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Abstract: High levels of organochlorine contaminants (OCs) have been found in arctic char (Salvelinus alpinus) from Lake
Ellasjgen, Bjsrngya (Norwegian Arctic). The aim of the present study was to investigate the potential genotoxic effect of
environmental organochlorine contaminant exposure in arctic char from Ellasjgen compared with arctic char from the low-
contaminated Lake Laksvatn nearby. Blood was analyzed using agarose gel electrophoresis and image data analysis to
quantify the fraction of total DNA that migrated into the gel (DNA-FTM) as a relative measure of DNA double-strand breaks
(DSBs). Analysis by GC-MS of muscle samples showed an average 43 times higher concentration of ZOCs in arctic char from
Ellasjgen (n = 18) compared with Laksvatn char (n = 21). Char from Lake Ellasjeen had a much higher frequency of DSBs, as
measured by DNA-FTM, than char from Lake Laksvatn. Principal component analysis and multiple linear regressions show
that there was a significant positive relationship between DSBs and levels of organochlorine contaminants in the char. In
addition, DSBs were less frequent in reproductively mature char than in immature char. The results suggest that organo-
chlorine contaminants are genotoxic to arctic char. Environ Toxicol Chem 2019;38:2405-2413. © 2019 The Authors. Envi-
ronmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
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INTRODUCTION predators, very limited data exist on possible effects of organo-
chlorine contaminants in fish in the Arctic.

Although not that well studied, there are reports showing a
clear and significant relationship between DNA damage and ex-

Freshwater fish from certain Arctic locations have been re-
ported to contain high levels of organochlorine contaminants
(OCs), with Xpolychlorinated biphenyls (PCBs) higher than
1000 ng g~ lipid weight in some cases (Evenset et al. 2004;
Christensen and Evenset 2011; Bytingsvik et al. 2015). Although
structurally and functionally diverse, many organochlorine con-
taminants share the common characteristics of being persistent,
accumulative in the environment and biota, and toxic (Letcher
et al. 2010). Despite international regulations, organochlorine
contaminants are still considered a threat to Arctic wildlife, par-
ticularly apex predators such as the polar bear (Ursus maritimus;
Oskam et al. 2003) and glaucous gulls (Larus hyperboreus;
Verreault et al. 2010). Compared with avian and mammalian top

posure to organochlorine contaminants (Binelli et al. 2008;
Marabini et al. 2011; Fenstad et al. 2014, 2016). Srinivasan et al.
(2001) showed that PCB metabolites can induce breaks in DNA
strands in vitro, and Binelli et al. (2008) showed that di-
chlorodiphenyldichloroethylene, a metabolite of the pesticide
dichlorodiphenyltrichloroethane, caused DNA strand breaks in
vivo. Genotoxic effects of chemical exposure are of great concemn
because alteration in the genetic material may have severe con-
sequences for individuals and populations (Friedberg et al. 2006;
Brown et al. 2009; Bickham 2011). The DNA double—strand break
(DSB) is one of the most severe DNA lesions because it disrupts the
continuity of the genetic template, essential for replication and

This article contains online-only Supplemental Data. transcription. In somatic cells, DSBs may result in loss of chromo-
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(Friedberg et al. 2006; Devaux et al. 2011). In germ cells DSBs
could affect fertility, fecundity, and progeny (Jha 2008). All of the
above outcomes will precede potential higher-level effects of
genotoxicants (Bickham et al. 2000). One of these higher-level ef-
fects is that the selection pressure imposed by the contaminants
could lead to a loss of genetic variation, especially in combination
with other stressors such as climate change (Bickham 2011; Moe
et al. 2013).

Not much is known about the genotoxic effects of organo-
chlorine contaminants in Arctic wildlife. Some studies have been
carried out, for example, on glaucous gulls (L. hyperboreus) fed
environmentally contaminated eggs (Jstby et al. 2005; Krgkje
et al. 2006) and on fasting common eiders (Somateria mollissima;
Fenstad et al. 2014, 2016). According to the literature, no studies
of genotoxicity in wild Arctic fish have been performed.

Large seabird colonies reside on the steep cliffs of the southern
part of Bjerneya (English, Bear Island), Svalbard, Norway. The birds
have a marine diet but use Lake Ellasjgen as a resting area. Over
time large quantities of guano, containing organochlorine con-
taminants, have been deposited in the lake, causing elevated
levels of organochlorine contaminants in the water, sediment,
zooplankton, and arctic char (Salvelinus alpinus, hereafter char) in
Lake Ellasjgen (Evenset et al. 2007; Bytingsvik et al. 2015). Arctic
char is the only fish species present in the lakes on the island
(Klemetsen et al. 1985). Only one study has measured the po-
tential biological responses to elevated organochlorine con-
taminant levels in arctic char from Ellasjgen. Char from Ellasjgen
had 50-fold higher liver Cyp1A protein expression compared with
char from a low-contaminated lake on Bjgmeya (Lake @yangen), in
addition to lower glucocorticoid receptor protein expression and
elevated expression of heat shock proteins (Wiseman et al. 2011).

In the present study, we used gel electrophoresis to ex-
amine the integrity of DNA in blood cells of land-locked char
from 2 lakes at Bjornoya, Lake Ellasjsen and Lake Laksvatn—
respectively, high- and low-contaminated lakes. By conducting
electrophoresis under neutral pH conditions, the detection of
relative DNA DSB frequency is possible because the duplex
structure of DNA is maintained, and migration of DNA within
the gel depends on the release of the duplex fragments pro-
duced by DNA DSBs. The fraction of DNA that migrate out of
the sample well relative to the total amount of DNA loaded
onto the gel, that is, the DNA fraction of total migrating (DNA-
FTM), can be used to indicate DSB frequency (Theodorakis
et al. 1994; Fenstad et al. 2014, 2016).

The aim of the present study was to investigate the potential
genotoxic effect, measured as DNA DSB frequency, of envi-
ronmental exposure to organochlorines in char from the rela-
tively highly polluted population of Lake Ellasjgen compared
with the population from the low-contaminated Lake Laksvatn.
Furthermore, we assessed whether biological factors, such as
lipid content or age, affect the potential genotoxic response.

MATERIAL AND METHODS
Field sampling

Blood samples were obtained from char in 2 different lakes at
Bjgrnaya (74°30'N, 19°00'E), Svalbard: Lake Ellasjgen (n = 18,

11 males and 7 females) and Lake Laksvatn (n = 21, reference
lake, 12 males and 9 females) in August to September 2014
(Supplemental Data, Table S3). Whole blood (500 ul) for DNA
DSB analysis was frozen in liquid nitrogen, stored at —80 °C, and
transported to the Norwegian University of Science and Tech-
nology at the end of the field season. Muscle samples for
chemical analysis were kept at —20°C and transported to the
laboratory at the Norwegian Institute for Air Research, Tromsg, at
the end of the field season. Otoliths were collected for age de-
termination, and biological variables were measured including
visual inspections of the fish. This includes fork length (centi-
meters), body weight (grams), sex, reproductive stage, gonad
weight (grams), and liver weight (grams). The following indices
were calculated: gonadosomatic index (GSI), (gonad weight x
body Weight_1) x 100; hepatosomatic index (HSI), (liver weight x
body weight_1) x 100; and condition factor, (body weight x fork
length™®) x 100. Reproductive stage was determined in the field,
where fish in stage 1 show no signs of reproducing in the current
season and those in stage 7 (maximal score) are past spawning in
the current season (Semme 1941; see Supplemental Data for
details). The present study complies with the Norwegian regu-
lation on animal experimentation, and permissions to conduct the
fieldwork in Bjerngya National Park were obtained from the
governor of Svalbard and The Norwegian Animal Research
Authority.

Detection of DNA DSBs

The DNA DSB analyses were performed at the Department
of Biology, Norwegian University of Science and Technology.
Agarose plugs for electrophoresis were prepared according to
the procedure described by Theodorakis et al. (1994) and
others (Krekje et al. 2006; Fenstad et al. 2014, 2016). Blood
samples of the 39 char were used to determine DNA-FTM. The
DNA fragments released from the lysed blood cells and em-
bedded in low-melting point agarose plugs were electro-
phoretically separated by size. The relative amounts of DNA
left in the well and the DNA that had migrated into the gel after
electrophoresis were determined by the area under the re-
spective DNA staining intensity curves. The value of DNA-FTM
was expressed as a percentage of DNA migrated of the total
DNA loaded in the gel and used as a measure of DSB fre-
quency (Fenstad et al. 2014). The median molecular length
(MML) of DNA fragments in the gel was calculated by using
densitometric data obtained from the gel image analysis. More
DSBs result in higher DNA-FTM and a lower MML. A more
detailed description is available in the Supplemental Data, in-
cluding an image of a representative gel.

The gels had 15 lanes: the outermost and the middle lanes
were occupied by a DNA size marker and the other by 4 samples
in triplicate. Each gel setup was run twice, so in total every sample
was run and subsequently measured 6 times. Whole-blood
samples were chosen at random, but samples from both lakes
were run in each gel.

The dispersion in both MML and DNA-FTM values of the
replicates of a sample was generally low, with mean coefficients
of variance (+standard deviation [SD]) of 5.6% (+3.9) and
4.2% (+4.0).

© 2019 The Authors
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Chemical analysis

Analysis of muscle tissue concentrations of organochlorine
contaminants was performed at the Norwegian Institute for Air
Research, Tromsg, as described by Herzke et al. (2003) with
modifications from Hallanger et al. (2011). The final data sets
included the following organochlorine contaminants: PCBs 101,
105, 118, 138, 153, and 180 and trans-nonachlor (t-NC). The
contaminants omitted were PCBs 28 and 52; oxy-, trans-, and cis-
chlordane; hexachlorobenzene; cis-nonachlor; and Mirex. Meas-
urements below the limit of detection (LOD) were replaced by a
random integer between 0 and the LOD of that specific com-
pound. The organochlorine contaminant levels are presented and
used in pmol g~" wet weight, unless noted otherwise.

Data analysis

All statistical procedures were performed in R Studio (Ver
1.0.153), an integrated development environment for R (Ver
3.3.0; R Core Development Team 2015). Principal component
analysis (PCA) was carried out with the “FactoMineR" package,
whereas “ggplot2” was mainly used to plot figures.

The PCA was used to explore the relationships between and
covariation of the variables in the data set and as a tool to aid in
the construction of linear models. The variables used in PCA
were the individual organochlorine contaminant concen-
trations, age, condition factor, HSI, reproductive stage, per-
centage of lipids, and DNA-FTM. Only DNA-FTM was chosen
to represent DNA damage because it contained a smaller co-
efficient of variation than MML. The organochlorine con-
taminant concentrations were loge-transformed to reduce their
impact on the construction of the components. Fork lengths,
body weights, and liver weights were added as supplementary
variables—not contributing to the construction of the di-
mensions, only projected onto them—because they were part
of the compound variables (i.e., condition factor and HSI).

Linear regression models were used to investigate rela-
tionships between DNA-FTM, as the explanatory variable, and
20Cs and the biological measurements, as response variables.
Values of DNA-FTM and ZOCs were loge-transformed to be
normally distributed. Candidate models were set up based on
a priori expectations and indications from the prior PCA. A
stepwise selection process was undertaken to find the best
model. The corrected Akaike’s information criterion (AlCc;
Akaike 1974) and the coefficient of variance (R?) of the models
were used to select the models that were most likely to fit the
data (Burnham and Anderson 2004). Models within the model
set with a AAICc < 2 were considered to have similar weighted
support and were compared on equal terms, as suggested by
Burnham and Anderson (2004). The assumption of normality in
linear regression was ensured by diagnostics in R (residual in-
spection by “"Q-Q,” "residual versus leverage,” “residual
versus fitted,” and “scale-location”). The model set did not
include GSI, gonad weight, and MML because they would have
excluded 12 individuals for missing data.

The Shapiro-Wilk test was used to verify normality. The
Mann-Whitney U-test was used for nonnormally distributed
data. Pearson’s correlation test was used to correlate body

weight with fork length. All statistical tests’ level of significance
was set to p < 0.05.

RESULTS

DNA DSBs

Blood samples from 39 fish were analyzed for DNA DSBs by
the DNA-FTM, shown in Figure 1A. There was a significant
difference in DNA-FTM between the lakes. A higher level of
DSBs was found in char from the high-contaminated Lake
Ellasjgen compared with the reference lake, Laksvatn (Mann-
Whitney U, p < 0.001; Figure 1A). There was no significant
difference between the sexes among individuals of Lake Laks-
vatn (Mann-Whitney U, p = 0.46), but in Ellasjgen the males had
a significantly higher level of DNA-FTM than the females
(Mann-Whitney U, p = 0.04).

Blood was also analyzed for the MML of the DNA fragments
that left the well during gel electrophoresis (Figure 1B). There
was a significant difference in MML between the lakes (Mann-
Whitney U, p < 0.05), where the individuals from Lake Laksvatn
had the largest MML. There was no significant difference in
MML between the sexes within any lake.

Organochlorine contaminant levels

Levels of organochlorine contaminants were measured in
muscle of 39 individual char from the 2 lakes. Fish from Lake
Ellasjgen had much higher levels of organochlorine con-
taminants than fish from Lake Laksvatn. Average ZOC con-
centrations in Ellasjgen char were 43 times higher than for
Laksvatn char, 33 739 + 68 741 and 781 + 419 pmol g"1 wet
weight (£SD), respectively. The greatest difference was found
for PCB153, which on average was 53 times higher in the
Ellasjgen than in the Laksvatn char. On a lipid-normalized scale,
PCB153 was measured at 20 147 + 48 451 ng g~' on average
for the Ellasjsen char and 230 + 128 ng g~' for the Laksvatn
char (£SD), an 87-fold difference. Summary statistics and the
individual measurements in both pmol g~' wet weight, and in
ng g~' in both wet weight and lipid-normalized weight can be
found in Supplemental Data, Tables S4, S5, and Sé.

The highest concentrations of organochlorine contaminants
were measured in 3 old males, ages 15, 17, and 19 yr, from
Lake Ellasjgen. The contaminant profiles of the char were
similar in the 2 lakes; that is, the individual compounds con-
stituted similar-sized fractions of the measured chemical load
(Supplemental Data, Figure S2).

Biological variables

Fish from Laksvatn were significantly longer and heavier
than fish from Ellasjpen (Mann-Whitney U, p < 0.001), but
condition factor did not differ in fish from the 2 lakes. A sum-
mary of the biological variables of the fish from Lake Ellasjgen
and Lake Laksvatn is presented in Table 1, with all measure-
ments in Supplemental Data, Table S3. Notably, the char from
Lake Laksvatn were larger than fish at the same age from Lake
Ellasjgen: a significant difference between lakes was found by a
linear regression of weight explained by age (Fj2,34 = 39.51,
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FIGURE 1: DNA double-stranded breaks (DSBs) of arctic char (Salvelinus alpinus) from Lake Laksvatn (reference lake) and Lake Ellasjgen (high
contaminant load). (A) Measure of DSBs by means of DNA-fraction migrated of total DNA loaded from Lake Laksvatn (top; n = 21) and Lake
Ellasjgen (bottom; n = 18). Individual measurements are shown as well as their box plot (where the box boundary is the upper and lower quartile,
divided by the median). There was a significant difference between the lakes (Mann-Whitney U ***p < 0.001). (B) DNA fragment size distributions
given as molecular median length, in kilobase pairs, for Lake Laksvatn (n = 21) and Lake Ellasjgen (n = 18). There was a significant difference
between the lakes (Mann-Whitney U **p < 0.01). DNA-FTM = fraction of total DNA that migrated into the gel; E = Lake Ellasjgen; L = Lake Laksvatn.

p < 0.001). At age 12, the Laksvatn char were almost 2 times
heavier than their Ellasjgen conspecifics (1 309.3 gand 712.0 g,
respectively), according to the regression.

The reproductive stage of the individuals was determined,
and the fish were in stages 1, 2, 6, and 7, including some in 2/7
and 3/7, of the reproductive cycle (see Supplemental Data). No
lesions were observed.

Principal component analysis

A PCA was performed to explore the association between
DNA damage, organochlorine contaminants, and biological
variables in char from the 2 lakes; loading and score plots are
provided in Figure 2. Principal component 1 (PC1) and PC2

accounted for 62.5 and 11.7% of the total variance, re-
spectively. Nearly all of the variance of PC1 was accounted for
by the organochlorine contaminants: combined, they con-
tributed 80.4% of the variation within PC1. Age and DNA-FTM
contributed an additional 8.6 and 5.2%, respectively. The
contribution of variation of the organochlorine contaminants to
the remaining PCs was minimal. The main contributors of the
construction of PC2 were reproductive stage (48.7%), condition
factor (15.6%), percentage of lipids (12.9%), and DNA-FTM
(10.9%). The organochlorine contaminants were also positively
associated with age.

The PCA plot indicates a negative association between
DNA-FTM and HSI and, to a lesser degree, with percentage of
lipids and condition factor. The supplementary variables body

TABLE 1: Biometric data of Arctic char (Salvelinus alpinus) from Lake Laksvatn (n = 21, 9 females, 12 males) and Lake Ellasjgen (n = 18, 7 females,

11 males), Bjerngya (Norway), sampled 2014?

Laksvatn Ellasjgen

Average + SD Median Range Average + SD Median Range
Length (cm) 48.8 +3.1 48.7 43.5-56.1 43.5+6.7 41.9 36.2-62.4***
Ws (9) 1092.7 +143.6 1052.4 845.-1433.0 808.6 +476.7 636.4 436.3-2372.6***
Age 10.4+1.2 10 9-12 127 +27 12 9-19**
Rs 4.8+2.1 6 1-7 40+21 5 1-6
WgP 16.1+£12.0 17.3 0.7-37.8 7.6+79 6.6 0.4-20.7
Lip% 0.5+0.0 0.5 0.5-0.6 04+0.2 0.4 0.2-1.0***
W (9) 11.23+£2.31 11.15 7.67-16.60 6.16 +2.40 5.38 3.52-12.72%**
GSIP 7.05+7.91 1.82 0.08-18.41 4.12+5.57 1.22 0.07-14.18*
CF 0.94+0.11 0.99 0.69-1.07 0.91+0.06 0.91 0.82-1.04
HSI 1.05+0.27 1.02 0.66-1.70 0.83+0.23 0.77 0.54-1.47**

?Presented as average with standard deviation, median, and range.
PFemales only.

B = body; CF = condition factor; G = gonads; GSI = gonadosomatic index; HSI = hepatosomatic index; L = liver; Lip% = percentage lipid in muscle; Rs = reproductive

stage.

Significance by p value of Mann-Whitney U test: ***p < 0.001, **p < 0.01, *p < 0.05.

© 2019 The Authors
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FIGURE 2: Scores plot (left) and loadings plot (right) from a principal component analysis of arctic char (Salvelinus alpinus) from Lake Laksvatn
(open circles) and Lake Ellasjeen (solid circles), respectively (barycenters marked by squares). The 5 individuals that contributed the most variation in
the construction of the dimensions are marked with their identification number. Gray, dashed lines represent supplementary variables. CF =
condition factor; DNA-FTM = fraction of total DNA that migrated into the gel; HSI = hepatosomatic index; Lip% = percentage of lipids in muscle;

PCB = polychlorinated biphenyl; t-NC = trans-nonachlor.

weight, fork length, and liver weight did not indicate any strong
associations to any of the axes.

The organochlorine contaminant concentrations in char
cause the PCA to order individuals with organochlorine con-
taminant concentrations in the 3 oldest males from Ellasjgen
(positive PC1 values) to low organochlorine contaminant con-
centrations in char from Laksvatn (negative PC1 values). In-
dividual 23 had the lowest ZOC level of the 39 individuals
(227.8 pmol g™"). Of the clustered Ellasjgen individuals within
the fourth quadrant (positive PC1 values and negative PC2
values), all were in reproductive stages 1, 2, or 3 with relatively
low DNA-FTM scores. Inversely, individuals in reproductive
stages 4, 5, or 6 had positive PC2 values.

Multiple regression models

The 4 best candidate models, determined by AlCc score, all

included reproductive stage in addition to XOC (Table 2).
Generally, all of the models showed a significant increase in DNA-
FTM with higher organochlorine contaminant levels and a de-
crease in DNA-FTM at later reproductive stages. The coefficient
estimates for both ZOC and reproductive stage were similar
between the 4 best models: ZOC ranged from 0.151 (standard
error of the mean [SEM] = 0.039) to 0.171 (SEM = 0.035), and
reproductive stage ranged from —0.073 (SEM = 0.029) to —0.096
(SEM = 0.032). The complete set of models from the model
selection can be found in Supplemental Data, Table S2.

TABLE 2: Top candidate models to explain the level of DNA double-strand breaks, measured by the fraction of total DNA that migrated into the

gel (DNA-FTM)®

Model ID AAICc Adjusted R? Resp. vars. Estimate SE t value P

1 0.00 0.455 (Intercept) 2.715 0.311 8.740 0.000***
>0C 0.171 0.035 4.904 0.000***

Rs -0.083 0.028 -2.953 0.006**
2 1.24 0.459 (Intercept) 3.036 0.420 7.233 0.000***
*0C 0.151 0.039 3.842 0.000***

Rs -0.073 0.029 -2.482 0.018*

W, -0.023 0.020 -1.132 0.265™
3 1.50 0.456 (Intercept) 3.096 0.486 6.371 0.000***
>0C 0.152 0.039 3.867 0.000***

Rs -0.082 0.028 -2.914 0.006**

HSI -0.253 0.248 -1.019 0.315™
4 1.74 0.452 (Intercept) 2.778 0.319 8.702 0.000***
>0C 0.163 0.036 4513 0.000***

Rs males -0.096 0.032 -3.035 0.005**

Rs females -0.073 0.030 -2.422 0.021*

?Both DNA-FTM and Zorganochlorines were In-transformed.
AlCc = corrected Akaike's information criterion; DNA-FTM = total DNA that migrated into the gel; HSI = hepatosomatic index; ns = not significant; ZOCs =
Sorganochlorines; Resp. vars. = response variables; Rs = reproductive stage; W, = liver weight.
Annotation of p-value: ***<0.001, **<0.01, *<0.05, ns, not significant.
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The model considered to be the best was DNA-FTM, ex-
plained only by ZOC and the reproductive stage (model 1).
Selection was done on the principles of AICc model selection
and parsimony. The model shows a clear increase in DNA-FTM
when XOC increases and the char are in the earlier re-
productive stages. Late reproductive stages and low ZOC
concentrations are associated with lower DNA-FTM. A sig-
nificant regression coefficient (adjusted) of 0.455 was found for
the entire model (Fz,3¢) = 16.89, p < 0.001). The £OC co-
efficient (+ SEM) was 0.171 (+0.035), whereas the reproductive
stage had a negative coefficient in the model of —0.083
(+0.028). Both estimates were significant: ZOC p<0.001,
reproductive stage p = 0.006. The best model is illustrated in
Figure 3, and in the model, the individuals are pooled into the
2 groups representing the earlier reproductive stages (stages
1-3), that is, immature char and the mature char that are about
to spawn (stages 6 and 7).

Liver weight, absolute and by HSI, was included in models 2
and 3 but had no significant impact on the regression model
(p=0.26, p=0.31, respectively). Model 4 showed a significant
difference in the impact of reproductive stage on DNA-FTM by
sex, but the coefficient estimates were of similar magnitude.
That is, the sex difference was significant but small. The model
shows that there seems to be a slightly smaller increase in
DNA-FTM for females than for males, with both increasing
2OC and reproductive stage. A selection table of the models
and the top-tier model makeup are given in the Supplemental
Data, Table S2.

DISCUSSION

Biological variation

Individuals of similar age were significantly heavier in Lake
Laksvatn than in Lake Ellasjgen. This is in line with previous
findings from the same study population (Jergensen et al.
2017; Gauthier et al. 2018), which include materials from the
same sampling as the present study. The 2 studies propose
that the high levels of organochlorine contaminants of
Ellasjeen char could contribute to the lower body mass found
in this population compared with that in Lake Laksvatn be-
cause of a certain metabolic cost of activating the xenobiotic
defense and detoxification system. Others have examined
this possible relationship between contaminant exposure in
fish and metabolism and energy allocation further (Smolders
et al. 2003; Nault et al. 2012). An exposure experiment with
arctic char found that a high dose of PCBs reduced the
specific growth rate compared to a control (Jergensen et al.
2004). However, there are other differences between the
2 lakes that could have contributed to growth differences,
such as food availability and quality, population density (the
fish density is much higher in Lake Ellasjgen than in Lake
Laksvatn), parasite load (more parasites in Ellasjgen because
of the presence of seabirds), and ectomorphs (Hawley et al.
2016). The factors could also account for the difference in
muscle lipid content, which was somewhat higher in char
from Laksvatn.
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FIGURE 3: Linear regression model of frequency of DNA double-strand
breaks by measure of DNA-fraction of total DNA that migrated into the
gel, explained by concentration of ;0organochlorines (pmol g~ wet wt)
and reproductive stage in arctic char (Salvelinus alpinus) from 2 lakes on
Bjerneya, Svalbard. The dashed line (individuals as open circles) repre-
sents char that likely will reproduce in the current year (reproductive
stages 6 and 7). The solid line (individuals as solid circles) represents
immature char that will not reproduce in the current year (reproductive
stages 1-3). The model was statistically significant (Fjz 3¢ = 19.13, p <
0.001), with an adjusted R? = 0.488. DNA-FTM = fraction of total DNA
that migrated into the gel; OC = organochlorine.

Organochlorines

There was a large difference in the level of contaminants in
char between the 2 lakes—a 43 times higher average molar
concentration (wet wt) of £;0Cs in Lake Ellasjgen than Lake
Laksvatn char. However, PCB levels of Ellasjgen char are similar
to or a bit lower than those reported in earlier studies (Evenset
et al. 2004; Bytingsvik et al. 2015; Jorgensen et al. 2017). The
contaminant concentration of Lake Laksvatn char is also com-
parable between studies (Bytingsvik et al. 2015) as well as to
char of @yangen on Bjarnaya, used earlier as the reference lake
(Evenset et al. 2004; Wiseman et al. 2011). Laksvatn char are
also similar in summed PCB concentrations to char from lakes in
eastern and northern Canada as reported by Braune et al.
(2005). The only non-PCB component, t-NC, is reported in
similar concentrations in both lakes as in land-locked arctic char
from southwest Greenland (Rigét et al. 2010).

DNA damage

There was a significantly higher level of DNA DSBs in blood
cells of arctic char in Ellasjgen compared with those from Laksvatn.
This difference could be attributable to the higher level of orga-
nochlorine contaminants in Lake Ellasjgen because a strong
positive relationship between organochlorine contaminant con-
centration and increasing DNA DSBs was found in both the PCA
and regression models. The causality of the association is not
given, but it is presumed that the higher concentration of orga-
nochlorine contaminants could explain parts of the observed dif-
ference in DNA damage. Several studies have indicated that
some of the contaminants found at high levels in the Lake
Ellasjgen fish can damage DNA (Winter et al. 2004; Gonzélez-Mille
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et al. 2010; Marabini et al. 2011). Damage to DNA can in tumn, if
not repaired or repaired inadequately, affect the health of the
organism, such as the formation of lesions, an effect associated
with PCBs (Ben Ameur et al. 2012; Simon and Burskey 2016). Such
damages could thus impair reproduction and, as such, higher
organizational levels (Jha 2008).

In addition to differences in DNA damage in fish from the
2 lakes, a relationship was found between DNA DSBs and
reproductive stage. The fish in the later stages of the
reproductive cycle had lower levels of DNA DSBs. In a study by
Goksgyr and Larsen (1991) it was found that sexually mature
Atlantic salmon (Salmo salar) had a lower hepatic CYP1A ac-
tivity (ethoxyresorufin O deethylase) than sexually immature
salmon. Similarly, low CYP1A activity has been measured
in liver samples from sexually mature char from Bjernoya
(Akvaplan-niva AS, unpublished data), although it was reported
to be generally higher in Ellasjgen compared to Laksvatn
(Jorgensen et al. 2017). It is known that different PCBs can be
metabolized to different degrees by CYP1A (Grimm et al.
2015), and some of the metabolites are known to be able to
induce reactive oxygen species and DNA damage (Song et al.
2015). This suggests that the lower levels of DNA damage
observed in mature char are attributable to a lowered bio-
transformation capacity, which consequently may result in less
DNA damage. The pattern observed could also be explained
by energy budget strategies: energy is invested most in re-
productive organs rather than biotransformation.

Another reason for the difference in DNA damage between
fish in different reproductive stages could be that the DNA
repair capacity differs with the reproductive stages. If fish in the
earlier stages of the reproductive cycle have a greater ability to
repair DNA damage, this could explain the disparity in DNA
damage between the stages. And such a difference between
young and adult fish has been found in medaka (Oryzias lat-
ipes), where the adult has decreased DNA alkylation repair
(Kienzler et al. 2013). But, conversely, in Kryptolebias mar-
moratus the pattern was observed to be the opposite (Kienzler
et al. 2013). The 2 main pathways for DSB repair (homologous
recombination and nonhomologous end-joining), which are
most relevant in the present study, have so far gained much
less attention in fish than in mammals. Both homologous re-
combination and nonhomologous end-joining have been reg-
istered in early embryonic cells and adult medaka cells (Kienzler
et al. 2013)—yet another reason which could be linked to the
energetic cost of detoxification.

The DNA-FTM was higher in males than in females from
Ellasj@en. This could be attributable to a biased sample size of
each sex: the 4 oldest individuals that also had the highest
concentrations of organochlorine contaminants were male.
Another explanation for higher DNA-FTM in males of Ellasjgen
could be that the female deposits organochlorine con-
taminants into the lipid-rich eggs. For anadromous char, the
lipid content of the gonads can account for up to 25% of the
total lipid content in females but <3% in males (Jergensen et al.
1997). The toxicokinetics of spawning was investigated in the
landlocked char from Ellasjgen, where this additional route of
elimination was found to be substantial (Bytingsvik et al. 2015).

The mechanism may lead to lowering the body burden of or-
ganochlorine contaminants in females only, subsequently
leading to lower levels of observed DNA damage compared
with males. The effect might also suggest that the reproductive
stage leads to a better explanation of DNA damage in the
models than does age (see Supplemental Data, Table S2).

The damage to DNA was measured in blood cells, primarily
erythrocytes. Albeit lacking metabolic capacity, it is believed
that damage to these cells can be reflective of the status of the
organism (Mitchelmore and Chipman 1998). The level of DNA
damage in blood cells could be indicative of DNA damage in
other tissues, which, for instance, could lead to the formation of
lesions, an effect associated with PCBs (Ben Ameur et al. 2012;
Simon and Burskey 2016). These lesions can inflict neuro-
logical, endocrine, and reproductive effects and further lead to
a reduction of fitness unless repaired.

Other parts of the overarching project of the present study have
found metabolomic (Gauthier et al. 2018) and endocrine disruption
(Jergensen et al. 2017) of the char from Ellasjgen, which points to
adverse effects of the pollutant load. According to Bickham (2011),
one outcome of chronic exposure of contaminants to a population
could be selection for resistance-associated alleles. This could
cause a loss of genetic variation as a whole in the population,
referred to as the “genetic erosion hypothesis” (van Straalen and
Timmermans 2002). Despite a significant difference in DNA
damage between the lakes and high levels of organochlorine
contaminants in Ellasjgen, adult arctic char continue to reproduce
in the lake. Further studies of the genetics of these populations
could provide some insight into possible adaptations to the ex-
posure and evidence for the genetic erosion hypothesis or in-
dications of an evolutionary adaptation.
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the Wiley Online Library at DOI: 10.1002/etc.4546.
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