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Abstract

We consider three-dimensional inviscid irrotational flow in a two layer fluid under the effects
of gravity and surface tension, where the upper fluid is bounded above by a rigid lid and the
lower fluid is bounded below by a flat bottom. We use a spatial dynamics approach and
formulate the steady Euler equations as an infinite-dimensional Hamiltonian system, where
an unbounded spatial direction x is considered as a time-like coordinate. In addition we
consider wave motions that are periodic in another direction z. By analyzing the dispersion
relation we detect several bifurcation scenarios, two of which we study further: a type of
00(is)(iκ0) resonance and a Hamiltonian-Hopf bifurcation. The bifurcations are investigated by
performing a center-manifold reduction, which yields a finite-dimensional Hamiltonian system.
For this finite-dimensional system we establish the existence of periodic and homoclinic orbits,
which correspond to, respectively, doubly periodic travelling waves and oblique travelling waves
with a dark or bright solitary wave profile in the x-direction. The former are obtained using
a variational Lyapunov-Schmidt reduction and the latter by first applying a normal form
transformation and then studying the resulting canonical system of equations.

1 Introduction

1.1 Internal waves

Internal waves are waves which propagate along the interface of two immiscible fluids of different
density. In this paper we study three-dimensional internal waves under the influence of gravity
and interfacial tension. The flow is assumed to be inviscid and irrotational and the density of each
layer is assumed to be constant. In addition we assume that the upper fluid is bounded above by
a rigid horizontal lid and the lower fluid is bounded below by a rigid horizontal bottom. The two
fluids are separated by an interface η, which is a function of X,Z, in the domain {(X,Y, Z) ∈ R3 :
−h2 ≤ Y ≤ h1}, where h1, h2 are positive real numbers. Let ρ1, ρ2 be the densities of the upper
and lower fluid respectively, where ρ1 < ρ2, and let φ1, φ2 be the velocity potentials of the upper
and lower fluid respectively. We consider waves which travel with constant speed c in the positive
X-direction. The governing equations can then be written as

∆φ1 = 0, for η < Y < h1, (1)

∆φ2 = 0, for − h2 < Y < η, (2)
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Figure 1: We are considering travelling waves with a bounded profile in the x direction that are
periodic in z, with X being the direction of propagation.

with boundary conditions

φ1Y = 0 on y = h1, (3)

φ2Y = 0 on y = −h2, (4)

φ1Y = −cηX + ηXφ1X + ηZφ1Z on Y = η, (5)

φ2Y = −cηX + ηXφ2X + ηZφ2Z on Y = η, (6)

ρ2

(
− cφ2X +

1

2
|∇φ2|2 + gη

)
− ρ1

(
−cφ1X +

1

2
|∇φ1|2 + gη

)
= σ

(
ηX√

1 + η2
X + η2

Z

)
X

+ σ

(
ηZ√

1 + η2
X + η2

Z

)
Z

on Y = η, (7)

where σ is the coefficient of interfacial tension and g is the gravitational constant. In addition we
will consider waves which have a bounded profile in some direction x, and are periodic in some
other direction z. Let θ1 be the angle between the x-axis and the X-axis and let θ2 be the angle
between the z-axis and the X-axis (see Figure 1), so that

x = cos(θ1)X + sin(θ1)Z, z = cos(θ2)X + sin(θ2)Z. (8)

Solutions of (1)–(7) which depend upon x, Y, z and are periodic in z, are called oblique travelling
waves. Oblique travelling waves for which there exist angles θ1, θ2 such the waves are independent
of z, are called oblique line waves. In order to find oblique travelling wave solutions we will use
the method of spatial dynamics. The idea, which is due to Kirchgässner [20], is to formulate a
time-independent problem as an evolution equation in which a spatial coordinate plays the role of
time. In our case we will use x as time and obtain the evolution equation

ux = Ku+ F̃(u), (9)

where u belongs to some Banach space, K is a linear operator and F̃(u) = O(‖u‖2). This is an
ill-posed problem but it is possible to obtain bounded solutions by applying the center-manifold
theorem. This is a result which can be used to obtain a finite-dimensional system of equations on
a center manifold, which is locally equivalent to the original equation (9). The idea of using spatial
dynamics to study oblique travelling is due to Groves and Haragus [11] and in the present work
we rely heavily on the methods developed by them.

1.2 Previous work on three-dimensional surface waves

We mention here some relevant results concerning three-dimensional surface waves that are periodic
in at least one distinguished direction. Groves and Mielke [13] considered waves that are periodic
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in the transverse direction Z, with a bounded profile in the direction of propagation X. This
correspond to choosing θ1 = 0, θ2 = ±π/2 in our setting. More specifically they construct waves
with a periodic, quasiperiodic or generalized solitary wave profile in the X-direction. Waves which
are periodic in the direction of propagation X and have a bounded profile in the transverse direction
Z (that is, choosing θ1 = ±π/2, θ2 = 0), were studied in [11, 14]. The authors found waves with
a periodic, quasiperiodic or generalized solitary wave profile in the Z-direction. The general case,
that is when arbitrary angles θ1, θ2 ∈ (−π, π) are allowed, were considered in [12]. Here waves
which have a bounded profile in some general direction x and are periodic in some other direction
z, were found. All of the above mentioned results were obtained by applying the method of spatial
dynamics, using a formulation as in (9). In [11, 13, 14] the spectrum of K depends upon the
parameters α = gh/c2, β = T/hc2 and ν = 2π/P , where c is the wave speed, σ is the coefficient
of surface tension, h is the water depth and P is the period either in the direction of propagation
or in the transverse direction. The parameters α and β emerge when the governing equations are
nondimensionalized, and ν appears when the period is normalized to 2π. In [12] the spectrum
also depends upon the angles θ1 and θ2. These extra parameters allow for a plethora of different
bifurcation scenarios. In fact, as was observed in [12], essentially all possible bifurcation scenarios
known in Hamiltonian systems theory can be obtained by varying the different parameters. We
also mention some results on doubly periodic waves obtained using other methods than spatial
dynamics. Reeder and Shinbrot [25] proved the existence of doubly periodic waves with a diamond
pattern, that is with θ2 = −θ1. This is done by solving an associated linear problem and then,
using the solutions of the linear problem, constructing a sequence whose limit is a solution of the
full nonlinear problem. Iooss and Plotnikov [17] considered the same problem as in [25] but in the
absence of surface tension. The absence of surface tension gives rise to a small divisor problem
and the authors use Nash-Moser methods to prove the existence of doubly periodic waves with a
diamond pattern. In [7] the authors proved the existence of doubly periodic waves with arbitrary
angles θ1, θ2, using a variational approach and more specifically, a variational Lyapunov-Schmidt
reduction.

1.3 Previous work on three-dimensional internal waves

Three-dimensional travelling internal waves are not as well-studied as their surface wave coun-
terparts. In particular, to the author’s knowledge there are no rigorous existence results for such
waves. There are however several numerical results concerning such waves, see for example [23, 24].
There is also a recent work [1] where the authors study overturning waves propagating on the in-
terface between two fluids. We also mention [19] where the authors studied an extension of the
Benjamin equation, which can be used to model internal waves, and were able to show that it
posses fully localized solitary wave solutions.

1.4 Outline of paper

In section 2 the parameters α = gh1(1 − ρ)/c2, β = σ/(h1ρ2c
2), ρ = ρ1/ρ2, h = h2/h1 emerge

from the nondimensionalization of the governing equations (1)–(7). We then obtain a Hamiltonian
formulation of the problem by first identifying solutions of the governing equations as critical
points of a certain functional. This functional is found from Luke’s variational principle and
can be identified as an action integral, from which a Hamiltonian is obtained by performing a
Legendre transform. The boundary conditions associated with the corresponding Hamiltonian
system are nonlinear, whereas the center-manifold theorem applies to equations on linear spaces.
It is therefore necessary to perform a change of variables so that we get a Hamiltonian system with
linear boundary conditions. This is done in section 3.

The dimension of the center manifold is equal to the number of imaginary eigenvalues of K,
counted with multiplicity. Due to this we carry out an investigation of the spectrum of K in
section 4. Since we assume periodicity in z we expand in Fourier series and consider the eigenvalue
equation for each Fourier mode k. We find that an imaginary number is is a mode k eigenvalue if
and only if the dispersion relation is satisfied:

ρ (νk cos(θ2) + s cos(θ1))
2

tanh(γ̃k)
+

(νk cos(θ2) + s cos(θ1))
2

tanh(hγ̃k)
= (α+ βγ̃2

k)γ̃k, (10)
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Figure 2: Intersections between the real branches of Cdr and the lines Q±1, Q0.

where
γ̃2
k = s2 + 2kνs cos(θ1 − θ2) + k2ν2.

The dispersion relation (10) can be written as

l21

(
ρ

tanh(
√
l21 + l22)

+
1

tanh(h
√
l21 + l22)

)
−
(
α+ β(l21 + l22)

)√
l21 + l22 = 0, (11)

where

l1 = νk cos(θ2) + s cos(θ1), (12)

l2 = νk sin(θ2) + s sin(θ1). (13)

The solution set of (10) can therefore be interpreted geometrically as in [15], namely that an
imaginary number is is a mode k eigenvalue if and only if the line

Qk = {(l1, l2) : l1 = νk cos(θ2) + s cos(θ1), l2 = νk sin(θ2) + s sin(θ1), s ∈ R},

intersects the real solution branch Cdr of (11), see Figure 2. Due to this it is possible to obtain the
same bifurcation scenarios in the internal wave setting as in the surface wave setting and we refer
to [12] where they list all the possible bifurcation scenarios for surface waves, involving mode 0 and
mode ±1 eigenvalues. However in the present work we focus on two particular cases. One of these
cases is a Hamiltonian-Hopf bifurcation involving mode ±1 eigenvalues. The bifurcation is achieved
by choosing ν such that ±is are algebraically double mode ±1 eigenvalues. This occurs precisely
when the lines Q1,Q−1 are tangential to Cdr (see Figure 11). To see that this is a Hamiltonian-
Hopf bifurcation, we first note that ν determines where Qk intersects the l2-axis. In particular,
when ν is large enough the lines Qk will not intersect Cdr for |k| ≥ 1. So in particular there are
no mode ±1 eigenvalues for such values of ν, instead there is a plus minus complex conjugate
quartet of complex mode ±1 eigenvalues. When ν is decreased there will be some critical value ν0

so that Q1, Q−1 are tangential to Cdr which yields the algebraically double mode ±1 eigenvalues
±is. When ν is decreased further the lines Q1, Q−1 intersect Cdr in two points each (see Figure
2), which means that there are four algebraically simple mode ±1 eigenvalues ±is1,±is2. For
equations that do not have a Hamiltonian structure, this bifurcation is called a (is)2 resonance.
The Hamilton-Hopf bifurcation is illustrated in Figure 3. The other bifurcation scenario we will
consider is the following type of 00(is2) resonance. Assume first that the lines Q1 and Q−1 intersect
Cdr in two distinct points each, so that K has the mode ±1 eigenvalues ±is1,±is2. Assume next
that there is a critical value ν0 of ν such that s1 = 0. Then 0 is a mode ±1 eigenvalue so in
particular it is of geometric multiplicity 2. When ν is decreased through this critical value ν0, the
following change in the spectrum of K occurs. For ν > ν0, K has the mode ±1 eigenvalues ±is1.
When ν is decreased to ν0 the eigenvalues ±is1 collide at the origin and form the geometrically
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Figure 3: The Hamiltonian-Hopf bifurcation.
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Figure 4: The 00(is2) resonance.

double eigenvalue 0. When ν is decreased further K will again have the eigenvalues ±is1, however
now is1 is a mode −1 eigenvalue and −is1 is a mode 1 eigenvalue. The notation is changed in a
natural way depending on the spectrum of K. For example, if K has another pair of mode ±k
eigenvalues ±is3 we denote the resonance by 00(is2)(is3). We illustrate the 00(is2) resonance in
Figure 4.

Section 5 consists of a statement of the center-manifold theorem, and verification of the hy-
potheses of the theorem. We are using a version of the theorem which is due to Mielke [21].
In particular the theorem preserves the Hamiltonian structure of equation (9) so that the finite-
dimensional reduced system also has a Hamiltonian structure. In section 6 we construct doubly
periodic internal waves, that is waves that are periodic in both x and z, see Figure 5. We do this
by considering a 00(is)(iκ0) resonance, where ±is are mode ±1 eigenvalues and ±iκ0 are mode 0
eigenvalues, all algebraically simple. We also need to assume that is is nonresonant with iκ0, that
is s 6= mκ0 for all m ∈ Z. Note that the Lyapunov center theorem (see for example [2]) cannot
be applied here since this requires all eigenvalues to be nonresonant. This is clearly violated in
our case due to the eigenvalue 0. We approach this problem by first performing a center-manifold
reduction, which gives us a finite-dimensional Hamiltonian system. This system is further reduced
by a variational Lyapunov-Schmidt reduction. The existence of solutions is then established by
an application of the implicit function theorem. The method employed in the present paper for
proving existence of doubly periodic waves is different from the one used in [12]. In that paper the
authors apply the Lyapunov center theorem in order to find such waves. This is done by fixing
the parameters so that K has the mode ±1 eigenvalues ±iκ which are nonresonant with all other
eigenvalues. After performing a center-manifold reduction, the Lyapunov center theorem yields
solutions which are periodic in x and z, with periods respectively near 2π/κ and equal to 2π/ν.
At the linear level the solutions are given by linear combinations of

exp(±i(κx+ νz)). (14)

These yield solutions of the nonlinear problem that depend on both x and z, but only through the
combination κx+ νz. We note that

κx+ νz = l1X + l2Z, (15)
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Figure 5: Example of a doubly periodic wave.

and there exist an angle θ̃1 such that

(l1, l2) =
√
l21 + l22(cos(θ̃1), sin(θ̃1)) = γ̃1(cos(θ̃1), sin(θ̃1)).

From (15) we then obtain

κx+ νz = γ̃1(cos(θ̃1)X + sin(θ̃1)Z) =: γ̃1x̃.

A calculation shows that these waves are solutions of (1)–(7) that depend upon x̃, Y . Hence, these
solutions are oblique line waves. In comparison, the solutions at the linear level obtained in the
present paper are linear combinations of

exp(±iκ0x), exp(±iν0z),

which yield solutions of the nonlinear problem that are doubly periodic in x and z and genuinely
three-dimensional (see Theorem 5).

In section 7 we consider the Hamiltonian-Hopf bifurcation. After performing a center-manifold
reduction and applying normal form theory, we obtain the reduced Hamiltonian system

Ax = isA+B + ic13µA+ d0
2iA|A|2 − 2d0

3A(AB̄ − ĀB) +O(|(A,B)||(A,B, µ)|3), (16)

Bx = isB + ic3µB − c12µA− 2d0
1A|A|2 − id0

2A
2B̄ + 2d0

2B|A|2 − 2d0
3B(AB̄ − ĀB)

+O(|(A,B)||(A,B, µ)|3), (17)

where A,B are coordinates on the center manifold and µ is a bifurcation parameter. The solution
set of (16)–(17) depends upon the signs of the coefficients c12 and d0

1. We find that both of the cases
c12 < 0, d0

1 > 0 and c12 < 0, d0
1 < 0 can occur, depending on the the different parameters involved.

So the situation here is analogous to the two-dimensional case studied in [22]. When c12 < 0,
d0

1 > 0, µ > 0 the system (16)–(17) has two bright solitary wave solutions that each generate a
one-parameter family of multipulse solutions, and when c12 < 0, d0

1 < 0, µ < 0 the system (16)–(17)
has a one-parameter family of dark solitary waves. This is to be compared with the situation for
surface waves studied in [12], where the authors found that c12 < 0, d0

1 > 0 for all parameter values
and so does not obtain a family of dark solitary wave solutions. See Figure 12 for sketches of the
different types of solutions.
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2 Spatial dynamics formulation of the travelling water wave
problem

Introduce in (1)–(7) the non-dimensional variables

(X ′, Y ′, Z ′) =
1

h1
(X,Y, Z), η′(X ′, Z ′) =

1

h1
η(X,Z), φ′i(X

′, Y ′, Z ′) =
1

h1c
φi(X,Y, Z).

This gives us the system of equations,

∆φ1 = 0, for η < Y < 1,

∆φ2 = 0, for − h < Y < η,

with boundary conditions

φ1Y = 0 on Y = 1,

φ2Y = 0 on Y = −h,
φ1Y = −ηX + ηXφ1X + ηZφ1Z on Y = η,

φ2Y = −ηX + ηXφ2X + ηZφ2Z on Y = η,

− φ2X +
1

2
|∇φ2|2 − ρ

(
−φ1X +

1

2
|∇φ1|2

)
+ αη = β

(
ηX√

1 + η2
X + η2

Z

)
X

+ β

(
ηZ√

1 + η2
X + η2

Z

)
Z

on Y = η,

where h = h2/h1, ρ = ρ1/ρ2, α = gh1(1− ρ)/c2, β = σ/(h1ρ2c
2) and we have dropped the prime

for notational simplicity. Next we introduce the coordinate system (x, z) given in (8) and look for
solutions of the form

η̃(x, z) = η(X,Z), φ̃i(x, y, z) = φi(X,Y, Z),

such that η̃ and φ̃i are periodic in z, with period Pz. We also obtain a fixed domain by defining

y(x, z) =

{
Y−1
η−1 η < Y < 1,
Y+h
η+h −h < Y < η.

Finally, the period is normalized to be 2π and if we let ν = 2π/Pz the governing equations become
(with the tilde removed)

φ1xx −
2ηxyφ1yx

η − 1
+

(
− ηxxy
η − 1

+
2η2
xy

(η − 1)2

)
φ1y +

η2
xy

2φ1yy

(η − 1)2
+

φ1yy

(η − 1)2
+

+ ν2

[
φ1zz −

2ηzyφ1yz

η − 1
+

(
− ηzzy

η − 1
+

2η2
zy

(η − 1)2

)
φ1y +

η2
zy

2φ1yy

(η − 1)2

]
+ 2ν cos(θ1 − θ2)

[
φ1xz −

ηxyφ1yz

η − 1
+

(
− ηzxy
η − 1

+
2ηxηzy

(η − 1)2

)
φ1y −

ηzyφ1xy

η − 1

+
ηzηxy

2φ1yy

(η − 1)2

]
= 0 for 0 < y < 1, (18)

φ2xx −
2ηxyφ2yx

η + h
+

(
− ηxxy

η + h
+

2η2
xy

(η + h)2

)
φ2y +

η2
xy

2φ2yy

(η + h)2
+

φ2yy

(η + h)2

+ ν2

[
φ2zz −

2ηzyφ2yz

η + h
+

(
− ηzzy

η + h
+

2η2
zy

(η + h)2

)
φ2y +

η2
zy

2φ2yy

(η + h)2

]
+ 2ν cos(θ1 − θ2)

[
φ2xz −

ηxyφ2yz

η + h
+

(
− ηzxy

η + h
+

2ηxηzy

(η + h)2

)
φ2y −

ηzyφ2xy

η + h

+
ηzηxy

2φ2yy

(η + h)2

]
= 0 for 0 < y < 1, (19)
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with boundary conditions

φ1y = 0 on y = 0, (20)

φ2y = 0 on y = 0, (21)

φ1y

η − 1
= ηx

(
φ1x −

ηxyφ1y

η − 1

)
+ ν2ηz

(
φ1z −

ηzyφ1y

η − 1

)
− cos(θ1)ηx

− ν cos(θ2)ηz + ν cos(θ1 − θ2)

(
ηx

(
φ1z −

ηzyφ1y

η − 1

)
+ ηz

(
φ1x −

ηxyφ1y

η − 1

))
on y = 1, (22)

φ2y

η + h
= ηx

(
φ2x −

ηxyφ2y

η + h

)
+ ν2ηz

(
φ2z −

ηzyφ2y

η + h

)
− cos(θ1)ηx

− ν cos(θ2)ηz + ν cos(θ1 − θ2)

(
ηx

(
φ2z −

ηzyφ2y

η + h

)
+ ηz

(
φ2x −

ηxyφ2y

η + h

))
on y = 1, (23)

− cos(θ1)

(
φ2x −

ηxyφ2y

η + h

)
− ν cos(θ2)

(
φ2z −

ηzyφ2y

η + h

)
+

1

2

[(
φ2x −

ηxyφ2y

η + h

)2

+
φ2

2y

(η + h)2
+ ν2

(
φ2z −

ηzyφ2y

η + h

)2

+ 2ν cos(θ1 − θ2)

(
φ2x −

ηxyφ2y

η + h

)(
φ2z −

ηzyφ2y

η + h

)]
− ρ
{
− cos(θ1)

(
φ1x −

ηxyφ1y

η − 1

)
− ν cos(θ2)

(
φ1z −

ηzyφ1y

η − 1

)
+

1

2

[(
φ1x −

ηxyφ1y

η − 1

)2

+
φ2

1y

(η − 1)2
+ ν2

(
φ1z −

ηzyφ1y

η − 1

)2

+ 2ν cos(θ1 − θ2)

(
φ1x −

ηxyφ1y

η − 1

)(
φ1z −

ηzyφ1y

η − 1

)]}

+ αη = β

[(
ηx
Q

)
x

+ ν2

(
ηz
Q

)
z

+ ν cos(θ1 − θ2)

((
ηz
Q

)
x

+

(
ηx
Q

)
z

)]
on y = 1, (24)

where Q =
√

1 + η2
x + ν2η2

z + 2ν cos(θ1 − θ2)ηxηz.
The energy and momentum associated with this system are given by

E =
ρ1h

3
1c

2

2ν

∫
R

∫ 2π

0

∫ 1

0

[(
φ1x −

ηxyφ1y

η − 1

)2

+
φ2

1y

(η − 1)2
+ ν2

(
φ1z −

ηyφ1y

η − 1

)2

+ 2ν cos(θ1 − θ2)

(
φ1x −

ηxyφ1y

η − 1

)(
φ1z −

ηzyφ1y

η − 1

)]
(1− η) dy dz dx

+
ρ2c

2h3
1

2ν

∫
R

∫ 2π

0

∫ 1

0

[(
φ2x −

ηxyφ2y

η + h

)2

+
φ2

2y

(η + h)2
+ ν2

(
φ2z −

ηyφ2y

η + h

)2

+ 2ν cos(θ1 − θ2)

(
φ2x −

ηxyφ2y

η + h

)(
φ2z −

ηzyφ2y

η + h

)]
(η + h) dy dz dx

+
g(ρ2 − ρ1)h4

1

2ν

∫
R

∫ 2π

0

η2 dz dx+
σh2

1

ν

∫
R

∫ 2π

0

Q− 1 dz dx,

P =
ρ1h

3
1c

ν

∫
R

∫ 2π

0

∫ 1

0

[
cos(θ1)

(
φ1x −

ηxyφ1y

η − 1

)
+ ν cos(θ1)

(
φ1z −

ηzyφ1y

η − 1

)]
(1− η) dy dz dx

+
ρ2h

3
1c

ν

∫
R

∫ 2π

0

∫ 1

0

[
cos(θ1)

(
φ2x −

ηxyφ2y

η + h

)
+ ν cos(θ2)

(
φ1z −

ηzyφ2y

η + h

)]
(η + h) dy dz dx.

The solutions we are interested in are critical points of the functional E − cP . This is an action
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integral, with Lagrangian

L(η, ηx, φ1, φ1x, φ2, φ2x) =

∫ 2π

0

∫ 1

0

ρ

2

[(
φ1x −

ηxyφ1y

η − 1
− cos(θ1)

)2

+

(
ν

(
φ1z −

ηzyφ1y

η − 1

)
− cos(θ2)

)2

+
φ2

1y

(η − 1)2
+ 2ν cos(θ1 − θ2)

(
φ1x −

ηxyφ1y

η − 1

)(
φ1z −

ηzyφ1y

η − 1

)
− cos2(θ1)− cos2(θ2)

]
(1− η) dy dz +

∫ 2π

0

∫ 1

0

1

2

[(
φ2x −

ηxyφ2y

η + h
− cos(θ1)

)2

+

(
ν

(
φ2z −

ηzyφ2y

η + h

)
− cos(θ2)

)2

+
φ2

2y

(η + h)2

+ 2ν cos(θ1 − θ2)

(
φ2x −

ηxyφ2y

η + h

)(
φ2z −

ηzyφ2y

η + h

)
− cos2(θ1)− cos2(θ2)

]
(η + h) dy dz +

α

2

∫ 2π

0

η2 dz + β

∫ 2π

0

Q− 1 dz.

A Hamiltonian formulation of (18)–(24) is obtained via the Legendre transform

ψ1 :=
δL

δφ1x
= ρ

[
φ1x −

ηxyφ1y

η − 1
− cos(θ1) + ν cos(θ1 − θ2)

(
φ1z −

ηzyφ1y

η − 1

)]
(1− η),

ψ2 :=
δL

δφ2x
=

[
φ2x −

ηxyφ2y

η + h
− cos(θ1) + ν cos(θ1 − θ2)

(
φ2z −

ηzyφ2y

η + h

)]
(η + h),

ω :=
δL

δηx
= −

∫ 1

0

yφ1yψ1

η − 1
dy −

∫ 1

0

yφ2yψ2

η + h
dy +

β(ηx + ν cos(θ1 − θ2)ηz)

Q
.

The Hamiltonian H is then defined by

H(η, ω, φ1, ψ1, φ2, ψ2) =

∫ 2π

0

∫ 1

0

ψ1φ1x dy dz +

∫ 2π

0

∫ 1

0

ψ2φ2x dy dz +

∫ 2π

0

ωηx dz

− L(η, ηx, φ1, φ1x, φ2, φ2x)

=

∫ 2π

0

∫ 1

0

[
1

2ρ(1− η)

(
ψ1 − ρ(1− η)ν cos(θ1 − θ2)

(
φ1z −

ηzyφ1y

η − 1

))2

+ ψ1 cos(θ1)− ρ(1− η)

2

(
ν

(
φ1z −

ηzyφ1y

η − 1

)
− cos(θ2)

)2

− ρφ2
1y

2(1− η)

− ρν cos(θ1 − θ2)(1− η) cos(θ1)

(
φ1z −

ηzyφ1y

η − 1

)
+
ρ(1− η)

2

(
cos2(θ1) + cos2(θ2)

) ]
dy dz

+

∫ 2π

0

∫ 1

0

[
1

2(η + h)

(
ψ2 − (η + h)ν cos(θ1 − θ2)

(
φ1z −

ηzyφ1y

η + h

))2

+ ψ2 cos(θ1)− (η + h)

2

(
ν

(
φ2z −

ηzyφ2y

η + h

)
− cos(θ2)

)2

− φ2
2y

2(η + h)

− ν cos(θ1 − θ2)(η + h) cos(θ1)

(
φ2z −

ηzyφ2y

η + h

)
+

(η + h)

2

(
cos2(θ1) + cos2(θ2)

) ]
dy dz − α

2

∫ 2π

0

η2 dz −
∫ 2π

0

[
ν cos(θ1 − θ2)ηzω̄

+
√
β2 − ω̄2

√
ν2 sin2(θ1 − θ2)η2

z + 1− β
]

dz,

where

ω̄ = ω +

∫ 1

0

yφ1yψ1

η − 1
dy +

∫ 1

0

yφ2yψ2

η + h
dy.
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For s ≥ 0, define

Xs = Hs+1
per (S)×Hs

per(S)×Hs+1
per (Σ)×Hs

per(Σ)×Hs+1
per (Σ)×Hs

per(Σ),

where S = (0, 2π), Σ = (0, 2π)× (0, 1) and

Hs
per(S) = {f ∈ Hs

loc(R) : f(z + 2π) = f(z), z ∈ R},
Hs

per(Σ) = {f ∈ Hs
loc((0, 1)× R) : f(y, z + 2π) = f(y, z), y ∈ (0, 1), z ∈ R}.

Let M = X0, m ∈ M and let v = (η, ω, φ1, ψ1, φ2, ψ2) ∈ TmM . On TmM × TmM we define the
position-independent symplectic form

Ω(v, v∗) =

∫
S

(ω∗η − η∗ω) dz +

∫
Σ

(ψ∗1φ1 − φ∗1ψ1) dy dz +

∫
Σ

(ψ∗2φ2 − φ∗2ψ2) dy dz. (25)

As in [3] we observe that (M,Ω) is a symplectic manifold and that the set

N = {m ∈ X1 : |ω̄(z)| < β, − h < η(z) < 1}

is a manifold domain of M with H ∈ C∞(N,R). The triple (M,H,Ω) is therefore a Hamiltonian
system. Note that in for example the papers [12, 13] they use Xs, Xs+1, for some s ∈ (0, 1/2),
to construct the symplectic manifold. However, it was shown in [3] that it is possible to use the
spaces X0, X1 and still obtain a well defined Hamiltonian system. The Hamiltonian vector field
vH and its domain D(vH) is defined by

D(vH) := {m ∈ N | ∃(vH)m ∈ TmM such that dH[m](v∗m) = Ω((vH)m, v
∗
m) ∀v∗m ∈ TmM},

and Hamilton’s equation is given by

γ̇(x) = (vH)γ(x). (26)

Before writing down (26) explicitly we introduce the new variables ψ̃1 = ψ1 + ρ cos(θ1), ψ̃2 =
ψ2+h cos(θ1), so that (0, 0, 0, 0, 0, 0) is an equilibrium solution of the resulting Hamiltonian system.
Suppressing the tilde, the Hamiltonian is then given by

H(η, ω, φ1, ψ1, φ2, ψ2)

=

∫ 2π

0

∫ 1

0

[
1

2ρ(1− η)

(
ψ1 − ρ cos(θ1)− ρν cos(θ1 − θ2)(1− η)

(
φ1z −

ηzyφ1y

η − 1

))2

+ ψ1 cos(θ1)− ρ cos2(θ1)− ρ(1− η)

2

(
ν

(
φ1z −

ηzyφ1y

η − 1

)
− cos(θ2)

)2

− ρφ2
1y

2(1− η)

− ρν cos(θ1 − θ2) cos(θ1)(1− η)

(
φ1z −

ηzyφ1y

η − 1

)
+
ρ(1− η)

2

(
cos2(θ1) + cos2(θ2)

) ]
dy dz

+

∫ 2π

0

∫ 1

0

[
1

2(η + h)

(
ψ2 − h cos(θ1)− ν cos(θ1 − θ2)(η + h)

(
φ1z −

ηzyφ1y

η + h

))2

+ ψ2 cos(θ1)− h cos2(θ1)− (η + h)

2

(
ν

(
φ2z −

ηzyφ2y

η + h

)
− cos(θ2)

)2

− φ2
2y

2(η + h)

− ν cos(θ1 − θ2) cos(θ1)(η + h)

(
φ2z −

ηzyφ2y

η + h

)
+

(η + h)

2

(
cos2(θ1) + cos2(θ2)

) ]
dy dz

− α

2

∫ 2π

0

η2 dz −
∫ 2π

0

ν cos(θ1 − θ2)ηzω̄ +
√
β2 − ω̄2

√
ν2 sin2(θ1 − θ2)η2

z + 1− β dz,

where

ω̄ = ω +

∫ 1

0

yφ1y(ψ1 − ρ cos(θ1))

η − 1
dy +

∫ 1

0

yφ2y(ψ2 − h cos(θ1))

η + h
dy,
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and Hamilton’s equations become

η̇ = ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2
− ν cos(θ1 − θ2)ηz, (27)

ω̇ =

∫ 1

0

[
− (ψ1 − ρ cos(θ1))2

2ρ(1− η)2
+

ρφ2
1y

2(1− η)2
− ρν2 sin2(θ1 − θ2)

2

(
φ2

1z −
η2
zy

2φ2
1y

(η − 1)2

)

+ ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

(
yφ1y(ψ1 − ρ cos(θ1))

(η − 1)2

)
− ρν2 sin2(θ1 − θ2)

[
yφ1y

(
φ1z −

ηzyφ1y

η − 1

)]
z

]
dy

− ρν [(cos(θ1 − θ2) cos(θ1)− cos(θ2))φ1z]y=1 +
ρ cos2(θ1)

2

+

∫ 1

0

[
(ψ2 − h cos(θ1))2

2(η + h)2
− φ2

2y

2(η + h)2
+
ν2 sin2(θ1 − θ2)

2

(
φ2

2z −
η2
zy

2φ2
2y

(η + h)2

)

+ ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

(
yφ2y(ψ2 − h cos(θ1))

(η + h)2

)
+ ν2 sin2(θ1 − θ2)

[
yφ2y

(
φ2z −

ηzyφ2y

η + h

)]
z

]
dy

+ ν [(cos(θ1 − θ2) cos(θ1)− cos(θ2))φ2z]y=1 −
cos2(θ1)

2
+ αη

− ν2 sin2(θ1 − θ2)

[√
β2 − ω̄2

ν2 sin2(θ1 − θ2)η2
z + 1

ηz

]
z

− ν cos(θ1 − θ2)ωz, (28)

φ̇1 =
ψ1 − ρ cos(θ1)

ρ(1− η)
− ν cos(θ1 − θ2)φ1z + ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

(
yφ1y

η − 1

)
+ cos(θ1), (29)

ψ̇1 = −ρφ1yy

1− η − ν cos(θ1 − θ2)ψ1z + ρν2 sin2(θ1 − θ2)

[
(η − 1)

(
φ1z −

ηzyφ1y

η − 1

)]
z

+ ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

[
y(ψ1 − ρ cos(θ1))

η − 1

]
y

− ρν2 sin2(θ1 − θ2)ηz

[
y

(
φ1z −

ηzyφ1y

η − 1

)]
y

, (30)

φ̇2 =
ψ2 − h cos(θ1)

η + h
− ν cos(θ1 − θ2)φ2z + ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

(
yφ2y

η + h

)
+ cos(θ1), (31)

ψ̇2 = − φ2yy

η + h
− ν cos(θ1 − θ2)ψ2z − ν2 sin2(θ1 − θ2)

[
(η + h)

(
φ2z −

ηzyφ2y

η + h

)]
z

+ ω̄

√
ν2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

[
y(ψ2 − h cos(θ1))

η + h

]
y

+ ν2 sin2(θ1 − θ2)ηz

[
y

(
φ2z −

ηzyφ2y

η + h

)]
y

. (32)

The domain D(vH) consists of elements in (η, ω, φ1, ψ1, φ2, ψ2) ∈ N such that
φ1y = 0, y = 0,

−ρφ1y

1−η − ρν2 sin2(θ1 − θ2)ηz

(
φ1z − ηzφ1y

η−1

)
− ρν(cos(θ1 − θ2) cos(θ1)− cos(θ2))ηz

+ω̄
√

ν2 sin2(θ1−θ2)η2z+1
β2−ω̄2

(
ψ1−ρ cos(θ1)

η−1

)
= 0, y = 1,

(33)
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φ2y = 0, y = 0,

− φ2y

η+h + ν2 sin2(θ1 − θ2)ηz

(
φ2z − ηzφ2y

η+h

)
+ ν(cos(θ1 − θ2) cos(θ1)− cos(θ2))ηz

+ω̄
√

ν2 sin2(θ1−θ2)η2z+1
β2−ω̄2

(
ψ2−h cos(θ1)

η+h

)
= 0, y = 1.

(34)

In the present paper we will only consider bifurcations in ν around some fixed value ν0. We therefore
fix parameters (α, β, θ1, θ2, ν0) and introduce a bifurcation parameter µ by writing ν = ν0 +µ, and
we write (27)–(32) as

u̇ = vHµ(u), (35)

where we have written Hµ to indicate that the Hamiltonian depends upon µ. As mentioned before,
u0 = (0, 0, 0, 0, 0, 0) is an equilibrium solution of (35) and the linearization L of vHµ(u) around
this solution, with µ = 0, is given by Lu = (L1u, L2u, L3u, L4u, L5u, L6u), where

L1u =
1

β

(
ω + ρ cos(θ1)

∫ 1

0

yφ1y dy − cos(θ1)

∫ 1

0

yφ2y dy

)
− ν0 cos(θ1 − θ2)ηz,

L2u = cos(θ1)

∫ 1

0

(ψ1 − ρ cos(θ1)η) dy − ρν0 (cos(θ1 − θ2) cos(θ1)− cos(θ2))φ1z|y=1

− cos(θ1)

h

∫ 1

0

(ψ2 + cos(θ1)η) dy + ν0 (cos(θ1 − θ2) cos(θ1)− cos(θ2))φ2z|y=1

− ν2
0β sin2(θ1 − θ2)ηzz − ν0 cos(θ1 − θ0

2)ωz + αη,

L3u =
ψ1

ρ
− cos(θ1)η − ν0 cos(θ1 − θ2)φ1z,

L4u = −ρφ1yy − ν0 cos(θ1 − θ2)ψ1z +
ρ cos(θ1)

β

(
ω + ρ cos(θ1)

∫ 1

0

yφ1y dy − cos(θ1)

∫ 1

0

yφ2y dy

)
− ρν2

0 sin2(θ1 − θ2)φ1zz,

L5u =
ψ2

h
+

cos(θ1)η

h
− ν0 cos(θ1 − θ2)φ2z,

L6u = −φ2yy

h
− ν0 cos(θ1 − θ2)ψ2z −

cos(θ1)

β

(
ω + ρ cos(θ1)

∫ 1

0

yφ1y dy − cos(θ1)

∫ 1

0

yφ2y dy

)
− hν2

0 sin2(θ1 − θ2)φ2zz.

where D(L) is the set of elements in X1 which satisfy
φ1y = 0, y = 0,

−ρφ1y − ρν0 (cos(θ1 − θ2) cos(θ1)− cos(θ2)) ηz

+ρ cos(θ1)
β

(
ω + ρ cos(θ1)

∫ 1

0
yφ1y dy − cos(θ1)

∫ 1

0
yφ2y dy

)
= 0, y = 1,

φ2y = 0, y = 0,

−φ2y

h + ν0 (cos(θ1 − θ2) cos(θ1)− cos(θ2)) ηz

− cos(θ1)
β

(
ω + ρ cos(θ1)

∫ 1

0
yφ1y dy − cos(θ1)

∫ 1

0
yφ2y dy

)
= 0, y = 1.

Equation (35) can then be formulated as

u̇ = Lu+ Fµ(u), (36)

where Fµ(u) = vHµ(u)− Lu.
Finally we note that vHµ anti-commutes with the symmetry

S : (y, z) 7→ (y,−z), (η, ω, φ1, ψ1, φ2, ψ2) = (η,−ω,−φ1, ψ1,−φ2, ψ2), (37)

that is, (36) is reversible with reverser S. The reversibility of (36) is due to the invariance of the
governing equations (18)–(24), under the transformation

(x, y, z) 7→ (−x, y,−z), (η, φ1, φ2) 7→ (η,−φ1,−φ2).

Also note that Hµ(Su) = Hµ(u).
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3 A change of variables

The center-manifold theorem applies to equations on linear spaces and so we cannot apply the the-
orem directly to equation (36), due to the nonlinear boundary conditions (33)–(34). We therefore
make a change of variables in order to obtain an equation equivalent with (36), but with linear
boundary conditions. For constructing such variables we follow [13].

The boundary conditions (33)–(34) can be written in the form

φiy = Fi(u, µ), y = 0, 1, i = 0, 1, (38)

where

F1(u, µ) =
(1− η)y

ρ

[
− ρ(ν0 + µ)2 sin2(θ1 − θ2)ηz

(
φ1z −

ηzφ1y

η − 1

)
− ρ(ν0 + µ)

(
cos(θ1 − θ2) cos(θ1)− cos(θ2)

)
ηz

+

√
(ν0 + µ)2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

ω̄(ψ1 − ρ cos(θ1))

η − 1

]
,

F2(u, µ) = (η + h)y

[
(ν0 + µ)2 sin2(θ1 − θ2)ηz

(
φ2z −

ηzφ2y

η + h

)
+ (ν0 + µ)

(
cos(θ1 − θ2) cos(θ1)− cos(θ2)

)
ηz

+

√
(ν0 + µ)2 sin2(θ1 − θ2)η2

z + 1

β2 − ω̄2

ω̄(ψ2 − h cos(θ1))

η + h

]
.

Let V ⊆ X1 be a neighborhood of the origin and let ∆ be a neighborhood of the origin in R. For
a fixed value of β we choose V small enough so that

−h
2
< η(z) <

1

2
, |ω̄(z)| < β

Let u ∈ V , µ ∈ ∆ and define Gµ : V 7→ X1, by

Gµ(η, ω, φ1, ψ1, φ2, ψ2) = (η, v, ϕ1, ψ1, ϕ2, ψ2),

with

v = ω +

∫ 1

0

ρ cos(θ1)yφ1y dy −
∫ 1

0

cos(θ1)yφ2y dy,

ϕ1 = φ1 − χ1y,

ϕ2 = φ2 − χ2y,

and where χi, i = 1, 2, are the unique solutions of the boundary value problem{
χiyy + χizz = Fi(u, µ),

χi = 0, y = 0, 1.

Note that
ϕiy = φiy − χiyy = φiy + χizz − Fi(u, µ), i = 1, 2.

So if φi, i = 1, 2 satisfy (38), then ϕi, i = 1, 2, satisfy the linear boundary conditions

ϕiy = 0, y = 0, 1, i = 1, 2.

The following lemma states that Gµ is a valid change of variables.

Lemma 1.

i For each µ ∈ ∆, the mapping Gµ is a smooth diffeomorphism from the neighborhood V ⊆ X1

of 0 onto a neighborhood Ṽ ⊆ X1 of 0. The mappings Gµ and (Gµ)−1 and their derivatives
depend smoothly upon µ.
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ii For each (u, µ) ∈ V × ∆, the operator dGµ[u] : X1 7→ X1 extends to an isomorphism

d̃G
µ
[u] : X0 7→ X0. The operators d̃G

µ
[u], (d̃G

µ
[u])−1 ∈ L(X0, X0) depend smoothly upon

(u, µ) ∈ V ×∆.

Lemma 1 can be proven in the same way as [13, Lemma 3.3], by arguing as in [3, Proposition

2.1]. From this change of variables we obtain a Hamiltonian system (M, Ω̃µ, H̃µ), where, for
m ∈ Ṽ , w, w∗ ∈ TmM, µ ∈ ∆

Ω̃µm(w,w∗) = Ω
(

d̃G
µ [

(Gµ)−1(m)
]−1

(w), d̃G
µ [

(Gµ)−1(m)
]−1

(w∗)
)
,

H̃µ(m) = Hµ((Gµ)−1(m)).

Hamilton’s equation is then given by
ẇ = vH̃µ(w), (39)

where vH̃µ is the Hamiltonian vector field corresponding to the Hamiltonian H̃µ and symplectic

product Ω̃µ, with

D(vH̃µ) = {(η, v, ϕ1, ψ1, ϕ2, ψ2) ∈ Ṽ : ϕi = 0, y = 0, 1, i = 0, 1}.

Moreover, for elements w ∈ D(vH̃µ) we have that

vH̃µ(w) = d̃G
µ [

(Gµ)−1(w)
] (
vHµ((Gµ)−1(w))

)
.

Let K be the linearization of vH̃µ around the equilibrium solution (0, 0, 0, 0, 0, 0) and µ = 0, with

D(K) = {(η, v, ϕ1, ψ1, ϕ2, ψ2) ∈ X1 : ϕi = 0, y = 0, 1, i = 1, 2},

so that (39) can be written as

ẇ = Kw + F̃µ(w), (40)

where F̃µ(w) = vH̃µ(w)−Kw. Note that

K = d̃G
0
[0]L(dG0[0])−1. (41)

Due to this we may work with L instead of K when doing spectral analysis.

4 Spectrum of L

The spectrum of L depends upon the parameters α, β, θ1, θ2, ν0 and we are interested in parameters
for which the number of purely imaginary eigenvalues changes. We will consider two bifurcation
scenarios in more detail: a 02iω resonance and a Hamiltonian-Hopf bifurcation involving mode ±1
eigenvalues.

Let (η, ω, φ1, ψ1, φ2, ψ2) ∈ D(L). We expand these functions in Fourier series:

η(z) =
∑
k∈Z

ηk exp(ikz), ω(z) =
∑
k∈Z

ωk exp(ikz),

φj(y, z) =
∑
k∈Z

φjk(y) exp(ikz), ψj(y, z) =
∑
k∈Z

ψjk(y) exp(ikz), j = 1, 2.

Consider the eigenvalue equation Lu = λu. Using the Fourier series expansions above we find that
λ ∈ C is a mode k eigenvalue if and only if

ρ (ν0ik cos(θ2) + λ cos(θ1))
2

tan(γk)
+

(ν0ik cos(θ2) + λ cos(θ1))
2

tan(hγk)
= (α− βγ2

k)γk,

where
γ2
k = λ2 + 2ikν0λ cos(θ1 − θ2)− k2ν2

0 .
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Setting λ = is we obtain the dispersion relation

ρ (ν0k cos(θ2) + s cos(θ1))
2

tanh(γ̃k)
+

(ν0k cos(θ2) + s cos(θ1))
2

tanh(hγ̃k)
= (α+ βγ̃2

k)γ̃k, (42)

where
γ̃2
k = s2 + 2kν0s cos(θ1 − θ2) + k2ν2

0 .

We note here that is is a mode k eigenvalue if and only if −is is a mode −k eigenvalue. This
implies in particular that if 0 is a mode k eigenvalue then it is also a mode −k eigenvalue. In order
to further study higher mode eigenvalues we use the same geometric approach as in [12] and [15].
Let

l1 = ν0k cos(θ2) + s cos(θ1), (43)

l2 = ν0k sin(θ2) + s sin(θ1), (44)

and note that l21 + l22 = γ̃2
k. The dispersion relation (42) can then be written as

l21

(
ρ

tanh(
√
l21 + l22)

+
1

tanh(h
√
l21 + l22)

)
−
(
α+ β(l21 + l22)

)√
l21 + l22 = 0. (45)

Denote the left hand side of (45) by D(l1, l2). We see that is is a mode k eigenvalue of L if and
only if D(l1, l2) = 0 with l1, l2 given by (43), (44). So we are looking for intersections between the
set

Cdr =

{
(l1, l2) ∈ R2 : l21 =

(α+ βa2)a
ρ

tanh(a) + 1
tanh(ha)

, l22 = a2 − (α+ βa2)a
ρ

tanh(a) + 1
tanh(ha)

, a ∈ R

}

and the lines

Qk = {(l1, l2) : l1 = ν0k cos(θ2) + s cos(θ1), l2 = ν0k sin(θ2) + s sin(θ1), s ∈ R}.

The fact that is is a mode k eigenvalue if and only if −is is a mode −k eigenvalue can be recovered
by noting that Qk intersect Cdr if and only if Q−k intersect Cdr.

In Figure 6 we provide a simplified picture of Cdr for different values of α and β. Qualitatively,
the same picture was also obtained for surface waves in [15]. Note in particular that for (β, α) ∈
IIIρ,h,0 ∪ IVρ,h,0 there are no purely imaginary nontrivial mode k eigenvalues. The curves Cρ,h,θ1i ,

i = 1, .., 4 are defined in (52)–(55). Note that the curves Cρ,h,0i obtained when choosing θ1 = 0 are
the bifurcation curves found in the study of two-dimensional internal solitary waves (see [22]). In
[12, Figure 2(a)] a more detailed picture of how Cdr depends upon α and β is shown. It shows that
there are curves in the (β, α)-plane where qualitative changes in the shape of Cdr occur. These
changes takes place in the present setting as well, indeed, we have the expansion

l22 =

(
ρ+ 1

h

α
− 1

)
l21 +

(
ρ+ 1

h

)2
α2

(
ρ+h

3

ρ+ 1
h

− β

α

)
l41 +O(l61), (46)

which corresponds to [12, equation (44)]. From (46) we can see that a point of inflection emerges as
β/α is decreased through ((ρ+h)/3)/(ρ+1/h) and when entering region IIρ,h,0 from Iρ,h,0 a second
point of inflection emerge. Increasing α further will eventually lead to a collision between the two
inflection points, making Cdr convex again. This is a direct generalization of the observations
in [12]. In Figure 2 we have sketched the case when Q0 intersects Cdr at the origin and in two
additional points and Q±1 intersect Cdr in two distinct points each. We see from this picture
that in general there are at least two different mode ±1 eigenvalues or there are none. For the
special case when Qk is tangent to Cdr, is is a mode k eigenvalue of algebraic multiplicity 2. More
precisely, we find from equation (42) that is, with s+ kv0 cos(θ1 − θ2) 6= 0, is a mode k eigenvalue
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Figure 6: Diagram of how the real branches of Cdr look in certain regions of the (β, α)-plane.

of algebraic multiplicity 2 if and only if

α = α∗k(s) := −β∗k(s)γ̃2
k +

1

γ̃k
(s cos(θ1) + ν0k cos(θ2))

2

(
ρ

tanh(γ̃k)
+

1

tanh(hγ̃k)

)
, (47)

β = β∗k(s) :=
s cos2(θ1) + kν0 cos(θ1) cos(θ2)

γ̃k(s+ ν0k cos(θ1 − θ2))

(
ρ

tanh(γ̃k)
+

1

tanh(hγ̃k)

)
− (s cos(θ1) + ν0k cos(θ2))2

2γ̃3
k

[
ρ

tanh(γ̃k)
+

1

tanh(hγ̃k)

+γ̃k

(
ρ

sinh2(γ̃k)
+

h

sinh2(hγ̃k)

)]
. (48)

In the special case when s = −kv0 cos(θ1 − θ2), the dispersion relation (42) reduces to

(α+ βν2
0k

2 sin2(θ1 − θ2))ν0k sin(θ1 − θ2) = ν2
0k

2 sin2(θ1) sin2(θ1 − θ2)

(
ρ

tanh(ν0k sin(θ1 − θ2))

+
1

tanh(hν0k sin(θ1 − θ2))

)
, (49)

and we find that is is of algebraic multiplicity 2 if and only if

ν0k cos(θ1) sin(θ1) = 0. (50)

We note that (50) is satisfied for k 6= 0 if and only if θ1 = 0 or θ1 = ±π/2. However, equation
(49) has no solutions when k 6= 0 and θ1 = 0. Hence, is = −iν0k cos(θ1 − θ2) is an eigenvalue of
algebraic multiplicity 2 if and only if θ1 = ±π/2 and (β, α) belongs to the line defined by (49).
In addition, when θ1 = ±π/2 then an algebraically double mode k eigenvalue is must necessarily
satisfy s = −ν0k cos(±π/2− θ2). Indeed, when θ1 = ±π/2, then Qk is parallel with the l2-axis, so
Qk is tangent to Cdr only when l2 = 0, which implies that s = ±ν0k sin(θ2) = −ν0k cos(±π/2−θ2).
The case when k = 0 will be investigated more thoroughly in section 4.1.

In the further special case (θ1, θ2) = (±π/2, 0) it follows from the dispersion relation (42) that
is is a mode k eigenvalue if and only if it is a mode −k eigenvalue. Hence, all eigenvalues are of
geometric multiplicity 2. Also note that since θ1 = π/2, we have that an algebraically double mode
k eigenvalue is must satisfy s = −ν0k cos(0 ± π/2) = 0. Similarly, in the other special case when
(θ1, θ2) = (0,±π/2) we again have that all mode k eigenvalues are of geometric multiplicity 2. Both
of these cases have been studied in the surface wave setting. The case when (θ1, θ2) = (0,±π/2)
was considered in [13] and the case when (θ1, θ2) = (±π/2, 0) was considered in [11, 14]. Moreover,
both of these cases were again investigated in [12].
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Figure 7: Intersections of P and Q±1.

The following characterization of the purely imaginary eigenvalues, used also in [12], will be
helpful when discussing the 00(is)(iκ0) resonance in section 4.2. Note that

Qk = {sQ0 + ν0kP : s ∈ R},
where P = (cos(θ2), sin(θ2)) and Q0 is here to be interpreted as (cos(θ1), sin(θ1)). This means
that points on the lines Qk have coordinates (s, ν0k) in the coordinate system (Q0, P ). The line
generated by P intersects the lines Qk in points pk = (ν0k cos(θ2), ν0k sin(θ2)), see Figure 7. The
imaginary part of a purely imaginary mode k eigenvalue can therefore be interpreted as the signed
distance between pk and the corresponding intersection of Qk and Cdr.

4.1 Mode 0 eigenvalues

For k = 0 (42) becomes

s2 cos2(θ1)

(
ρ

tanh(s)
+

1

tanh(hs)

)
= (α+ βs2)s. (51)

Note that 0 is a solution of (51). In fact 0 has for all parameter values, two eigenvectors, each
with a corresponding generalized eigenvector, that is, 0 is trivially a mode 0 eigenvalue of algebraic
multiplicity 4. Also note that when θ1 = ±π/2 there are no other purely imaginary mode 0
eigenvalues. From (51) we obtain the bifurcation diagram in Figure 8. The curves in Figure 8 are

Cρ,h,θ11 = {(β, α) = (β∗(is), α∗(is)), s ∈ (0,min(0, π/h))} , (52)

Cρ,h,θ12 = {(β, α) = (β∗(s), α∗(s)), s ∈ (0,∞)} , (53)

Cρ,h,θ13 =

{
(β, α) : β > cos2(θ1)

ρ+ h

3
, α = cos2(θ1)

(
ρ+

1

h

)}
, (54)

Cρ,h,θ14 =

{
(β, α) : β < cos2(θ1)

ρ+ h

3
, α = cos2(θ1)

(
ρ+

1

h

)}
. (55)

• When the curve Cρ,h,θ11 is crossed from below, the mode 0 eigenvalues of L change from two
pairs of real simple eigenvalues to a plus-minus complex-conjugate quartet of complex simple
eigenvalues. For points on the curve Cρ,h,θ11 the eigenvalues collide on the real axis to form
a plus-minus pair of algebraically double real eigenvalues. This change in the spectrum is
called a Hamiltonian real 1:1 resonance.

• When the curve Cρ,h,θ12 is crossed from below, the mode 0 eigenvalues of L change from two
pairs of simple imaginary eigenvalues to a plus-minus complex-conjugate quartet of complex
simple eigenvalues. For points on the curve Cρ,h,θ12 the eigenvalues collide on the imaginary
axis to form a plus-minus pair of algebraically double imaginary eigenvalues. This change in
the spectrum is called a Hamiltonian-Hopf bifurcation.
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Figure 8: Bifurcation curves in the (β, α)-plane for mode 0 eigenvalues. The ? in the picture
indicates the point cos2(θ1)(ρ+h3 , ρ+ 1

h ).

• When the curve Cρ,h,θ13 is crossed from below, the mode 0 eigenvalues of L change from a
pair of simple real eigenvalues and a pair of simple imaginary eigenvalues to two pairs of
simple real eigenvalues. For points on the curve Cρ,h,θ13 the imaginary eigenvalues collide at
0, making 0 an eigenvalue of algebraic multiplicity 6. This change in the spectrum is called
a Hamiltonian real 02 resonance.

• When the curve Cρ,h,θ14 is crossed from below, the mode 0 eigenvalues of L change from a
pair of simple real eigenvalues and a pair of simple imaginary eigenvalues to two pairs of
simple imaginary eigenvalues. For points on the curve Cρ,h.θ14 real eigenvalues collide at 0,
making 0 an eigenvalue of algebraic multiplicity 6.

• When (β, α) = cos2(θ1)(ρ+h3 , ρ+ 1
h ), 0 is an eigenvalue of algebraic multiplicity 8, and there

are no other purely imaginary mode 0 eigenvalues.

4.2 Bifurcations involving mode ±1 eigenvalues

We begin by describing the 00(is)(iκ0) resonance mentioned in the introduction. Here we want
to choose ν0 so that ±iκ0, 0 are contained in the spectrum of L, where ±iκ0 are non-zero, sim-
ple mode 0 eigenvalues, 0 is a simple mode ±1 eigenvalue (and trivially a mode 0 eigenvalue of
algebraic multiplicity 4). We allow for other purely imaginary mode ±k eigenvalues ±is under
the nonresonance condition s 6= mκ0 for all m ∈ Z. In order for κ0 6= 0, we need to assume that
θ1 6= ±π/2. The mode 0 eigenvalues of L were investigated in section 4.1; we therefore turn to the
mode ±1 eigenvalue 0. From (42) we get that 0 is a mode ±1 eigenvalue if and only if

ν2
0 cos2(θ2)

(
ρ

tanh(ν0)
+

1

tanh(hν0)

)
= (α+ βν2

0)ν0. (56)

Here we need to assume that θ2 6= ±π/2 or else there are no nontrivial solutions ν0 of (56). We
note that (56) is analogous to (51) and we can therefore conclude that it possesses real solutions
if (β, α) belong to the shaded region in Figure 9. More specifically, for (β, α) ∈ Iρ,h,θ2 there exists
one positive solution ν0 of (56), and for (β, α) ∈ IIρ,h,θ2 there exist two positive solutions ν1, ν2.
There are no solutions of (56) for values of (β, α) belonging to any of the remaining regions of the
(β, α)-plane. So given (β, α) ∈ Iρ,h,θ2 we obtain a positive solution ν0 of (56) and for this choice
of ν0, 0 is a mode ±1 eigenvalue of L. Given (β, α) ∈ IIρ,h,θ2 we obtain two positive solutions of
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Figure 9: Bifurcation curves related to equation (56). In region Iρ,h,θ2 there is one positive solution
ν0 of (56) and in IIρ,h,θ2 there are two such solutions.

(56), and we choose one of these solutions as our ν0. The relevant transition curves in Figure 9 are

Cρ,h,θ22 =
{

(β, α) = (β̃(ν0), α̃(ν0)
}
,

Cρ,h,θ24 =

{
(β, α) : β < cos2(θ2)

(
ρ+ h

3

)
, α = cos2(θ2)

(
ρ+

1

h

)}
,

where

α̃(ν0) = −β̃(ν0)ν2
0 + ν0 cos2(θ2)

(
ρ

tanh(ν0)
+

1

tanh(hν0)

)
,

β̃(ν0) =
cos2(θ2)

2ν0

(
ρ

tanh(ν0)
+

1

tanh(hν0)

)
− cos2(θ2)

2

(
ρ

sinh2(ν0)
+

1

sinh2(hν0)

)
.

These are essentially the same curves as Cρ,h,θ12 , Cρ,h,θ14 , in fact

(β̃(ν0), α̃(ν0)) =
cos2(θ2)

cos2(θ1)
(β∗(ν0), α∗(ν0)).

Note that we can allow values (β, α) belonging to either Cρ,h,θ22 or Cρ,h,θ24 since this does not
change the multiplicity of the eigenvalue 0. In fact, under the assumption that θ1 6= ±π/2, we
know from section 4 that 0 is a mode ±1 eigenvalue of algebraic multiplicity 2 if and only if
(β, α) = (β∗1(0), α∗1(0)). In conclusion we find that the following holds. If cos2(θ1) ≤ cos2(θ2),
then Iρ,h,θ1 ⊆ Iρ,h,θ2 . If (β, α) ∈ Iρ,h,θ1 , then we know from section 4.1 that L has the mode 0
eigenvalues ±iκ0 and no other nontrivial mode 0 eigenvalues. Since (β, α) ∈ Iρ,h,θ2 as well, there
exists a solution ν0 of (56), which implies that 0 is a mode ±1 eigenvalue of L, for this choice of ν0.
If (β, α) ∈ IIρ,h,θ1 , we get from section 4.1 that L has the mode 0 eigenvalues ±iκ0, ±iκ1, which
are generically nonresonant. In addition (β, α) belongs to either Iρ,h,θ2 or IIρ,h,θ2 . In the first case,
equation (56) has, as previously mentioned, one solution ν0 and in the second case there are two
solutions ν1, ν2. Hence, in both cases we can choose ν0 so that 0 is a mode ±1 eigenvalue of L,
where we in the second case choose either ν1 or ν2 and use this as our ν0. If cos2(θ2) ≤ cos2(θ1)
we can argue in the same way, but with θ1 and θ2 reversed. This bifurcation can also be explained
using the geometric interpretation of the dispersion relation. First note that the angle between Q0

and the positive l1 axis is θ1 and the angle between P and the positive l1 axis is θ2. In order for
0 to be a mode ±1 eigenvalue we need to have that the points p±1 and the intersection points of
Q±1 and Cdr are the same, see Figure 10. In particular we need to ensure that P intersects Cdr.
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Figure 10: Intersections between Q±1 when 0 is a mode ±1 eigenvalue.
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Figure 11: Intersections between the real branches of Cdr and the lines Q±1, Q0 for a critical value
ν0.

In Figure 10, such an intersection is possible if the angle that Cdr makes with the negative l1 axis
at the origin, in the second quadrant, is greater than π − θ2. In region Iρ,h,0 the angle between

Cdr and the negative l1 axis at the origin, is given by ± arctan((ρ+1/h
α − 1)

1
2 ). Hence, by choosing

α small enough we can ensure that P intersects Cdr. We also see from Figure 10 that L will have
at least one other pair of simple mode ±1 eigenvalues ±is in addition to the mode ±1 eigenvalue
0.

We next consider the case when a Hamiltonian-Hopf bifurcation occurs, involving mode ±1
eigenvalues. If ν0 is chosen sufficiently large, the only line Qk which can intersect Cdr is Q0,
and so there are no higher mode eigenvalues of L. If ν0 is then decreased there will be some
critical value of ν0 such that the lines Q1, Q−1 are tangent to Cdr, which means that L has the
mode ±1 eigenvalues ±is of algebraic multiplicity 2. This case is illustrated in Figure 11. If ν0 is
decreased further, then we have the case illustrated in Figure 2, that is L has two simple mode
±1 eigenvalues. This shows that a Hamiltonian-Hopf bifurcation occurs at some critical value of
ν0. We will focus on the case when L does not have any other nontrivial imaginary eigenvalues.
This is achieved for values of (β, α) belonging to IIIρ,h,θ1 or IVρ,h,θ1 . Recall from Figure 6 that
for (β, α) ∈ IIIρ,h,0 ∪ IVρ,h,0 L has no purely imaginary eigenvalues. We must therefore assume
that θ1 6= 0.
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4.3 Generalized eigenvectors

The eigenvector corresponding to the mode k eigenvalue is, is given by exp(ikz)vks , with

vks =



γ̃k
kν0 cos(θ2)+s cos(θ1)

−iρ cos(θ1)
(

1
tanh(γ̃k) − 1

γ̃k

)
− i cos(θ1)

(
1

tanh(hγ̃k) − 1
hγ̃k

)
+ iγ̃kβ(kν0 cos(θ1−θ2)+s)

kν0 cos(θ2)+s cos(θ1)
i cosh(γ̃ky)
sinh(γ̃k)

ρ
(

γ̃k cos(θ1)
kν0 cos(θ2)+s cos(θ1) −

cosh(γ̃ky)
sinh(γ̃k) (kν0 cos(θ1 − θ2) + s)

)
− i cosh(hγ̃ky)

sinh(hγ̃k)

− γ̃k cos(θ1)
kν0 cos(θ2)+s cos(θ1) + cosh(hγ̃ky)

sinh(hγ̃k) h(kν0 cos(θ1 − θ2) + s)


.

If is is a mode k eigenvalue of algebraic multiplicity 2 there is a generalized eigenvector exp(ikz)uks ,
where uks = (ηk, ωk, φ1k, ψ1k, φ2k, ψ2k), such that (L− is) exp(ikz)uks = exp(ikz)vks , where

ηk = 0,

ωk =
ρ cos(θ1)(s+ kν0 cos(θ1 − θ2))

γ̃2
k

(
1

tanh(γ̃k)
+

γ̃k

sinh2(γ̃k)
− 2

γ̃k

)
+

ρ cos2(θ1)

kν0 cos(θ2) + s cos(θ1)

(
1

γ̃k
− 1

tanh(γ̃k)

)
+

cos(θ1)(s+ kν0 cos(θ1 − θ2))

γ̃2
k

(
1

tanh(hγ̃k)
+

hγ̃k

sinh2(hγ̃k)
− 2

hγ̃k

)
+

cos2(θ1)

kν0 cos(θ2) + s cos(θ1)

(
1

hγ̃k
− 1

tanh(hγ̃k)

)
+

γ̃kβ

ν0k cos(θ2) + s cos(θ1)
,

φ1k =
s+ kν0 cos(θ1 − θ2)

γ̃2
k sinh(γ̃k)

(
γ̃ky sinh(γ̃ky)−

(
1 +

γ̃k
tanh(γ̃k)

)
cosh(γ̃ky)

)
+

cos(θ1) cosh(γ̃ky)

(kν0 cos(θ2) + s cos(θ1)) sinh(γ̃k)
,

ψ1k = iρ(s+ kν0 cos(θ1 − θ2))

[
s+ kν0 cos(θ1 − θ2)

γ̃2
k sinh(γ̃k)

(
γ̃ky sinh(γ̃ky)−

(
1 +

γ̃k
tanh(γ̃k)

)
cosh(γ̃ky)

)
+

cos(θ1) cosh(γ̃ky)

(kν0 cos(θ2) + s cos(θ1)) sinh(γ̃k)

]
+

iρ cosh(γ̃ky)

sinh(γ̃k)
,

φ2k = −s+ kν0 cos(θ1 − θ2)

γ̃2
k sinh(hγ̃k)

(
hγ̃ky sinh(hγ̃k)−

(
1 +

hγ̃k
tanh(hγ̃k)

)
cosh(hγ̃k)

)
− cos(θ1) cosh(hγ̃ky)

(kν0 cos(θ2) + s cos(θ1)) sinh(hγ̃k)
,

ψ2k = −ih(s+ kν0 cos(θ1 − θ2))

[
s+ kν0 cos(θ1 − θ2)

γ̃2
k sinh(hγ̃k)

(
hγ̃ky sinh(hγ̃k)−

(
1 +

hγ̃k
tanh(hγ̃k)

)
cosh(hγ̃k)

)
+

cos(θ1) cosh(hγ̃ky)

(kν0 cos(θ2) + s cos(θ1)) sinh(hγ̃k)

]
− ih cosh(hγ̃ky)

sinh(hγ̃k)
.

In addition, for θ1 6= ±π/2, we find that the mode k eigenvalue is is of algebraic multiplicity 3 if

dβ∗k(s)

ds
= 0, (57)

However, this case will not be investigated further in the present paper. The mode 0 eigenvalue
0 is trivially of algebraic multiplicity 4, with eigenvectors e1, e2 and corresponding generalized
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eigenvectors f1, f2, satisfying Lf1 = e1, Lf2 = e2. These are given by

e1 =


0
0
1
0
0
0

 , e2 =


0
0
0
0
1
0

 , f1 =



−ρ cos(θ1)
α

0
0

ρ
(

1− ρ cos2(θ1)
α

)
0

ρ cos2(θ1)
α


, f2 =



cos(θ1)
α
0
0

ρ cos2(θ1)
α
0

h− cos2(θ1)
α


.

5 Center manifold reduction

We will use the following version of the center-manifold theorem which is due to Mielke [21] and
was used in for example [5].

Theorem 2. Consider the differential equation

u̇ = Ku+ F(u, µ), (58)

where u belongs to a Hilbert space E, µ ∈ Rn is a parameter and K : D(K) ⊂ E 7→ E is a closed
linear operator. Suppose that (58) is Hamilton’s equation for the Hamiltonian system (E,Ω,H).
Suppose further that

H1. E has two closed, K-invariant subspaces E1, E2 such that

E = E1 ⊕ E2,

u̇1 = K1u1 + F1(u1 + u2, µ),

u̇2 = K2u2 + F2(u1 + u2, µ),

where Ki = K|D(K)∩Ei : D(K) ∩ Ei 7→ Ei, i = 1, 2 and F1 = PF , F2 = (I − P )F , where P
is the projection of E onto E1.

H2. E1 is finite dimensional and the spectrum of K1 lies on the imaginary axis.

H3. The imaginary axis lies in the resolvent set of K2 and∥∥(K2 − iaI)−1
∥∥
E2 7→E2

≤ C

1 + |a| , a ∈ R.

H4. There exists k ∈ N and neighborhoods Λ ⊂ Rn and U ⊂ D(K) of 0 such that F is k+ 1 times
continuously differentiable on U × Λ and the derivatives of F are bounded and uniformly
continuous on U × Λ with

F(0, 0) = 0, d1F [0, 0] = 0.

Under the hypothesis H1 −H4 there exist neighborhoods Λ̃ ⊂ Λ and Ũ1 ⊂ U ∩ E1, Ũ2 ⊂ U ∩ E2

of zero and a reduction function r : Ũ1 × Λ̃ 7→ Ũ2 with the following properties. The reduction
function r is k times continuously differentiable on Ũ1 × Λ̃ and the derivatives of r are bounded
and uniformly continuous on Ũ1 × Λ̃ with

r(0, 0) = 0, d1r[0, 0] = 0.

The graph
Xµ
C = {u1 + r(u1, µ) ∈ Ũ1 × Ũ2 : u1 ∈ Ũ1},

is a Hamiltonian center manifold for (58) with the following properties:

• Through every point in Xµ
C there passes a unique solution of (58) that remains on Xµ

C as

long as it remains in Ũ1 × Ũ2. We say that Xµ
C is a locally invariant manifold of (58).

• Every small bounded solution u(x), x ∈ R of (58) that satisfies u1(x) ∈ Ũ1, u2(x) ∈ Ũ2 lies
completely in Xµ

C .
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• Every solution u1 of the reduced equation

u̇1 = K1u1 + F1(u1 + r(u1, µ), µ), (59)

generates a solution
u(x) = u1(x) + r(u1(x), µ)

of (58).

• Xµ
C is a symplectic submanifold of E, and the flow determined by the Hamiltonian system

(Xµ
C ,Ω

µ
C , H

µ), where ΩµC is the reduced symplectic structure and Hµ the reduced Hamilto-
nian (see (62)–(63)), coincides with the flow on Xµ

C determined by (E,Ω,Hµ). The reduced
equation (59) represents Hamilton’s equations for (Xµ

C ,Ω
µ
C , H

µ).

• If (58) is reversible, that is if there exists a linear symmetry S which anticommutes with the
right hand side of (58), then the reduction function r can be chosen so that it commutes with
S.

In our case we have E = M and (58) corresponds to (40). We will use the same arguments
as in [6] when showing that hypothesis H1 − H4 are satisfied. Note that H3 is satisfied, by the
following theorem:

Lemma 3. There exist constants C, a0 > 0 such that∥∥(L− iaI)−1
∥∥
M 7→M ≤

C

|a| (60)

for all |a| > a0.

The proof of this lemma is very similar to the proof of Lemma 3.4 in [13] and will therefore be
omitted. It follows from (41) that (60) holds for K as well. In particular we get from (60) that the
resolvent set of K is nonempty, which implies that K is closed.

Let ia be an element in the resolvent set of K. It follows from the Kondrachov embedding
theorem that

K : D(K) 7→M,

has compact resolvent. This implies that the spectrum of K consists of an at most countable
number of isolated eigenvalues with finite multiplicity. Combining this with the results of section
4 we can conclude that there exists ξ > 0 such that

Spec(K) = {λ ∈ Spec(K) : |Re(λ)| > ξ} ∪ {λ ∈ Spec(K) : Re(λ) = 0},

that is, the part of the spectrum which lies on the imaginary axis is separated from the rest of the
spectrum. This allows us to define the spectral projection P , corresponding to the imaginary part
of the spectrum:

P = − 1

2πi

∫
γ

(K − λ)−1dλ, (61)

where γ is a curve surrounding the imaginary part of the spectrum and which lies in the resolvent
set.

We check hypotheses H1, H2 and H4 of Theorem 2. From Lemma 1 we get that H4 is satisfied,
with Λ := ∆ and U := Ṽ ∩D(K). Let E1 = PM and let E2 = (I−P )M . It follows from Theorem
6.17 chapter III in [18], together with the fact that the imaginary part of the spectrum of K
consists of a finite number of eigenvalues with finite multiplicity (see section 4), that H1 and H2
are satisfied.

By the center-manifold theorem, there exist neighborhoods Ũ1 ⊂ U ∩ E1, Λ̃ ⊂ Λ of zero and a
reduction function r : Ũ1 × Λ̃ 7→ Ũ2 such that r(0, 0) = d1r[0, 0] = 0 and

Xµ
C = {u1 + r(u1, µ) : u1 ∈ Ũ1},
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is a center manifold for (40). We then have the Hamiltonian system (Xµ
C ,Ω

µ
C , H

µ), where

(ΩµC)m(u1, u
∗
1) = (Ω̃µ)m+r(m,µ)(u1 + d1r[m,µ](u1), u∗1 + d1r[m,µ](u∗1)), (62)

Hµ(u1) = H̃µ(u1 + r(u1, µ)). (63)

Thus far we have obtained a center manifold parametrized on the coordinate chart Ũ1 with coor-
dinate map ϑ : Xµ

C 7→ Ũ1 given by

ϑ−1(u1) = u1 + r(u1, µ).

Since the change of variables introduced in section 3 is not explicit, we change parametrization by
introducing the coordinate chart W̃1 = (dG0[0])−1(Ũ1) and the coordinate map ϕ : Xµ

C 7→ W̃1

given by
ϕ−1(w1) = w1 + h(w1, µ),

where h : W̃1 × Λ̃ 7→ V is a new reduction function defined by

h(w1, µ) = (Gµ)−1(dG0[0](w1) + r(dG0[0](w1), µ))− w1.

By construction w1 + h(w1, µ) ∈ D(vHµ) which means that Xµ
C = {w1 + h(w1, µ) : w1 ∈ W̃1} ⊂

D(vHµ), that is we have obtained a center manifold for (36). As before we have the Hamiltonian
system (Xµ

C ,Ω
µ
C , H

µ), where

(ΩµC)m(w1, w
∗
1) = Ω(w1 + d1h[m,µ](w1), w∗1 + d1h[m,µ](w∗1)),

Hµ(w1) = Hµ(w1 + h(w1, µ)).

Note also that since w1 + h(w1, µ) ∈ D(vHµ) it follows that

Bµi (w1 + h(w1, µ)) = 0, i = 0, 1, y = 0, 1,

for w1 ∈ W̃1, where

Bµ1 (u) = − ρφ1y

1− η +
ρF1(u, µ)

1− η , Bµ2 (u) = − φ2y

η + h
+
F2(u, µ)

η + h
.

Also note that

dHµ[w](w∗) = Ω(vHµ(w), w∗) +

∫ 2π

0

Bµ1 (w)φw
∗

1 |y=1 dz +

∫ 2π

0

Bµ2 (w)φw
∗

2 |y=1 dz, (64)

for w ∈ N ∩ D(L), w∗ ∈M , which follows from the definition of vHµ and D(vHµ).
From Darboux’s theorem (see [5, Theorem 4]) there exists a near identity change of variables

ŵ1 = w1 + Υ(w1, µ),

such that ΩµC is transformed into Ψ, where

Ψ(w1, w
∗
1) = Ω(w1, w

∗
1)

The coordinate map is then given by ŵ1 + ĥ(ŵ1, µ), where ĥ : W̃1 × Λ̃ 7→ W̃1 × W̃2 and ĥ(0, 0) =

d1ĥ[0, 0] = 0. In order to simplify the notation we immediately remove the ∧ accent.
The next result is a generalization of [10, Theorem 4.4].

Theorem 4. Consider an n+ 2-degree of freedom Hamiltonian system

q̇i =
∂Hµ

∂pi
, ṗi = −∂H

µ

∂qi
, i = 1, 2, . . . , n (65)

q̇n+1 =
∂Hµ

∂pn+1
, ṗn+1 = − ∂Hµ

∂qn+1
, (66)

q̇n+2 =
∂Hµ

∂pn+2
, ṗn+2 = − ∂Hµ

∂qn+2
(67)
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where pn+1, pn+2 are cyclic variables so that qn+1, qn+2 are conserved quantities and µ ∈ Rl is a
parameter. There exists a near-identity canonical change of variables (q, p, qn+1, pn+1, qn+2, pn+2) 7→
(Q,P,Qn+1, Pn+1, Qn+2, Pn+2) with the properties that Pn+1, Pn+2 are cyclic, Qn+1 = qn+1, Qn+2 =
qn+2 and the lower order Hamiltonian system

Q̇i =
∂Hµ

∂Pi
(Q,P, 0), Ṗi = −∂H

µ

∂Qi
(Q,P, 0), i = 1, 2, . . . , n,

adopts its usual normal form.

Theorem 4 is useful when dealing with Hamiltonian systems with cyclic variables since it
essentially allows us to treat the corresponding conserved quantities as parameters. We will apply
Theorem 4 in section 7 when studying the Hamiltonian-Hopf bifurcation.

6 Doubly periodic waves

In this section we will examine solutions of (36) that, in addition to being periodic in z, are pe-
riodic in x with some period Px. These correspond to doubly periodic solutions of the governing
equations (18)–(24). Fix parameters (β, α, θ1, θ2) so that θ1, θ2 6= ±π/2, cos2(θ1) ≤ cos2(θ2) and
(β, α) ∈ Iρ,h,θ1 . Then, according to the discussion in section 4.2, there exists ν0 such that the
imaginary part of the spectrum of L consists of {±iκ0,±is, 0} where ±iκ0 are algebraically simple
mode 0 eigenvalues with eigenvectors v0

κ0
, v̄0

κ0
, ±is are algebraically simple mode ±1 eigenvalues

with eigenvectors exp(iz)v1
s , exp(−iz)v̄1

s and 0 is a geometrically double mode ±1 eigenvalue with
eigenvectors exp(iz)v1

0 , exp(−iz)v̄1
0 . Moreover, 0 is trivially a mode 0 eigenvalue of algebraic multi-

plicity 4, with eigenvectors e1, e2 and corresponding generalized eigenvectors f1, f2. In addition we
assume that is is nonresonant with iκ0. In addition of considering bifurcations around v0 we will
also consider bifurcations in 2π/Px. In anticipation of this we let µ = µ1 throughout this section.
Let

V 0
κ0

=
v0
κ0√
|c1|

, V 1
0 =

v1
0√
|c2|

, V 1
s =

v1
s√
|c3|

,

ẽ1 =
− 1
ρ cos2(θ1) (hα− cos2(θ1))e1 + e2

√
c4

, ẽ2 =
e1 − 1

cos2(θ1) (α− ρ cos2(θ1))e2
√
c4

,

f̃i =
fi√
c4
, i = 1, 2,

where

c1 =
4πκ0

cos2(θ1)
(β∗0(κ0)− β),

c2 =

{ 4π cos(θ1−θ2)ν0
cos2(θ2) (β∗1(0)− β), if cos(θ1 − θ2) 6= 0

4πν0 cos(θ2)
cos(θ2)

(
ρ

tanh(ν0) + 1
tanh(hν0)

)
, if cos(θ1 − θ2) = 0,

c3 =


4πγ̃2

1(ν0 cos(θ1−θ2)+s)
(ν0 cos(θ2)+s cos(θ1))2 (β∗1(s)− β), if s+ ν0 cos(θ1 − θ2) 6= 0

4πγ̃1 cos(θ1)
ν0 cos(θ2)+s cos(θ1)

(
ρ

tanh(γ̃1) + 1
tanh(hγ̃1)

)
, if s+ ν0 cos(θ1 − θ2) = 0,

c4 =
2πh

cos2(θ1)

(
cos2(θ1)

(
ρ+

1

h

)
− α

)
.

Then

Ω(V 0
κ0
, V̄ 0
κ0

) = sgn(c1)i, Ω(exp(iz)V 1
0 , exp(−iz)V̄ 1

0 ) = sgn(c2)i,

Ω(exp(iz)V 1
s , exp(−iz)V̄ 1

s ) = sgn(c3)i, Ω(ẽi, f̃i) = 1, i = 1, 2,

and all other combinations are equal to 0. The signs of the coefficients will not affect the subsequent
analysis, so we assume for definiteness that

sgn(c1) = sgn(c2) = sgn(c3) = 1.
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This can for example be achieved by choosing β < min(β∗0(κ0), β∗1(0), β∗1(s)) and θ1 − θ2 ∈
(−π/2, π/2). Hence, {V 0

κ0
, V̄ 0
κ0
, exp(iz)V 1

0 , exp(−iz)V̄ 1
0 , exp(iz)V 1

s , exp(−iz)V̄ 1
s , ẽ1, ẽ2, f̃1, f̃2} is a

symplectic basis of (E1,Ψ). We introduce coordinates on Xµ1

C by writing

w1 = (A,B,C, Ā, B̄, C̄, q1, p1, q2, p2)

= AV 0
κ0

+B exp(iz)V 1
0 + C exp(iz)V 1

s + ĀV̄ 0
κ0

+ B̄ exp(−iz)V̄ 1
0 + C̄ exp(−iz)V̄ 1

s

+ q1ẽ1 + p1f̃1 + q2ẽ2 + p2f̃2.

By construction

Ψ(w1, w
∗
1) = i(AĀ∗ +BB̄∗ + CC̄∗ − ĀA∗ − B̄B∗ − C̄C∗) + q1p

∗
1 + q2p

∗
2 − q∗1p1 − q∗2p2.

Recall that Hµ1 is invariant under the transformations φi 7→ φi + bi, i = 1, 2, for arbitrary bi ∈ R.
This symmetry is inherited by the reduced system: the variables q1 and q2 are cyclic, that is Hµ1

is independent of q1, q2, which implies that p1, p2 are conserved. We may therefore set them to 0
and recover the variables q1, q2 by quadrature. Due to this we introduce w̃1 = (A,B,C, Ā, B̄, C̄) ∈
Ê1 ∩ W̃1, where Ê1 = spanC{V 0

κ0
, exp(iz)V 1

0 , exp(iz)V 1
s , V̄

0
κ0
, exp(−iz)V̄ 1

0 , exp(−iz)V̄ 1
s }, and write

Hamilton’s equations for the reduced Hamiltonian system (Xµ1

C ,Ψ, Hµ1) as

˙̃w1 − vHµ1 (w̃1) = 0, ω̃1 ∈ Ê1 ∩ W̃1, (68)

where

vHµ1 (w̃1) = −i



∂Hµ1

∂Ā
∂Hµ1

∂B̄
∂Hµ1

∂C̄

−∂Hµ1∂A

−∂Hµ1∂B

−∂Hµ1∂C


.

We next define a symplectic structure on Ê1, by

J(w̃1) = J(A,B,C, Ā, B̄, C̄) = −i(A,B,C,−Ā,−B̄,−C̄),

and an inner product

〈w̃1, w̃
∗
1〉 = AĀ∗ +BB̄∗ + CC̄∗ + ĀA∗ + B̄B∗ + C̄C∗,

so that vHµ1 (w̃1) = J∇Hµ1(w̃1), and Ψ(w̃1, w̃
∗
1) = −〈Jw̃1, w̃

∗
1〉. The next step is to normalize the

period in x, which introduces the parameter κ = 2π/Px. We will consider values of κ close to κ0

and so we introduce a bifurcation parameter µ2 by writing κ = κ0 + µ2. Equation (68) can then
be written as

(κ0 + µ2)J ˙̃w1 +∇Hµ1(w̃1) = 0, w̃1 ∈ Ê1 ∩ W̃1, (µ1, µ2) ∈ Λ̂, (69)

where Λ̂ is some neighborhood of the origin in R2. Next we want to consider solutions of (68)

as elements of the Sobolev space Y := H1
per((0, 2π), Ê1), equipped with the norm ‖w̃1‖Y =

(‖w̃1‖2L2
per((0,2π),Ê1) +

∥∥ ˙̃w1

∥∥2

L2
per((0,2π),Ê1)

)1/2, where ‖·‖L2
per((0,2π),Ê1) is the norm coming from the

inner product

(w̃1, w̃
∗
1) =

∫ 2π

0

〈w̃1, w̃
∗
1〉 dx.

Define
T (w̃1, µ1, µ2) = (κ0 + µ2)J ˙̃w1 +∇Hµ1(w̃1), w̃1 ∈ BR(0), (µ1, µ2) ∈ Λ̂,

where BR(0) is the ball of radius R centered at the origin in Y and where R is chosen small enough
so that w̃1(x) ∈ W̃1, for w̃1 ∈ BR(0). Then (69) can be written

T (w̃1, µ1, µ2) = 0. (70)
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Equation (70) can be seen as the Euler-Lagrange equation of the action integral

E(w̃1, µ1, µ2) =

∫ 2π

0

κ0 + µ2

2
〈J ˙̃w1, w̃1〉+ H̃µ1(w̃1) dx,

with respect to the inner product (·, ·), that is

dE [w̃1, µ1, µ2](w̃∗1) = (T (w̃1, µ1, µ2), w̃∗1), w̃1 ∈ BR(0), w̃∗1 ∈ Y, (µ1, µ2) ∈ Λ̂. (71)

We will find critical points of E by using a variational Lyapunov-Schmidt reduction; see for example
[4]. First note that

K := ker(dT [0, 0, 0]) = spanC{exp(ix)V 0
κ0
, exp(iz)V 1

0 , exp(−ix)V̄ 0
κ0
, exp(−iz)V̄ 1

0 }.

Next decompose
Y = K ⊕K⊥,

and write w̃1 = ζ+ ξ, where ζ ∈ K, ξ ∈ K⊥. Let Π be the projection onto K, so that equation (70)
can be decomposed as

Π(T (ζ + ξ, µ1, µ2)) = 0, (72)

(I −Π)(T (ζ + ξ, µ1, µ2)) = 0. (73)

Equation (73) can be solved using the implicit function theorem, which yields solutions of the form

ζ + hLS(ζ, µ1, µ2), where hLS : K0 × Λ̂0 7→ K⊥ and K0, Λ̂0 are open neighborhoods of the origin
in K and R2 respectively. In particular we can assume that ζ + hLS(ζ, µ1, µ2) ⊆ BR(0), for all

ζ ∈ K0, (µ1, µ2) ∈ Λ̂0. In order to solve equation (72) we define the reduced functional

ELS(ζ, µ1, µ2) = E(ζ + hLS(ζ, µ1, µ2), µ1, µ2).

Note that for all ζ ∈ K0 and ζ∗ ∈ K,

dELS [ζ, µ1, µ2](ζ∗) = dE [ζ + hLS(ζ, µ1, µ2), µ1, µ2](ζ∗ + dhLS [ζ, µ1, µ2](ζ∗))

= (T (ζ + hLS(ζ, µ1, µ2), µ1, µ2), ζ∗ + dhLS [ζ, µ1, µ2](ζ∗))

= (ΠT (ζ + hLS(ζ, µ1, µ2), µ1, µ2), ζ∗), (74)

where we used that d1hLS [ζ, µ1, µ2](ζ∗) ∈ K⊥ and that (73) is satisfied. The calculation (74) shows
that (72) is the Euler-Lagrange equation of the action integral ELS , so solutions of (72) are critical
points of ELS . In order to find critical points of the functional ELS we introduce coordinates in K:

ζ = (A,B, Ā, B̄) = A exp(ix)V 0
κ0

+B exp(iz)V 1
0 + Ā exp(−ix)V̄ 0

κ0
+ B̄ exp(−iz)V̄ 1

0 ,

and write ELS(ζ, µ1, µ2) = ELS(A,B, Ā, B̄, µ1, µ2). Then ζ is a critical point of ELS if and only if
∇ELS(A,B, Ā, B̄, µ1, µ1) = 0, which is equivalent with

∂ELS
∂Ā

(A,B, Ā, B̄, µ1, µ2) = 0,

∂ELS
∂B̄

(A,B, Ā, B̄, µ1, µ2) = 0.

(75)

Recall that Hµ1 is invariant under the transformation z 7→ z + z0, z0 ∈ [0, 2π]. The reduction
function h can be chosen in such a way that it commutes with this transformation, which implies
that the reduced Hamiltonian Hµ1 is invariant under the same transformation. Clearly the same
is then true for E , and in addition E is invariant under x 7→ x+x0, x0 ∈ [0, 2π]. It follows that the
reduced functional ELS is invariant under rotations in both x and z as well. In terms of coordinates,
this means that ELS is invariant under the transformations

(A,B, Ā, B̄) 7→ (A, exp(iz0)B, Ā, exp(−iz0)B̄),

(A,B, Ā, B̄) 7→ (exp(ix0)A,B, exp(−ix0)Ā, B̄),
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which implies that (see [9, Sect VI, Lemma 2.1])

ELS(A,B, Ā, B̄, µ1, µ2) = ELS(|A|2, |B|2, µ1, µ2),

and so there exist functions Θi(|A|2, |B|2, µ1, µ2), i = 1, 2, such that

∂ELS
∂Ā

(A,B, Ā, B̄, µ1, µ2) = AΘ1(|A|2, |B|2, µ1, µ2),

∂ELS
∂B̄

(A,B, Ā, B̄, µ1, µ2) = BΘ2(|A|2, |B|2, µ1, µ2).

The system (75) becomes {
AΘ1(|A|2, |B|2, µ1, µ2) = 0,

BΘ2(|A|2, |B|2, µ1, µ2) = 0.
(76)

It is clear that A = B = 0 is a solution of (76), for all µ1, µ2. In order to find nontrivial solutions
we apply the implicit function theorem, and therefore want to show that

det

(
∂Θ1

∂µ1
(0, 0, 0, 0) ∂Θ1

∂µ2
(0, 0, 0, 0)

∂Θ2

∂µ1
(0, 0, 0, 0) ∂Θ2

∂µ2
(0, 0, 0, 0)

)
6= 0.

Denote by EmnLS,i the part of ELS that is homogeneous of order i in (|A|2, |B|2), m in µ1 and n in
µ2. In the same way we denote by hmnLS,ijkl, h

m
ij0kl0 the parts of hLS , h which are homogeneous of

order i, j, k, l,m, n in A,B, Ā, B̄, µ1, µ2, respectively. Then

E10
LS,1(|A|2, |B|2, µ1, µ2) = d10

1 µ1|A|2 + d10
2 µ1|B|2,

E01
LS,1(|A|2, |B|2, µ1, µ2) = d01

1 µ2|A|2 + d01
2 µ2|B|2,

and

∂Θ1

∂µ1
(0, 0, 0, 0) = d10

1 ,
∂Θ1

∂µ2
(0, 0, 0, 0) = d01

1 ,

∂Θ2

∂µ1
(0, 0, 0, 0) = d10

2 ,
∂Θ2

∂µ2
(0, 0, 0, 0) = d01

2 .

First note that

d01
1 = d2dµ2

E [0, 0, 0](exp(ix)V 0
κ0
, exp(−ix)V̄ 0

κ0
) + d2E [0, 0, 0](exp(ix)V 0

κ0
, h01
LS,0010)

+ d2E [0, 0, 0](exp(−ix)V̄ 0
κ0
, h01
LS,1000), (77)

and since (70) is the Euler-Lagrange equation of E , we have that

d2E [0, 0, 0](exp(ix)V 0
κ0
, h01
LS,0010) = (dT [0, 0, 0](exp(ix)V 0

κ0
), h01

LS,0010) = 0,

since exp(ix)V 0
κ0
∈ K. In the same way we have that d2E [0, 0, 0](exp(−ix)V̄ 0

κ0
, h01
LS,1000) = 0.

Moreover, from the definition of E we find that

d2dµ2
E [0, 0, 0](exp(ix)V 0

κ0
, exp(−ix)V̄ 0

κ0
) = i

∫ 2π

0

(J(exp(ix)V 0
κ0

), exp(−ix)V̄ 0
κ0

) dx

= i

∫ 2π

0

−Ψ(exp(ix)V 0
κ0
, exp(−ix)V̄ 0

κ0
) dx

= 2π.

Hence, we get from (77) that d01
1 = 2π. A similar calculation shows that d01

2 = 0. Next, using the
same methods as above we find that

d10
2 = d2dµ1

E [0, 0, 0](exp(iz)V 1
0 , exp(−iz)V̄ 1

0 )

= d2dµ1H0[0](exp(iz)V 1
0 , exp(−iz)V̄ 1

0 ) + d2H0[0](exp(iz)V 1
0 , h

1
000010)

+ d2H0[0](exp(−iz)V̄ 1
0 , h

1
010000), (78)
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and

d2H0[0](exp(iz)V 1
0 , h

1
000010) = Ω(L exp(iz)V 1

0 , h
1
000010) +

∫ 2π

0

dB0
1 [0](exp(iz)V 1

0 )φ
h1
000010

1 |y=1 dz

+

∫ 2π

0

dB0
2 [0](exp(iz)V 1

0 )φ
h1
000010

2 |y=1 dz

= 0,

where we used that exp(iz)V 1
0 ∈ D(L) and L exp(iz)V 1

0 = 0. In the same way we find that
d2H0[0](exp(−iz)V̄ 1

0 , h
1
010000) = 0. Equation (78) then tells us that

d10
2 = d2dµ1

H0[0](exp(iz)V 1
0 , exp(−iz)V̄ 1

0 )

=
4πν0

c2 cos2(θ2)

[
cos2(θ2)

2ν0

(
ρ

tanh(ν0)
+

1

tanh(hν0)

)
− cos2(θ2)

2

(
ρ

sinh2(ν0)
+

h

sinh2(hν0)

)
− β

]

and this is nonzero precisely when β 6= β̃(ν0). This condition is automatically fulfilled in our case,
since we assume that (β, α) ∈ Iρ,h,θ1 with cos2(θ1) ≤ cos2(θ2). Moreover

det

(
∂Θ1

∂µ1
(0, 0, 0, 0) ∂Θ1

∂µ2
(0, 0, 0, 0)

∂Θ2

∂µ1
(0, 0, 0, 0) ∂Θ2

∂µ2
(0, 0, 0, 0)

)
= −2πd10

2 6= 0.

It now follows from the implicit function theorem that there exist nontrivial solutions of (76), and
in conclusion we have the following result.

Theorem 5. If cos2(θ1) ≤ cos2(θ2), θ1, θ2 6= ±π/2 and (β, α) ∈ Iρ,h,θ1 , there exist κ0, ν0 > 0,
ε1, ε2 > 0 and functions µi : (0, εi) 7→ (0,∞), i = 1, 2 such that

w1 = w̃1(A,B, Ā, B̄) + h(w̃1(A,B, Ā, B̄), µ1(|A|2, |B|2)),

is a doubly periodic travelling wave, with periods 2π/(κ0+µ2(|A|2, |B|2)) in x, 2π/(ν0+µ1(|A|2, |B|2))
in z, for all A,B such that |A|2 < ε1, |B|2 < ε2, where

w̃1(A,B, Ā, B̄) = w̌1 + hLS(w̌1, µ1(|A|2, |B|2), µ2(|A|2, |B|2)), (79)

with

w̌1 = A exp(i(κ0+µ2)x)V 0
κ0

+B exp(i(ν0+µ1)z)V 1
0 +Ā exp(−i(κ0+µ2)x)V̄ 0

κ0
+B̄ exp(−i(ν0+µ1)z)V̄ 1

0 .

If instead cos2(θ2) ≤ cos2(θ1), θ1, θ2 6= ±π/2, the theorem still holds with (β, α) ∈ Iρ,h,θ2 .

Remark 6. As indicated in section 4.2 we could allow for L to have additional mode k eigenvalues,
as long as they are nonresonant with κ0. In this case the corresponding eigenvectors will not be in
the kernel of dT [0, 0, 0] and will therefore not affect the calculations once the Lyapunov-Schmidt
reduction is carried out. It is also possible to obtain a similar result when cos2(θ1) ≤ cos2(θ2),
(β, α) ∈ IIρ,h,θ1 , or cos2(θ2) ≤ cos2(θ1), (β, α) ∈ Iρ,h,θ2 ∪ IIρ,h,θ2 . In these cases there could
possibly be some additional mode 0 eigenvalues ±iκ1. However, as explained above, as long as iκ1

is nonresonat with iκ0, they will have no impact on the calculations.

Remark 7. Since we in particular need to assume in Theorem 5 that θ2 6= ±π/2, we cannot directly
obtain waves that are periodic in Z with a bounded profile in the direction X. However, such
solutions can be obtained using the Lyapunov-center theorem as in [13, Theorem 3.9]. Similarly,
to obtain waves that are periodic in the direction X with a bounded profile in Z, we could again
apply the Lyapunov-center theorem as in [11, Theorem 5].

7 Hamiltonian-Hopf bifurcation

In this section we consider the Hamiltonian-Hopf bifurcation occurring at some critical value ν0,
which was discussed in section 4.2. For definiteness we will focus on the case when θ1 6= ±π/2, so
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that is is a mode k eigenvalue of algebraic multiplicity 2 if and only if (β, α) = (β∗1(s), α∗1(s)). In
addition we must then have that s+ν0 cos(θ1−θ2) 6= 0. We therefore fix parameters (β, α, θ1, θ2, ν0),
where (β, α) = (β∗1(s), α∗1(s)), θ1 6= 0, θ1 6= ±π/2 and (β, α) ∈ IIIρ,h,θ1 ∪ IVρ,h,θ1 . Then the
spectrum of L consists of {±is, 0}, where ±is are mode ±1 eigenvalues of algebraic multiplicity
2 with eigenvectors exp(iz)v1

s , exp(−iz)v̄1
s and corresponding generalized eigenvectors exp(iz)u1

s,
exp(−iz)ū1

s. Recall again that 0 is an eigenvalue of algebraic multiplicity 4 with eigenvectors e1, e2

and corresponding generalized eigenvectors f1, f2. Let

V 1
s =

v1
s√
τ1
, U1

s =
1√
τ1

(
u1
s −

iτ2v
1
s

2τ1

)
,

ẽ1 =

1
ρ cos2(θ1) (hα− cos2(θ1))e1 − e2

√
τ3

, ẽ2 =
−e1 + 1

cos2(θ1) (α− ρ cos2(θ1))e2
√
τ3

,

f̃i =
fi√
τ3
, i = 1, 2,

where

τ1 = Ω(exp(iz)v1
s , exp(−iz)ū1

s), iτ2 = Ω(exp(iz)u1
s, exp(−iz)ū1

s),

τ3 =
2πh

cos2(θ1)

(
α− cos2(θ1)

(
ρ+

1

h

))
.

We find in particular that

Ω(exp(iz)v1
s , exp(−iz)ū1

s) = −2π(s+ ν0 cos(θ1 − θ2))γ̃2
1

(s cos(θ1) + ν0 cos(θ2))2

dβ∗1(s)

ds
.

Since we assume that is is of algebraic multiplicity 2 we have in particular that τ1 6= 0, and we

assume for definiteness that τ1 > 0. This is for example achieved when
dβ∗

1 (s)
ds < 0, s+ ν0 cos(θ1 −

θ2) > 0. Then

Ω(exp(iz)V 1
s , exp(−iz)Ū1

s ) = Ω(exp(−iz)V̄ 1
s , exp(iz)U1

s ) = 1,Ω(ẽi, f̃i) = 1, i = 1, 2,

and all other combinations are equal to zero. Hence, the set of vectors

{exp(iz)V 1
s , exp(iz)U1

s , exp(−iz)V̄ 1
s , exp(−iz)Ū1

s , ẽ1, ẽ2, f̃1, f̃2},

is a symplectic basis of (E1,Ψ). We introduce coordinates on Xµ
C by writing

w1 = A exp(iz)V 1
s +B exp(iz)U1

s + Ā exp(−iz)V̄ 1
s + B̄ exp(−iz)Ū1

s + q1ẽ1 + p1f̃1 + q2ẽ2 + p2f̃2.

On E1 the reverser is given by

S : (A,B, Ā, B̄, q1, p1, q2, p2) 7→ (Ā,−B̄, A,−B,−q1, p1,−q2, p2).

The reduced Hamiltonian Hµ is independent of q1, q2 since these are cyclic and p1, p2 are therefore
preserved. Applying the usual normal form theory for Hamiltonian systems (see [8]) we may, for
every n0 ≥ 2, write

Hµ(A,B, Ā, B̄, 0, 0) = is(AB̄−ĀB)+ |B|2 +H0
NF (|A|2, i(AB̄−ĀB), µ)+O(|(A,B)|2|(A,B, µ)|n0),

whereH0
NF is real polynomial of degree n0+1 such thatH0

NF (|A|2, i(AB̄−ĀB), µ) = O(|(A,B)|2|(A,B, µ)|).
After a canonical change of variables (see Theorem 4)

Hµ(A,B, Ā, B̄, p1, p2) = is(AB̄ − ĀB) + |B|2 +
ρ cos2(θ1)(α− ρ cos2(θ1))

2hα
(
α− cos2(θ1)

(
ρ+ 1

h

))p2
1

+
ρ cos4(θ1)

hα
(
α− cos2(θ1)

(
ρ+ 1

h

))p1p2 +
cos2(θ1)

(
α− cos2(θ1)

h

)
2α
(
α− cos2(θ1)

(
ρ+ 1

h

))p2
2

+Hµ
nl(A,B, Ā, B̄, p1, p2),
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where

Hµ
nl(A,B, Ā, B̄, p1, p2) = HNF (|A|2, i(AB̄ − ĀB), p1, p2, µ) +Hr(A,B, Ā, B̄, p1, p2, µ)

+O(|(A,B, p1, p2)|2|(A,B, p1, p2, µ)|n0),

with

HNF (|A|2, i(AB̄ − ĀB), 0, 0, µ) = H0
NF (|A|2, i(AB̄ − ĀB), µ),

HNF (|A|2, i(AB̄ − ĀB), p1, p2, µ) = O(|(A,B)|2|(A,B, p1, p2, µ)|),

and
Hr(A,B, Ā, B̄, p1, p2, µ) = O(|(A,B, p1, p2)||(p1, p2)||(p1, p2, µ)|)

Let µnHn
i (A,B, Ā, B̄, p1, p2) denote the part of Hµ(A,B, Ā, B̄, p1, p2) that is homogeneous of order

i in (A,B, Ā, B̄, p1, p2) and of order n in µ. We then have that

H1
2 (A,B, Ā, B̄, p1, p2) = c11p

2
1 + c12|A|2 + c13i(AB̄ − ĀB) + c14p1A+ c̄14p1Ā+ c15p1B + c̄15p1B̄

+ c17p
2
2 + c18p2A+ c̄18p2Ā+ c19p2B + c̄19p2B̄ + c110p1p2, (80)

H0
3 (A,B, Ā, B̄, p1, p2) = c01p

3
1 + c02p1|A|2 + c03p1i(AB̄ − ĀB) + c04p

2
1A+ c̄04p

2
1Ā+ c05p

2
1B + c̄05p

2
1B̄

+ c06p
3
2 + c07p2|A|2 + c08p2i(AB̄ − ĀB) + c09p

2
2A+ c̄09p

2
2Ā+ c010p

2
2B + c̄010p

2
2B̄

+ c011p
2
1p2 + c012p1p

2
2, (81)

H0
4 (A,B, Ā, B̄, p1, p2) = d0

1|A|4 + d0
2i(AB̄ − ĀB)|A|2 − d0

3(AB̄ − ĀB)2 +O(|(p1, p2)|2|(A,B)|2)

+O(|(p1, p2)|3|(A,B, p1, p2)|) (82)

We are interested in the lower order reduced Hamilton’s equations;

Ax =
∂Hµ

∂B̄
(A,B, Ā, B̄, 0, 0), (83)

Bx = −∂H
µ

∂Ā
(A,B, Ā, B̄, 0, 0). (84)

Using the expansions (80)–(82), we find that (83)–(84) are given by

Ax = isA+B + ic13µA+ d0
2iA|A|2 − 2d0

3A(AB̄ − ĀB) +O(|(A,B)||(A,B, µ)|3), (85)

Bx = isB + ic13µB − c12µA− 2d0
1A|A|2 − id0

2A
2B̄ + 2d0

2B|A|2 − 2d0
3B(AB̄ − ĀB)

+O(|(A,B)||(A,B, µ)|3). (86)

We have the following general result regarding reversible systems of the type (85)–(86).

Theorem 8. Suppose that c12 < 0.

1. [16] d0
1 > 0: For each sufficiently small, positive value of µ the system (85)–(86) has two

distinct symmetric homoclinic solutions.

2. [5] d0
1 > 0: For each sufficiently small, positive value of µ the system (85)–(86) has two one-

parameter families of geometrically distinct homoclinic solutions which generically resemble
multiple copies of one of the homoclinic solutions in 1.

3. [16] d0
1 < 0: For each sufficiently small, negative value of µ the system (85)–(86) has a

one-parameter family of pairs of reversible homoclinic orbits to periodic orbits.

The homoclinic solutions in 1 and 2 correspond to travelling waves of amplitude O(µ
1
2 ) which have

a bright solitary wave profile in the x direction and are 2π/(v0 + µ)-periodic in z. The solutions
found in 3 correspond to travelling waves which have a dark solitary wave profile in the x direction
and are 2π/(v0 + µ)-periodic in z. See Figure 12 for sketches of the solitary wave profiles in the
x-direction.
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In our case

c12 =
2γ̃1(s sin(θ1) + ν0 sin(θ2)) sin(θ1 − θ2)

(s cos(θ1) + ν0 cos(θ2))(s+ ν0 cos(θ1 − θ2))τ1

(
ρ

tanh(γ̃1)
+

1

tanh(hγ̃1)

)
,

d0
1 =

−γ̃4
1

(s cos(θ1) + ν0 cos(θ2))4τ2
1

{
(s cos(θ1) + ν0 cos(θ2))2

[
ρ

(
− 4γ̃1

tanh(2γ̃1) tanh2(γ̃1)
+

6γ̃1

tanh(γ̃1)

)
− 4γ̃1

tanh(2hγ̃1) tanh2(hγ̃1)
+

6γ̃1

tanh(hγ̃1)

]
−
[

4(s cos(θ1) + ν0 cos(θ2))2(s+ ν0 cos(θ1 − θ2))2

γ̃2
1

]
×
[

ρ

tanh2(γ̃1)
+

1

h tanh2(hγ̃1)

]
− 3γ̃4

1β

2
−
[

(s cos(θ1) + ν0 cos(θ2))4

2

]
×
[

4

tanh(2hγ̃1) tanh(hγ̃1)
+

1

sinh2(hγ̃1)
− 2− ρ

(
4

tanh(2γ̃1) tanh(γ̃1)
+

1

sinh2(γ̃1)
− 2

)]2

×
[
α+ 4βγ̃2

1 −
2(s cos(θ1) + ν0 cos(θ2))2

γ̃1

(
ρ

tanh(2γ̃1)
+

1

tanh(2hγ̃1)

)]−1

− (s cos(θ1) + ν0 cos(θ2))2

[
ρ

(
s cos(θ1) + ν0 cos(θ2)

sinh2(γ̃1)
+

2 cos(θ1)(s+ ν0 cos(θ1 − θ2))

γ̃1 tanh(γ̃1)

)
−
(
s cos(θ1) + ν0 cos(θ2)

sinh2(hγ̃1)
+

2 cos(θ1)(s+ ν0 cos(θ1 − θ2))

hγ̃1 tanh(hγ̃1)

)]2[
α− cos2(θ1)

(
ρ+

1

h

)]−1
}
.

It is possible to choose the parameters such that c12 < 0, d0
1 > 0 or c12 < 0, d0

1 < 0. This is expected
since the coefficients appearing in the Hamiltonian-Hopf bifurcation in 2-dimensional setting, see
[22], satisfies the same property. This bifurcation was investigated for surface waves in [12] and
the results are described in Theorem 6 of that paper. In particular, no dark solitary waves are
found and this is due to the fact that the coefficient corresponding to d0

1 is strictly positive when
considering surface waves.

Figure 12: Typical wave profiles of the different solutions found from theorem 8. From left to right:
Bright solitary wave of elevation, bright solitary wave of depression, multipulse bright solitary wave
of elevation, dark solitary wave.
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