuity result in

time uniformly in \Delta t = oh(1). Compactness and convergence then follow from Arzel\`a--
Ascoli and Kolmogorov--Riesz type compactness results (see, e.g., [36]).

In most of the related literature piecewise constant interpolation is used. In this
case there is no convergence in C([0, T ];L1

loc(\BbbR N )), but one can use Kru\v zkov type inter-
polation lemmas along with the Kolmogorov--Riesz compactness theorem to get con-
vergence in L1

loc(QT ). Consult, e.g., [60] for the vanishing viscosity limit of scalar con-
servation laws; [58] for finite difference approximations of convection-diffusion equa-
tions; [6] for finite volume approximations of nonlinear elliptic-parabolic problems;
and [22] for finite volume approximations of nonlocal convection-diffusion equations.
Yet another approach is discontinuous versions of the Arzel\`a--Ascoli compactness the-
orem (combined with Kolmogorov--Riesz) to get convergence in L\infty ((0, T );L1

loc(\BbbR N ));
see the appendix of [41].

2.3. Numerical schemes on uniform spatial grids. To get computable
schemes, we need to introduce spatial grids. For simplicity we restrict our attention to
uniform grids. Since our discrete operators have weights and stencils not depending
on the position x, all results then become direct consequences of the results in section
2.2.

Let h > 0, Rh = h( - 1
2 ,

1
2 ]

N , and \scrG h be the uniform spatial grid

\scrG h := h\BbbZ N = \{ x\beta := h\beta : \beta \in \BbbZ N\} .

Note that any discrete (A\nu )-class operator \scrL h with stencil \scrS \subset \scrG h is defined by

\scrL h[\psi ](x\beta ) = \scrL h[\psi ]\beta =
\sum 
\gamma \not =0

(\psi (x\beta + z\gamma ) - \psi (x\beta ))\omega \gamma ,h for all x\beta \in \scrG h

and all \psi : \scrG h \rightarrow \BbbR . Using such discrete operators, we get the following well-defined
numerical discretization of (1.1) on the space-time grid \scrG h \times \scrT T

\Delta t:

(2.10) U j
\beta = U j - 1

\beta +\Delta tj
\bigl( 
\scrL h
1 [\varphi 

h
1 (U

j
\cdot )]\beta + \scrL h

2 [\varphi 
h
2 (U

j - 1
\cdot )]\beta + F j

\beta 

\bigr) 
, \beta \in \BbbZ N , j \in \BbbJ ,
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where U0
\beta and F j

\beta are the cell averages of the L1-functions u0 and f :

(2.11) U0
\beta =

1

hN

\int 
x\beta +Rh

u0(x) dx, F j
\beta =

1

hN\Delta tj

\int tj

tj - \Delta tj

\int 
x\beta +Rh

f(x, \tau ) dxd\tau .

The function F = F j
\beta and the solution U = U j

\beta are functions on \scrG h\times \scrT T
\Delta t, and we

define their piecewise constant interpolations in space as

U j(x) :=
\sum 
\beta \not =0

1x\beta +Rh
(x)U j

\beta and F j(x) :=
\sum 
\beta \not =0

1x\beta +Rh
(x)F j

\beta .(2.12)

The next proposition shows that solutions of the scheme (2.5) with piecewise constant
initial data are solutions of the fully discrete scheme (2.10) and vice versa.

Proposition 2.13. Assume (Af ), (Au0
), let U0, F be defined by (2.11) and U0,

let F j be defined by (2.12), and let \scrL h
1 , \scrL h

2 be class (A\nu ) discrete operators with stencils
\scrS 1,\scrS 2 \subset \scrG h.
(a) If U j = U j(x) is an a.e.-solution of (2.5) with data U0 and F j, then (a version

of) U j is constant on the cells x\beta +Rh for all \beta , and U j
\beta := U j(x\beta ) is a solution

of (2.10) with data U0
\beta and F j

\beta .

(b) If U j
\beta is a solution of (2.10) with data U0

\beta and F j
\beta , then U j(x) defined in (2.12)

is a piecewise constant solution of (2.5) with data U0 and F j.

In view of this result, the scheme on the spatial grid (2.10) will inherit the results
for the scheme (2.5) given in Theorems 2.4, 2.6, 2.8, 2.10, and 2.11.

Theorem 2.14. Assume (ANS), (Af ), (Au0
), and the stencils \scrS 1,\scrS 2 \subset \scrG h.

(a) (Existence/uniqueness) There exists a unique solution U j
\beta of (2.10) such that\sum 

j\in \BbbJ 

\sum 
\beta 

| U j
\beta | < +\infty .

Let U j
\beta , V

j
\beta be solutions of the scheme (2.10) with data u0, f and v0, g, respectively.

(b) (Monotonicity) If U0
\beta \leq V 0

\beta and F j
\beta \leq Gj

\beta , then U
j
\beta \leq V j

\beta .

(c) (L1-stability)
\sum 

\beta | U
j
\beta | \leq 

\sum 
\beta | U0

\beta | +
\sum j

l=1

\sum 
\beta | F l

\beta | \Delta tl.
(d) (L\infty -stability) sup\beta | U

j
\beta | \leq sup\beta | U0

\beta | + sup\beta 
\sum j

l=1 | F l
\beta | \Delta tl.

(e) (Conservativity) If \varphi h
1 satisfy (Lip\varphi ),

\sum 
\beta U

j
\beta =

\sum 
\beta U

0
\beta +

\sum j
l=1

\sum 
\beta F

l
\beta \Delta tl.

(f) (L1-contraction)
\sum 

\beta (U
j
\beta  - V j

\beta )
+ \leq 

\sum 
\beta (U

0
\beta  - V 0

\beta )
+ +

\sum j
l=1

\sum 
\beta (F

l
\beta  - Gl

\beta )
+\Delta tl.

(g) (Equicontinuity in time) If (A\nu h) holds, then for all compact sets K \subset \BbbR N ,

hN
\sum 

x\beta \in \scrG h\cap K

| U j
\beta  - U j - k

\beta | \leq \Lambda K(tj  - tj - k) + | K| 
\int tj

tj - k

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau .

Assume in addition that \Delta t = oh(1), and for all h > 0, let U j
\beta be the solution of a

consistent scheme (2.10) satisfying (ANS) and (A\nu h).
(h) (Convergence) There exists a unique distributional solution u \in L1(QT )\cap L\infty (QT )\cap 

C([0, T ];L1
loc(\BbbR N )) of (1.1) such that for all compact sets K \subset \BbbR N ,

| | | U  - u| | | K := max
tj\in \scrT T

\Delta t

\left\{   \sum 
x\beta \in \scrG h\cap K

\int 
x\beta +Rh

| U j
\beta  - u(x, tj)| dx

\right\}   \rightarrow 0 as h\rightarrow 0+.
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Remark 2.15. Parts (a)--(g) can be formulated in terms of the space interpolant

U j ; e.g., the L1-contraction in part (f) then becomes\int 
\BbbR N

(U j  - V j)+ dx \leq 
\int 
\BbbR N

(u0  - v0)
+ dx+

\int tj

0

\int 
\BbbR N

(f  - g)+ dxd\tau .

Moreover, convergence in (h) can be stated in terms of space-time interpolants as

\widetilde U \rightarrow u in C([0, T ];L1
loc(\BbbR N )).

The proofs of the above results can be found in section 4.4.

2.4. Well-posedness for bounded distributional solutions. Theorem 2.11
implies the existence of bounded distributional solutions solutions of (1.1), and unique-
ness has been proved in [32].

Theorem 2.16 (existence and uniqueness). Assume (A\varphi ), (Af ), (Au0
), and

(A\mu ). Then there exists a unique distributional solution u of (1.1) such that

u \in L1(QT ) \cap L\infty (QT ) \cap C([0, T ];L1
loc(\BbbR N )).

Another consequence of Theorem 2.11 is that most of the a priori results in
Theorems 2.6, 2.8, and 2.10 will be inherited by the solution u of (1.1).

Proposition 2.17 (a priori estimates). Assume (A\varphi ) and (A\mu ). Let u, v be the
distributional solutions of (1.1) corresponding to u0, v0 and f, g satisfying (Au0) and
(Af ), respectively. Then, for every t \in [0, T ], the following hold:
(a) (Comparison) If u0(x) \leq v0(x) and f(x, t) \leq g(x, t), then u(x, t) \leq v(x, t).

(b) (L1-bound) \| u(\cdot , t)\| L1(\BbbR N ) \leq \| u0\| L1(\BbbR N ) +
\int t

0
\| f(\cdot , \tau )\| L1(\BbbR N ) d\tau .

(c) (L\infty -bound) \| u(\cdot , t)\| L\infty (\BbbR N ) \leq \| u0\| L\infty (\BbbR N ) +
\int t

0
\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau .

(d) (L1-contraction)\int 
\BbbR N

(u - v)+(x, t) dx \leq 
\int 
\BbbR N

(u0  - v0)
+(x) dx+

\int t

0

\int 
\BbbR N

(f  - g)+(x, \tau ) dxd\tau .

(e) (Time regularity) For every t, s \in [0, T ] and every compact set K \subset \BbbR N ,

\| u(\cdot , t) - u(\cdot , s)\| L1(K) \leq \Lambda K(| t - s| ) + | K| 
\int t

s

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau .

See section 4.5 for the proofs. Note that since we do not have full L1-convergence
of approximate solutions, we cannot conclude that we inherit mass conservation from
Theorem 2.6(d). The result is still true, and a proof can be found in [33].

2.5. Some extensions.

More general schemes. The proofs and estimates obtained for solutions of
(2.5) can be transferred to the more complicated scheme\Biggl\{ 
U j
h(x) = U j - 1

h (x) + \Delta tj
\bigl( \sum n

k=1 \scrL h
k [\varphi 

h
k(U

j
h)](x) +

\sum m
l=n+1 \scrL h

l [\varphi 
h
l (U

j - 1
h )](x) + F j(x)

\bigr) 
,

U0
h(x) = u0(x),

where n,m \in \BbbN with n \leq m.
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More general equations. A close examination of the proof of Theorem 2.16
reveals that even if we omit Definition 2.2(i), we can still obtain existence for L1\cap L\infty -
distributional solutions of\Biggl\{ 

\partial tu - \frakL \sigma ,\mu 
1 [\varphi 1(u)] - \frakL \sigma ,\mu 

2 [\varphi 2(u)] = f in QT ,

u(x, 0) = u0(x) on \BbbR N .

In fact, we could handle any finite sum of symmetric L\'evy operators acting on different
nonlinearities. In this case most of the properties of the numerical method would
still hold, but maybe not convergence. To also have convergence, we need suitable
uniqueness results for the corresponding equation. At the moment, known results
like, e.g., [33, 34], or easy extensions of these, cannot cover this case.

3. Examples of schemes. In this section, we present possible discretizations
of \frakL \sigma ,\mu which satisfy all the properties needed to ensure convergence of the numerical
scheme; that is, they satisfy Definitions 2.2 and 2.3. We also test our numerical
schemes on an interesting special case of (1.1). All of these results (and many more)
will be treated in detail in section 4 in [35]; we merely include a short excerpt here
for completeness.

The nonlocal operator \scrL \mu contains a singular part and a nonsingular part. For
\psi \in C\infty 

c (\BbbR N ) and r > 0,

\scrL \mu [\psi ](x) = P.V.

\int 
0<| z| \leq r

\bigl( 
\psi (x+ z) - \psi (x)

\bigr) 
d\mu (z) +

\int 
| z| >r

\bigl( 
\psi (x+ z) - \psi (x)

\bigr) 
d\mu (z)

=: \scrL \mu 
r [\psi ](x) + \scrL \mu ,r[\psi ](x).

In general we assume that h \leq r = oh(1), where h is the discretization in space param-
eter. We will present discretizations for general measures \mu and give the corresponding
L1 local truncation error (LTE) for the fractional Laplace case ( d\mu (z) =

cN,\alpha dz
| z| N+\alpha ) to

show the accuracy of the approximation. By L1 LTE we mean here the quantity
\| \frakL \sigma ,\mu [\psi ] - \scrL h[\psi ]\| L1(\BbbR N ).

3.1. Discretizations of the singular part \bfscrL \bfitmu 
\bfitr . We propose two discretiza-

tions.

Trivial discretization. Discretize \scrL \mu 
r by \scrL h \equiv 0. This discretization has all the

required properties and an O(r2 - \alpha ) LTE in the case of the fractional Laplacian.

Adapted vanishing viscosity discretization. For general radially symmetric
measures, the discretization takes the form

(3.1) \scrL h[\psi ](x) :=
1

2N

\int 
| z| <r

| z| 2 d\mu (z)
N\sum 
i=1

\psi (x+ eih) + \psi (x - eih) - 2\psi (x)

h2
.

It can be shown that the LTE is O(r2 + h2) for a general measure \mu and O(r4 - \alpha +
h2r2 - \alpha ) in the fractional Laplace case. We refer the reader to [35] for the general
form of (3.1) when the measure is not radially symmetric.

3.2. Discretization of the nonsingular part \bfscrL \bfitmu ,\bfitr . For fixed r > 0 these dis-
cretizations will approximate zero order integro-differential operators. For simplicity
we restrict our attention to the uniform-in-space grid \scrG h and quadrature rules defined
from interpolation. Let \{ p\beta \} \beta \in \BbbZ N be an interpolation basis for \scrG h, i.e.,

\sum 
\beta p\beta (x) \equiv 1

for all x \in \BbbR N and p\beta (z\gamma ) = 1 for \beta = \gamma and 0 for \beta \not = \gamma . Define the corresponding
interpolant of a function \psi as Ih[\psi ](z) :=

\sum 
\beta \not =0 \psi (z\beta )p\beta (z).
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Midpoint rule. This corresponds to p\beta (x) = 1x\beta +Rh
(x). We approximate \scrL \mu ,r

by

\scrL h[\psi ](x) :=

\int 
| z| >r

Ih[\psi (x+ \cdot ) - \psi (x)](z) d\mu (z)

=
\sum 

| z\beta | >r

(\psi (x+ z\beta ) - \psi (x))

\int 
| z| >r

p\beta (z) d\mu (z).
(3.2)

Here
\int 
| z| >r

p\beta (z) d\mu (z) = \mu ((z\beta +Rh) \cap \{ | z| > r\} ). The discretization is convergent

for general measures \mu , and in the fractional Laplace case the LTE is O(r2 - \alpha + h).

Multilinear interpolation. Take p\beta to be piecewise linear basis functions in
one dimension, and define them in a tensorial way in higher dimensions. This gives
a positive interpolation. Again we approximate \scrL \mu ,r by (3.2). The discretization
converges for general measures \mu and the LTE is O(h2r - \alpha ) in the fractional Laplace
case.

Higher order Lagrange interpolation. Take pk\beta to be the Lagrange polyno-

mials of order k, defined in a tensorial way in higher dimensions. Even if pk\beta may take

negative values for k \geq 2, it is known that
\int 
\BbbR N p

k
\beta (x) dx \geq 0 for k \leq 7 (cf. Newton--

Cotes quadratures rules). For measures \mu which are absolutely continuous with respect
to the Lebesgue measure dz with density (also) called \mu (z), we approximate \scrL \mu ,r by

\scrL h[\psi ](x) :=

\int 
| z| >r

Ih[(\psi (x+ \cdot ) - \psi (x))\mu (\cdot )](z) dz

=
\sum 

| z\beta | >r

\bigl( 
\psi (x+ z\beta ) - \psi (x)

\bigr) 
\mu (z\beta )

\int 
| z| >r

pk\beta (z) dz.

By choosing r = r(h) in a precise way, different orders of convergence can be obtained.
This discretization can also be combined with (3.1) to further improve the orders of

accuracy. In the best case, the LTE is shown to be O(h
7
12 (4 - \alpha )) in the fractional

Laplace case.

3.3. Second order discretization of the fractional Laplacian. Let \Delta h\psi (x)

= 1
h2

\sum N
i=1

\bigl( 
\psi (x+ eih) + \psi (x - eih) - 2\psi (x)

\bigr) 
, and define the \alpha 

2 -power of \Delta h as

( - \Delta h)
\alpha 
2 [\psi ](x) :=

1

\Gamma ( - \alpha 
2 )

\int \infty 

0

\bigl( 
et\Delta h\psi (x) - \psi (x)

\bigr) dt

t1+
\alpha 
2
.

In general, we have ( - \Delta h)
\alpha 
2 [\psi ](x) =

\sum 
\beta \not =0(\psi (x + z\beta )  - \psi (x))K\beta ,h with K\beta ,h :=

1
h\alpha 

1
\Gamma ( - \alpha 

2 )

\int \infty 
0
G(\beta , t) dt

t1+
\alpha 
2

and G(\beta , t) := e - 2Nt
\prod N

i=1 I| \beta i| (2t), where Im denotes the

modified Bessel function of the first kind and order m \in \BbbN . Here G \geq 0 is the Green
function of the discrete Laplacian in \BbbR N , and hence the weights K\beta ,h are positive.
We improve the convergence rates of [19] from O(h2 - \alpha ) to O(h2) (independently on
\alpha ) and extend their consistency result to dimensions higher than one.

See [25, 35] for further numerical details and also [61] for more information about
the operator ( - \Delta h)

\alpha 
2 in \BbbR N .

3.4. Discretization of local operators. We approximate L = \Delta by

\scrL h[\psi ](x) :=

N\sum 
i=1

\psi (x+ hei) + \psi (x - hei) - 2\psi (x)

h2
.
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The discretization is known to have O(h2) LTE. Note that general operators L\sigma =
tr(\sigma \sigma TD2\cdot ) can always be reduced to \Delta \BbbR M for someM \leq N after a change of variables.
A direct discretization of L\sigma is given by

\scrL h,\eta [\psi ](x) =

M\sum 
i=1

Ih[\psi ](x+ \eta \sigma i) + Ih[\psi ](x - \eta \sigma i) - 2\psi (x)

\eta 2
,

where Ih denotes the first order Lagrange interpolation on \scrG h (see, e.g., [16] and

[30, 29]). In this case the LTE is O(h
2

\eta 2 + \eta 2) or O(h) with optimal choice \eta =
\surd 
h.

See [35] for further details.

3.5. Numerical experiment. As an illustration, we solve numerically a case
where (1.1) corresponds to a one phase Stefan problem (see, e.g., [12]). We take
\frakL \sigma ,\mu =  - ( - \Delta )

\alpha 
2 , \alpha \in (0, 2), \varphi (\xi ) = max\{ 0, \xi  - 0.5\} , and f \equiv 0. The solution is

plotted in Figure 1 for \alpha = 1 and initial data u0(x) = e
 - 1

4 - x2 1[ - 2,2](x). Note that
even for smooth initial data, the solution seems not to be smooth after some time. For
a slightly different Stefan type nonlinearity, we use the midpoint rule to obtain L1- and
L\infty -errors for different values of \alpha \in (0, 2). See Figure 2. Due to the nonsmoothness
of the solutions, the convergence rates in L1 are better than in L\infty . More details on
one dimensional (and also on two dimensional) experiments can be found in [35].

Fig. 1. The solution of a fractional Stefan problem with \varphi (\xi ) = max\{ 0, \xi  - 0.5\} .

4. Proofs of main results. The scheme (2.5) can be seen as an operator split-
ting method with alternating explicit and implicit steps. The explicit step is given by
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Fig. 2. The corresponding L1- and L\infty -errors using the midpoint rule.

the operator

(T exp) T exp[\psi ](x) := \psi (x) + \scrL \nu [\varphi (\psi )](x) for x \in \BbbR N ,

while the implicit step is given by the operator

(T imp) T imp[\rho ](x) := w(x) for \BbbR N ,

where w is the solution of the nonlinear elliptic equation

(EP) w(x) - \scrL \nu [\varphi (w)](x) = \rho (x) in \BbbR N .

We can then write the scheme (2.5) in the following way:

(4.1) U j
h(x) = T imp

\Bigl[ 
T exp[U j - 1

h ] + \Delta tjF
j
\Bigr] 
(x),

where we take \nu = \Delta tj\nu 
h
2 , \varphi = \varphi h

2 in (T exp) and \nu = \Delta tj\nu 
h
1 , \varphi = \varphi h

1 in (T imp). To
study the properties of the scheme (2.5), we are reduced to studying the properties
of the operators T exp and T imp.

4.1. Properties of the numerical scheme. In this section we prove Theorems
2.6 and 2.8. We start by analyzing the operators T exp and T imp. By Fubini's theorem
and simple computations, we have the following result.
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Lemma 4.1. (a) If (A\nu ) holds, p \in \{ 1,\infty \} , and \psi \in Lp(\BbbR N ), then \scrL \nu [\psi ] is well
defined in Lp(\BbbR N ) and

\| \scrL \nu [\psi ]\| Lp(\BbbR N ) \leq 2\| \psi \| Lp(\BbbR N )\nu (\BbbR N ).

(b) If (A\nu ) holds and \psi \in L1(\BbbR N ), then
\int 
\BbbR N \scrL \nu [\psi ] dx = 0.

Hence if (A\nu ) and (A\varphi ) hold, then T exp is a well-defined operator on L\infty (\BbbR N ),
and if \varphi (\psi ) \in L1(\BbbR N ), then

\int 
T exp[\psi ] dx =

\int 
\psi dx. For the operator T imp we have

the following result.

Theorem 4.2. Assume (A\nu ) and (A\varphi ). If \rho \in L1(\BbbR N ) \cap L\infty (\BbbR N ), then there
exists a unique a.e.-solution T imp[\rho ] = w \in L1(\BbbR N ) \cap L\infty (\BbbR N ) of (EP).

We now list the remaining properties of T exp and T imp that we use in this section.

Theorem 4.3. Assume (A\nu ), \phi , \^\phi \in L1(\BbbR N ) \cap L\infty (\BbbR N ), and either

(Lip\varphi ) and L\varphi \nu (\BbbR N ) \leq 1 for T exp or (A\varphi ) for T imp,

where L\varphi := sup| \zeta | \leq max\{ \| \phi \| L\infty ,\| \^\phi \| L\infty \} | \varphi 
\prime (\zeta )| .

Whether T = T exp or T = T imp, it then follows that
(a) (Comparison) if \phi \leq \^\phi a.e., then T [\phi ] \leq T [ \^\phi ] a.e.;

(b) (L1-contraction)
\int 
\BbbR N (T [\phi ](x) - T [ \^\phi ](x))+ dx \leq 

\int 
\BbbR N (\phi (x) - \^\phi (x))+ dx;

(c) (L1-bound) \| T [\phi ]\| L1(\BbbR N ) \leq \| \phi \| L1(\BbbR N ); and

(d) (L\infty -bound) \| T [\phi ]\| L\infty (\BbbR N ) \leq \| \phi \| L\infty (\BbbR N ).

The proofs of Theorems 4.2 and 4.3 will be given in section 5.

Remark 4.4. Note that L\varphi \nu (\BbbR N ) \leq 1 is a CFL condition yielding monotonic-
ity/comparison for the scheme.

We are now ready to prove, a priori, L1-contraction, existence, and uniqueness
results for the numerical scheme (2.5).

Proof of Theorem 2.6. (a) Note that U0
h \leq V 0

h and F j \leq Gj . If U j - 1
h \leq V j - 1

h ,
then by Theorem 4.3(a),

(T exp[U j - 1
h ] + \Delta tjF

j) - (T exp[V j - 1
h ] + \Delta tjG

j)

= (T exp[U j - 1
h ] - T exp[V j - 1

h ]) + \Delta tj(F
j  - Gj) \leq 0,

and thus, by (4.1) and Theorem 4.3(a) again,

U j
h  - V j

h = T imp
\Bigl[ 
T exp[U j - 1

h ] + \Delta tjF
j
\Bigr] 
 - T imp

\Bigl[ 
T exp[V j - 1

h ] + \Delta tjG
j
\Bigr] 
\leq 0.

Since U0
h  - V 0

h \leq 0, part (a) follows by induction.
(b)--(c) Let X be either L1(\BbbR d) or L\infty (\BbbR d). By Theorem 4.3(c) or (d),

\| U j
h\| X =

\bigm\| \bigm\| \bigm\| T imp
\Bigl[ 
T exp[U j - 1

h ] + \Delta tjF
j
\Bigr] \bigm\| \bigm\| \bigm\| 

X
\leq \| T exp[U j - 1

h ] + \Delta tjF
j ]\| X

\leq \| U j - 1
h \| X +\Delta tj\| F j\| X .

Then we iterate j down to zero to get \| U j
h\| X \leq \| U0

h\| X +
\sum j

l=1 \| F l\| X\Delta tl, and by the
definition of F l,

j\sum 
l=1

\| F l\| X\Delta tl =

j\sum 
l=1

\bigm\| \bigm\| \bigm\| \bigm\| 1

\Delta tl

\int tl

tl - 1

f(x, \tau ) d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
X

\Delta tl \leq 
\int tj

0

\| f(\cdot , \tau )\| X d\tau .
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(d) Since \varphi h
i is locally Lipschitz, now \varphi h

i (U
j
h), \varphi 

h
i (V

j
h ) \in L1. The result then

follows from integrating (2.5) in x, iterating j down to zero, and using that the
integral of nonsingular L\'evy operators acting on integrable functions is zero (Lemma
4.1(b)). This completes the proof.

Proof of Theorem 2.8. By two applications of Theorem 4.3(b),\int 
\BbbR N

(U j
h  - V j

h )
+(x) dx \leq 

\int 
\BbbR N

(U j - 1
h  - V j - 1

h )+(x) dx+\Delta tj

\int 
\BbbR N

(F j  - Gj)+(x) dx.

Then we iterate j down to zero to get\int 
\BbbR N

(U j
h  - V j

h )
+(x) dx \leq 

\int 
\BbbR N

(U0
h  - V 0

h )
+(x) dx+

j\sum 
l=1

\Delta tl

\int 
\BbbR N

(F l  - Gl)+(x) dx.

By the definition of F l and Gl, Jensen's inequality, and Tonelli's theorem,

j\sum 
l=1

\Delta tl

\int 
\BbbR N

(F l  - Gl)+(x) dx =

j\sum 
l=1

\Delta tl

\int 
\BbbR N

\biggl( 
1

\Delta tl

\int tl

tl - 1

\bigl( 
f  - g

\bigr) 
(x, \tau ) d\tau 

\biggr) +

dx

\leq 
\int tj

0

\int 
\BbbR N

\bigl( 
f(x, s) - g(x, s)

\bigr) +
dxds.

The proof is complete.

We finish by proving existence of a unique solution of the numerical scheme.

Proof of Theorem 2.4. Proof by induction. Assume solutions U i
h \in L1 \cap L\infty of

(2.5) exist for i = 1, . . . , j  - 1. Then since \rho = T exp[U j - 1
h ] + \Delta tjF

j \in L1 \cap L\infty by

Theorem 4.3 and (Af ), existence and uniqueness of an a.e.-solution T imp[\rho ] = U j
h \in 

L1 \cap L\infty of (EP) follow by Theorem 4.2. In view of (4.1), this U j
h is the unique

a.e.-solution of (2.5) at t = tj .

The strategy for the remaining proofs is the following. We first prove equibound-
edness and equicontinuity results for the sequence of interpolated solutions \{ \widetilde Uh\} h>0

of the scheme (2.5) as h \rightarrow 0+. By Arzel\`a--Ascoli and Kolmogorov--Riesz type com-
pactness results (see, e.g., the appendix of [41]), we conclude that there is a convergent
subsequence in C([0, T ], L1

loc(\BbbR N )). We use consistency to prove that any such limit
must be the unique solution of (1.1). Finally, by a standard argument combining
compactness and uniqueness of limit points, we conclude that the full sequence must
converge.

4.2. Equicontinuity and compactness of the numerical scheme. In this
section we prove Theorem 2.10, equicontinuity in space, and compactness for the
scheme. Since \widetilde Uh is the interpolation of Uh defined in (2.9), we will prove the equi-

boundedness and equicontinuity first for U j
h and then transfer these results to \widetilde Uh.

The equiboundedness is a direct corollary of Theorem 2.6(c).

Lemma 4.5 (equicontinuity in space). Assume (Au0), (Af ), and (ANS) hold for

all h > 0, and let \{ U j
h\} h>0 be a.e.-solutions of (2.5). Then, for all j \in \BbbJ , all compact

sets K \subset \BbbR N , and all \eta > 0,

sup
| \xi | \leq \eta 

\| U j
h  - U j

h(\cdot + \xi )\| L1(K) \leq \lambda u0,f (\eta ),

where \lambda u0,f is defined in (2.7).
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Proof. By translation invariance and uniqueness, U j
h(x+ \xi ) is a solution of (2.5)

with data u0(\cdot + \xi ) and f(\cdot + \xi , \cdot ). Taking V j
h (x) = U j

h(x + \xi ) in the L1-contraction
Theorem 2.8 then concludes the estimate. Continuity of the L1-translation and as-
sumptions (Au0

) and (Af ) show that lim\eta \rightarrow 0 \lambda u0,f (\eta ) = 0.

Under the additional assumption of having a consistent numerical scheme,

(4.2) sup
h\in (0,1)

\| \varphi h
i (U

j
h)\| L\infty (\BbbR N ) <\infty 

and
sup

h\in (0,1)

\| \scrL h
i [\psi ]\| L1(\BbbR N ) <\infty for all \psi \in C\infty 

c (\BbbR N ),

for i = 1, 2. The first bound is trivial, while the second follows since \| \scrL h
i [\psi ]\| L1(\BbbR N ) \leq 

\| \scrL h
i [\psi ] - \frakL \sigma ,\mu 

i [\psi ]\| L1(\BbbR N ) + \| \frakL \sigma ,\mu 
i [\psi ]\| L1(\BbbR N ) is bounded for h \leq 1 by Definition 2.2(ii).

These facts allow us to prove the time equicontinuity result Theorem 2.10.

Proof of Theorem 2.10. We exploit the idea, which is sometimes referred to as
the Kru\v zkov interpolation lemma [60], that an estimate on the L1-translations in
space will give an estimate on the L1-translations in time. To simplify, we start by
considering right-hand sides f = 0.

The numerical scheme (2.5) can be written as

U j
h(x) - U j - 1

h (x) = \Delta tj

\Bigl( 
\scrL h
1 [\varphi 

h
1 (U

j
h)](x) + \scrL h

2 [\varphi 
h
2 (U

j - 1
h )](x)

\Bigr) 
.

Let \omega \delta be a standard mollifier in \BbbR N obtained by scaling from a fixed \omega , and define
(U j

h)\delta (x) := (U j
h \ast \omega \delta )(x). Taking the convolution of the scheme with \omega \delta and using

the fact that the operator \scrL \nu commutes with convolutions, we find that

(U j
h)\delta (x) - (U j - 1

h )\delta (x) = \Delta tj

\Bigl( 
\scrL h
1 [\varphi 

h
1 (U

j
h)] + \scrL h

2 [\varphi 
h
2 (U

j - 1
h )]

\Bigr) 
\ast \omega \delta (x)

= \Delta tj

\Bigl( 
\varphi h
1 (U

j
h) \ast \scrL 

h
1 [\omega \delta ](x) + \varphi h

2 (U
j - 1
h ) \ast \scrL h

2 [\omega \delta ](x)
\Bigr) 
.

We integrate over any compact set K \subset \BbbR N and use Theorem 2.6(c), (4.2), and
standard properties of mollifiers (see, e.g., the proof of Lemma 4.3 in [33]) to get\int 

K

\bigm| \bigm| (U j
h)\delta  - (U j - 1

h )\delta 
\bigm| \bigm| dx

\leq \Delta tj | K| 
\Bigl( 
\| \varphi h

1 (U
j
h)\| L\infty \| \scrL h

1 [\omega \delta ]\| L1 + \| \varphi h
2 (U

j - 1
h )\| L\infty \| \scrL h

2 [\omega \delta ]\| L1

\Bigr) 
\leq \Delta tj | K| 

\Biggl( 
sup

| r| \leq Mu0,f

| \varphi h
1 (r)| \| \scrL h

1 [\omega \delta ]\| L1 + sup
| r| \leq Mu0,f

| \varphi h
2 (r)| \| \scrL h

2 [\omega \delta ]\| L1

\Biggr) 
\leq CK\Delta tj(1 + \delta  - 2),

(4.3)

where CK = CK,u0,f,\varphi 1,\varphi 2,\nu 1,\nu 2 is given by (2.8) with constant c such that c(1+\delta  - 2) is
a uniform in h upper bound on maxi=1,2 \| \scrL h

i [\omega \delta ]\| L1 . This upper bound follows from
(2.1), the uniform L\'evy condition (A\nu h), and the properties of \omega \delta :

\| \scrL h
i [\omega \delta ]\| L1 \leq C\| D2\omega \delta \| L1

\Bigl( \int 
| z| \leq 1

| z| 2 d\nu hi (z)
\Bigr) 
+ 2\| \omega \delta \| L1

\int 
| z| >1

d\nu hi (z)

\leq \delta  - 2C\| D2\omega \| L1

\Bigl( \int 
| z| \leq 1

| z| 2 d\nu hi (z)
\Bigr) 
+ 2\| \omega \| L1

\int 
| z| >1

d\nu hi (z).
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By iterating (4.3) and using Tonelli plus Theorem 2.8, we obtain

\| U j
h  - U j - k

h \| L1(K) \leq \| U j
h  - (U j

h)\delta \| L1(K) + \| (U j
h)\delta  - (U j - k

h )\delta \| L1(K)

+ \| (U j - k
h )\delta  - U j - k

h \| L1(K)

\leq 2 sup
| h| \leq \delta 

\| u0  - u0(\cdot + h)\| L1(\BbbR N ) + CK(tj  - tj - k)(1 + \delta  - 2).

Now we conclude by taking \delta = (tj  - tj - k)
1
3 .

The proof for f \not \equiv 0 follows in a similar way after using that

j\sum 
l=j - k+1

\| F l\| L\infty (\BbbR N )\Delta tl \leq 
\int tj

tj - k

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau (4.4)

for F l defined as in (2.4).

The equiboundedness, Lemma 4.5, and Theorem 2.10 (plus Theorems 2.6 and

2.8) immediately transfer, mutatis mutandis, to \widetilde Uh. We only restate the (slightly

modified) equicontinuity in time result for \widetilde Uh here.

Lemma 4.6 (equicontinuity in time). Assume (Af ), (Au0), and \Delta t = oh(1), and

for all h > 0, let U j
h be the solution of a consistent scheme (2.5) satisfying (ANS) and

(A\nu h). Then, for t, s \in [0, T ],

\| \widetilde Uh(\cdot , t) - \widetilde Uh(\cdot , s)\| L1(K) \leq \Lambda K(| t - s| )

+ | K| 
\Bigl( \int t

s

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau + \lambda (| t - s| ,\Delta t)
\Bigr) 
,

(4.5)

where \lambda is continuous and satisfies

(4.6) sup
\Delta t\leq 1

| \lambda (\delta ,\Delta t)| \delta \rightarrow 0 - \rightarrow 0, and for \delta \in [0, T ], \lambda (\delta ,\Delta t)
\Delta t\rightarrow 0 - \rightarrow 0.

Proof. (1) Assume f = 0. The proof of (4.5) is like the proof of Theorem 2.10 with
a slightly modified end where the time interpolant (2.9) appears: For t \in (tj - 1, tj ]
and s \in (tj - k - 1, tj - k],

\| (\widetilde Uh)\delta (\cdot , t) - (\widetilde Uh)\delta (\cdot , s)\| L1 \leq 
\bigm\| \bigm\| (\widetilde Uh)\delta (\cdot , t) - (U j - 1

h )\delta \| L1 + \| (U j - k
h )\delta  - (\widetilde Uh)\delta (\cdot , s)\| L1

+

j - 1\sum 
l=j - k+1

\| (U l
h)\delta  - (U l - 1

h )\delta \| L1 .

Since, by the definition of linear interpolation,\bigm\| \bigm\| (\widetilde Uh)\delta (\cdot , t) - (U j - 1
h )\delta \| L1 \leq t - tj - 1

\Delta tj

\bigm\| \bigm\| (U j
h)\delta  - (U j - 1

h )\delta 
\bigm\| \bigm\| 
L1 ,

\| (U j - k
h )\delta  - (\widetilde Uh)\delta (\cdot , s)\| L1 \leq tj - k  - s

\Delta tj - k

\bigm\| \bigm\| (U j - k
h )\delta  - (U j - k - 1

h )\delta 
\bigm\| \bigm\| 
L1 ,

it follows by repeated use of (4.3) that

\| (\widetilde Uh)\delta (\cdot , t) - (\widetilde Uh)\delta (\cdot , s)\| L1 \leq 
\Bigl( 
(t - tj - 1) +

j - 1\sum 
l=j - k+1

\Delta tl + (tj - k  - s)
\Bigr) 
CK(1 + \delta  - 2)

= (t - s)CK(1 + \delta  - 2).

D
ow

nl
oa

de
d 

10
/0

8/
19

 to
 1

29
.2

41
.1

5.
15

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICS FOR EQUATIONS OF POROUS MEDIUM TYPE 2285

At this point we can conclude the proof as before when f = 0.

(2) Assume f \not \equiv 0. From the proof of Theorem 2.10 with f \not \equiv 0 and an inequality
as (4.4), we find that

\lambda (| t - s| ,\Delta t) :=
\int t

s

\bigl( 
\^F\Delta t(\tau ) - \| f(\cdot , \tau )\| L\infty (\BbbR N )

\bigr) 
d\tau ,

where the piecewise constant function \^F\Delta t is defined from \tau \mapsto \rightarrow \| f(\cdot , \tau )\| L\infty (\BbbR N ) by
averages:

\^F\Delta t(\tau ) :=
1

\Delta tl

\int tl

tl - 1

\| f(\cdot , \tau \prime )\| L\infty (\BbbR N ) d\tau 
\prime for \tau \in (tl - 1, tl], l \in \BbbJ .

A standard argument shows that \^F\Delta t \rightarrow \| f(\cdot , \tau )\| L\infty (\BbbR N ) in L1(0, T ) as \Delta t \rightarrow 0+,

and then the sequence \{ \^F\Delta t  - \| f(\cdot , \tau )\| L\infty (\BbbR N )\} \Delta t\leq 1 is equi-integrable by the Vitali
convergence theorem. Since equi-integrability implies that

lim
| t - s| \rightarrow 0

sup
\Delta t\leq 1

\int 
[s,t]

\bigm| \bigm| \^F\Delta t(\tau ) - \| f(\cdot , \tau )\| L\infty (\BbbR N )

\bigm| \bigm| d\tau = 0,

the two claims in (4.6) readily follow.

In view of equiboundedness and equicontinuity of \{ \widetilde Uh\} h>0, we can now use the
Arzel\`a--Ascoli and Kolmogorov--Riesz type compactness results (see, e.g., the appendix
of [41]) to conclude the following result.

Theorem 4.7 (compactness). Assume (Af ), (Au0
), that \Delta t = oh(1), that (2.5)

is a consistent scheme satisfying (A\nu h) and such that (ANS) holds for every h > 0,

and let \{ U j
h\} h>0 be the solutions of (2.5) and \{ \widetilde Uh\} h>0 their time interpolants defined

in (2.9). Then there exists a subsequence \{ \widetilde Uhn
\} n\in \BbbN , and a u \in C([0, T ];L1

loc(\BbbR N ))
such that \widetilde Uhn \rightarrow u in C([0, T ];L1

loc(\BbbR N )) and a.e. as n\rightarrow \infty .

4.3. Convergence of the numerical scheme. In this section we prove conver-
gence of the scheme, Theorem 2.11. We start with a consequence of the consistency
and stability of the scheme and the stability of the equation.

Lemma 4.8. Under the assumptions of Theorem 4.7, any subsequence of \{ \widetilde Uh\} h>0

that converges in C([0, T ];L1
loc(\BbbR N )) converges to a distributional solution u \in L1(QT )\cap 

L\infty (QT ) of (1.1).

An immediate corollary of this lemma, the compactness in Theorem 4.7, and
uniqueness in Theorem 2.2, is then the following result.

Corollary 4.9. Under the assumptions of Theorem 4.7, any subsequence of
\{ \widetilde Uh\} h>0 has a further subsequence that converges in C([0, T ];L1

loc(\BbbR N )) to the unique
distributional solution u \in L1(QT ) \cap L\infty (QT ) of (1.1).

We now prove convergence of the scheme, Theorem 2.11.

Proof of Theorem 2.11. By compactness, Theorem 4.7, there is a subsequence of
\{ \widetilde Uh\} h>0 that converges to some function u in C([0, T ];L1

loc(\BbbR N )). By Lemma 4.8,
u is a distributional solution of (1.1) belonging to L1(QT ) \cap L\infty (QT ). Then the
whole sequence converges since it is bounded and other limit points are excluded by
Corollary 4.9.
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It remains to prove Lemma 4.8.

Proof of Lemma 4.8. Take any C([0, T ];L1
loc(\BbbR N )) converging subsequence of

\{ \widetilde Uh\} h>0, and let u be its limit. For simplicity we also denote the subsequence by

\{ \widetilde Uh\} h>0. Remember that \widetilde Uh is the time interpolation of Uh defined in (2.9).
(1) The limit u \in L1(QT ) \cap L\infty (QT ). There is a further subsequence converging

to u for all t and a.e. x. Hence we find that the L\infty bound of Theorem 2.6(c) is
inherited by u. Similarly, by Fatou's lemma, also the L1 bound of Theorem 2.6(b)
carries over to u. Hence we can conclude that u \in L1(QT ) \cap L\infty (QT ).

We proceed to prove that u is a distributional solution of (1.1); see Definition 2.1.
(2) Weak formulation of the numerical scheme (2.5). Let \psi \in C\infty 

c (\BbbR N \times [0, T )).
We multiply the scheme (2.5) by \psi (x, tj - 1)\Delta tj , integrate in space, sum in time, and
use the self-adjointness of \scrL h

1 ,\scrL h
2 to get

\int 
\BbbR N

J\sum 
j=1

U j
h  - U j - 1

h

\Delta tj
\psi (x, tj - 1)\Delta tj dx =

\int 
\BbbR N

J\sum 
j=1

\varphi h
1 (U

j
h)\scrL 

h
1 [\psi (\cdot , tj - 1)]\Delta tj dx

+

\int 
\BbbR N

J\sum 
j=1

\varphi h
2 (U

j - 1
h )\scrL h

2 [\psi (\cdot , tj - 1)]\Delta tj dx+

\int 
\BbbR N

J\sum 
j=1

F j(x)\psi (x, tj - 1)\Delta tj dx.

(4.7)

In the rest of the proof we will show that the different terms in this equation converge
to the corresponding terms in (2.2) and thereby conclude the proof.

(3) Convergence to the time derivative. By summation by parts, U0
h = u0, and

\psi (x, tJ - 1) = 0 for \Delta t small enough since \psi has compact support,

\int 
\BbbR N

J\sum 
j=1

U j
h(x) - U j - 1

h (x)

\Delta tj
\psi (x, tj - 1)\Delta tj dx

=  - 
\int 
\BbbR N

J - 1\sum 
j=1

U j
h(x)

\psi (x, tj) - \psi (x, tj - 1)

\Delta tj
\Delta tj dx

+

\int 
\BbbR N

UJ
h (x)\psi (x, tJ - 1) dx - 

\int 
\BbbR N

U0
h(x)\psi (x, 0) dx

=  - I + 0 - 
\int 
\BbbR N

u0(x)\psi (x, 0) dx.

To continue, we note that for any r > 0,

J - 1\sum 
j=1

\psi (x, tj) - \psi (x, tj - 1)

\Delta tj
1[tj - 1,tj)(t) \rightarrow \partial t\psi (x, t) in L\infty (\BbbR N \times [0, T  - r))

as \Delta t \rightarrow 0+. Then, since Uh is uniformly bounded and \widetilde Uh converges to u in
C(0, T ;L1

loc(\BbbR N )), and \psi has compact support, a standard argument shows that

I =

\int 
\BbbR N

J - 1\sum 
j=1

U j
h(x)

\psi (x, tj) - \psi (x, tj - 1)

\Delta tj
\Delta tj dx\rightarrow 

\int 
\BbbR N

\int T

0

u(x, t)\partial t\psi (x, t) dtdx
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as h\rightarrow 0+. Combining all estimates, we conclude that as h\rightarrow 0+,\int 
\BbbR N

J\sum 
j=1

U j
h  - U j - 1

h

\Delta tj
\psi (x, tj - 1)\Delta tj dx

\rightarrow  - 
\int 
\BbbR N

\int T

0

u \partial t\psi dtdx - 
\int 
\BbbR N

u0(x)\psi (x, 0) dx.

(4) Convergence of the nonlocal terms. We start with the \scrL h
1 -term. By adding

and subtracting terms we find that\int 
\BbbR N

J\sum 
j=1

\varphi h
1 (U

j
h)\scrL 

h
1 [\psi (\cdot , tj - 1)]\Delta tj dx =

\int T

0

\int 
\BbbR N

\varphi 1(u)\frakL 
\sigma ,\mu 
1 [\psi (\cdot , t)] dtdx

+ E1 + E2 + E3 + E4,

where

| E1| \leq 
\int 
\BbbR N

J\sum 
j=1

\int tj

tj - 1

| \varphi h
1 (U

j
h)| 
\bigm| \bigm| \scrL h

1 [\psi (\cdot , tj - 1)] - \frakL \sigma ,\mu 
1 [\psi (\cdot , tj - 1)]

\bigm| \bigm| dtdx,
| E2| \leq 

\int 
\BbbR N

J\sum 
j=1

\int tj

tj - 1

| \varphi h
1 (U

j
h)| 
\bigm| \bigm| \frakL \sigma ,\mu 

1 [\psi (\cdot , tj - 1)] - \frakL \sigma ,\mu 
1 [\psi (\cdot , t)]

\bigm| \bigm| dtdx,
| E3| \leq 

\int 
\BbbR N

J\sum 
j=1

\int tj

tj - 1

\bigm| \bigm| \varphi h
1 (U

j
h) - \varphi 1(U

j
h)
\bigm| \bigm| | \frakL \sigma ,\mu 

1 [\psi (\cdot , t)]| dtdx,

| E4| \leq 
\int 
\BbbR N

J\sum 
j=1

\int tj

tj - 1

\bigm| \bigm| \varphi 1(U
j
h(x)) - \varphi 1(u(x, t))

\bigm| \bigm| | \frakL \sigma ,\mu 
1 [\psi (\cdot , t)]| dtdx.

First note that by (A\mu ) and Remark 2.1(b),

sup
t\in [0,T ]

\| \frakL \sigma ,\mu 
1 [\psi (\cdot , t)]\| L1 \leq C sup

t\in [0,T ]

(\| D2\psi (\cdot , t)\| L1 + \| \psi (\cdot , t)\| L1) =: K <\infty .

Then by consistency (Definition 2.2(ii)),

sup
t\in [0,T ]

\| (\frakL \sigma ,\mu 
1  - \scrL h

1 )[\psi (\cdot , t)]\| L1(\BbbR N ) \leq sup
t\in [0,T ]

\| \psi (\cdot , t)\| Wk1,1(\BbbR N )oh(1)
h\rightarrow 0+ - \rightarrow 0.

By the uniform boundedness of Uh (Theorem 2.6(c)) and continuity of \varphi (A\varphi ), it first

follows that \| \varphi 1(U
j
h)\| L\infty (QT ) \leq C, and then by the uniform convergence of \varphi h

1 \rightarrow \varphi 1

(Definition 2.2(iii)) and taking h small enough,

\| \varphi h
1 (U

j
h) - \varphi 1(U

j
h)\| L\infty (QT )

h\rightarrow 0+ - \rightarrow 0 and \| \varphi h
1 (U

j
h)\| L\infty (QT ) \leq 2C.

From these considerations we can immediately conclude that E1, E3 \rightarrow 0 as h\rightarrow 0+.
To see that E2 \rightarrow 0, we now only need to observe that by linearity of \frakL \sigma ,\mu and a

Taylor expansion,

\| \frakL \sigma ,\mu 
1 [\psi (\cdot , tj - 1)] - \frakL \sigma ,\mu 

1 [\psi (\cdot , t)]\| L1 \leq \Delta t sup
s\in [0,T ]

\| \frakL \sigma ,\mu 
1 [\partial t\psi (\cdot , s)]| L1
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and \| \frakL \sigma ,\mu 
1 [\partial t\psi (\cdot , s)]| L1 \leq C sups\in [0,T ]

\bigl( 
\| D2\partial t\psi (\cdot , s))\| L1+\| \partial t\psi (\cdot , s)\| L1

\bigr) 
<\infty . Finally,

we see that E4 \rightarrow 0 by the dominated convergence theorem since \varphi 1(\widetilde Uh) is uniformly

bounded and we may assume (by taking a further subsequence if necessary) \widetilde Uh \rightarrow u

a.e. and hence \varphi 1(\widetilde Uh) \rightarrow \varphi 1(u) a.e. in QT as h\rightarrow 0+ by (A\varphi ).
A similar argument shows the convergence of the \scrL h

2 -term, and we can therefore
conclude that as h\rightarrow 0+,\int 

\BbbR N

J\sum 
j=1

\varphi h
1 (U

j
h)\scrL 

h
1 [\psi (\cdot , tj - 1)]\Delta tj dx+

\int 
\BbbR N

J\sum 
j=1

\varphi h
2 (U

j - 1
h )\scrL h

2 [\psi (\cdot , tj - 1)]\Delta tj dx

\rightarrow 
\int 
\BbbR N

\int T

0

\varphi 1(u)\frakL 
\sigma ,\mu 
1 [\psi (\cdot , t)] dtdx+

\int 
\BbbR N

\int T

0

\varphi 2(u)\frakL 
\sigma ,\mu 
2 [\psi (\cdot , t)] dtdx.

(5) Convergence to the right-hand side. By the definition of F j ,\bigm| \bigm| \bigm| \bigm| \int 
\BbbR N

\biggl( J\sum 
j=1

F j(x)\psi (x, tj - 1)\Delta tj  - 
\int T

0

f(x, t)\psi (x, t) dt

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbR N

J\sum 
j=1

\int tj

tj - 1

| \psi (x, t) - \psi (x, tj - 1)| | f(x, t)| dtdx

\leq \| \partial t\psi \| L\infty (QT )\| f\| L1(QT )\Delta t\rightarrow 0+ as h\rightarrow 0+.

(6) Conclusion. In view of steps (3)--(5) and Definition 2.2(i), if we pass to the
limit as h \rightarrow 0+ in (4.7), we find that u satisfies (2.2). In view of step (1), u is then
a distributional solution of (1.1) according to Definition 2.1.

Fig. 3. The relation between Uj
\beta and Uj in Proposition 2.13.

4.4. Numerical schemes on uniform spatial grids.

Proof of Proposition 2.13. See Figure 3 for the relation between U j
\beta and U j .

(a) Let x\beta \in \scrG h. Since the scheme (2.5) is translation invariant in x, it follows

that U j and U j(\cdot + y) are solutions of (2.5) with U0, F j and U0(\cdot + y), F j(\cdot + y) as
data, respectively. By uniqueness (Theorem 2.4) and the fact that U0(x\beta ) = U0

\beta =

U0(x\beta + y) and F j(x\beta ) = F j
\beta = F j(x\beta + y) for all y \in Rh and j > 0, we get that
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U j is constant on x\beta + Rh (a.e.) for all j > 0. Take a piecewise constant version of

U j and let U j
\beta := h - N

\int 
x\beta +Rh

U j(x) dx = U j(x) for all x \in x\beta + Rh. In particular,

U j(x\beta ) = U j
\beta .

Now, let y \in x\beta +Rh be such that the scheme (2.5) holds at y. Since the grid \scrG h

is uniform and \scrS 1,\scrS 2 \subset \scrG h, U
j(y + z\beta ) = U j

\beta +\gamma for any z\gamma \in \scrG h and any j, and then

\scrL h
i [\varphi 

h
i (U

j)](y) =
\sum 
\beta \not =0

\bigl( 
\varphi h
i (U

j(y + z\beta )) - \varphi h
i (U

j(y))
\bigr) 
\omega \beta ,h

=
\sum 
\beta \not =0

\bigl( 
\varphi h
i (U

j
\beta +\gamma ) - \varphi h

i (U
j
\beta )
\bigr) 
\omega \beta ,h = \scrL h

i [\varphi 
h
i (U

j
\cdot )]\beta ,

where \scrL h
i on the left is understood as an operator on functions on \scrG h. Since U j

satisfies (2.5) at y, we can therefore conclude that U j
\beta = U j(y) satisfies (2.10) at x\beta .

(b) Since U j(y + z\beta ) = U j
\beta +\gamma for any z\gamma \in \scrG h and any y \in x\beta + Rh and the

scheme (2.10) holds at x\beta , similar considerations as in the proof of part (a) show that

U j satisfy the scheme (2.5) at every point in x\beta +Rh.

Proof of Theorem 2.14. The equivalence given by Proposition 2.13 ensures that
parts (a)--(g) follow from the fact that U j

\beta (the solution of (2.10)) is the restriction to

the grid \scrG h of U j
h (the solution of (2.5)). Integrals become sums because, for functions

V on \scrG h with interpolants V ,\int 
\BbbR N

V (x) dx = hN
\sum 
\beta \not =0

V\beta .

(h) Let U j
h be the solution of (2.5) for u0 and F j . Respectively, let U j be the

solution of (2.5) for U0 and F j(x). Then, for all j \in \BbbJ , by Theorem 2.8 and continuity
of L1-translation,\int 

\BbbR N

| U j(x) - U j
h(x)| dx \leq 

\int 
\BbbR N

| U0(x) - u0(x)| dx+

j\sum 
l=1

\Delta tl

\int 
\BbbR N

| F l(x) - F l(x)| dx

\leq \lambda u0,f (h) \rightarrow 0 as h\rightarrow 0+.

Now for any compact K \subset \BbbR N ,

| | | U  - u| | | K = max
tj\in \scrT T

\Delta t

\| U j  - u(\cdot , tj)\| L1(K)

\leq max
tj\in \scrT T

\Delta t

\| U j  - U j
h\| L1(K) + max

tj\in \scrT T
\Delta t

\| U j
h  - u(\cdot , tj)\| L1(K)

\leq \lambda u0,f (h) + sup
t\in [0,T ]

\| \widetilde Uh(\cdot , t) - u(\cdot , t)\| L1(K),

which tends to zero as h\rightarrow 0+ by Theorem 2.11.

4.5. A priori estimates for distributional solutions.

Proof of Proposition 2.17. We will prove the results by passing to the limit in the
a priori estimates for \widetilde Uh, \widetilde Vh in Theorems 2.6 and 2.8. To do that we note that by
Theorem 2.11, \widetilde Uh, \widetilde Vh \rightarrow u, v in C([0, T ];L1

loc(\BbbR N )) and a.e. (for a subsequence) as
h\rightarrow 0+. We also observe that for X = L1(\BbbR N ), X = L\infty (\BbbR N ), and t \in [0, T  - \Delta t],

I =

\bigm| \bigm| \bigm| \bigm| \int t+\Delta t

0

\| f(\cdot , \tau )\| X d\tau  - 
\int t

0

\| f(\cdot , \tau )\| X d\tau 

\bigm| \bigm| \bigm| \bigm| = \int t+\Delta t

t

\| f(\cdot , \tau )\| X d\tau .
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Since 1(t,t+\Delta t](\tau ) \rightarrow 0 a.e. as \Delta t \rightarrow 0+ and (Af ) hold, I \rightarrow 0 as \Delta t \rightarrow 0+ by the
dominated convergence theorem. Similar results hold for the other time integrals that
appear on the right-hand sides in Theorems 2.6 and 2.8.

(b) and (d) then follow from Theorems 2.6(b) and 2.8 and Fatou's lemma.
(a) is an immediate consequence of (d).

(c) follows from the L\infty -bound (Theorem 2.6(c)), the estimate | u| \leq | u - \widetilde Uh| +| \widetilde Uh| ,
and the a.e. convergence of \widetilde Uh.

(e) follows by the triangle inequality, Theorem 2.10 (see also Lemma 4.6), and
passing to the limit:

\| u(\cdot , t) - u(\cdot , s)\| L1(K) \leq 2\| u - \widetilde Uh\| C([0,T ];L1(K)) + \Lambda K(| t - s| )

+ | K| 
\int t

s

\| f(\cdot , \tau )\| L\infty (\BbbR N ) d\tau + | K| \lambda (| t - s| ,\Delta t),

where \| u - \widetilde Uh\| C([0,T ];L1(K)) and \lambda (| t - s| ,\Delta t) goes to zero when h\rightarrow 0+.

5. Auxiliary results.

5.1. The operator \bfitT \bfe \bfx \bfp . Theorem 4.3 with T = T exp follows from the three
results of this section. Note that we do not need \psi \in L1 in most of the results.

Lemma 5.1. Assume (A\nu ), (Lip\varphi ), L\varphi \nu (\BbbR N ) \leq 1, and \psi , \^\psi \in L\infty (\BbbR N ). If \psi \leq \^\psi 

a.e., then T exp[\psi ] \leq T exp[ \^\psi ] a.e.

Proof. By definition

T exp[\psi ](x) - T exp[ \^\psi ](x)

= \psi (x) - \^\psi (x) +

\int 
\BbbR N

\Bigl( \bigl( 
\varphi (\psi ) - \varphi ( \^\psi )

\bigr) 
(x+ z) - 

\bigl( 
\varphi (\psi ) - \varphi ( \^\psi )

\bigr) 
(x)
\Bigr) 
d\nu (z).

Since \varphi is nondecreasing and \psi \leq \^\psi , \varphi (\psi ) - \varphi ( \^\psi ) \leq 0 and

T exp[\psi ](x) - T exp[ \^\psi ](x) \leq \psi (x) - \^\psi (x) + 0 - 
\bigl( 
\varphi (\psi ) - \varphi ( \^\psi )

\bigr) 
(x)

\int 
\BbbR N

d\nu (z).

By (Lip\varphi ) and the mean value theorem there exists \xi \in [0, L\varphi ] such that \varphi (\psi (x))  - 
\varphi ( \^\psi (x)) = \xi 

\bigl( 
\psi (x) - \^\psi (x)

\bigr) 
. Hence,

T exp[\psi ](x) - T exp[ \^\psi ](x) \leq 
\bigl( 
\psi (x) - \^\psi (x)

\bigr) \bigl[ 
1 - \xi \nu (\BbbR N )

\bigr] 
.

Hence T exp[\psi ] - T exp[ \^\psi ] \leq 0 since \psi  - \^\psi \leq 0 and \xi \nu (\BbbR N ) \leq L\varphi \nu (\BbbR N ) \leq 1.

Now we deduce an L1-contraction result for T exp.

Lemma 5.2. Assume (A\nu ), (Lip\varphi ), that L\varphi \nu (\BbbR N ) \leq 1, that \psi , \^\psi \in L\infty (\BbbR N ), and

that (\psi  - \^\psi )+ \in L1(\BbbR N ). Then\int 
\BbbR N

(T exp[\psi ](x) - T exp[ \^\psi ](x))+ dx \leq 
\int 
\BbbR N

(\psi (x) - \^\psi (x))+ dx.

Proof. This result follows as in the so-called Crandall--Tartar lemma; see, e.g.,
Lemma 2.12 in [52]. We include the argument for completeness. Since \psi \vee \^\psi \in 
L\infty (\BbbR N ) and \psi \leq \psi \vee \^\psi , we have by Lemma 5.1 that T exp[\psi ] \leq T exp[\psi \vee \^\psi ] and
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T exp[\psi ]  - T exp[ \^\psi ] \leq T exp[\psi \vee \^\psi ]  - T exp[ \^\psi ]. Moreover, since \^\psi \leq \psi \vee \^\psi , we have by

Lemma 5.1 again that 0 = T exp[ \^\psi ] - T exp[ \^\psi ] \leq T exp[\psi \vee \^\psi ] - T exp[ \^\psi ]. Hence,

(T exp[\psi ] - T exp[ \^\psi ])+ \leq T exp[\psi \vee \^\psi ] - T exp[ \^\psi ],

and

T exp[\psi \vee \^\psi ](x) - T exp[ \^\psi ](x) = (\psi \vee \^\psi  - \^\psi ) + \scrL \nu [\varphi (\psi \vee \^\psi ) - \varphi ( \^\psi )].

Next note that by (Lip\varphi ),

0 \leq \varphi (\psi \vee \^\psi ) - \varphi ( \^\psi ) \leq L\varphi (\psi \vee \^\psi  - \^\psi ) = L\varphi (\psi  - \^\psi )+ \in L1(\BbbR N ),

and hence, since T exp is conservative by Lemma 4.1(b),\int 
\BbbR N

(T exp[\psi ] - T exp[ \^\psi ])+ dx

\leq 
\int 
\BbbR N

\bigl( 
T exp[\psi \vee \^\psi ] - T exp[ \^\psi ]

\bigr) 
dx =

\int 
\BbbR N

\bigl( 
(\psi \vee \^\psi ) - \^\psi 

\bigr) 
dx =

\int 
\BbbR N

(\psi  - \^\psi )+ dx,

which completes the proof.

Corollary 5.3. Assume (A\nu ), (Lip\varphi ), that L\varphi \nu (\BbbR N ) \leq 1, and that \psi \in L\infty (\BbbR N ).
Then

\| T exp[\psi ]\| L\infty (\BbbR N ) \leq \| \psi \| L\infty (\BbbR N ).

If also \psi \in L1(\BbbR N ), then

\| T exp[\psi ]\| L1(\BbbR N ) \leq \| \psi \| L1(\BbbR N ).

Proof. The case p = 1 is just a direct consequence of Lemma 5.2. For p = \infty , note
that T exp[\| \psi \| L\infty (\BbbR N )] = \| \psi \| L\infty (\BbbR N ) and T

exp[ - \| \psi \| L\infty (\BbbR N )] =  - \| \psi \| L\infty (\BbbR N ). Since

 - \| \psi \| L\infty (\BbbR N ) \leq \psi \leq \| \psi \| L\infty (\BbbR N ),

we conclude by Lemma 5.1 that  - 
\bigl( 
\| \psi \| L\infty (\BbbR N )

\bigr) 
\leq T exp[\psi ] \leq \| \psi \| L\infty (\BbbR N ).

5.2. The operator \bfitT \bfi \bfm \bfp . Now we prove Theorems 4.2 and 4.3 with T = T imp.
We start by a uniqueness result for bounded distributional solutions of

(Gen-EP) w(x) - \frakL \sigma ,\mu [\varphi (w)](x) = \rho (x), x \in \BbbR N .

Theorem 5.4 (uniqueness, Theorem 3.1 in [32]). Assume (A\varphi ), (A\mu ), and that
\rho \in L\infty (\BbbR N ). Then there is at most one distributional solution w of (Gen-EP) such
that w \in L\infty (\BbbR N ) and w  - \rho \in L1(\BbbR N ).

From now on we restrict ourselves to (EP), which is a special case of (Gen-EP).
By approximation, stability, and compactness results, we will prove that constructed
solutions of (EP) indeed satisfy Theorem 5.4, and hence, we obtain existence and
a priori results. Let us start by a contraction principle for globally Lipschitz \varphi 's; a
more general result will be given later.

Lemma 5.5. Assume (A\nu ), that \varphi : \BbbR \rightarrow \BbbR is nondecreasing and globally Lip-
schitz, and that (w  - \^w)+, (\rho  - \^\rho )+ \in L1(\BbbR N ). If w, \^w are respective a.e. sub- and
supersolutions of (EP) with right-hand sides \rho , \^\rho , then\int 

\BbbR N

(w(x) - \^w(x))+ dx \leq 
\int 
\BbbR N

(\rho (x) - \^\rho (x))+ dx.
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Proof. Subtract the equations for w and \^w and multiply by sign+(w  - \^w) to get

(w  - \^w)sign+(w  - \^w) \leq (\rho  - \^\rho )sign+(w  - \^w) + \scrL \nu [\varphi (w) - \varphi ( \^w)]sign+(w  - \^w).

Note that (w  - \^w)sign+(w  - \^w) = (w  - \^w)+, (\rho  - \^\rho )sign+(w  - \^w) \leq (\rho  - \^\rho )+, and
\scrL \nu [\varphi (w)  - \varphi ( \^w)]sign+(w  - \^w) \leq \scrL \nu [(\varphi (w)  - \varphi ( \^w))+]. The latter is an example of a
standard convex inequality; see, e.g., page 149 in [2]. Thus,

(w  - \^w)+ \leq (\rho  - \^\rho )+ + \scrL \nu [(\varphi (w) - \varphi ( \^w))+].

The assumption on \varphi ensures that (\varphi (w) - \varphi ( \^w))+ \in L1(\BbbR N ). Indeed, for the global
Lipschitz constant L\varphi , and with \Omega + := \{ x \in \BbbR N : w(x) > \^w(x)\} , we have\int 

\BbbR N

(\varphi (w(x)) - \varphi ( \^w(x)))+ dx =

\int 
\Omega +

\bigl( 
\varphi (w(x)) - \varphi ( \^w(x))

\bigr) 
dx

\leq L\varphi 

\int 
\Omega +

\bigl( 
w(x) - \^w(x)

\bigr) 
dx = L\varphi 

\int 
\BbbR N

(w(x) - \^w(x))+ dx.

Thus, we integrate over \BbbR N and use Lemma 4.1(b) to get\int 
\BbbR N

(w(x) - \^w(x))+ dx \leq 
\int 
\BbbR N

(\rho (x) - \^\rho (x))+ dx+

\int 
\BbbR N

\scrL \nu [(\varphi (w) - \varphi ( \^w))+](x) dx

=

\int 
\BbbR N

(\rho (x) - \^\rho (x))+ dx,

which completes the proof.

Here are some standard consequences of the contraction result.

Corollary 5.6 (a priori estimates). Assume (A\nu ), that \varphi : \BbbR \rightarrow \BbbR is nonde-
creasing and globally Lipschitz, and that w, \^w, \rho , \^\rho \in L1(\BbbR N ). If w, \^w are respective
a.e. sub- and supersolutions of (EP) with right-hand sides \rho , \^\rho , then

(a) (L1-contraction)
\int 
\BbbR N

\bigl( 
w(x) - \^w(x)

\bigr) +
dx \leq 

\int 
\BbbR N

\bigl( 
\rho (x) - \^\rho (x)

\bigr) +
dx,

(b) (Comparison) if \rho \leq \^\rho a.e., then w \leq \^w a.e., and
(c) (L1-bound) \| w\| L1(\BbbR N ) \leq \| \rho \| L1(\BbbR N ).

Lemma 5.7 (a priori estimate, L\infty -bound). Assume (A\nu ), (Lip\varphi ), and that

w, \rho \in L\infty (\BbbR N ). If w solves (EP) a.e. with right-hand side \rho , respectively, then

\| w\| L\infty (\BbbR N ) \leq \| \rho \| L\infty (\BbbR N ).

Proof. Since w \in L\infty (\BbbR N ), for every \delta > 0, there exists x\delta \in \BbbR N such that

w(x\delta ) + \delta > ess sup
x\in \BbbR N

\{ w(x)\} ;

i.e., | ess supw  - w(x\delta )| < \delta , and then by (Lip\varphi ),

\varphi 
\bigl( 
ess sup
x\in \BbbR N

\{ w(x)\} 
\bigr) 
 - \varphi 

\bigl( 
w(x\delta )

\bigr) 
\leq L\varphi 

\bigm| \bigm| ess sup
x\in \BbbR N

\{ w(x)\}  - w(x\delta )
\bigm| \bigm| < L\varphi \delta .

Combining the above and (Lip\varphi ) and (A\nu ), we get

ess sup
x\in \BbbR N

\{ w(x)\}  - \delta  - \rho (x\delta ) < w(x\delta ) - \rho (x\delta ) = \scrL \nu [\varphi (w(\cdot ))](x\delta )

\leq 
\int 
\BbbR N

\Bigl( 
\varphi 
\bigl( 
ess sup
x\in \BbbR N

\{ w(x)\} 
\bigr) 
 - \varphi (w(x\delta ))

\Bigr) 
d\nu (z) < L\varphi \delta \nu (\BbbR N ),
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and hence,
ess sup
x\in \BbbR N

\{ w(x)\} < \| \rho +\| L\infty (\BbbR N ) + \delta (1 + L\varphi \nu (\BbbR N )).

We may send \delta to zero to get

\| w+\| L\infty (\BbbR N ) = (ess sup
x\in \BbbR N

\{ w(x)\} )+ \leq \| \rho +\| L\infty (\BbbR N ).

In a similar way ess supx\in \BbbR N \{  - w(x)\} \leq \| \rho  - \| L\infty (\BbbR N ), and the result follows.

Under stronger assumptions on \varphi , we now establish an existence result for (EP) in
L1\cap L\infty . By this result and an approximation argument, we get the general existence
result which holds under assumption (A\varphi ). As a consequence of the approximation
argument, the general problem will also inherit the a priori estimates in Corollary 5.6
and Lemma 5.7.

Proposition 5.8. Assume (A\nu ), that \rho \in L1(\BbbR N ), and that

(5.1) \varphi \in C1(\BbbR ) such that
1

c
\leq \varphi \prime (s) \leq c for all s \in \BbbR and some c > 1.

Then there exists a unique w \in L1(\BbbR N ) satisfying (EP) a.e. Moreover, if in addition
\rho \in L\infty (\BbbR N ), then w is also in L\infty (\BbbR N ).

Remark 5.9. Let \rho \in L1(\BbbR N ) \cap L\infty (\BbbR N ). By Lemma 5.7, we can, a posteriori,
obtain the above existence and uniqueness result for the less restrictive assumption

\varphi \in C1(\BbbR ) such that
1

c
\leq \varphi \prime (s) \leq c for all s \in K and some c > 1,

where K \subset \BbbR is the compact set \{ \xi \in \BbbR : | \xi | \leq \| \rho \| L\infty (\BbbR N )\} .
Proof. By (A\nu ), equation (EP) can be written in an expanded way as follows:

(5.2) w(x) + \nu (\BbbR N )\varphi (w(x)) =

\int 
\BbbR N

\varphi (w(x+ z)) d\nu (z) + \rho (x).

Define
\scrW (x) := \Phi (w(x)) := w(x) + \nu (\BbbR N )\varphi (w(x)),

and note that by assumption, \Phi (0) = 0 + \nu (\BbbR N )\varphi (0) = 0, \Phi \in C1(\BbbR ) is invertible,
1 + \nu (\BbbR N ) 1c \leq \Phi \prime \leq 1 + \nu (\BbbR N )c, and the inverse \Phi  - 1 \in C1(\BbbR ) satisfies

(5.3)
1

1 + \nu (\BbbR N )c
\leq (\Phi  - 1)\prime (s) \leq 1

1 + \nu (\BbbR N ) 1c
for all s \in \BbbR .

Since \psi 1 := w - \^w and \psi 2 := \varphi (w) - \varphi ( \^w) have the same sign, | \psi 1+\psi 2| = | \psi 1| + | \psi 2| ,
and thus

\| \scrW  - \^\scrW \| L1(\BbbR N ) = \| w  - \^w\| L1(\BbbR N ) + \nu (\BbbR N )\| \varphi (w) - \varphi ( \^w)\| L1(\BbbR N ).(5.4)

With all the mentioned properties of \Phi , we are allowed to write (5.2) in terms of
\scrW and \Phi in the following way:

(5.5) \scrW (x) =

\int 
\BbbR N

\varphi 
\bigl( 
\Phi  - 1 (\scrW (x+ z))

\bigr) 
d\nu (z) + \rho (x).
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To conclude, we will prove that the map defined by

\scrW \mapsto \rightarrow M[\scrW ] :=

\int 
\BbbR N

\varphi 
\bigl( 
\Phi  - 1 (\scrW (x+ z))

\bigr) 
d\nu (z) + \rho (x)

is a contraction in L1(\BbbR N ). In this way, Banach's fixed point theorem will ensure
the existence of a unique solution \scrW \in L1(\BbbR N ) of (5.5) and thus the existence of a
unique solution w \in L1(\BbbR N ) of (EP) by the invertibility of \Phi . Indeed, using first the
definition of \Phi and (5.4) and then (5.3), we have

\| M[\scrW ] - M[ \^\scrW ]\| L1(\BbbR N ) \leq \nu (\BbbR N )\| \varphi (\Phi  - 1(\scrW )) - \varphi (\Phi  - 1( \^\scrW ))\| L1(\BbbR N )

= \| \scrW  - \^\scrW \| L1(\BbbR N )  - \| \Phi  - 1(\scrW ) - \Phi  - 1( \^\scrW )\| L1(\BbbR N )

\leq \| \scrW  - \^\scrW \| L1(\BbbR N )  - min
s\in \BbbR 

| (\Phi  - 1)\prime (s)| \| \scrW  - \^\scrW \| L1(\BbbR N )

=

\biggl( 
1 - 1

1 + \nu (\BbbR N )c

\biggr) 
\| \scrW  - \^\scrW \| L1(\BbbR N ).

Let us now consider the case when \rho \in L1(\BbbR N )\cap L\infty (\BbbR N ). By (5.1), there exists
a unique \varphi  - 1 such that

(5.6)
1

c
\leq (\varphi  - 1)\prime (s) \leq c for all s \in \BbbR .

Now, define W (x) := \varphi (w(x)) which is (only) in L1(\BbbR N ) since w is, and it solves

\varphi  - 1(W (x)) - \scrL \nu [W ](x) = \rho (x) a.e. x \in \BbbR N .

Note that (5.6) means that

1

c
s \leq \varphi  - 1(s) \leq cs for all s \geq 0

and

cs \leq \varphi  - 1(s) \leq 1

c
s for all s \leq 0.

Therefore, we also consider Q,R \in L1(\BbbR N ) solving

\varphi  - 1(Q(x)) - \scrL \nu [Q](x) = \rho +(x) and \varphi  - 1(R(x)) - \scrL \nu [R](x) = \rho  - (x).

By Corollary 5.6(b), we immediately have that Q \geq 0, R \leq 0, and R \leq W \leq Q.
Under these considerations,

1

c
Q(x) - \scrL \nu [Q](x) \leq \rho +(x) and

1

c
R(x) - \scrL \nu [R](x) \geq \rho  - (x).

By Theorem 3.1(b) and (c) in [33], there exist unique a.e.-solutions q, r \in L1(\BbbR N ) \cap 
L\infty (\BbbR N ) of

1

c
q(x) - \scrL \nu [q](x) = \rho +(x) and

1

c
r(x) - \scrL \nu [r](x) = \rho  - (x)

which satisfy
\| q\| L\infty (\BbbR N ) \leq c\| \rho +\| L\infty (\BbbR N ) \leq c\| \rho \| L\infty (\BbbR N )
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and

\| r\| L\infty (\BbbR N ) \leq c\| \rho  - \| L\infty (\BbbR N ) \leq c\| \rho \| L\infty (\BbbR N ).

Lemma 5.5 then gives Q \leq q and r \leq R. These estimates and the definition of W
yield

 - c\| \rho \| L\infty (\BbbR N ) \leq r \leq R \leq \varphi (w(x)) \leq Q \leq q \leq c\| \rho \| L\infty (\BbbR N ).

Finally, by (5.6), we then get

 - c2\| \rho \| L\infty (\BbbR N ) \leq w \leq c2\| \rho \| L\infty (\BbbR N ).

The proof is complete.

Proof of Theorem 4.2. The proof is divided into four steps.
(1) Approximate problem. For \delta > 0, let \omega \delta be a standard mollifier, and define

\varphi \delta (\zeta ) := (\varphi \ast \omega \delta )(\zeta ) - (\varphi \ast \omega \delta )(0) + \delta \zeta .

The properties of mollifiers give \varphi \delta \in C\infty (\BbbR ), and hence, it is locally Lipschitz.
Moreover, \varphi \prime 

\delta \geq \delta > 0 and \varphi \delta (0) = 0. Then there exists a constant c > 1 such that,
for every compact set K \subset \BbbR , 1

c \leq \varphi \prime 
\delta (s) \leq c for all s \in K. By Proposition 5.8 and

Remark 5.9, there exists a unique a.e.-solution w\delta \in L1(\BbbR N ) \cap L\infty (\BbbR N ) of

(5.7) w\delta (x) - \scrL \nu [\varphi \delta (w\delta )](x) = \rho (x) for all x \in \BbbR N ,

and moreover, by Corollary 5.6(c) and Lemma 5.7,

(5.8) \| w\delta \| L1(\BbbR N ) \leq \| \rho \| L1(\BbbR N ) and \| w\delta \| L\infty (\BbbR N ) \leq \| \rho \| L\infty (\BbbR N ).

(2) L1
loc-converging subsequence with limit w. Let K \subset \BbbR N be compact and

wK
\delta (x) := w\delta (x)1K(x) for any \delta > 0. We then apply the Kolmogorov--Riesz com-

pactness theorem (cf., e.g., Theorem A.5 in [52]). First, by (5.8), \| wK
\delta \| L1(\BbbR N ) \leq 

\| w\delta \| L1(\BbbR N ) \leq \| \rho \| L1(\BbbR N ). Second, note that w\delta (\cdot + \xi ) is a solution of (5.7) with right-
hand side \rho (\cdot +\xi ), and then, by Corollary 5.6(a) and (5.8) again and since translations
are continuous in L1(\BbbR N ),

\| wK
\delta (\cdot + \xi ) - wK

\delta \| L1(\BbbR N )

\leq \| (w\delta (\cdot + \xi ) - w\delta )1K(\cdot + \xi )\| L1(\BbbR N ) + \| w\delta (1K(\cdot + \xi ) - 1K)\| L1(\BbbR N )

\leq \| \rho (\cdot + \xi ) - \rho \| L1(\BbbR N ) + \| \rho \| L\infty (\BbbR N )\| 1K(\cdot + \xi ) - 1K\| L1(\BbbR N ) \rightarrow 0 as | \xi | \rightarrow 0.

Hence, there exists w \in L1(K) and a subsequence \delta n \rightarrow 0+ such that w\delta n \rightarrow w in
L1(K) as n\rightarrow \infty . A covering and diagonal argument then allows us to pick a further
subsequence such that the convergence is in L1

loc(\BbbR N ) and, hence, also pointwise a.e.
Then, w \in L1(\BbbR N ) \cap L\infty (\BbbR N ) since the estimates

(5.9) \| w\| L1(\BbbR N ) \leq \| \rho \| L1(\BbbR N ) and \| w\| L\infty (\BbbR N ) \leq \| \rho \| L\infty (\BbbR N )

hold by taking the a.e. limit using Fatou's lemma and the inequality | w| \leq | w - w\delta n | +
| w\delta n | , respectively, in (5.8).

(3) The limit w solves (EP) a.e. Note that (\varphi (0) = 0)

| \varphi \delta (\zeta ) - \varphi (\zeta )| \leq | \varphi \ast \omega \delta  - \varphi | (\zeta ) + | \varphi \ast \omega \delta  - \varphi | (0) + \delta | \zeta | ,
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which implies that \varphi \delta \rightarrow \varphi as \delta \rightarrow 0+ locally uniformly by (A\varphi ) and properties of
mollifiers. Then by a.e.-convergence of w\delta n , continuity of \varphi , and \| w\delta n\| L\infty \leq \| f\| L\infty ,

| \varphi \delta n(w\delta n) - \varphi (w)| \leq sup
| \zeta | \leq \| \rho \| L\infty 

| \varphi \delta n(\zeta ) - \varphi (\zeta )| + | \varphi (w\delta n) - \varphi (w)| \rightarrow 0

pointwise a.e. as n\rightarrow \infty . Moreover, | \varphi \delta n(w\delta n)| \leq | \varphi \delta n(w\delta n) - \varphi (w\delta n)| + | \varphi (w\delta n)| , so
for n sufficiently large,

\| \varphi \delta n(w\delta n)\| L\infty (\BbbR N ) \leq sup
| \zeta | \leq \| \rho \| L\infty 

| \varphi (\zeta )| + 1.

Then by the dominated convergence theorem and (A\nu ), \scrL \nu [\varphi \delta n(w\delta n)] \rightarrow \scrL \nu [\varphi (w)]
pointwise a.e. as n\rightarrow \infty . Hence we may pass to the limit in (5.7) to see that w is an
a.e.-solution of (EP).

(4) Uniqueness. By the assumptions and (5.9), w, \rho \in L1(\BbbR N ) \cap L\infty (\BbbR N ) and
hence w - \rho \in L1(\BbbR N ). Next we multiply equation (EP), satisfied a.e. by w, by a test
function and integrate. Since \scrL \nu is self-adjoint (\nu is symmetric),\int 

\BbbR N

\Bigl( 
w\psi  - \varphi (w)\scrL \nu [\psi ] - \rho \psi 

\Bigr) 
dx = 0 for all \psi \in C\infty 

c (\BbbR N ).

Hence, w is a distributional solution of (EP). By Theorem 5.4 it is then unique.

Proof of Theorem 4.3 with T = T imp. By the proof of Theorem 4.2, we know that
a.e.-solutions w\delta , \^w\delta of (5.7) with respective right-hand sides \rho , \^\rho satisfy Corollary 5.6
and Lemma 5.7, and they converge a.e. to w, \^w, which are solutions of (EP) with
respective right-hand sides \rho , \^\rho . Thus, we inherit (b) and (c) by Fatou's lemma, by
the inequality | w| \leq | w  - w\delta | + | w\delta | and the a.e.-convergence we obtain (d), and (a)
can be deduced from the L1-contraction.

Remark 5.10. By stability and compactness results for (EP), we can get existence
and a priori estimates for the full elliptic problem (Gen-EP).
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