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Introductory paragraph

Since Darwin’s time we have known that inbreeding has negative effects on 

individuals, and conservation efforts to preserve rare species routinely employ 

strategies to reduce inbreeding. Despite this, there are few clear examples in nature of 

inbreeding decreasing the growth rates of populations and the extent of population-

level effects of inbreeding in the wild remains controversial. Here we take advantage 

of a long-term data set spanning nearly 100 years and 26 reintroduced Alpine ibex 

(Capra ibex ibex) populations to show that inbreeding substantially reduced per capita

population growth rates, increasingly so in harsher environmental conditions. 

Populations with high average inbreeding (F ≈ 0.2) exhibited population growth rates 

reduced by 71% compared to populations with no inbreeding. Our results show that 

inbreeding can have long-term demographic consequences even in the presence of 

large environmental variation and when deleterious alleles may have been purged 

during bottlenecks. Thus, efforts to guard against inbreeding effects in populations of 

endangered species have not been misplaced. 
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Main text

Inbreeding depression, the harmful effects of inbreeding on the fitness of individuals, 

is widespread among plants and animals, with recent genomic studies revealing an 

even greater impact on individual fitness than previously thought1. However, reduced 

fitness of individuals due to inbreeding does not necessarily lead to reduced 

population growth rates2,3,4 in the same way that natural selection need not impact 

population growth5. Instead, theory predicts that the degree to which inbreeding 

depression affects population growth will depend on several aspects of the ecology 

and life-history of a species3,6. For example, in species experiencing density-

dependent population growth, even substantial inbreeding depression at the individual

level need not translate into reduced population growth because fitness reductions due

to inbreeding may be compensated by fitness gains due to relaxed competition. Under 

such circumstances, inbred individuals may produce enough offspring to maintain 

population growth (soft selection2). 

Collecting unequivocal evidence for population-level effects of inbreeding is 

difficult because it requires many replicated populations that differ in levels of 

inbreeding to be monitored over many generations. Hence, the extent of population-

level effects of inbreeding in the wild remains controversial7,8,9 and we currently lack 

an understanding of the magnitude of the consequences of inbreeding depression for 

long-term population growth in natural populations10. Here, we take advantage of a 

long-term data set of 26 reintroduced Alpine ibex populations (Supplementary Figures

1 and 2) spanning 23-96 years to show that inbreeding can reduce long-term 

population growth rates in the wild. 

Alpine ibex were extirpated from the Alps by the end of the 19th century, with

only a single population surviving in the Gran Paradiso region in northern Italy11. 
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Starting in 1906, Alpine ibex were taken from Gran Paradiso, bred in Swiss zoos, and 

released back into their former habitat. These reintroductions are well documented12, 

with counts of the released individuals, subsequent time series of annual abundance 

counts, and counts of the numbers of harvested animals (Supplementary Table 1). 

Genetic data suggest little natural migration between populations after reintroductions

ceased13, making the populations distinct replicates for the purpose of this study. 

Ibex populations in our study experienced up to four reintroduction-associated 

bottlenecks13. The first bottleneck occurred when the Swiss breeding program was 

initiated with ~88 individuals from Gran Paradiso11. First reintroductions into the wild

with ibex from the Swiss breeding program caused a second set of bottlenecks 

(founder population sizes: 18-78). The third set of bottlenecks took place when 

individuals from the first wild founded populations were used to found additional wild

populations (founder population sizes: 9-137). Subsequent reintroductions sourced 

some founder individuals from populations that already had experienced three 

bottlenecks, thus causing a fourth bottleneck13. Genetically, the bottlenecks were 

twice as pronounced as expected from the number of released founders because, on 

average, only about half of the founders contributed genes to the following 

generations14. 

These serial bottlenecks resulted in considerable genetic drift and inbreeding15.

In this study, we use the term inbreeding to refer to the average identity by descent 

across individuals that accumulates under random mating in a population of finite size

in concert with genetic drift16,17 p. 167-171. We quantified this inbreeding using 37 

microsatellite loci and population-specific FST estimates, which measure the 

probability of identity by descent of pairs of alleles at a locus within populations 

relative to pairs of alleles from different populations18,19. Population-specific FST 
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estimates are calculated for each population separately. Averaged across all 

populations they yield the familiar global FST estimate19. There is no evidence for 

inbreeding due to non-random mating within Alpine ibex populations (FIS ≈ 0), hence 

population-specific FST estimates quantify total inbreeding since the last common 

ancestral population18,20 at the beginning of the reintroduction programm about 12.5 

generations ago13. Population-specific FST does not suffer from the same lack of power

as individual inbreeding coefficients estimated from limited molecular data10,15 

because limited dispersal and population structure create identity disequilibrium and 

thus correlation in heterozygosity across loci21. 

To estimate long-term population growth rates, we fitted a nonlinear state-

space population model to each of the 26 populations containing terms for the 

continuous rate of increase (r0), density dependence in population growth, the number

of reintroduced as well as harvested individuals, environmental and demographic 

stochasticity, and sampling variability. Fig. 1 shows two example populations and the 

fit of the state-space model to the data. To quantify the impact of inbreeding on 

population growth, we regressed r0 estimates against inbreeding and other covariates. 

Using a conventional regression approach would substantially underestimate the 

inbreeding effects, since inbreeding levels are only known with uncertainty, thus 

violating the important assumption of regressions that covariates are known exactly22. 

To obtain unbiased estimates of the effects of inbreeding on population growth, the 

uncertainty in population-specific FST estimates needs to be incorporated in the 

statistical analysis. We accounted for these uncertainties using Bayesian 

heteroscedastic measurement-error models23. In addition, we explicitly accounted for 

uncertainties in estimates of r0, and because larger values of r0 showed systematically 

larger variances (Supplementary Figure 3A), we log-transformed r0 in all our 
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statistical models. In addition to inbreeding, the models included as covariates the 

year when the time series of a population began and climatic variables known to 

affect ibex populations12, but averaged across the entire length of the time series to 

capture environmentally induced spatial variation in population growth: mean daily 

summer and winter temperatures, mean daily summer and winter precipitation, and 

winter snow cover. Due to the Bayesian nature of the analysis, model selection was 

guided by DIC minimization.

Results

The best-fitting model (Table 1), which captured 79% of the variation in log-

transformed continuous rates of increase among the 26 populations (Supplementary 

Tables 5 and 6), revealed evidence for a negative effect of inbreeding on population 

growth rates in conjunction with climatic variables (Fig. 2). According to the model, a

population-specific FST of 0.21 (the maximum inbreeding observed in this study) 

reduced the expected r0 by 71% with respect to a hypothetical population with zero 

inbreeding, while a population-specific FST of 0.03 (the observed minimum) lead only 

to a 17% reduction. As expected from measurement error theory, regressions that did 

not account for the uncertainty in estimates of inbreeding yielded substantially 

downwardly biased estimates of the impacts of inbreeding (Supplementary Table 5).

Environmental factors represented by the averaged climate variables had 

strong effects on population growth rates, and the magnitude of inbreeding effects 

depended on these environmental conditions (Table 1): inbreeding effects on 

population growth rates were absent in areas with low summer precipitation, but were 

increasingly pronounced in areas with wetter summers (Fig. 3). This may represent a 

direct effect of summer precipitation through adverse effects on neonatal mortality or 
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body growth12. However, given that the climate variables represent averages across 

the entire time series period, the effect may have different, indirect causes, which we 

cannot identify since our study was not designed to isolate the causes of 

environmental variation in r0. Whatever the causality, our findings support theoretical 

predictions that ecological processes can modify the population-level effects of 

inbreeding3, and they mirror many studies at the individual level that have shown 

inbreeding depression to vary with environmental conditions24.

We have shown that inbreeding reduces long-term population growth rates. 

But population growth rates in turn can affect levels of inbreeding: low population 

growth rates will keep populations small, which increases genetic drift and hence the 

amount of inbreeding15,25. Could the observed effect of inbreeding on population 

growth be confounded by an effect of population growth on inbreeding? Theory does 

not predict a straightforward effect of population growth rate on inbreeding. Instead, 

the expected inbreeding in a randomly mating population is determined by the 

harmonic mean population size26, which in turn is a nonlinear function of population 

growth rate and the founding population size (equation A3 in27). In our data, r0 and 

harmonic mean population sizes were not correlated (r=-0.07, 95% CI: -0.44 to 0.33, 

p=0.74, N=26; rearranging equation A3 in27 to obtain a linear relationship), and 

adding harmonic mean population sizes to our regression models for r0 did not affect 

the overall conclusions (Supplementary Tables 1, 6 and 7). Thus, we found no 

evidence that variation in r0 among the populations in our data set generated 

differences in inbreeding. Instead, variation in founder group size, admixture of the 

founder groups, and carrying capacity appear to be the major sources of variation in 

inbreeding that arose among ibex populations since the beginning of the 

reintroduction program14,15.
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Discussion

Our results support the emerging view that genetic processes can substantially 

affect long-term population growth, even in populations that may have purged 

deleterious recessive alleles during successive bottlenecks28,29.  Our study design did 

not allow the detection of purging, hence we can only speculate about purging in 

Alpine ibex. Some purging may have occurred, as in some invasive species28, because

conditions promoting decreases in population growth rates through inbreeding (i.e., 

hard selection) also lead to purging6. However, the efficiency of purging depends on 

population size and the relatively small bottleneck sizes of the Alpine ibex 

populations (mean number of founding chromosomes: 42)14 imply that purging would 

mostly remove strongly deleterious mutations29,30.  The more weakly deleterious 

alleles may have drifted to fixation during the bottlenecks, creating drift load31 but 

those that were not fixed may be purged now that population sizes increase29. The 

combination of drift load and limited purging likely explains the substantial 

inbreeding effects in reintroduced Alpine ibex populations. Thus, genetic rescue with 

increased population growth may result if ibex were translocated among 

populations1,32. 

The population time series we analysed included periods of rapid growth and 

substantial declines, and show the impact of density dependence (Fig. 1). Yet the 

inbreeding effects were strong enough to overcome density-dependent compensation 

and reduce the growth of the reintroduced populations. One factor that may contribute

to the strong demographic consequences of inbreeding in Alpine ibex is the relatively 

weak density dependence in many populations (Supplementary Table 4). Weak 

density dependence suggests that Alpine ibex do not compete strongly for limited 
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resources. This leads to hard selection and, hence, reduced population growth because

deaths due to inbreeding do not substantially relax the already low competition2,3. 

Thus, the relatively weak density dependence may have contributed to the observed 

demographic consequences of inbreeding in Alpine ibex.

Our results indicate that inbreeding can substantially lower long-term 

population growth even when deleterious alleles may have been purged during 

bottlenecks28 and when populations are reintroduced into habitat to which they are 

adapted24. In line with theoretical predictions, we found that ecological conditions 

modify the extent to which inbreeding affects population growth, but they are unlikely

to completely mask them3. Thus, when ecological conditions produce hard selection, 

for example when density dependence is relatively weak as in the case of most 

populations of conservation concern, inbreeding depression at the individual level can

lead to large reductions in population growth. Ultimately, these effects can lead to 

increased extinction rates at the population and species level33,34,35.

As we have shown, detecting population-level effects of inbreeding requires 

an exceptional dataset, with many populations that differ in inbreeding and enough 

environmental data to factor out other causes of reduced population growth rates. 

Even with the exceptional Alpine ibex data, detecting population-level inbreeding 

effects was a statistical challenge. Thus, it is not surprising that, despite the many 

examples of individual-level inbreeding effects in nature, population-level effects on 

the dynamics of unmanaged wild living populations have rarely been 

unambiguously documented.
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Tables

Table 1: Parameter estimates (posterior means and 95% credible intervals) for the ef-

fects of inbreeding (β̂F), the year when the time series began (β̂ year), mean precipita-

tion in winter (β̂ pw), mean precipitation in summer (β̂ ps), and two interaction terms (

β̂ year ∙ ps∧ β̂F∙ ps) on the log-transformed intrinsic per capita population growth rate r0. 

Inbreeding reduced population growth in interaction with summer precipitation 

(Model 1) and when the interaction was omitted (Model 2). For modeling details see 

Methods.

Model DIC β̂F β̂ year β̂ pw β̂ ps β̂ year ∙ ps β̂F ∙ ps

1 –6.61

–5.85

[–13.02, 

0.84]

0.0223

[0.0111, 

0.0343]

0.610 

[0.457, 

0.770]

–0.510

[–0.713,

–0.325]

–0.0218 

[–

0.0345, 

–0.0098]

–4.22

[–8.57, 

–0.71]

2 0.261

–8.56 

[–15.61, 

–1.54]

0.0240

[0.0116, 

0.0367]

0.622 

[0.453, 

0.792]

–0.486

[–0.673,

–0.300]

–0.0213 

[–

0.0341, 

–0.0087]

Figure legends

Fig. 1. 

Time series of annual abundance counts (dots) together with the nonlinear state-space 
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model fits (lines) for the relatively inbred population 2 (red, with point estimates 

r0=0.14 and FST=0.18) and the relatively outbred population 23 (blue, with point 

estimates r0=0.34 and FST =0.06). Numbers of released (> 0) and harvested animals (< 

0) are shown on separate x- and y-axes. Note the clear differences in population 

growth in the first 15-20 years, reflected in the corresponding differences in estimates 

of the per capita growth rates, r0. Time series characteristics are summarized in 

Supplementary Table 1, and estimated model parameters are presented in 

Supplementary Tables 2 and 4. 

Fig. 2. 

(A) Main effect of inbreeding, measured by population-specific FST, on the intrinsic 

rate of population increase, r0, among 26 populations of Alpine ibex. Values of r0 were

adjusted for all covariates in the model except for the main effects of FST. The area of 

each point is inversely proportional to the error variances in the estimates of r0 from 

the time series, which are used in the error model to down-weight observations with 

large uncertainty. Panels (B) and (C) on the right give the absolute frequency 

distribution of estimates of r0 and FST for the 26 Alpine ibex populations.

Fig. 3. 

Visualization of the estimated interaction effects of inbreeding and summer 

precipitation on population growth rates (table S5), illustrated for minimal (left), 

mean (middle) and maximal values (right) of summer precipitation. Increased summer

precipitation reduced population growth rates, implying that inbreeding effects on 

population growth rates were more pronounced in harsher environments. The 

shadowed areas represent the 95% credible ranges. Note the logarithmic scale for the 
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y-axis when comparing Fig. 3 to Fig. 2.275
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METHODS

Study populations and population-related data. Alpine ibex populations in 

Switzerland have been monitored closely since their reintroductions, with yearly 

abundance counts conducted usually in spring36. During spring, ibex are found in 

fairly restricted areas below the snow line and just above timberline37, and are 

therefore easier to count than most other ungulates. Hence, Saether et al.38 found the 

error in population censuses to be small (median coefficient of variation across 28 

ibex populations: 5.1%). In addition to abundance count data, we had time series for 

(i) the number of released animals, (ii) the number of harvested animals for all but a 

single non-hunted population (number 22), and (iii) the number of animals that were 

removed for translocations. Initial releases were performed at the end of winter. 

Harvest of ibex populations started in 1977 when many populations had grown to 

high densities. In some populations ibex were removed for translocation to other 

populations. In our study, these ibex were considered to be harvested and were added 

to the count of harvested animals in that year. This explains why the first year for 

harvesting can be prior to 1977 (Supplementary Table 1, column “Hunt”). We 

analysed data of 26 Alpine ibex populations, with time series ranging from 23 to 96 

years (Supplementary Table 1). For this study we added genetic data from three 

populations (number 24, 25 and 26) to 23 populations that had been previously 

analysed genetically13.

Inference of inbreeding level. An average of 36.9 (range 17–102) individuals from 

each of the 26 populations were genotyped at 37 neutral microsatellite loci as detailed 

in Biebach et al.13. Most inbreeding in the reintroduced Alpine ibex populations 
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accumulated in concert with genetic drift during founder events and during the time 

when population sizes were low following reintroduction15. We quantified the 

inbreeding that arose since the reintroduction program started over 100 years ago 

using marker-based population-specific FST 18,19.  Population-specific FST of population

i is defined as  FST_i = (θi - θA) / (1- θA) , where θi is the probability of a gene being 

identical by descent (IBD) within population i and θA is the probability of a gene 

being IBD between all populations18. In line with theory, simulations have shown that 

FST explains a substantial part of the effects of deleterious mutations on population 

fitness39, making FST a suitable measure of average population inbreeding for this 

study. 

We used a Bayesian framework in a modified version of 2MOD40 to estimate 

population-specific FST for 42 ibex populations15. For this study we used the results of 

26 populations for which we also had abundance data. All parameters were given 

uninformative flat prior distributions.  We used the non-equilibrium drift model in 

2MOD that estimates inbreeding relative to the last common ancestral population. The

model assumes that the reciprocal of the mutation rate is much longer than the 

divergence time40, which is a reasonable assumption for the reintroduced ibex 

populations since they were founded no more than 12.5 generations ago. In our case, 

the ancestral reference population is the Gran Paradiso population in Italy, the single 

remaining population of Alpine ibex before animals were transferred to found the zoo 

populations that were the source for the first reintroductions. Thus, the estimated 

inbreeding coefficient measures the accumulated inbreeding from the start of the 

reintroduction program in 1906. The ancestral reference population used here differs 

from that used in previous studies of inbreeding in Alpine ibex15, hence results are not

directly comparable.
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The observed degree of inbreeding will depend on the composition of the 

founder population and the harmonic mean population size after founding (inbreeding

Ne). The length of the time series is not expected to influence the inbreeding 

coefficient (r=–0.27, 95% CI: -0.60 to 0.13, N=26) because harmonic mean 

population size is mainly determined by the small population sizes early in the 

population development15. As expected given that inbreeding measures IBD and 

homozygosity measures identity-in-state, mean observed homozygosity and 

population-specific FST were only moderately correlated (r=0.55, 95% CI: 0.21 to 

0.77, N=26) across the 26 populations. FST estimates are not only affected by 

statistical sampling variance, but also by genetic sampling variance caused by genetic 

drift20, hence their credible intervals are substantial even when based on three dozens 

of loci (Supplementary Table 2). We estimated mean, variance, and 95% credible 

intervals of population-specific FST for each population from 450,000 iterations with 

the R-package STATS41.

Next generation sequencing methods offer alternative measures of individual 

inbreeding coefficients10 like runs of homozygosity (ROH). ROH (mean total length 

>5 Mb) were estimated from 41 907 SNPs obtained with RAD-sequencing for 76 ibex

of 10 populationsxx, with the difference that the minimum SNP-density was set to 1 

SNP per 100kbxx. Averaged ROH across each of the 10 populations yielded very 

similar estimates of population-level inbreeding as the population-specific FST 

estimates (r=0.81, 95% CI: 0.38 to 0.95, N=10, Supplementary Table 8). Thus, next 

generation sequencing data confirm the population-level estimates of inbreeding 

obtained with microsatellites in this study.

Population dynamics: Model description. In constructing the population dynamics 
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model, we followed the dynamically important steps of a population through a year. 

We started the cycle with population size in spring, coinciding with the time when 

counts were made. We then added reproduction in summer. In autumn, hunting of 

adults takes place before the December-January rut42. Thus, only the proportion not 

killed was retained in the model. Winter is the season when most natural mortality 

occurs; thus, we added density-dependent mortality. Finally, we added the 

reintroduced animals. 

Combining these components of ibex population dynamics leads to the 

discrete-time dynamical equation (1):

N t=N t− 1e
r0(1−

H t− 1

N t−1
) f (N t− 1− H t −1 )(1+

R t− 1

e
r0 (N t− 1− H t−1 ) f (N t−1−H t− 1 ) )e

εt eϕt
(1)

Here, Nt is the "true" (unobserved) population abundance before reproduction in 

spring in year t; r0 is the density-independent (intrinsic) continuous rates of increase; 

Ht is the number of adult animals harvested in year t; f (N t−1−H t− 1 ) is a function 

giving density-dependent survival that depends on the number of individuals in the 

population, excluding kids born that year and harvested individuals; Rt is the number 

of individuals added to the population following overwintering survival; ε t is a 

random variable giving the effect of environmental variation on population growth, 

and ϕt is a random variable for demographic stochasticity. We assumed that the 

function f is a Gompertz equation, so that f (N t−1−H t− 1 )=exp (b log (N t− 1− H t−1 )), 

where b≤0 and smaller parameter values imply greater density dependence. Taking

x t=log (N t ) and rearranging gives the model
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x t=r0+log ( (ex t −1 −H t− 1 )
(1+b)

+e−r 0 Rt −1 )+εt+ϕ t
(2)

The year-to-year fluctuations in "true" population abundances, referred to as 

process variation in state-space models, are assumed to have two components: 

demographic stochasticity (ϕt) that decreases with increasing population size, and 

environmental variability (ε t). Environmental variation is assumed to have variance 

independent of the mean (on a log scale), and thus we take ε t as independent draws 

from a Gaussian random variable with mean 0 and variance σ env
2 . In contrast, 

demographic stochasticity depends on the mean log population size. Assuming that 

demographic stochasticity follows a Poisson process, the resulting variation can be 

approximated by treating ϕt as a Gaussian random variable with mean 0 and variance

log (σdem
2 e−xt −1+1 ). 

Since the "true" population abundance Nt cannot be observed directly, our 

model takes a state-space form to account for the observation process. We assume that

population counts follow a binomial process, and therefore observation error can be 

approximated as a Gaussian random variable ηt with mean 0 and variance

log (σobs
2 e−x t− 1+1 ). A full statement of the state-space model is

x t=r0+log ( (ex t −1 −H t− 1 )
(1+b)

+e−r 0 Rt −1 )+εt+ϕ t
(3a)

y t=x t+ηt (3b)

ε t N (0,σenv
2 ) (3c)

ϕ t N (0, log (σdem
2 e−x t− 1+1 ) ) (3d)

ηt N (0, log (σ obs
2 e−x t −1+1 )) (3e)

where yt is the log-transformed observed number of individuals in the population in 

year t. Equations 3a and 3b are referred to as the process and observation equations, 
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respectively, of the state-space model. 

Population dynamics: Model fitting to data. The model is nonlinear and in state-

space form (Eqs. 3a-e), and therefore we used an extended Kalman filter (EKF) to 

calculate likelihoods and obtain the maximum likelihood parameter estimates43, using 

a procedure similar to Schooler et al.44; see also Supplementary Information. Time 

series for several Alpine ibex populations have been analysed previously by Saether 

et al.38 using a state-space model, although in a Bayesian context. In contrast to our 

study, Saether et al.38 did not include the release periods in their analyses. We 

included release periods because some of them span a considerable number of years 

of early population growth (Supplementary Table 1) when density dependence was 

still low, therefore containing valuable information for estimating r0. To prepare the 

time series for the EKF analysis, for each population we (i) discarded years prior to 

the first  available census count, (ii) substituted subsequent counts of zero animals 

with 0.01 times the lowest non-zero census count, and (iii) substituted missing values 

with zero in the covariate time series of harvested and released animals.

We estimated simultaneously the five parameters r0 (continuous rate of 

increase), b (density dependence), σ env
2

 (environmental stochasticity), σ dem
2  

(demographic stochasticity), and σ obs
2

 (observation error). Further, because the initial 

population sizes were small and therefore prone to observation error, we treated the 

first point in each time series, x0, as an additional parameter to be estimated45. 

We used simulated annealing to find optimal starting parameter values for the 

maximization routine, and then refined the results using the Nelder-Mead Simplex 

method46. Although it is theoretically possible to distinguish environmental, 

demographic, and observation variation solely from time series data, in practice this is
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often impossible due to small sample sizes and the similarity of effects of different 

sources of variability on the observed time series. Therefore, the estimated values of

σ env
2 , σ dem

2 , and σ obs
2  are sometimes zero (Supplementary Table 4), even though in 

reality they will not be. These zero estimates, however, will have very little effect on 

the estimates of r0, the main target of the analyses.

To quantify the uncertainty in the r0 point estimates, we calculated 95% 

confidence intervals using profile likelihoods47. Because the 95% confidence intervals

around r0 were an important ingredient of the final regression analysis, we checked 

whether this uncertainty was significantly correlated to time series length or to the 

number of missing values (Supplementary Table 1). We found no significant 

correlation between 1/ σ̂ log ( r0 )

2
 and time series length (r=0.01, 95% CI: -0.38 to 0.39, 

N=26) or the number of missing data (r=–0.06, 95% CI: -0.44 to 0.33, N=26).

Regression analysis: Model description. We log-transformed r0 for the regression to

account for three aspects of the estimates of r0: (i) the uncertainty in estimates of r0 

increased with the point estimate (Supplementary Figure 3a), (ii) most of the 

confidence intervals around single r0 estimates were right-skewed, and (iii) the 

distribution of r0 point estimates was right-skewed (see also Supplementary Figure 

3b). Log-transforming r0 resolved all of these issues.

The regression models included as covariates the population-specific FST, five 

climate variables (see below), and the year when the time series of a population began

(Supplementary Table 1, column “Period”). We included the year when the time 

series began to account for possible changes in the suitability of habitats as 

reintroductions progressed. The climate variables were included because studies have 

shown effects of weather conditions on Alpine ibex population growth12. We obtained
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relevant data from the Swiss Federal Office of Meteorology and Climatology 

MeteoSwiss. All relevant weather stations for this study are located in a population’s 

habitat or in the immediate vicinity. From ecological knowledge of ibex, we split the 

year into summer (May – October) and winter (November – April). For each 

population we calculated one mean spanning the respective time series period for the 

following weather measures (Supplementary Table 3): Daily mean air temperature in 

summer (ts) and winter (tw) (both in degree Celsius), daily total precipitation in 

summer (ps) and winter (pw) (both in millimeter), and daily total snow cover in 

winter (sw) (in centimeter). Not all weather stations were recording data when the 

populations in this study were reintroduced. Thus, for some populations the climatic 

variables are calculated over a shorter time period than we had time series data 

(Supplementary Table 1). These climate variables, averaged across the entire length 

of the time series, are a measure of the climate zone a population inhabits and are 

used to account for environmentally induced spatial variation in population growth 

rates among populations. The effects captured by these averaged climate variables 

include indirect effects of variables that may covary with climate zone, such as spatial

variation in food quality or quantity. The climate variables cannot, therefore, be 

interpreted in the same way that they have been in previous within-population 

studies12,38.

 All covariates were centred by subtracting their respective mean value. Due to

the log-transformation of r0, variances were transformed by the delta rule for variance 

transformations: σ̂ log ( r0 )

2
=σ̂ r0

2
/r0

2
 (Supplementary Figure 3b). In order to account for the 

population-dependent (heteroscedastic) error in log(r0), a random effects term with a 

population-specific variance, denoted as δ y, was added to the linear regression model. 

Importantly, not only the response log(r0), but also the covariate of interest, 
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FST, has been estimated with uncertainty, that is, with measurement error. It is, 

however, a fundamental assumption of regression models that covariates have been 

precisely measured, and a violation of this assumption may lead to biased estimates of

the regression coefficients 22,48. Here, population-specific estimates of the uncertainty 

in the FST point estimates were available (see Inference of inbreeding level), thus we 

could properly account for it by explicitly formulating an error model for this 

covariate. Note that measurement errors in covariates correlated with inbreeding 

could also bias the estimates of the inbreeding effects48, but because inbreeding was 

not substantially correlated with other covariates in the regression model (all r ≤ 

0.27), we only modelled measurement error in inbreeding. We formulated a Bayesian 

hierarchical measurement error model following the description in Muff et al.23, 

where the first level is the Gaussian regression model relating population growth to 

the true covariates (Eq. 4a), the second level is the classical Gaussian error model for 

the observed FST that accounts for unequal variances (heteroscedasticity; Eq. 4b), and 

the third level is an independent Gaussian exposure model for the true but unobserved

predictor FST (Eq. 4c):

log(r0) = β01 + βF Ftrue + z’ βz  + δy + εy , εy ~ N(0, σ2
y I) ,  

δy ~ N(0,  Dy)

(4a)

FST =  Ftrue + u , u  ~ N(0 , Du) (4b)
Ftrue  =  μ0 +  εFtrue  , εFtrue ~ N(0, σ2

Ftrue I) (4c)

Bold-face notation indicates vectors or matrices. The vector Ftrue denotes the correct 

but unobserved inbreeding values, z’ is the transposed of the matrix with rows 

containing the additional covariates, and β0, βF and βz represent the intercept, slope 

coefficient of Ftrue, and the vector of slope coefficients of z, respectively. The random 

term δ y accounts for the error in the observed log(r0) values. FST is the vector of the 
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estimated levels of inbreeding, and u is the error vector from the measurement error 

model. Classical covariate measurement error models require assigning a distribution 

to the predictor variable that is measured with error22, and we selected a Gaussian 

distribution (Eq. 4c) with mean μ0=0 to match the observed (centred) distribution of 

FST scores (Fig. 2).

The variances σ2
y and σ2

Ftrue are the residual variance of the regression and the 

variance of Ftrue, respectively. The entries in the diagonal matrices Dy and Du account 

for population-specific (heteroscedastic) uncertainties in the regression and error 

model, respectively: the entries in the former are equal to the estimated error 

variances σ̂ log ( r0 )

2
, while the entries in the latter are equal to the estimated error 

variances σ̂ F ST

2  for the individual populations, and thus these properly account for 

uncertainty in the log(r0) and FST estimates in each population, respectively. Matrix I 

is the identity matrix of appropriate dimension.

It is straightforward to incorporate prior knowledge into such a Bayesian 

hierarchical model, and in particular prior uncertainty given by the variance estimates.

To estimate the posterior marginal distributions, we used a fast and accurate 

alternative to MCMC sampling, namely integrated nested Laplace approximations 

(INLA)49. INLA is suitable for inference on latent Gaussian models, which are a 

subset of hierarchical models and compatible with our model23.

We closely followed the procedure as described in Muff et al.23 to assign 

priors according to expert/prior knowledge. We used independent N(0,104) priors for 

all β-coefficients, and inverse Gamma distributions for the variances: σ2
y  ~ IG(1,0.02)

and σ2
Ftrue  ~ IG(1.9,0.001).  The σ2

y prior differed from Muff et al.23 because the log-

transformed version of the response variable was used. Finally, the Dy and Du were 

assumed known and are thus fixed.
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Regression analysis: Model selection and parameter estimates. Model selection 

was guided by minimization of the deviance information criterion DIC50, where the 

main effect of interest, βF, was always retained in the model. To illustrate the bias that

would result if the uncertainty in the point estimates of population-specific FST were 

ignored, we also fitted the model with lowest DIC (termed “model 1”) with a standard

least squares approach using weighted regression with mean standardized weights 

proportional to 1/ σ̂ log ( r0 )

2
, but ignoring covariate error in inbreeding values 

(Supplementary Table 5, model 1(ML)). Further, we also retained a model that was 

identical to model 1, but that did not contain the interaction term FST  · ps 

(Supplementary Table 5, model 2). Here, too, we additionally fitted the model using 

weighted regression [model 2 (ML)]. All analyses were performed using R version 

3.3.241. The hierarchical model (Eqs. 4a-c) was fitted with INLA, using the R-

interface R-INLA (version built on June 20, 2017), which can be downloaded from 

www.r-inla.org.

Data and code availability

Data that support the findings of this study have been deposited in Dryad Digital 

Repository with the identifier (doi:xxx) 51.
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	Table 1: Parameter estimates (posterior means and 95% credible intervals) for the effects of inbreeding (), the year when the time series began (), mean precipitation in winter (), mean precipitation in summer (), and two interaction terms () on the log-transformed intrinsic per capita population growth rate r0. Inbreeding reduced population growth in interaction with summer precipitation (Model 1) and when the interaction was omitted (Model 2). For modeling details see Methods.
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