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ABSTRACT
In this paper, we introduce a modular deep neural network (DNN) framework for data-driven reduced order modeling of dynamical systems
relevant to fluid flows. We propose various DNN architectures which numerically predict evolution of dynamical systems by learning from
either using discrete state or slope information of the system. Our approach has been demonstrated using both residual formula and backward
difference scheme formulas. However, it can be easily generalized into many different numerical schemes as well. We give a demonstration of
our framework for three examples: (i) Kraichnan-Orszag system, an illustrative coupled nonlinear ordinary differential equation, (ii) Lorenz
system exhibiting chaotic behavior, and (iii) a nonintrusive model order reduction framework for the two-dimensional Boussinesq equations
with a differentially heated cavity flow setup at various Rayleigh numbers. Using only snapshots of state variables at discrete time instances,
our data-driven approach can be considered truly nonintrusive since any prior information about the underlying governing equations is
not required for generating the reduced order model. Our a posteriori analysis shows that the proposed data-driven approach is remarkably
accurate and can be used as a robust predictive tool for nonintrusive model order reduction of complex fluid flows.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113494., s

I. INTRODUCTION

Many realistic transient flows typically involve very wide ranges
of spatial and temporal scales, which place an enormous computa-
tional burden on direct numerical simulations (DNS) of such flows
based on governing equations. Advancement in high-performance
computing systems along with the development of consistent, sta-
ble, convergent numerical schemes, and efficient parallel algorithms
has enabled us to analyze and study complex real world processes.
For instance, it is now possible to collect very high-resolution DNS
data relevant to selected turbulent flows which cannot be gathered
experimentally.1 However, the computational cost of performing
DNS scales roughly as Re3, where Re is the Reynolds number of
the flow.2 Hence, with the present state of the art computing archi-
tectures,3 such high-resolution simulations of multiphysics flows
might require weeks of computations even for simple geometries.
The situation worsens when a series of numerical simulations need
to be run for any parametric design optimization study. To alle-
viate this, coarse-graining approaches, as performed, for example,

in large eddy simulations (LES), are commonly used to reduce this
computational burden.4–7

However, the computational cost of full-order simulations (i.e.,
DNS or even LES) can still be considered extremely prohibitive due
to a large number of degrees of freedom needed to resolve all of the
flow features, especially in settings where the traditional methods
require repeated model evaluations over a large range of parame-
ters. Therefore, many successful model order reduction approaches
have been introduced.8–12 The main purpose of such approaches is
to reduce this computational burden and serve as surrogate mod-
els for efficient computational analysis of fluid systems. A com-
mon objective in such reduced order modeling (ROM) approaches
is to determine how well these approaches can reproduce the flow
dynamics.

Intrusive finite dimensional low order models routinely arise
when we apply Galerkin type projection techniques to infi-
nite dimensional models.13–15 On the other hand, without prior
information on the governing equations, their operator forms,
or parameterizations to account for complex physical processes,
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FIG. 1. Iterative prediction using the trained DNN model for different frameworks proposed in this study. The input to the neural network consists of state history for p time
steps. For the DNN-R framework, r is the residual predicted by the neural network. For the DNN-B framework, r is the discrete numerical slope computed using any of the
numerical method used for training the neural network. The number of inputs to compute numerical slope in DNN-B framework depends upon the numerical scheme applied
for calculating the slope (for example, m = 1 for the second-order backward difference scheme used in this study).

a nonintrusive ROM approach can be reconstructed to infer such
underlying physics from the data itself. Having ability to facili-
tate dynamic data exchange easier between different components,
these nonintrusive models can arguably be more promising and
impactful in numerous interdisciplinary fields. Moreover, with
the advent of digital twin technologies,16 the collection of data
from sensors has become possible at different stages of product’s
lifecycle, and model order reduction might be considered a key
enabler for this digital twin vision in many emerging cyber-physical
systems.17

Reduced order models offer promises in many fields such
as system identification,18–20 control,21–26 optimization,27–29 and
data assimilation30–32 applications. In these model reduction
approaches, we aim at obtaining simplified (but dense) mod-
els from high-fidelity numerical simulation data or data col-
lected from the experiment.12,33 To fulfill their objectives in mul-
tiple forward simulations of the problem with different model
parameters,34–39 these models should be sufficiently accurate and
computationally much faster than the high-fidelity numerical
simulation. Therefore, there has been progress made in recent
years to develop such ROM approaches specifically for nonlinear
systems.40–45

The basic philosophy of projection-based ROM approaches
is to reduce the high degrees of freedom of a governing equa-
tion through an expansion in a transformed space, traditionally
with orthogonal basis. Among the large variety of projection-based

ROM strategies, the proper orthogonal decomposition (POD) has
emerged as a popular technique for the study of dynamical sys-
tems,9,12,46,47 which targets the most dominant characteristics of the
flow considering the largest energy containing modes. The POD
technique was first introduced in fluid community in the context
of extracting coherent structure from a turbulent flow field.48 Sev-
eral methods have also been proposed in the literature aimed at
improving the POD modes.49–52 There are also different variants of
POD that have been introduced, such as spatio-temporal biorthog-
onal decomposition,53 spectral POD (SPOD),54 frequency based
POD that is also called SPOD,55 and multiscale POD (MPOD)56

which splits the correlation matrix into the contribution of different
scales.

The evolution equations for the lower order system are then
obtained using the Galerkin projection method. For many flows,
the POD-Galerkin method provides an efficient and accurate way
to generate ROM methodologies.57–65 Furthermore, several success-
ful closure models have been suggested in order to model the effects
of discarded modes.66–69 The POD-Galerkin intrusive approach can
also be stabilized with a nonlinear eddy viscosity model70 or with
proper selection of linear quadratic coefficients.71 However, the
projection-based model reduction approaches have limitations espe-
cially for complex systems such as general circulation models since
there is a lack of access to the full-order model operators or the
complexity of the forward simulation codes that render the need for
obtaining the full-order operators.72–74

TABLE I. The output of different DNN frameworks learned through training. The trained parameter is then used to update the
solution in time, starting from the initial condition.

Neural network framework Predicted variable Solution update

DNN-S r = y(n+1) y(n+1) = r
DNN-R r = y(n+1) − y(n) y(n+1) = y(n) + r
DNN-B r = 3y(n+1)

−4y(n)+y(n−1)

2Δt y(n+1) = 4
3y
(n) − 1

3y
(n−1) + 2

3 rΔt
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FIG. 2. Prediction of the state of the
Kraichnan-Orszag system for different
DNN frameworks trained using p = 1.
The initial condition of the dynamical sys-
tem is [y1 y2 y3]

T
= [1.0 0.05 0.0]T .

The solid lines present the true state of
the system and the dashed line presents
the state of the system predicted using
neural network.

One of the challenges in Galerkin projection is the deformation
of POD modes. As recently discussed by Reiss et al.,75 transport-
dominated phenomena are usually a challenge for modal meth-
ods since their dynamics cannot be captured accurately by a few
dominant spatial modes. If we include more number of modes to
better recover the embedded structures in the underlying system,
the computational expense increases and the ROM might not be
efficient from practical point of view. Furthermore, the construc-
tion of a least-order state space is crucial especially in control since
every degree of freedom can amplify noise.76 A data-driven manifold
learning model has been proposed as a general dynamic ROM mod-
eling framework.45 Ehlert et al.76 have also presented a manifold rep-
resentation of the transient oscillatory cylinder wake using a locally
linear embedding approach as encoder. They found that this repre-
sentation outperforms a 50-dimensional POD expansion from the
same data. Another key dynamic problem is that hyperbolic convec-
tion problems are treated with an elliptic Galerkin method.77 Even
though the flow has a certain specific direction, the Galerkin pro-
jection assumes that the modes are globally coupled. This mismatch
between Navier-Stokes equations and Galerkin dynamics might not
be curable. Also, the frequency range of high-dimensional Navier-
Stokes solutions is not resolved in the low-dimensional deterministic
system.57,78 Rempfer79 has demonstrated some implications of pro-
jecting the Navier-Stokes equations onto low-dimensional bases and
showed how the restriction to a low-dimensional basis as well as
improper treatment of boundary conditions might affect the valid-
ity of ROM. Due to all these limitations, there is a recent interest in
generating fully nonintrusive approaches without the need for access
to full-order model operators to establish surrogate models.73,80–87

Dynamic mode decomposition (DMD) models88–93 provide this

nonintrusive representation directly from data by their nature, and
several approaches have been readily available for optimal mode
selection.94–97

There is a broad range of opportunities for the application of
machine learning algorithms to develop nonintrusive reduced order
models. A good discussion on the application of data-driven meth-
ods for dynamical systems can be found in a book by Brunton and
Kutz.98 We also refer to a recent review article99 for a comprehen-
sive overview of the machine learning literature in fluid mechanics.
A number of studies have been done to apply data-driven techniques
to predict the high-dimensional complex dynamical systems.100–108

San and Maulik109 proposed a methodology to account for the effects
of truncated POD modes using a single layer feed-forward neural
network. A multistep neural network was proposed to identify the
nonlinear dynamical system from the data by combining classical
numerical analysis techniques with the powerful nonlinear approxi-
mation capability of neural networks.102 Xie, Zhang, and Webster101

used the multistep neural network to approximate the full order
model projected on low-dimensional space with a supervised learn-
ing task. A deep residual recurrent neural network was introduced
as an efficient model reduction technique for nonlinear dynami-
cal systems.105 Vlachas et al.110 developed the data-driven forecast-
ing method for high-dimensional, chaotic systems using the hybrid
approach which combines the mean stochastic model and the recur-
rent long short-term memory (LSTM) neural network. The LSTM
recurrent neural network was used to model the temporal dynam-
ics of turbulence in a ROM framework.111 Pathak et al.112 proposed
a hybrid forecasting model combining the knowledge of the gov-
erning equation of the dynamical system and the machine learn-
ing technique to predict the long term behavior of chaotic systems.

FIG. 3. Prediction of the state of the
Kraichnan-Orszag system for different
DNN frameworks trained using p = 4.
The initial condition of the dynamical sys-
tem is [y1 y2 y3]

T
= [1.0 0.05 0.0]T .

The solid lines present the true state of
the system, and the dashed line presents
the state of the system predicted using
the neural network.
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TABLE II. Quantitative assessment of different DNN frameworks with different num-
bers of inputs to the neural network for the Kraichnan-Orszag system using the total
root mean square error given by Eq. (6).

Framework RMSE (p = 1) RMSE (p = 4)

DNN-S 1.71 × 10−2 1.90 × 10−2

DNN-R 1.02 × 10−3 2.48 × 10−4

DNN-B 5.67 × 10−4 5.97 × 10−4

This hybrid approach was found to be better than either its pure
data-driven component or its model-based component.

In our proposed ROM framework, we will bypass the Galerkin
projection step of the projection based ROM with our proposed neu-
ral network architectures to build a fully nonintrusive approach.
This nonintrusive ROM (NIROM) framework can be viewed as a
decomposition of the problem into basis representation and fore-
casting subproblems. We illustrate our NIROM approach using the

deep feed-forward neural network architectures. However, it can be
easily applied to other types of neural networks (as demonstrated
for data-driven forecasting of dynamical systems110,113) or more tra-
ditional time series forecasting tools.114 The neural networks are
capable of approximating the nonlinear functions and have been
successfully used in turbulence modeling,115–117 solving the differ-
ential equation.118,119 We learn the dynamics of the reduced order
model directly from the output of the full order model projected
on the low-dimension space using a supervised learning task. The
main advantage of this nonintrusive approach is that it does not
require information about the equations governing the full order
model. Although the proposed approach helps generate a NIROM
framework solely from the snapshot data reconstructed onto a POD-
spanned space, it may still suffer from fundamental challenges of
traditional POD-Galerkin models (e.g., we refer to the work of
Zerfas et al.120 for a recent discussion about ways to mitigate their
lack of accuracy).

The paper is organized as follows: Sec. II introduces deep neu-
ral network (DNN) architecture and implementation of different

FIG. 4. Time evolution of the Lorenz system trajectories for
the initial condition [y1 y2 y3]

T
= [−8 7 27]T . The neural

network is trained using the data generated from the true
solution between t = 0 and 25 with p = 1.
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DNN frameworks for dynamical systems. Section III gives numer-
ical results using our DNN frameworks for two dynamical systems:
Kraichnan-Orszag system and Lorenz system. We present the gen-
eralized nonintrusive ROM framework in Sec. IV A. In Sec. IV B,
we present the Boussinesq equation problem and its POD analysis.
The nonintrusive ROM framework for the Boussinesq equation is
described in Sec. IV C. The numerical results in Sec. V demonstrate
the effectiveness of our nonintrusive approach for reduced order
modeling of a differentially heated cavity problem at two Rayleigh
numbers. We give some concluding remarks and suggestions for
future work in Sec. VI.

II. LEARNING FRAMEWORK
The deep neural network is an artificial neural network com-

posed of several layers made up of the predefined number of
nodes. These nodes are also called neurons. A node combines the
input from the data with a set of coefficients called weights. These
weights either amplify or dampen the input and thereby assign the

significance to the input with respect to the output that the DNN is
trying to learn. In addition to the weights, these nodes have a bias
for each input to the node. The input-weight product and the bias
are summed and the sum is passed through a node’s activation func-
tion. The above process can be described using the matrix operation
as given by121

Sl =WlXl−1, (1)

where Xl−1 is the output of the (l − 1)th layer and Wl is the matrix
of weights for the lth layer. The output of the lth layer is given
by

Xl = ζ(Sl + Bl), (2)

where Bl is the vector of biasing parameters for the lth layer and
ζ is the activation function. If there are L layers between the input
and the output, then the mapping of the input to the output can be
derived as follows:

Y = ζL(WL, BL, . . . , ζ2(W2, B2, ζ1(W1, B1, X))), (3)

FIG. 5. Time evolution of the Lorenz system trajectories for
the initial condition [y1 y2 y3]

T
= [−8 7 27]T . The neural

network is trained using the data generated from the true
solution between t = 0 and 25 with p = 4.
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where X and Y are the input and output of the deep neural network,
respectively.

The input layer usually takes the raw data from the training
dataset and transfers them to the second layer. It does not have
any biasing or activation through an activation function. The output
layer usually has the linear activation function and some bias asso-
ciated with the inputs. The linear activation function simply takes
the summation of inputs received from the previous hidden layer
and the associated bias of the output layer. In this study, we use the
ReLU activation function for all hidden layers and the linear activa-
tion function for the output layer in all DNN frameworks. The ReLU
activation function can be expressed as

ζ(χ) = max(0, χ), (4)

where ζ is the activation function and χ is the input to the node.
Each entry of the matrices W and B is learned through back-

propagation and some optimization algorithm. The backpropaga-
tion algorithm provides a way to compute the gradient of the objec-
tive function efficiently, and the optimization algorithm gives a rapid
way to learn optimal weights. The objective of the neural networks
in this study is to learn the weights associated with each node in such
a way that the root mean square error between the true labels Y0 and
the output of the neural network Y is minimized. The backpropa-
gation proceeds as follows: (i) the input and output of the neural

network are specified along with initial weights, (ii) the training data
are run through the network to produce output Y whose true value is
Y0, (iii) the derivative of the objective function with each of the train-
ing weight is computed using the chain rule, and (iv) the weights are
updated based on the learning rate and then we go to step (ii). We
continue to iterate through this procedure until convergence, or the
maximum number of iterations is reached. The Adams optimiza-
tion algorithm122 is used in this study for learning optimal weights
to minimize the objective function.

Deep neural networks are capable of approximating nonlinear
dynamical systems as shown in many studies.102,103,106,123 The gen-
eral nonlinear dynamical system can be presented by an equation of
the form

dy
dt
= F(y, t), (5)

where y(t) is the state variable at time t and F(y, t) is
the nonlinear function evaluated for each component of state
variable y(t).

Figure 1 shows three different DNN frameworks used in
this study to predict the dynamical system. Although their char-
acteristics on the stability and well-posedness are beyond the
scope of the present work, we refer to the study of Chang
et al.124 for several deep neural networks and their stability issues.

FIG. 6. The true phase portrait of the Lorenz system (a) compared with the phase portrait predicted by different DNN frameworks [(b)-(d)] for time integration from t = 0 to
t = 25. Note that there is a good qualitative argument between the phase portrait predicted by the DNN-S framework (b), DNN-R framework (c), and DNN-B framework (d)
with the true phase portrait (a). All DNN frameworks are trained with p = 1.
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Our motivation for different choices of DNNs comes from recent
development of approximation and discovery of dynamical systems
using deep learning techniques.102,107 At this point, it may be incon-
clusive to say which DNN framework is superior as compared to oth-
ers. However, our empirical evidence suggests that learning residual
information or numerical slope helps in more accurate prediction of
dynamical systems. In the case of the DNN-S framework, we train
the neural network to learn an update formula which advances the
state of the system from y(n) to y(n+1) directly, where (n) denotes
the state of the system at time tn. The S in the DNN-S stands for
sequential. The past history of the state of the system can be utilized
to predict the system’s future state by incorporating it in the input
features of the neural network. If we want to include the state his-
tory for p time steps, then the input of the neural network consists of
y(n), y(n−1), . . ., y(n−p+1). Hence, the neural network will have R × p
input features and R output labels (i.e., M : IRR×p ⇒ IRR), where
M refers to the DNN model, and R is the number of components of
the dynamical system. Once the neural network is trained and the
weights are learned, the neural network is used to predict the state of
the system starting with an initial condition y(0) and proceeding in
time iteratively. The prediction of the system in iterative fashion is
shown in Fig. 1(a). If the neural network is trained using the state of
the system for p time steps, then the previous p time steps should be

stored in the prediction routine. The future state of the system y(n+1)

is predicted using the true state of the system for first p time steps.
After p time steps, only the predicted values by the neural network
are used in the input. The predicted variable of the neural network
and the solution update formula during an iterative prediction are
given in Table I.

For the DNN-R framework, we learn the difference between
the state of the system at time step tn and next time step tn+1.
The residual between two time steps is then applied to update the
current state during prediction. The learning of the residual infor-
mation instead of sequential update formula helps in stabilizing
the neural network123 and also improves the accuracy of neural
network prediction.113 The DNN-R framework can also be imple-
mented using the history of the system’s state, similar to the DNN-S
framework. The related framework was employed for the model
order reduction of the parametric viscous Burgers equation prob-
lem125 with one temporal leg history (i.e., p = 1). They call it the
POD-ANN-RN framework, and this framework was found to give
better results for interpolatory and extrapolatory ROM than sequen-
tial learning. The iterative prediction of the dynamical system using
the DNN-R framework is shown in Fig. 1(b). The future state of the
system is computed using the solution update formula mentioned
in Table I.

FIG. 7. The true phase portrait of the Lorenz system (a) compared with the phase portrait predicted by different DNN frameworks [(b)-(d)] for time integration from t = 0 to
t = 25. Note that there is a good qualitative argument between the phase portrait predicted by the DNN-S framework (b), DNN-R framework (c), and DNN-B framework (d)
with the true phase portrait (a). All DNN frameworks are trained with p = 4.
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We also introduce an additional framework called a DNN-B
framework, as shown in Fig. 1(c). The B in the name stands for the
backward difference. In this framework, we use the second order
backward difference numerical scheme to compute the slope at time
step tn. The numerical slope information is then used to update
the state of the system during prediction. The similar approach is
also implemented in other data-driven methods for dynamical sys-
tems. One such work is the multistep neural network102 used for the
data-driven discovery of nonlinear dynamical systems from exper-
imental measurements of the state of the system. In their work,
the evolution of system F is learned using the neural network by
incorporating the multistep Adams-Moulton numerical scheme in
computing the loss function of the neural network. In our work,
we use the numerical slope as the predicted variable and use mean
squared error as the loss function. One of the advantages of directly
learning the numerical slope is that standard loss functions avail-
able in Keras library can be directly applied without any modifi-
cation. We apply the second order backward difference scheme in
the DNN-B framework to compute the discrete numerical slope.
However, the framework can be implemented with any family of
numerical schemes such as the central difference or forward differ-
ence family. The equation used to determine the numerical slope and
the solution update formula during iterative prediction is provided
in Table I.

The quantitative performance of each DNN framework is mea-
sured by a quantity root mean square error (RMSE). The root mean

square is determined for each component k between the true state
and the state predicted by the neural network from the initial time
to final time. The root mean square of each component is added to
get the total root mean square error. The root mean square error is
defined as

RMSE =
R

∑
k=1

¿
ÁÁÀ 1

N

N

∑
i=1
(y(i)k − ỹ(i)k )

2
, (6)

where R is the total number of components of the dynamical system,
N is the total number of time steps in the evolution of the dynamical
system, y is the true solution, and ỹ is the solution predicted by the
neural network.

III. TIME SERIES PREDICTION FOR DYNAMICAL
SYSTEMS

Before implementing our proposed DNN frameworks within
the nonintrusive ROM setup, we demonstrate the capability of our
DNN frameworks to model nonlinear dynamical systems using two
examples. Section III A provides numerical results for the three
mode Kraichnan-Orszag problem, and Sec. III B gives results for the
chaotic Lorenz system.

A. Kraichnan-Orszag system
We start by considering the nonlinear dynamical system

Kraichnan-Orszag126 of order R = 3 as the first test problem.

FIG. 8. Generalized nonintrusive reduced order modeling (NIROM) framework.
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FIG. 9. Evolution of the Nusselt number Nu(t) at x = 0 (left) and designated probe temperature θp. The temperature θp is probed at the location x = 0.125 and y = 7.0. Note
that the temperature variation at the probed location is periodic at low Rayleigh number. While at higher Rayleigh number the probed temperature varies in a chaotic manner.

The Kraichnan-Orszag system is defined as

dy1

dt
= y1y3,

dy2

dt
= −y2y3,

dy3

dt
= −y2

1 + y2
2, (7)

with an initial condition y1(0) = 1, y2(0) = 0.1ξ, and y3(0) = 0. The
input ξ lies between the interval [−1, 1]. The modeling of this sys-
tem is particularly challenging due to the discontinuity at planes
y1(0) = 0 and y2(0) = 0.

FIG. 10. Eigenvalues of the correlation matrix C using M = 1000 snapshots for different Rayleigh numbers.
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The system is solved numerically using the SciPy function
odeint for time integration between the time interval [0, 10] and
N = 1000 time steps (Δt = 0.01). The initial condition considered
for the system is ξ = 0.5 (i.e., [y1 y2 y3]T = [1.0 0.05 0.0]T). The true
solution is used for training the neural network. We apply the same
hyperparameters for all DNN frameworks. We use three hidden lay-
ers with 128 neurons each. The maximum number of iterations is
set to 600 and 10% of the data are used for validation to avoid
overfitting.

The true state of the system and the state predicted by different
DNN frameworks are shown in Fig. 2 for p = 1. All DNN frameworks
are correctly able to predict all three states of the dynamical system.
We also see that DNN-R and DNN-B frameworks perform better
than the DNN-S framework. For DNN-S framework, the state pre-
dicted by the neural network is very slightly shifted from the original
state. Figure 3 provides the numerical results for DNN frameworks
for p = 4. The state predicted by all DNN frameworks is almost the

same as the true state. Table II compares the RMSE calculated using
Eq. (6) for all three DNN frameworks with different numbers of
inputs to the neural network.

B. Lorenz system
The Lorenz system127 can be described by the following equa-

tions:

dy1

dt
= α(y2 − y1),

dy2

dt
= y1(ρ − y3) − y2,

dy3

dt
= y1y2 − βy3.

(8)

For the Lorenz system, we use α = 10, ρ = 28, and β = 8/3. The mod-
eling of the dynamics of the Lorenz system is a challenging problem

FIG. 11. Illustrative contour plots for some of the POD basis functions for the temperature field at Ra = 3.4 × 105 for the differentially heated cavity problem.
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due to its highly nonlinear and chaotic behavior. This system arises
in many simplified models for physical processes.128,129

The training data for the neural network are generated using
the true solution to the Lorenz system. We use the initial condition
[y1 y2 y3]T = [−8 7 27]T and generate the true solution numer-
ically using the SciPy function odeint. The true solution is gener-
ated between the time interval [0, 25] with the time step Δt = 0.01
(N = 2500 time steps). We apply the same hyperparameters for all
DNN frameworks. We use five hidden layers with 128 neurons each.
The maximum number of iterations is set to 1000, and 10% of the
training data are used for validation to avoid overfitting.

Figure 4 shows the true trajectory of the Lorenz system
and the trajectory predicted by different DNN frameworks using
p = 1 in the input training data. The time period for which the
predicted trajectory is the same as the true trajectory varies for dif-
ferent DNN frameworks. The Lorenz system has a chaotic behavior,
and a smaller error in the predicted state of the system can lead to a

larger error in the forecasted state of the system. The time period for
which the predicted trajectory follows the true trajectory is longer
for the DNN-R and DNN-B frameworks than the DNN-S frame-
work. Figure 5 shows similar results for p = 4 in input training data.
If we compare Figs. 4(a) and 5(a), we see that the predicted trajectory
follows the true trajectory longer as we include the temporal history
of the state of the system in the input to the neural network. We do
not see a similar behavior for DNN-R and DNN-B frameworks.

Even though the neural network is not able to predict the true
trajectory of the individual state after some time, we should check
the ability of the neural network to capture the overall dynamics
of the Lorenz attractor. This is due to the fact that the Lorenz sys-
tem has a positive Lyapunov exponent, and a small perturbation
in the initial condition can cause the system to diverge exponen-
tially. Hence, a number of studies check for the dynamics of the
Lorenz attractor rather than the individual state of the system.102,130

Figures 6 and 7 show the exact dynamics of the Lorenz attractor and

FIG. 12. Illustrative contour plots for some of the POD basis functions for the temperature field at Ra = 9.4 × 105 for the differentially heated cavity problem.
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predicted dynamics for different DNN frameworks with p = 1 and
p = 4, respectively. All DNN frameworks are capable of capturing
the dynamics of the Lorenz system and accurately predict the correct
shape of the Lorenz attractor.

IV. NONINTRUSIVE REDUCED ORDER MODELING
(NIROM)

We observe a successful predictive performance for a simple
nonlinear dynamical system (governed by a set of 3 coupled ordi-
nary differential equations) using different DNN frameworks in
Sec. III A. We also saw the ability of the neural network to cap-
ture the overall dynamics of the chaotic nonlinear Lorenz system.
This has motivated us to test the proposed DNN frameworks for the
model order reduction of a real-world test problem.

Indeed, we transform a partial differential equation system into
a set of ordinary differential equations in order to get the reduced
order model. Our main motivation of this study is to convey the
message that the neural network architectures can be used in devel-
oping a robust and efficient nonintrusive reduced order model.
With a goal to recover the reduced order model dynamics of the
underlying flow phenomena, in this section, we implement all DNN
frameworks introduced in Sec. II in model order reduction of a
differentially heated cavity problem. This test problem setup is well-
established as a model validation test case due to the problem’s sim-
plicity in terms of problem definition as well as the wide variety of

applications such as nuclear reactor core isolation, solar energy stor-
age, and so on.131–133 At first, we will describe our nonintrusive ROM
framework. Then, we will define our test problem setup along with
the governing equations, and then we will briefly demonstrate our
nonintrusive ROM framework for the Boussinesq equation problem.
Finally, we will demonstrate the comparative performance of the
aforementioned DNN frameworks in terms of the temporal evolu-
tion of vorticity and temperature field and contours of temperature
field for a given initial condition in Sec. V.

A. NIROM framework
To develop our NIROM framework, we define a generalized

partial differential equation (PDE) system as follows:

∂u(x, t)
∂t

= R(u(x, t); x, t), (9)

where u refers to the problems of interest (e.g., velocity, pressure,
and temperature, etc) and R converts the physical process possibly
with linear, nonlinear, and forcing terms.

In our NIROM framework, we assume that we do not have
access to the R(u(x, t); x, t) operator. We formulate the proposed
NIROM framework assuming that we have discrete snapshots of
u(x, t). The detailed steps of our NIROM framework are outlined
in Algorithm 1. We highlight that this physics-agnostic model-
ing approach is quite modular and decomposes the problem into
the basis representation and forecasting problems. Figure 8 depicts

ALGORITHM 1. NIROM framework.

Offline training
1: We pick or construct a set of orthonormal basis functions ϕuk(x) over domain Ω (e.g., Fourier

bases, POD bases, etc)

u(x, t) =
R
∑
k=1

auk(t)ϕuk(x), (10)

such that

∫Ω ϕ
u
i (x)ϕuj (x)dx = δij, (11)

where δij is the Kronecker delta operator, and u(x, t) is approximated from the span of these
bases.

2: Encoder step: construct time series coefficients by a forward transform

auk(tn) = ∫Ω u(x, tn)ϕuk(x)dx. (12)

3: Train a time series forecasting model (e.g., a DNN model discussed in Sec. II)

M : {au(tn), au(tn−1), . . . au(tn−p+1)}⇒ au(tn+1). (13)

Online prediction
4: Given an initial condition u(x, t0), compute auk(t0) using below relation,

auk(t0) = ∫Ω u(x, t0)ϕuk(x)dx. (14)

5: Use the trained DNN model M to predict auk(tn) at any time tn.
6: Decoder step: construct the field at any time tn by inverse transform,

u(x, tn) =
R
∑
k=1

auk(tn)ϕuk(x). (15)
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various stages of the NIROM framework for any generalized PDE
system.

B. Problem definition: Boussinesq equations
For this numerical experiment, we investigate the convective

flow behavior in a two-dimensional buoyancy-driven flow in a dif-
ferentially heated tall cavity.134 We consider the following dimen-
sionless form of the two-dimensional incompressible Boussinesq
equations65,135–137 on our computational domain, Ω:

∇ ⋅ u = 0, (16)

∂u
∂t

+ (u ⋅ ∇)u = −∇p +
1

Re
∇2u + Ri θ êj, (17)

∂θ
∂t

+ (u ⋅ ∇)θ = 1
Re Pr

∇2θ, (18)

where u refers to the velocity vector in two dimensions, p and θ
denote the pressure and temperature fields, respectively, and êj is the

unit vector in the y direction. Here, ∇ and ∇2 are the standard two-
dimensional differential and Laplacian operators, respectively. In
general, the Boussinesq equations are characterized by three dimen-
sionless numbers: Reynolds number (Re), Prandtl number (Pr), and
Richardson number (Ri). However, other relevant dimensionless
numbers can be introduced into the equation as a control param-
eter based on the physics of the system. For example, we introduce
the Rayleigh number (Ra) in our study due to the natural convection
heat transfer which can be expressed as

Ra = Ri Re2 Pr. (19)

In our problem setup, we fix Pr = 0.71, Ri = 1. In our two-
dimensional full order model (FOM) simulation, we utilize the
vorticity-streamfunction formulation to avoid numerical complex-
ity associated with the primitive variable formulation.137 Therefore,
we introduce the vorticity (ω = ∇ × u) and streamfunction (ψ) for
Eq. (16) specified by the following coupled equations:65,133

∂ω
∂t

+ J(ω,ψ) = 1
Re
∇2ω + Ri

∂θ
∂x

, (20)

FIG. 13. Evolution of temporal coeffi-
cients for the vorticity transport equation
at Ra = 3.4 × 105 for different frame-
works with p = 1. The neural network is
trained using the data highlighted in light
gray in the figure.
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∂θ
∂t

+ J(θ,ψ) = 1
Re Pr

∇2θ, (21)

where Jacobian J accounts for the nonlinear advection term, which
is defined as

J( f , g) = ∂g
∂y

∂f
∂x
− ∂g
∂x

∂f
∂y

. (22)

The flow velocity components can be found from the streamfunc-
tion, ψ, using the following definitions:

u = ∂ψ
∂y

, v = −∂ψ
∂x

. (23)

The kinematic equation connecting the vorticity and streamfunc-
tion can be found by substituting the velocity components in terms
of streamfunction, which form the following divergence-free con-
straint satisfying the Poisson equation:

∇2ψ = −ω. (24)

Our Cartesian computational domain is (x, y) ∈ [0, 1] × [0, 8]. We
utilize wall boundary conditions for all four sides of our computa-
tional domain with an adiabatic condition on the top and bottom
walls. We imply Dirichlet conditions on left (θ = 0.5) and right
(θ = −0.5) walls. At the cavity walls, we enforce no-slip bound-
ary conditions by setting zero values for streamfunction and vor-
ticity values calculated by Briley’s formula.138 A detailed derivation
and discussion on our test problem setup along with the numerical
schemes for generating snapshots through FOM simulation can be
found in a recent study conducted by San and Maulik.137 Note that,
even though the simulation is performed for a maximum time of
t = 1000, we perform all our statistical analysis from t = 900 (after
an initial transient period) at 128 × 1024 grid resolutions, collect
snapshot data only between t = 900 and t = 950, and perform our
quantitative analyses for the prediction of both in-sample data zone
(between t = 900 and t = 950) and the out-of-sample data zone
(between t = 950 and t = 1000). For the rest of this paper, we shall
refer to this initial state (i.e., time t = 900 in our physical simulation)
as t = 0 for prescribing initial conditions for ROMs. Therefore, our

FIG. 14. Evolution of temporal coeffi-
cients for vorticity transport equation at
Ra = 3.4 × 105 for different frameworks
with p = 4. The neural network is trained
using the data highlighted in light gray in
the figure.
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in-sample data zone spans between t = 0 and t = 50 (where we store
1000 snapshots for the training purposes), and our out-of-sample
data zone spans between t = 50 and t = 100 (where we store addi-
tional 1000 snapshots for the testing purposes). We use the data in
the in-sample-zone for training the neural network.

The DNS technique used for performing the FOM simula-
tion is validated by recording the simulation statistics at a designed
probe point and comparing it with the studies in the literature.139

We simulate the differentially heated cavity problem for four differ-
ent Rayleigh numbers. The flow is smooth and orderly (i.e., time-
periodic) for lower Rayleigh numbers. As we increase the Rayleigh
number, the flow starts getting chaotic and turbulent. We calculate
the Nusselt number along the vertical left wall (x = 0) using the
following formula:

Nu(t) = 1
H ∫

H

0

∂θ
∂x
∣
x=0

dy, (25)

where H = 8. Figure 9 shows the statistics of the Nusselt number
along the left wall and the designated probe temperature (x = 0.125

and y = 7.0). It can be seen that the flow behavior is periodic for both
the Nusselt number and the temperature history at the probed loca-
tion at lower Rayleigh numbers. As the Rayleigh number increases,
we see that the Nusselt number and probed temperature variation
are not periodic due to the turbulent nature of flow. We test our non-
intrusive framework for Ra = 3.4× 105 where the flow is periodic and
for Ra = 9.4 × 105 where the flow is chaotic.

C. NIROM framework for Boussinesq equations
In this section, we present our nonintrusive ROM setup for the

unsteady, incompressible Boussinesq equations given by Eqs. (20)
and (21). In our ROM settings, we first compute the desired
set of orthogonal spatial basis functions from stored high-fidelity
data snapshots using proper orthogonal decomposition (POD). We
obtain the data snapshots from a high-resolution FOM simulation.
Using the precomputed basis functions, we develop the nonintrusive
framework in an encoder-decoder approach using different DNN
frameworks proposed in Sec. II. To compare the predictive per-
formance of the nonintrusive ROMs with respect to the standard

FIG. 15. Evolution of temporal coeffi-
cients for the vorticity transport equation
at Ra = 9.4 × 105 for different frame-
works with p = 1. The neural network is
trained using the data highlighted in light
gray in the figure.
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intrusive ROM, we develop our intrusive ROM framework (ROM-
G) using the Galerkin projection to derive the dynamical model for
the POD coefficients.8,58,140 The implementation of Galerkin projec-
tion for the underlying test problem is detailed in the recent work by
San and Maulik137 and, hence, is not discussed in the present work.
Here, we demonstrate the development of the nonintrusive ROM
methodologies briefly before proceeding to the numerical results for
analyses.

The POD bases for the vorticity field can be constructed from
the field variable ω(x, y) at different time steps which we denote as
snapshots, i.e., for M number of snapshots, ω(x, tn) are the stored
snapshots for n = 1, 2, . . ., M. The time-averaged field can be
computed as

ω̄(x) = 1
M

M

∑
n=1

ω(x, tn). (26)

To map the snapshot data to its origin, we then compute the mean-
subtracted snapshots or the fluctuating fields by

ω′(x, tn) = ω(x, tn) − ω̄(x). (27)

This subtraction guarantees that the ROM solution would satisfy the
same boundary conditions as the full order model.141 To simplify
the eigenvalue problem necessary for POD bases calculation, we uti-
lize the standard method of snapshots proposed by Sirovich142 which
reduces the larger dimension problem to a much smaller dimension
problem. To do so, we construct an M ×M correlation matrix of the
fluctuating part C = [cij] which is computed from the inner product
of the mean-subtracted snapshots,

cij = ⟨ω′(x, ti),ω′(x, tj)⟩, (28)

where i and j refer to the snapshot indices. The definition of the inner
product of any two arbitrary fields f and g can be expressed as

⟨ f, g⟩ = ∫
Ω

f (x)g(x)dx. (29)

In the current study, we use the well-known Simpson’s integration
rule for a numerical computation of the inner products. Next, an
eigendecomposition of the C matrix is performed by solving

CW =WΛ, (30)

FIG. 16. Evolution of temporal coeffi-
cients for the vorticity transport equation
at Ra = 9.4 × 105 for different frame-
works with p = 4. The neural network is
trained using the data highlighted in light
gray in the figure.
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where Λ is a diagonal matrix whose entries are the eigenvalues λωk
of C, and W is a matrix whose columns wk are the corresponding
eigenvectors. This has been shown in detail in various POD literature
(see, e.g., Refs. 63 and 142). It should be noted that eigenvalues need
to be arranged in a descending order (i.e., λω1 ≥ λω2 ≥ ⋅ ⋅ ⋅ ≥ λωM), for
proper selection of the POD modes. The POD modes of vorticity
field ϕωk are then computed as

ϕωk (x) =
1√
λωk

M

∑
n=1

wn
kω
′(x, tn), (31)

where wn
k is the nth component of the eigenvector W. The scaling

factor,
⎛
⎝

1√
λωk

⎞
⎠

, is to guarantee the orthonormality of POD modes,

i.e., ⟨ϕωi ,ϕωj ⟩ = δij. Here, δij is the Kronecker delta defined by

δij = {
1, if i = j

0, if i ≠ j
. (32)

Similarly, we can compute the POD bases for the temperature field
which is ϕθk(x).

Figure 10 shows the decay of eigenvalues of the correlation
matrix for vorticity and temperature field. We can observe that
the first 10 modes are able to capture more than 99% of the total
energy for both vorticity and temperature at lower Rayleigh numbers
(Ra = 3.4 × 105 and Ra = 5.4 × 105). Also, there is a faster decay
of eigenvalues for lower Rayleigh numbers than for higher Rayleigh
numbers. For higher Rayleigh numbers, the first 10 modes are not
sufficient to capture a major portion of the energy. For example,
the first 10 modes of vorticity field capture only 76% and 69% of
the total energy for vorticity at Rayleigh numbers Ra = 7.4 × 105

and Ra = 9.4 × 105, respectively. In order to capture more than 95%
of the energy, we will need to consider more than 40 modes. If we
include 40 modes, then the Galerkin projection becomes computa-
tionally expensive and we lose the benefit of ROM framework. If we
include only 10 modes, then the Galerkin projection is unbounded,
as we will see in Sec. V, and it gives a physically wrong solution.
We demonstrate that our nonintrusive framework gives sufficiently
accurate results comparable to the true projection of the FOM solu-
tion on reduced order space even with less number of POD modes.
It is evident that if we include a higher number of modes to cap-
ture the total energy, the true projection of the FOM solution on
lower dimensional bases will approximate the FOM solution. How-
ever, the computational burden will also go up with an increased
number of modes. In Fig. 11, we provide the contour plots for a few
POD basis for the temperature field θ to indicate the structure of
the solution at Ra = 3.4 × 105. We can observe that the solution is
smooth and periodic for the lower Rayleigh number case and only
small structures are truncated after 10 POD modes. On the other
hand, we observe from Fig. 12 that there are still some of the large
structures remaining in the 10th mode for the higher Rayleigh num-
ber case. This means that some of the important flow features are
truncated due to consideration of only the first 10 dominant POD
modes.

To obtain the nonintrusive ROM, we utilize an encoder-
decoder approach to transfer data from full order space to reduced
order space and vice versa. During the encoder stage, we transform

data from the full order space to the reduced order space by using
the following projection for both field parameters:

ak(t) = ⟨ω(x, t) − ω̄(x),ϕωk (x)⟩, (33)

bk(t) = ⟨θ(x, t) − θ̄(x),ϕθk(x)⟩. (34)

So, at initial time t = 0, we can compute the initial conditions by

ak(0) = ⟨ω(x, 0) − ω̄(x),ϕωk (x)⟩, (35)

bk(0) = ⟨θ(x, 0) − θ̄(x),ϕθk(x)⟩, (36)

where ω(x, 0) and θ(x, 0) are the vorticity and temperature field,
respectively, specified at initial time. Here, ak(t) and bk(t) are the
time-dependent modal coefficients for the vorticity and tempera-
ture, respectively. This will form initial conditions for the underlying
ordinary differential equations similar to the problem in Sec. III
where we require solving dak/dt and dbk/dt until the final time.
As discussed earlier, we utilize the different DNN frameworks and
time histories as input to predict the temporal evolution of ak(t)
and bk(t). For the prediction with sequential time history data, we
predict the next time step using the DNN-S framework with one
(p = 1) and four (p = 4) leg temporal history in the input. We also
employ DNN-R and DNN-B frameworks which predicts the resid-
ual and the numerical slope, respectively, based on one (p = 1) and
four (p = 4) leg temporal history in the input to the neural network.
In the decoder stage, we reconstruct the reduced order solution to
the full order solution by using the following definition:

ω(x, t) = ω̄(x) +
R

∑
k=1

ak(t)ϕωk (x), (37)

TABLE III. Quantitative assessment of Galerkin projection and different DNN frame-
works for vorticity and temperature modal coefficients for Ra = 3.4 × 105 and Ra
= 9.4 × 105 using the total root mean square error given by Eq. (6).

Framework RMSE (a) RMSE (b)

Ra = 3.4 × 105

ROM-G 9.8 × 10−1 2.1 × 10−2

DNN-S (p = 1) 9.9 × 10−2 6.3 × 10−3

DNN-R (p = 1) 4.8 × 10−1 1.3 × 10−2

DNN-B (p = 1) 2.9 × 10−2 5.3 × 10−3

DNN-S (p = 4) 9.1 × 10−2 8.8 × 10−4

DNN-R (p = 4) 1.2 × 10−1 2.2 × 10−4

DNN-B (p = 4) 2.0 × 10−1 5.9 × 10−4

Ra = 9.4 × 105

ROM-G 3.1 × 102 1.3 × 100

DNN-S (p = 1) 8.9 × 100 1.6 × 10−1

DNN-R (p = 1) 8.3 × 100 1.3 × 10−1

DNN-B (p = 1) 7.7 × 100 1.7 × 10−1

DNN-S (p = 4) 4.9 × 100 1.8 × 10−1

DNN-R (p = 4) 5.6 × 100 1.0 × 10−1

DNN-B (p = 4) 4.6 × 100 1.0 × 10−1
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θ(x, t) = θ̄(x) +
R

∑
k=1

bk(t)ϕθk(x), (38)

where R (≪M) is the retained most energetic POD modes. Since
we do not use any physical equations for the time integration of
the solution field, we can say our ROM setup using DNN is fully
nonintrusive.

V. NUMERICAL RESULTS FOR BOUSSINESQ
EQUATIONS

To evaluate the performance of our DNN frameworks within
the underlying nonintrusive ROM setup, we present the time series
evolution for the vorticity transport equation. In addition, we com-
pare the temperature field at the final time (i.e., t = 100) predicted
using nonintrusive ROM framework with FOM simulation and its
projection on reduced order space (true projection). We further

evaluate the performance of DNN frameworks in predicting engi-
neering quantities of interest such as the time-averaged Nusselt
number. We also perform the quantitative assessments of different
model’s predictive performance in terms of the RMSE calculated
using Eq. (6). We present our analysis for two Rayleigh numbers:
Ra = 3.4 × 105 where the flow is smooth and periodic and Ra = 9.4
× 105 where the flow is turbulent and chaotic.

For all DNN frameworks, we use six hidden layers with 120
neurons each. The maximum number of iterations is set to 900, and
10% of the data are used for validation to avoid overfitting. The root
mean square error used for evaluating the quantitative performance
of DNN frameworks measures the difference between the true data
and the predicted data for each mode. Hence, we present the true
and predicted trajectories by the neural network for only two modes
a1 and a7 for conciseness. Additionally, we compare the modal coef-
ficient trajectory with the POD Galerkin projection (GP) trajectories

FIG. 17. Contours of instantaneous temperature at Ra = 3.4 × 105. The neural network is trained for different frameworks with p = 1. (a) FOM, (b) true projection, (c) ROM-G,
(d) DNN-S framework, (e) DNN-R framework, (f) DNN-B framework.
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(i.e., time dependent amplitude coefficients of ROM-G). It should
be noted that our criteria for selection of hyperparameters are not
necessarily optimal but are based on heuristics (involving differ-
ent activation functions, number of layers/neurons/iterations, etc.)
that enable our neural networks to accurately predict time evolu-
tion of dynamical systems. We also highlight that there are statis-
tical methods available to select hyperparameters such as Bayesian
optimization.143

As illustrated in Fig. 13 and for the rest of our analysis in this
section, we display the true solution as a black solid line and reg-
ular POD-Galerkin projection based ROM, i.e., ROM-G solution,
as a blue dashed-dotted line. The solution predicted by the neural
network is shown by the dashed red line. The training data for the
neural network are taken from the time series of modal coefficients
obtained by projecting the FOM solution on the reduced order space
between t = 0 and t = 50. This is consistent with the snapshot data

used for generating the POD bases. The training data for the neu-
ral network are highlighted using the light gray in all time series
plots. When we test the neural network, we start with an initial con-
dition at t = 0 and proceed in an iterative fashion, as discussed in
Sec. II. Therefore, the data between t = 0 and t = 50 are in-sample
data and t = 50 and t = 100 are the out-of-sample data. The neu-
ral network has seen the in-sample data during training and hence is
expected to give a good prediction for that time period. The question
to ask is how does a neural network predict for the out-of-sample
data.

Figure 13 shows the time evolution of two modal coefficients
of the vorticity transport equation for all DNN frameworks using
p = 1 in the input training data for Ra = 3.4 × 105. It can be
clearly seen that there is a phase difference between the true pro-
jection and the Galerkin projection for the first modal coefficient
a1. Also, the Galerkin projection predicts slight amplification in the

FIG. 18. Contours of instantaneous temperature at Ra = 3.4 × 105. The neural network is trained for different frameworks with p = 4. (a) FOM, (b) true projection, (c) ROM-G,
(d) DNN-S framework, (e) DNN-R framework, (f) DNN-B framework.
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amplitude of a1, especially near the final time. The similar amplifi-
cation in magnitude is also observed for a7 with the Galerkin pro-
jection. The prediction by all DNN frameworks is better than the
Galerkin projection, and the prediction is very close to the true pro-
jection of the FOM solution on reduced order space. For the DNN-R
framework, there is a slight phase shift in DNN prediction with
respect to the true projection as the time proceeds. The prediction
for the DNN-R framework can be improved by including the past
history of the modal coefficients in the input training data. Figure 14
shows the DNN prediction with p = 4 in the input training data. We
can see that the prediction is improved for the DNN-R framework
using p = 4. The prediction for DNN-S and DNN-B frameworks was
already good using p = 1 and remains the same with p = 4 also. We
see a similar prediction for other modal coefficients also.

The results presented in Figs. 13 and 14 were for Ra = 3.4
× 105. At a lower Rayleigh number, the flow is smooth and orderly,

and hence, the evolution of modal coefficients was periodic. This
is a simple problem with stationary time series and can be solved
using simple methods like extreme learning machine.100,144 The
DNN will be beneficial for the higher Rayleigh number case after
the onset of turbulence. Figures 15 and 16 show similar results for
Ra = 9.4 × 105. The modal coefficients are not periodic due to
the chaotic and turbulent nature of flow taking place in the cavity
at such a higher Rayleigh number. There is a considerable varia-
tion in the evolution of the modal coefficients as the time proceeds.
The Galerkin projection is unbounded with less number of modes
and gives nonphysical results for such complex flows. In order to
recover the correct physics using Galerkin projection, we will have
to use an increased number of modes and this will lead to increased
computational cost. However, we are interested in recovering the
accurate physics as much as possible with less computational
cost.

FIG. 19. Contours of instantaneous temperature at Ra = 9.4 × 105. The neural network is trained for different frameworks with p = 1. (a) FOM, (b) true projection, (c) ROM-G,
(d) DNN-S framework, (e) DNN-R framework, (f) DNN-B framework.
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Figure 15 presents results for all DNN frameworks with p = 1 in
the input training data for Ra = 9.4 × 105. We can see that the DNN
prediction is bounded for all DNN frameworks. Although there exist
necessary and sufficient conditions for global boundedness71 for
Galerkin systems, we have not performed rigorous analysis about
boundedness of the proposed frameworks. A deeper discussion of
bounded-input-bounded-output systems can be found elsewhere.145

We observe that the DNN-R and DNN-B frameworks perform bet-
ter than the DNN-S framework especially in the in-sample zone
(i.e., t = 0 to t = 50). However, we see that the DNN-R and DNN-
B frameworks overpredict both modal coefficients a1 and a7 for
the out-of-sample zone than the true projection of the FOM solu-
tion on reduced order space. Figure 16 shows the similar results
for all DNN frameworks with p = 4 in the input training data. We
notice that the prediction has improved for all DNN frameworks
when we use the modal coefficient history in the input training

data. All DNN frameworks are almost able to predict the true pro-
jection of the FOM solution accurately in the in-sample zone with
p = 4. The problem of overprediction is also reduced for DNN-R
and DNN-B frameworks by including the time history in the input
data.

Interestingly, including time history in the input training data
seems to have helped neural networks to predict more accurate
results for both cases (Ra = 3.4 × 105 and Ra = 9.4 × 105). One
explanation for this behavior is that the short-term past history
of the system helps the neural network to learn the state of the
system and predict the future state more accurately. Our numer-
ical experiments show that increasing the past history of the sys-
tem might not help beyond some point. In some cases, including
long-term history might give adverse results due to overfitting or
DNN trying to find an unrelated pattern between the input and the
output.

FIG. 20. Contours of instantaneous temperature at Ra = 9.4 × 105. The neural network is trained for different frameworks with p = 4. (a) FOM, (b) true projection, (c) ROM-G,
(d) DNN-S framework, (e) DNN-R framework, (f) DNN-B framework.
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Figures 13–16 show the vorticity modal coefficient only for two
modes a1 and a7. We use the total RMSE given by Eq. (6) to mea-
sure the quantitative performance for all DNN frameworks. The
total RMSE measures the deviation between the true projection of
the FOM solution and the prediction by the neural network for all
modes. In Table III, we report the total RMSE for all DNN frame-
works investigated in this study for vorticity and temperature modal
coefficients for both Rayleigh numbers Ra = 3.4 × 105 and Ra = 9.4
× 105. Table III also reports the root mean square error for the ROM-
G framework. It can be easily seen that all DNN frameworks per-
form better than the ROM-G framework for both cases. At a higher
Rayleigh number, the ROM-G framework is unbounded, and hence,
the error is very large. For both cases, we see an improvement in pre-
diction in terms of RMSE for all DNN frameworks as we increase p
from 1 to 4.

After comparing the time evolution of vorticity, and tempera-
ture modal coefficient for all DNN frameworks, we proceed to com-
pare the performance of proposed DNN frameworks in predicting
the temperature field in the cavity at final time t = 100. We com-
pare our results with the true projection of the FOM solution on
the reduced order space. The FOM solution is obtained by DNS
and is discussed briefly in Sec. IV B. For the lower Rayleigh num-
ber case, first 10 modes capture more than 99% of the total energy.
Hence, the FOM solution and its true projection will be close to
each other. However, for the higher Rayleigh number case, first 10
modes capture only 69% of the total energy and we expect to see
some discrepancy between the FOM solution and its true projec-
tion on reduced order space. We train the neural network using the
evolution of modal coefficients for the true projection of the FOM
solution, and hence, we can recover at most true projection of the
FOM solution.

We compute the instantaneous temperature field using
Eq. (38). The coefficient bk is considered at the final time step t = 100.
Figure 17 displays the temperature field at the final time predicted by
FOM simulation, true projection of FOM on reduced order space,
ROM-G framework, and all DNN frameworks. We observe that the
FOM solution and its true projection are almost identical. We see
that there is some deviation in the temperature field predicted using
the ROM-G framework and the true projection. The temperature
field predicted using DNN-S and DNN-B frameworks is very close
to the true projection solution. We see some variation in the solu-
tion predicted by the DNN-R framework, which can be attributed
to the phase shift in the modal coefficient predicted by the DNN-R
framework with p = 1 (as can be seen in Fig. 13). Figure 18 shows
similar results for the lower Rayleigh number case with p = 4. We
notice an improvement in prediction by the DNN-R framework
and the predicted temperature field is close to the true projection
solution.

Figure 19 illustrates similar results for the temperature field at
final time t = 100 for the higher Rayleigh number case. The neural
network is trained using p = 1 in the input training data. We see
some of the discrepancies between the FOM solution and its projec-
tion on reduced order space. The discrepancy is due to less amount
of energy in the first 10 POD modes, and hence, some of the flow fea-
tures get neglected. The deviation is mainly observed at the bottom
and top of the heated cavity due to the vortical structures formed in
these regions at a higher Rayleigh number. From Fig. 19, we see that
the solution predicted by the ROM-G framework is very different

from the true projection for the higher Rayleigh number case. The
solution predicted by all DNN frameworks is not identical to the true
projection solution. The difference is primarily seen at the bottom
and top regions. However, we see overall good qualitative agreement
between the temperature field predicted by DNN and true projec-
tion solution. Figure 20 shows similar results for the higher Rayleigh
number case when the neural network is trained using p = 4 in the
input training data. We observe a slight improvement in the tem-
perature field prediction. This is consistent with an improvement
in the prediction of the modal coefficient (refer to Fig. 16) with an
increase in the solution history in the input data for the neural net-
work. The prediction of modal coefficients is very close to the modal
coefficients for the true projection of the FOM solution in the in-
sample zone (t = 0 to t = 50). We do not get similar accuracy for the
out-of-sample zone (t = 50 to t = 100). Therefore, we are not able to
recover the true projection solution exactly. Despite its limitations,
it is clear that our data-driven nonintrusive framework is robust and
accurate compared to the intrusive ROM-G framework and can be
used for challenging flow problems where the flow is turbulent and
not uniform.

Next, we calculate the time-averaged Nusselt number along the
left wall (x = 0). This quantity can be of interest in many engi-
neering applications. The instantaneous Nusselt number is calcu-
lated using Eq. (25). The temperature in Eq. (25) can be obtained
using Eq. (38). The gradient of the temperature is computed using a
right-sided second-order finite difference scheme. The integration of
the temperature gradient is computed using Simpson’s integration
rule. After calculating the instantaneous temperature at every time

TABLE IV. Statistics of the Nusselt number computed on the left wall (x = 0) for Ra
= 3.4 × 105 and Ra = 9.4 × 105. The mean Nusselt number and its standard devia-
tion are computed from the instantaneous Nusselt number from time period t = 0 to
t = 100.

Framework μ σ

Ra = 3.4 × 105

FOM −4.5425 2.46 × 10−3

True −4.5494 2.48 × 10−3

ROM-G −4.5492 2.55 × 10−3

DNN-S (p = 1) −4.5494 2.48 × 10−3

DNN-R (p = 1) −4.5494 2.50 × 10−3

DNN-B (p = 1) −4.5494 2.49 × 10−3

DNN-S (p = 4) −4.5494 2.48 × 10−3

DNN-R (p = 4) −4.5494 2.48 × 10−3

DNN-B (p = 4) −4.5494 2.48 × 10−3

Ra = 9.4 × 105

FOM −5.8411 4.81 × 10−2

True −5.8603 2.29 × 10−2

ROM-G −6.2530 2.43 × 10−1

DNN-S (p = 1) −5.8572 3.45 × 10−2

DNN-R (p = 1) −5.8643 2.14 × 10−2

DNN-B (p = 1) −5.8639 2.19 × 10−2

DNN-S (p = 4) −5.8634 2.87 × 10−2

DNN-R (p = 4) −5.8637 2.50 × 10−2

DNN-B (p = 4) −5.8642 2.29 × 10−2
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FIG. 21. Evolution of the instanta-
neous Nusselt number for two different
Rayleigh numbers for FOM, true pro-
jection, ROM-G, and DNN-R framework
with p = 4. The neural network is trained
using the data highlighted in light gray
in the figure. The bottom figure shows
the zoom-out plot for the middle figure
to show the large range of variation in
Nusselt number prediction.

step, we take its average to get the time-averaged Nusselt number.
Detailed formulas for calculating the instantaneous Nusselt number
are provided in the Appendix.

In Table IV, we list the statistics of the time-averaged Nus-
selt number for the FOM solution, true projection of the FOM
solution, ROM-G framework, and all DNN frameworks investi-
gated in this study. We can notice all DNN frameworks, and the
intrusive ROM-G framework gives an accurate prediction of the
time-averaged Nusselt number. The standard deviation of Nus-
selt number is also predicted correctly by all DNN frameworks
and the ROM-G framework for the lower Rayleigh number case.
We do not recover similar results for the higher Rayleigh num-
ber case. The time-averaged Nusselt number for the true pro-
jection solution is slightly different from the FOM solution. The
ROM-G framework overpredicts the time-averaged Nusselt num-
ber, and the difference between the true projection solution and
ROM-G prediction is significant. On the other hand, all DNN
frameworks predicted the time-averaged Nusselt number close to
the true projection solution. The standard deviation of the Nus-
selt number is also predicted with sufficient accuracy for all DNN
frameworks.

To illustrate the temporal variation of Nusselt number, we show
the evolution of Nusselt number for FOM, true projection, ROM-
G, and DNN-R framework for both Rayleigh numbers in Fig. 21.
It can be clearly seen that the ROM-G framework fails to predict
the temporal behavior of the Nusselt number correctly especially at
Ra = 9.4 × 105. At a lower Rayleigh number, Ra = 3.4 × 105, there
is a phase shift in the Nusselt number prediction by the ROM-G
framework. At this Rayleigh number, with limit cycle oscillations,
the Nusselt number is slightly underpredicted (up to second digit
accurate) by the true projection of the FOM solution on reduced
order bases. All DNN frameworks predict the Nusselt number accu-
rately close to the true projection results. We would like to again
emphasize that the neural network is trained using the true projec-
tion of the FOM solution, and hence, we can at most recover the
true projection results and not the FOM results. We also note that
much simpler methods, like autocorrelation analysis (instead of the

heavy DNN), can be used in predicting this stationary time series
problem.114 For a higher Rayleigh number, the Nusselt number
prediction for the ROM-G framework becomes unbounded in the
beginning and then it calculates the overpredicted value of instan-
taneous Nusselt number similar to modal coefficients for vorticity
and temperature field. The DNN-R framework correctly predicts
the instantaneous Nusselt number close to the true projection of
the FOM solution in the in-sample zone and sufficiently accurate
results for the out-of-sample zone. To avoid redundancy, we do not
present results for other DNN-frameworks since we get a similar
prediction.

To summarize, we demonstrated the capability of our DNN
frameworks within the nonintrusive ROM setup for the differ-
entially heated cavity problem at two Rayleigh numbers. We do
a systematic analysis of our DNN frameworks in terms of pre-
diction of the time evolution of modal coefficients, instantaneous
temperature field prediction at the final time, and prediction
of time-averaged quantities. Our nonintrusive ROM framework
gives sufficiently accurate results for simple as well as complex
flows.

VI. CONCLUDING REMARKS
In this work, we put forward a nonintrusive reduced order

modeling framework which uses a deep neural network to predict
the dynamics of ROM for complex flow problems. Deep neural
networks are capable of approximating a complex nonlinear rela-
tionship between the input and the output, and we achieve this
via a supervised learning task. The key difference between the pro-
posed DNN frameworks is the output variable that is learned by
the neural network. The nonintrusive ROM is devised using an
encoder-decoder approach, and DNN is used for predicting the
modal coefficients in an iterative fashion. We use our DNN frame-
works with multiple temporal legs (short term history of the state
of the system) in the input data. This enables the neural network
to take the memory effect into account for predicting the future
state of the system. We leverage the classical numerical schemes

Phys. Fluids 31, 085101 (2019); doi: 10.1063/1.5113494 31, 085101-23

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

(backward-difference) in our proposed DNN-B framework, and this
framework can also be implemented with other numerical schemes
such as Adams-Bashforth and Adams-Moulton families. First, we
use all DNN frameworks for two benchmark problems: Kraichnan-
Orszag system and Lorenz system. All DNN frameworks are able to
correctly predict each state of the Kraichnan-Orszag system. Even
though all DNN frameworks fail to predict correct trajectories for
each state of the Lorenz system for a longer duration of time, it
predicts the correct dynamics of the Lorenz system in terms of the
Lorenz attractor.

After evaluating all DNN frameworks for predicting the
dynamics of nonlinear dynamical systems, we proceed to reduce
order modeling of the differentially heated cavity problem. We
extract 1000 snapshots from DNS simulation after the steady state
has been reached. The POD bases are constructed using these 1000
snapshots. Based on the existing literature and our findings from
DNS simulation, we see the change from periodic flow to tur-
bulent flow with an increase in Rayleigh number. For this rea-
son, we test our proposed nonintrusive ROM framework for two
cases: lower Rayleigh number case (Ra = 3.4 × 105) and higher
Rayleigh number case (Ra = 9.4 × 105). We use 10 POD modes
for our analysis. Due to the turbulent nature of flow at a higher
Rayleigh number, the first 10 modes capture only 69% of the
energy. We sacrifice the advantage of ROM if we increase the num-
ber of modes (R = 40 for 95% of the energy), and hence, we
attempt to get results close to the true projection of the FOM solu-
tion on reduced order space with the proposed nonintrusive ROM
framework. We assess the performance of the nonintrusive ROM
framework using different parameters such as prediction capabil-
ity of modal coefficients, prediction of instantaneous temperature
at the final time, and prediction of engineering quantities of inter-
est such as the time-averaged Nusselt number. The nonintrusive
ROM frameworks perform exceptionally well for all these parame-
ters for the lower Rayleigh number case. We see some deviation with
the prediction of modal coefficients for the higher Rayleigh num-
ber case (especially for the out-of-sample zone). Despite this devi-
ation, the proposed framework is able to predict the instantaneous
temperature field and time-averaged Nusselt number with sufficient
accuracy.

We also compared our results with the results for Galerkin
projection (ROM-G framework). The ROM-G framework gives a
good prediction for the low Rayleigh number case. However, the
ROM-G framework is unbounded for the higher Rayleigh number
case and produces the wrong prediction. Our analysis for the dif-
ferentially heated cavity problem at two Rayleigh numbers indicates
that the nonintrusive ROM setup equipped with the DNN frame-
works yields satisfactorily accurate results and has a potential for
reduced order modeling of complex flow problems. In this paper,
we used snapshot POD to represent the high-dimensional data onto
low-dimensional space. At this point, we can ask the following ques-
tion: is the POD preconditioning for the model identification step
necessary? Given the analogy between the POD and the shallow
autoencoder, it is possible to use deep neural networks to provide a
more compact representation of high-dimensional data.99 We might
arguably assume that a DNN could also learn the potentially much
lower dimensional manifold from snaphsot data.45 Indeed, this is
an exciting future direction and the work is in progress on this
topic.
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APPENDIX: NUSSELT NUMBER CALCULATION
The instantaneous Nusselt number of the flow along the left

wall (x = 0) is given by

Nu(t) = 1
H ∫

H

0

∂θ
∂x
∣
x=0

dy, (A1)

where H is the height of the cavity.
For the FOM simulation, we have the temperature data avail-

able for each discrete point at each time step. The gradient of
the temperature is computed using the right-sided finite difference
scheme along the left wall (x = 0) as given by the following equation:

∂θ
∂x
∣
x=0
= −3θ0,j + 4θ1,j − θ2,j

2h
, (A2)

where j represents the discrete spatial location in the y-direction and
h is the grid spacing in the x-direction. The numerical integration
is performed using the fourth-order accurate Simpson’s rule. The
mean and the standard deviation of the Nusselt number are then
computed from the series of instantaneous Nusselt number evalu-
ated at each time step between t = 0 and t = 100 using the following
formulas:

μ = 1
N

N

∑
n=1

Nu(tn), (A3)

σ =
¿
ÁÁÀ 1

N − 1

N

∑
n=1
(Nu(tn) − μ)2, (A4)

where N is the total number of time steps between t = 0 and t = 100.
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In the ROM framework, the full order solution can be recovered
using the modal coefficient using Eq. (38) and is also given as follows:

θ(x, t) = θ̄(x) +
R

∑
k=1

bk(t)ϕθk(x), (A5)

where R is the number of modes retained for POD (R = 10 in this
study).

We can compute the temperature field at each time step using
Eq. (A5) and then follow the same procedure similar to the FOM
solution. Another faster method to determine the Nusselt number
is to calculate the gradient of the mean temperature and each basis
function and store it in the memory. The stored gradient can be used
to find the instantaneous temperature gradient using the following
equation:

∂θ
∂x
∣
x=0
= ∂θ̄
∂x
∣
x=0

+
R

∑
k=1

bk(t)
∂ϕθk
∂x
∣
x=0

. (A6)

If we substitute Eq. (A6) in Eq. (A1), we get

Nu(t) = κ +
R

∑
k=1

bk(t)γk, (A7)

where the predetermined coefficients are

κ = 1
H ∫

H

0

∂θ̄
∂x
∣
x=0

dy, (A8)

γk =
1
H ∫

H

0

∂ϕθk
∂x
∣
x=0

dy. (A9)

The gradient for the mean temperature and basis function is eval-
uated using Eq. (A2). The temporal value of temperature modal
coefficient is determined using Galerkin projection for the ROM-
G framework and using DNN frameworks for the nonintrusive
ROM setup. The numerical integration of the instantaneous temper-
ature gradient along the left wall is computed using the composite
Simpson’s rule with SciPy function integrate.simps for all ROMs.
The mean and standard deviation of the Nusselt number are then
computed using Eqs. (A3) and (A4), respectively.
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