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Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect
a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game
theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets
and consuming resources. The action cost which is a necessary role of consuming resource is considered in the proposed model.
Additionally, a bounded rational behavior model (quantal response: QR), which simulates a human attacker of the adversarial
nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions
and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better
than others in the perspective of utility and resource effectiveness.

1. Introduction

Resource allocation has always been a complex problem,
especially when driven by security requirements. How to
devise a mechanism to control the trade-off between the cost
of protection and the achieved security utility is an open
challenge [1]. In the AWS re:Invent 2014, the AWS engineer
claimed thatAmazonhad nearly 28 total sets across theworld,
each of which has one or more data centers with a typical
facility containing 50,000 to 80,000 servers [2]. To protect
these servers against attack and maintain their consistent
operation, cloud providers will implement security strategy.
For example, they can protect targets (e.g., virtual machines,
VMs) by setting up resource reservations to analyze the
operation of targets and then respond the attack quickly,
which is followed by a lot of resource consumption [3].
Therefore, a trade-off problem could be abstracted between
consuming resources and protecting targets. Especially, when
the number of available resources or resource budget is
fixed and limited for all the targets, how to allocate limited

resources to protect amassive number of targets is a vital issue
in the security area.

The extreme approach may be to allocate security
resources to cover all the targets [4], for instance, setting
up the full resource reservations for all the VMs, which will
lead to almost double resource consumption. The common
approach may be to protect those targets with the most
value [5], for instance, setting up the resource reservation
for the VMs that store the most data or the sensitive data
(e.g., financial data). The former approach fails to consider
resource constraints and effectiveness; however, the available
resources may not be sufficient to protect all the targets on
the one hand; on the other hand, resources allocated to some
empty targets may be inefficient. The latter approach does not
account for the adversarial nature and perspective-taking of
the attacker. An attacker who can learn about a defender’s
possible target protection strategy can exploit this knowledge
to launch an attack on the targets that the defender does not
protect.
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This paper focuses on developing a general resource allo-
cation method to address the trade-off between security gain
and resource consumption. The goal is to resolve the problem
of how to utilize limited resources to efficiently protect
massive targets against attack. How to build a mathematical
model to describe this problem is the key, for example, (1)
how to maintain security while allocating resources and (2)
how to simulate an attacker of the adversarial nature.

In the previous studies [5–10], the number of allocated
resources is measured by defense probability. But the impor-
tance and emphasis of resource allocation weaken in such
scheme. In general, performing different actions on a target
will result in different outcomes. If an action is successful,
the actor will obtain some benefit as a reward; otherwise, the
actor will lose some assets as a penalty. No matter whether an
action is successful, the actor will incur some cost by taking
the action. Recent studies about the effort of deterrence and
risk preferences in the security games [11, 12] have analyzed
the impact of risk preference on the defense effort and
deterrence level and the impact of defender’s cost on the
investment strategy. Meanwhile, statistics show that a large
data center costs between $10million and $25million per year
and the corresponding maintenance costs account for nearly
80% of its total cost [13]. So it is clear that action cost is an
important factor which cannot be ignored. By combining the
rewards, penalties, costs, and probabilities of actions in some
manner, it may be possible to describe our problem.

Game theory, an important tool for analyzing real world
resource allocation problems, such as the assignment of cyber
analysts [5] and patrolling strategies [14, 15], provides an
alternative solution. However, in most of the previous studies
[6–9] on game theoretic resource allocation, only the reward
and penalty associated with an action have been included
in the game utility function, but the action cost has been
ignored. In the real world, no matter what one wants to
do, an action cost is often necessary. This cost might be
measured in monetary units, physical resources, abstract
resources, and so on. Whatever it is, it can be abstracted as a
mathematical expression. Hence, we include cost additionally
in the Stackelberg game [16] utility function and analyze the
impact of different parameter value configurations on the
defender’s utility.

Since both the defender and the attacker are intelligent
and have the perspective-taking ability, we consider an inter-
action in which the defender designs a resource allocation
strategy first and the attacker subsequently develops an attack
strategy. Although the attacker has the ability to consider the
situation from the perspective of the defender, the attacker
might also take abrupt actions that lie outside the defender’s
expectations. This type of attacker, who is of the adversarial
nature, can be simulated by the quantal response (QR)model,
which has received widespread support in the literature on
modeling human behavior in games [17]. In this paper, we
introduce it into the proposed Game Theoretic Resource
Allocation (GTRA) model to simulate adversarial reasoning.

The efficient resource allocation strategy for the defender
is obtained from an optimization algorithm. Three indica-
tors, namely, vulnerability, coverage, and effectiveness, are
designed to evaluate the effectiveness of our strategy. We

compare the equilibrium strategy based on the proposed
GTRA with the one based on a game utility function without
considering the action cost, and also compare with four
extreme resource allocation strategies, namely average allo-
cation strategy, partial allocation strategy, random allocation
strategy, and full-coverage strategy. The experimental results
demonstrate the effectiveness of our proposed GTRA model.

The contributions of this paper can be summarized as
follows:

(1) To emphasize the action cost in resource consump-
tion. The players’ action costs are included in the
game utility function as an independent item. The
numerical analyses prove that this type of resource
measurement can improve the utility and effective-
ness.

(2) To better balance target security and resource con-
sumption. The obtained Nash equilibrium strategy is
selected as the defender’s resource allocation strategy
because it outperforms the other extreme resource
allocation strategies in terms of both security and
effectiveness.

(3) The constructed GTRA model provides advice based
on the target parameters to assist in determining the
appropriate quantity of resources to protect a massive
number of targets.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe the related work on resource
allocation and our problem, respectively. Game theoretic
model, QR model, and the proposed algorithm are presented
in Section 4. The numerical analyses are discussed in Sec-
tion 5. The final section summarizes the paper and outlines
directions for future work.

2. Related Work

Resource allocation is defined as the economical distribution
of resources among competing groups of people or programs
[1]. Game theory has been applied in resource allocation
to better capture the interaction between resource provider
and user and shows the economic nature of resource allo-
cation. The previous studies can be roughly classified into
two categories based on the different participants consid-
ered: security-driven resource allocation between a resource
provider and an attacker; and demand-driven resource allo-
cation between a resource provider and a legitimate user.

Demand-driven resource allocation can be further subdi-
vided into cost-scheme-based, performance-scheme-based,
and mixed-scheme-based resource allocation. The original
pricing scheme is used for the allocation of resources of a
single type, such as bandwidth [18–20], offload [21, 22], or
cache [23]. With the development of the Internet, resource
provider could provide nearly all the resources that users
need, such as cloud computing provider provides on-demand
resources including storage, memory, and bandwidth. Mul-
tiresource pricing schemes [24], such as the cost-optimized
scheme considering multiple resources [25], have emerged.
Meanwhile, since user requests are becoming necessary
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while providing service, some research has focused on user-
demand-driven resource allocation [26–28]. Later, the cost-
optimized and performance-based schemes are combined to
allow a resource provider to achieve a win-win objective in
which resource provider obtains the maximum profit while
the user receives the best experience [13, 29–31].

However, during the pursuit of the best experience and
the maximum benefit, security issues increase and security-
driven resource allocation become a research hotspot, espe-
cially when resources are limited and cannot cover all
the targets that require protection. The American Institute
Teamcore conducted a project with the theme of “AI and
game theory for public safety and security”, and their achieve-
ments have been applied in various areas. ARMOR [32] was
deployed to develop randomized checkpoints and a patrol
route strategy at LosAngeles International Airport. GUARDS
[33] was developed to assist airports in allocating limited
air police resources to protect more than 400 United States
airports. Federal Air Marshals used IRIS [34] to provide
scheduling coverage for potential attacks. PROTECT [35]was
deployed to generate randomized patrolling schedules for the
US Coast Guard. These cases are typical instances of limited
security resource allocation using game theoretic model.

Other game theoretic studies have also produced good
results. One study [5] investigated an intelligent allocation
method for assigning limited cyberanalysts to analyze a
massive number of security alerts in a network. Another
work [10] developed new models and algorithms that could
scale to highly complex instances of limited security resource
allocation games. Their new methods performed faster than
known algorithms when solving massive security games. In
further research [6] based on a previous work [7], efficient
algorithms were developed to compute the best responses of
security forces to different adversary models when resources
are limited, and it was proven that the proposed response
strategy was superior because it relaxed the assumption of
perfect rationality. An additional study [8] proposed a game
theoretic scheme for developing dynamic and randomized
security strategies that consider an adversary’s surveillance
capabilities. The experimental results showed that the pro-
posed algorithm outperformed the existing approaches.

Although these works have utilized the nature and
principles of game theory to determine optimal resource
allocation strategies, most of them considered only rewards
and penalties in their allocation strategies. Recent works
[11, 12] specially examined the effect of risk preferences on
deterrence and analyzed the impact of the defender’s cost on
its investment, which demonstrated that the cost of actions
cannot be ignored. Nonetheless, in the previous works [5–10],
the action cost was measured by defense probability simply,
which inclines to analyze the impact of defense instead of
action cost. Therefore, the game theoretic approach that
includes the action cost independently is required to perform
the resource allocation in the security area.

3. Problem Description

This paper considers a common scenario of a defender and
an attacker. The defender’s responsibility is to protect the

Table 1: Parameter descriptions.

Parameter Description
𝑇 set of targets
𝑁 number of targets in 𝑇
𝐴 attacker
𝐷 defender
𝑝𝑖 attack probability for target 𝑖
𝑞𝑖 defense probability for target 𝑖
𝐶𝑚𝑖 resources allocated to protect target 𝑖
𝑀 maximum quantity of available resources

security of 𝑁 targets using 𝑀 resources, so it allocates
resources to targets as its action. By contrast, the attacker’s
intention is to attack the targets, and such attack also costs
resources. For both sides, the benefit of consuming resources
can be measured in terms of the security gain. The resources
can be computing, storage, energy, or even monetary units,
and the security gain indicates the return of protecting
the targets by consuming resource. Although the units of
resources and returns are different, they can be abstracted
into the numerical value by mathematical methods. In
this paper, we put emphasis on analyzing the relationship
between them by setting various parameter configurations
to simulate the different scenarios. For example, if the
defender allocates resources to a target 𝑖, this target will be
relatively more secure than a target without being covered
by resources, which can be configured with a bigger security
gain.

Therefore, the defender obtains a security gain by expend-
ing resources, which can be abstracted as a limited resource
allocation problem; that is, the problem of how the defender
should allocate 𝑀 resources to protect 𝑁 when 𝑀 is far less
than 𝑁. The defender wants to achieve the greatest security
gain while minimizing resource consumption. Therefore,
this is a trade-off problem between protecting targets and
consuming resources. Table 1 lists the parameters used in
this paper. 𝑇 = {1, . . . , 𝑖, . . . , 𝑁} is the set of active targets;
𝑖 denotes one target; 𝑅𝑚𝑖 and 𝑃𝑚𝑖 are the defender’s reward
and penalty, respectively, for an attack on this target; and
𝐶𝑎𝑖 and 𝐶𝑚𝑖 are the resources required to be expended by
the attacker and the defender, respectively, to best protect
target 𝑖. 𝐴 is the attacker, who commits to a strategy p =
{𝑝1, 𝑝2, . . . , 𝑝𝑁}, where 𝑝𝑖 is the probability of an attack on
target 𝑖. 𝐷 is the defender, who commits to a strategy q =
{𝑞1, 𝑞2, . . . , 𝑞𝑁}, where 𝑞𝑖 is the probability of protecting target
𝑖. We take ∑𝑖∈𝑇 𝑞𝑖𝐶𝑚𝑖 ≤ 𝑀 to represent the constraint of
the defender’s available resources, where 𝑞𝑖𝐶𝑚𝑖 represents the
resources allocated to target 𝑖 and𝑀 represents themaximum
quantity of available resources.

In this way, our problem is transformed into computing
a reasonable defense probability distribution subject to the
defender’s resource constraints based on known parameters,
including the resource constraints, the number of targets, the
reward for protection, the penalty of protection, the cost of
protection, and the cost of attack for the set of targets.
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Figure 1: The game theoretic resource allocation interface.

4. Model Formulation

To solve the given problem, we construct a Game Theoretic
Resource Allocation (GTRA) model, as shown in Figure 1.
The input parameters are discussed in the above section. After
the parameters are input, the proposed GTRA model com-
putes the defender’s possible defense probability distribution
and the attacker’s possible attack probability distribution.

For the computation process, a Stackelberg game is used
to model the interaction between the defender and the
attacker. Then, the game payoff functions are built from the
input parameters and are designed as strategic rules. Next, the
QR model is used to simulate an attacker of the adversarial
nature. In addition, an iterative genetic algorithm is utilized
to obtain the equilibrium game strategy.

4.1. Stackelberg Game. Game theory [16] is widely used to
analyze problems in which all players who are in a conflict
with a payoff attempt to win or to maximize their payoffs
via changing their strategies based on the reactions of their
adversaries. A Stackelberg game is a common game instance
in which players select strategies sequentially: the leader
moves first, and the follower responds accordingly.

In this paper, defender and attacker are the two rival roles.
They are in conflict over the targets’ security, and both attempt
to maximize their own payoffs by allocating the fewest
resources to the targets. Through game theoretical deduction,
the defender first decides how to allocate resources to cover
the targets; then, the attacker selects the targets to attack after

observing the defender’s strategy. The rivalry, the pursuit of
the maximum payoffs, and the sequence of actions make our
problem fit perfectly into the framework of a Stackelberg
game; thus, the GTRA model is built based on a Stackelberg
game.

In a Stackelberg game, each player selects the action with
the greatest payoff, which is defined as the player’s return
after taking the selected action. This payoff usually consists
of reward, penalty and cost. In the proposed GTRA model,
both the defender and the attacker can take two actions, so
their payoffs for a target 𝑖 can be represented by a 2 × 2
payoffmatrix, as shown inTable 2. Clearly, there are four cases
corresponding to the attacker’s two actions (Attack or Not)
and the defender’s two actions (Protect or Not), which are
represented by the four cells. Each cell contains two values
separated by a comma: the first is the attacker’s payoff, and
the second is the defender’s. In contrast to previous payoff
matrices, we include action cost to measure the resource
allocation metric directly.

Case 1 (attack, protect). The attacker launches an attack on
target 𝑖, and the defender protects it simultaneously. In this
case, the attacker’s benefit is −𝛼𝑃𝑎𝑖 + (1 − 𝛼)𝑅𝑎𝑖 , and the
defender’s benefit is 𝛼𝑃𝑎𝑖 −(1−𝛼)𝑅𝑎𝑖 , where𝛼 is the accuracy of
attack prediction, 𝑃𝑎𝑖 is the attack penalty, and 𝑅𝑎𝑖 is the attack
reward.

Case 2 (attack, not protect). The attacker launches an attack
on target 𝑖, and the defender does not protect it. In this
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Table 2: Payoffs of the two players for target 𝑖.
Protect (𝑞𝑖) Not Protect (1 − 𝑞𝑖)

Attack
(𝑝𝑖)

−𝛼𝑃𝑎𝑖 + (1 − 𝛼)𝑅𝑎𝑖 − 𝐶𝑎𝑖 ,𝛼𝑃𝑎𝑖 − (1 − 𝛼)𝑅𝑎𝑖 − 𝐶𝑚𝑖
𝑅𝑎𝑖 − 𝐶𝑎𝑖 ,−𝑅𝑎𝑖

Not Attack
(1 − 𝑝𝑖) 0, −𝐶𝑚𝑖 0, 0

case, the attacker will not be punished, and its payoff is the
difference between 𝑅𝑎𝑖 and cost. The defender’s payoff is −𝑅𝑎𝑖
alone, without a cost, because no protection is attempted.

Case 3 (not attack, protect). The attacker does not launch an
attack on target 𝑖, but the defender protects it. In this case,
the attacker’s payoff is zero due to the absence of an attack,
and the defender’s payoff is the negative value corresponding
to the cost of the consumed security resources, −𝐶𝑚𝑖 , with no
benefit.

Case 4 (not attack, not protect). The attacker does not launch
an attack on target 𝑖, and the defender does not protect it. In
this case, each player’s payoff is zero because neither performs
an action.

To distinguish different targets, one work [36] considered
targetswith different noncorrelated security assets.Motivated
by that study, we label targets with different security assets
in the form of distinct rewards, penalties, and action costs
for the defender and attacker. A player’s total payoff is the
combination of the four separate cases. In combination with
the attack probability, defense probability, and payoff items
shown in Table 2, the total payoff functions of the defender
and the attacker are given in (1) and (2), respectively. These
two utility functions are different from the utility functions
used in many previous studies because the players’ action
costs are directly included in our utility functions.

𝑈𝑀 = ∑
𝑖∈T

𝑝𝑖𝑞𝑖 [𝛼𝑃𝑎𝑖 − (1 − 𝛼)𝑅𝑎𝑖 − 𝐶𝑚𝑖 ] − 𝑝𝑖 (1 − 𝑞𝑖) 𝑅𝑎𝑖
− (1 − 𝑝𝑖) 𝑞𝑖𝐶𝑚𝑖

= ∑
𝑖∈T

𝑞𝑖 [𝛼𝑝𝑖 (𝑃𝑎𝑖 + 𝑅𝑎𝑖 ) − 𝐶𝑚𝑖 ] − 𝑝𝑖𝑅𝑎𝑖
(1)

𝑈𝐴 = ∑
𝑖∈T

𝑝𝑖𝑞𝑖 [−𝛼𝑃𝑎𝑖 + (1 − 𝛼) 𝑅𝑎𝑖 − 𝐶𝑎𝑖 ] + 𝑝𝑖 (1 − 𝑞𝑖)

∗ (𝑅𝑎𝑖 − 𝐶𝑎𝑖 )
= ∑
𝑖∈T

𝑝𝑖 [−𝛼𝑞𝑖 (𝑃𝑎𝑖 + 𝑅𝑎𝑖 ) + (𝑅𝑎𝑖 − 𝐶𝑎𝑖 )]
(2)

For both the defender and the attacker, the objective
of each player is to maximize that player’s own payoff by
designing an optimal strategy. When both players achieve
their maximum payoffs, the corresponding solution to the
problem is called the Nash equilibrium [16].

Definition. Consider a game 𝐺 = {𝑠1, .., 𝑠𝑛; 𝑢1, . . . , 𝑢𝑛} with 𝑛
players. If, for a strategy profile {𝑠∗1 , . . . , 𝑠∗𝑛 }, the strategy 𝑠∗𝑖 for

every player 𝑖 is either the optimal strategy for that player or a
strategy that is noworse than any of the other (𝑛−1) strategies,
then that strategy profile is called a Nash equilibrium (NE)
strategy profile.

The NE of a Stackelberg game can be derived by applying
backward induction [37], which involves reasoning from the
end of a situation to determine the sequence of optimal
strategies. In this context, we deduce the defender’s protection
strategy in a forward manner from the attacker’s situation in
each round, as follows.

Follower: Attacker Side. The attacker observes the defender’s
strategy and designs a greedy strategy to maximize its payoff.
Formally, for any given q ∈ 𝑆𝑀, the attacker’s task is to solve
the optimization problem in

p (q) = argmax 𝑈𝐴 (p, q (p))
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑝𝑖 ≤ 1 (3)

Leader: Defender Side. The defender knows that the attacker
will respond greedily. Therefore, the defender designs a
protection strategy based on the attacker’s potentially best
response. Formally, the defender needs to solve the optimiza-
tion problem in (4).The first constraint suggests that the total
quantity of resources available to the defender is nomore than
𝑀.

q (p) = argmax 𝑈𝑀 (p (q) , q)
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑

𝑖∈𝑇

𝑞𝑖𝐶𝑚𝑖 ≤ 𝑀

𝑎𝑛𝑑 0 ≤ 𝑞𝑖 ≤ 1
(4)

We derive the NE from the above two sequential steps.
We derive q∗ by solving (4); then, p∗ is derived as p(q∗) by
solving (3). Finally, the strategy combination (p∗, q∗) is the
equilibrium game strategy for the Stackelberg game, and the
final resources allocated to target 𝑖 will be 𝑞∗ ∗ 𝐶𝑚𝑖 .
4.2. Quantal Response. The previous analysis is performed
under the assumption that the attacker is perfectly rational
and develops its strategy with complete knowledge of the
defender’s strategy. However, in the real world, the attacker
will not always be perfectly rational since the attacker
cannot always know the defender’s strategy. Consequently,
the defender is unsure whether the attacker will operate
according to the predictive strategy p(q). If the attacker is not
perfectly rational and chooses a strategy that deviates slightly
from the rational strategy, the defender’s payoffmay decrease.
Clearly, the defender is unwilling to accept a lower payoff
while doing nothing.

To simulate the bounded rational adversary, many behav-
ior models have been proposed, including quantal response
(QR), SUQR, and prospect theory (PT), which are all com-
monly used. The defender’s response to them in the game
theoretic model has been done in our previous work [38] and
we found the defender’s response to theQRmodel is the most
careful where the defense probability is relatively bigger than
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the other twobounded rationalmodels.Hence, theQRmodel
is introduced into the GTRA model to simulate the attacker’s
adversarial nature and to improve the proposed model.

When the QR model is applied, the noise in a bounded
rational attacker’s strategy is controlled by 𝜆. 𝜆 = 0 represents
a uniform random probability distribution over the attacker’s
possible strategies, while 𝜆 → ∞ represents a perfectly
rational attacker. Thus, the attacker’s probability of attacking
target 𝑖 is changed to

𝑝𝑖 = 𝑒𝜆𝑈𝐴(𝑞𝑖)
∑𝑛𝑗=1 𝑒𝜆𝑈𝐴(𝑞𝑗) (5)

Furthermore, the defender’s utility function becomes

𝑈𝑀 = ∑
𝑖∈𝑇

𝑞𝑖 ∗ [𝛼𝑝𝑖 (𝑃𝑎𝑖 + 𝑅𝑎𝑖 ) − 𝐶𝑚𝑖 ] − 𝑝𝑖𝑅𝑎𝑖

= ∑
𝑖∈𝑇

[
[
[𝛼𝑞𝑖 (𝑃𝑎𝑖 + 𝑅𝑎𝑖 ) − 𝑅𝑎𝑖 ] ∗ 𝑒−𝜆[𝛼𝑞𝑖(𝑃𝑎𝑖 +𝑅𝑎𝑖 )−(𝑅𝑎𝑖 −𝐶𝑎𝑖 )]

∑𝑛𝑗=1 𝑒−𝜆[𝛼𝑞𝑗(𝑃𝑎𝑗 +𝑅𝑎𝑗 )−(𝑅𝑎𝑗−𝐶𝑎𝑗 )]

− 𝑞𝑖𝐶𝑚𝑖 ]
]

(6)

In summary, the proposed GTRA model is used to solve
the defender’s problemof how to allocate𝑀 units of resources
to maximize the defender’s utility function, as illustrated in

max
q

𝑈𝑀
s.t. ∑
𝑖∈𝑇

𝑞𝑖𝐶𝑚𝑖 ≤ 𝑀

0 ≤ 𝑞𝑖 ≤ 1, ∀𝑖

(7)

4.3. Algorithm. Since the defender’s objective utility func-
tion expressed in (7) corresponds to a nonlinear constraint
problem, the optimal solution is extremely difficult to find.
As a classic algorithm for searching for an approximately
optimal solution [39], the genetic algorithm (GA) provides
an alternative approach. GA is a stochastic global search
and optimization method that mimics natural biological
evolution. However, the typical GA attempts to find a globally
near-optimal solution instead of a globally optimal one.
Therefore, in this paper, we utilize Algorithm 1 to compute
the defender’s equilibrium strategy in the proposed GTRA
model.

In addition to the parameters of the utility function
discussed in the previous section, the number of targets and
the number of iterations and the resource constraint are
initialized before the iteration process. In each iteration, we
find the locally optimal strategy 𝑞𝑖 and the corresponding
utility 𝑈𝑑𝑖 using the 𝐺𝐴() function in MATLAB. Then, we
record the current maximum after each iteration. When the
iteration number 𝑖 reaches the given maximum 𝑡𝑖𝑚𝑒𝑠, the
globally optimal strategy 𝑞∗𝑖 and the corresponding utility
𝑈𝑑∗𝑖 are obtained. In general, the probability of reaching the
global optimum increases as the number of iterations 𝑡𝑖𝑚𝑒𝑠
increases.

(1) Initialization:
number of targets → 𝑁;
number of iterations → 𝑡𝑖𝑚𝑒𝑠 = 10;
resource constraint → 𝑀;
𝑈𝑑∗ ← −∞

(2) Iteration:
(3) while 𝑖 < 𝑡𝑖𝑚𝑒𝑠 do
(4) (𝑞𝑖, 𝑈𝑑𝑖) ← 𝐺𝐴(𝑀𝑢𝑙𝑡𝑖𝑂𝑏𝑗,𝑁,𝑀)
(5) if 𝑈𝑑𝑖 > 𝑈𝑑∗ then
(6) 𝑈𝑑∗ = 𝑈𝑑𝑖;(7) 𝑞∗ = 𝑞𝑖;(8) end if
(9) end while
(10)return (𝑞∗, 𝑈𝑑∗)

Algorithm 1: Iterative Genetic Algorithm (IGA).

Table 3: Simplified payoffs for target 𝑖.
Protect (𝑞) Not Protect (1 − 𝑞)

Attack (𝑝) 𝑎, 𝑏 𝑐, 𝑑
Not Attack (1 − 𝑝) 0, 𝑓 0, 0

To better understand the equilibrium game strategy,
we illustrate the evolutionary behavior of the defender by
adopting the phase plane of replicator dynamics [40]. First,
tersely describe the payoff of the defender and attacker in
every case; Table 2 is changed into Table 3 where 𝑎 = −𝛼𝑃𝑎𝑖 +(1−𝛼)𝑅𝑎𝑖 −𝐶𝑎𝑖 , 𝑏 = 𝛼𝑃𝑎𝑖 −(1−𝛼)𝑅𝑎𝑖 −𝐶𝑚𝑖 , 𝑐 = 𝑅𝑎𝑖 −𝐶𝑎𝑖 , 𝑑 = −𝑅𝑎𝑖 ,
and 𝑓 = −𝐶𝑚𝑖 . Then, the replicator dynamics equations of the
attacker and the defender are expressed as (8). 𝑈𝐴 and 𝑈𝑀
represent the average payoffs. The evolutionary equilibrium
can then be obtained by solving the following equations �̇� = 0
and ̇𝑞 = 0.

�̇� = 𝑝 (𝑈𝐴 − 𝑈𝐴) = 𝑝 (1 − 𝑝) [𝑞𝑎 + (1 − 𝑞) 𝑐]
̇𝑞 = 𝑞 (𝑈𝑀 − 𝑈𝑀) = 𝑞 (1 − 𝑞) [𝑝 (𝑏 − 𝑑) + (1 − 𝑝) 𝑓]

(8)

Figure 2 presents the evolutionary equilibrium of the
defender’s strategy, which can be seen as the process of
adapting the initial strategy to the NE strategy. The smallest
circle around the NE point (0.012, 0.2851) is the entire
feasible region of the solution.

5. Numerical Study

Since the focus of this paper is to explore the impact of
different parameter configurations, we perform the numer-
ical analysis directly to validate the proposed method. We
first compare the proposed utility function with the utility
function that does not consider the action cost. Then, we
compare the NE strategy that is computed based on the
proposed utility function with four other resource allocation
strategies. In each group of experiments, 100 game instances
under the same conditions are considered, and the average
value is taken as the result. In each game instance, the number
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Figure 2: Evolution process of the defender’s behavior.

Table 4: Four utility function scenarios.

No. Relation 𝐶𝑚 𝐶𝑎
1 𝐶𝑚𝑖 > 𝐶𝑎𝑖 𝛾 < 𝐶𝑚𝑖 < 2 ∗ 𝛾 0 < 𝐶𝑎𝑖 < 𝛾
2 𝐶𝑚𝑖 < 𝐶𝑎𝑖 0 < 𝐶𝑚𝑖 < 𝛾 𝛾 < 𝐶𝑎𝑖 < 2 ∗ 𝛾
3 𝐶𝑚𝑖 = 𝐶𝑎𝑖 0 < 𝐶𝑚𝑖 < 𝛾 𝐶𝑎𝑖 = 𝐶𝑚𝑖
4 𝑁𝑜𝐶𝑜𝑠𝑡 𝛾 = 0 𝛾 = 0

of iterations in Algorithm 1 is set to 10 (We conducted an
experiment with 100 iterations and found that the maximum
value was usually found within the first ten iterations.), and
the maximum value is taken.

5.1. Comparison of Utility Functions. To assess the impact of
the action cost on the strategy, we compare the utility func-
tions with and without action cost, respectively. Specifically,
to explore the influence of the relationship between the two
players’ action costs on each player’s strategy, we design three
groups of experiments, as shown in Table 4.

The first scenario corresponds to a utility function in
which the cost of defense is greater than the cost of attack.
On the contrary, the second scenario corresponds to a utility
function in which the cost of attack is greater than the cost of
defense. The third scenario corresponds to a utility function
in which the costs of attack and the cost of defense are equal
and are greater than 0.The fourth scenario corresponds to the
utility function used in previous works [5–10], in which the
action costs 𝐶𝑎𝑖 and 𝐶𝑚𝑖 are 0 and the resource consumption
is simply the sum of the defense probabilities.

Wemeasure the solution quality in each scenario in terms
of the defender’s average utility and the average effectiveness
over all 100 game instances, where the effectiveness is defined
as the average number of protected targets per resource, as
shown in (9). The growth rate, defined in (10), is used to
measure the difference in solution quality between different
utility function scenarios, where 𝑎 denotes the solution
quality for a utility function without action cost and 𝑏 denotes
the solution quality for a utility function that includes the
action cost.

𝑒ff𝑒𝑐𝑡𝑖V𝑒𝑛𝑒𝑠𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜V𝑒𝑟𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (9)

𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒 = 𝑎 − 𝑏
𝑏 (10)

The parameters used in this paper are the same as those
used in the previous study [9], where reward 𝑅𝑎𝑖 is chosen
randomly fromauniformdistribution from 1 to 10, penalty𝑃𝑎𝑖
is chosen randomly from a uniform distribution from -10 to
-1, and the resource constraint is proportional to the number
of targets, 𝑀 = 𝛾 ∗ 𝑁. We assume that the total available
resources, including the total cost, are insufficient to protect
all targets. Therefore, the value of parameter 𝛾 is set to less
than 1.

Figure 3 shows the solution quality results for the var-
ious utility function scenarios introduced in Table 4 with
different parameter configurations. The defender’s average
utility, and the defender’s resource consumption along with
the effectiveness are displayed on the y-axes. On the x-axes,
Figures 3(a), 3(c), and 3(e) show the results of varying the
number of targets (𝑁) while keeping the ratio (𝛾) of resources
(𝑀) to 𝑁 fixed to 0.1. Figures 3(b), 3(d), and 3(f) show
the results of varying the ratio of resources to targets while
keeping the number of targets fixed at 200.The corresponding
solution qualities in the various utility function scenarios are
presented as groups of bars.

Figures 3(a), 3(c), and 3(e) show the following. (1) The
defender’s utility (𝑈𝑚) increases as the number of targets
(𝑁) increases. The utility is larger in the first scenario
than other scenarios under the same conditions, and it is
nearly stable in the fourth scenario, regardless of 𝑁, which
indicates that the greater cost of defense has a better effect
on obtaining payoff under the same conditions. (2) The
defender’s resource consumption increases as the number of
targets (𝑁) increases. The resource consumption is larger in
the first scenario than in the second and third scenarios,
and it is strongly proportional to 𝑁 in the fourth scenario.
It illustrates the cumulative impact of action costs on a
massive number of targets. (3)Theeffectiveness does not vary
regularly with the number of targets (𝑁); it varies inversely
with the resource consumption in the first scenario, in which
the action cost is considered in the utility function, while
nearly constant effectiveness is maintained in the fourth
scenario. It suggests that when expending the same number
of resources, the number of protected targets of the fourth
scenario where the action costs are not considered in the
utility function is the least.

Figures 3(b), 3(d), and 3(f) show the following. (1) The
defender’s utility (𝑈𝑚) increases as the ratio of resources
to the number of targets increases. The defender’s utility is
larger than the second and third scenarios under the same
conditions when 𝐶𝑚𝑖 > 𝐶𝑎𝑖 , and it is nearly stable when
there is no action cost in the utility function, regardless
of the resource-to-target ratio. It reveals that the utility
functions including action cost provide more utility than
those without action cost. Moreover, the number of resources
has a positive effect on the defender’s utility. (2)Thedefender’s
resource consumption increases as the resource-to-target
ratio increases; it is larger in the first scenario than in the
second and third scenarios and it is strongly proportional
to the resource-to-target ratio in the fourth scenario. It also
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(c) Resource comparison (ratio = 0.1)
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(d) Resource comparison (N = 200)
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(f) Effectiveness comparison (N = 200)

Figure 3: Solution quality comparison of different utility functions.
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shows the cumulative impact of action costs on a massive
number of targets. (3) The effectiveness decreases with an
increasing resource-to-target ratio. The effectiveness varies
inversely with resource consumption in all four scenarios,
and it is smaller in the first scenario than in the second and
third scenarios. It suggests that the effectiveness decreases
with the increasing number of resources under the same
conditions, and the effectiveness is the least when the utility
does not include the action cost.

Furthermore, we illustrate the difference in solution
quality when the utility function does not consider the
action cost in Figure 4. Equation (10) shows that if the
growth rate is less than zero, then 𝑎 is less than 𝑏. An
overall comparative analysis of the results shown in Figure 4
indicates that when the utility function does not include
the action cost, the defender’s utility and the effectiveness
are lower and the defender’s resource consumption is larger.
The difference becomes especially evident as the number of
resources increases (the resource-to-target ratio increases) or
the number of targets increases (𝑁 increases).

Overall, a utility function that considers the action cost,
regardless of the relationship between defense and attack
costs, provides the defender with a larger payoff and higher
effectiveness. Additionally, although it is possible to represent
the resources allocated to targets using the defense probabil-
ities, as done in the utility functions implemented in many
previous studies, sometimes the resource metric is not the
same as the defense probability. For example, when 10 GB
of storage is required to run intrusion prevention servers to
protect a base station, this requirement cannot be represented
as a probability. However, we can set 𝐶𝑚𝑖 = 10 directly,
and the defense probability then represents the probability
that this target may be covered by this server. Hence, adding
the action cost into the utility function is beneficial. In
the following sections, we present a series of comparative
analyses of various strategies based on our proposed utility
function that considers the action cost.

5.2. Comparison of Allocation Strategies. A system with
high security requirements is considered; e.g., government
systems usually require a high level of consistency and
need to be able to resist various attacks. The defender is
usually equipped with high-performance defense modules
with powerful processing capabilities, so a relatively large
protection reward and a small protection penalty, which can
be represented as 𝑃𝑎𝑖 > 𝑅𝑎𝑖 [9], are chosen in our study.
Since all three scenarios regarding the relationship between
the defense cost and the attack cost have a similar impact on
the solution quality, we perform our further study based on
the case in which the defense cost is less than the attack cost
represented by 𝐶𝑚𝑖 < 𝐶𝑎𝑖 .

We varied the reward and penalty from 1 to 10, the action
cost from 0.1 to 0.4, and the numerical gap between the
reward (or penalty) and the cost was considered large. Here,
we limit the gap between the reward (or penalty) and the
cost by randomly choosing values from 𝐶𝑚𝑖 ∈ [0.01, 0.02],
𝐶𝑎𝑖 ∈ [0.02, 0.03], 𝑃𝑎𝑖 ∈ [1.4, 1.6], and 𝑃𝑚𝑖 ∈ [0.4, 0.6]. These
digits can be projected to the scenario that a unit of defense
resource can protect at most 100 targets, and a unit of attack

resource can attack at most 50 targets. If an attack fails, the
attacker will get a penalty about 1.4. And if the protection
fails, the defender will get a penalty about 0.4. In this case,
the attacker can be seen as the type of risk-averse player who
aims to minimize the risk loss [12].

To further evaluate the utility function which includes
the action cost, we simulate four extreme resource allocation
strategies in which the defender does not follow the NE
strategy.

5.2.1. PartOneS Strategy. The defender cannot protect all the
targets due to resource limitations, so it must select at most
𝑘 targets to protect. The remaining 𝑁 − 𝑘 targets are not
protected. The defense probability distribution is obtained
from (11). In this strategy, 𝑀 available units of resources are
consumed.

𝑞𝑖 =
{{{{{
{{{{{
{

1, 𝑖 = 1, . . . , 𝑘 − 1;
(𝑀 − ∑𝑘−1𝑗=1 𝑞𝑗 ∗ 𝐶𝑚𝑗 )

𝐶𝑚𝑖 , 𝑞𝑗 = 1, 𝑖 = 𝑘;
0, 𝑖 = 𝑘 + 1, . . . , 𝑛.

(11)

5.2.2. Rand Strategy. The defender protects targets following
a random probability distribution according to (12). In this
strategy, the quantity of resources consumed is no more than
𝑀.

𝑞𝑖 = 𝑅𝑎𝑛𝑑 (𝑞𝑖) ∗ 𝑀
∑𝑛𝑗=1 𝑅𝑎𝑛𝑑 (𝑞𝑗) ∗ 𝐶𝑚𝑗

, 𝑖 = 1, 2, . . . , 𝑛 (12)

5.2.3. Average Strategy. Resources are allocated to each target
equally; the defense probability distribution obeys (13). In this
strategy, all 𝑀 available units of resources are consumed.

𝑞𝑖 ∗ 𝐶𝑚𝑖 = 𝑀
𝑛 , 𝑖 = 1, 2, . . . , 𝑛 (13)

5.2.4. AllOneS Strategy. The resource limitation is relaxed,
and the defender protects all targets, as expressed in (14),
which is approximately abstracted asAllOneS. In this strategy,
the quantity of resources consumed is greater than 𝑀.

𝑞𝑖 = 1, 𝑖 = 1, 2, . . . , 𝑛 (14)

Our strategy obtained based on the proposed GTRA
model is similar to (15). It is computed using the IGA given
in Algorithm 1. In our strategy, the quantity of resources
consumed is no more than 𝑀.

q = 𝐼𝐺𝐴 (𝑈𝑀, 𝑛,𝑀) ,
∑𝑞𝑖 ∗ 𝐶𝑚𝑖 ≤ 𝑀 (15)

We start by comparing the utility of the defender with that
of the attacker. The defender’s resources are considered to be
limited, whereas the attacker’s resources are unlimited. One
hundred game instances, with the number of targets ranging
from 10 to 1000 in increments of 10, are considered.
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(a) Defender’s utility comparison (ratio = 0.1)
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(b) Defender’s utility comparison (N = 200)

50 400300200100
The number of targets (N)

0

1

2

3

4

5

6

7

G
ro

w
th

 ra
te

 o
f D

ef
en

se
 R

es
ou

rc
e

Cm-bigger-Cost
Equal-Cost
Ca-bigger-Cost

(c) Resource comparison (ratio = 0.1)
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(d) Resource comparison (N = 200)
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(e) Effectiveness comparison (ratio = 0.1)
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(f) Effectiveness comparison (N = 200)

Figure 4: Difference in solution quality when the utility function does not consider the action cost.
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Figure 5: Comparison of the defender’s utility.

The defender’s utility results for the different strategies
are displayed in Figure 5. The vertical axis represents the
defender’s utility 𝑈𝑀, and the horizontal axis shows the
number of targets 𝑁.

When the number of targets is below 120, AllOneS pro-
vides the defenderwith the greatest utility.However, when the
number of targets exceeds 312,AllOneS provides the defender
with the smallest utility because of the higher resource
consumption. The NE strategy based on our GTRA model
outperforms the other four strategies when the number of
targets is greater than 120.

Interestingly, the defender’s utility decreases with an
increasing number of targets in Figure 5, while the opposite
trend is seen in Figure 3. The difference between these two
configurations is the range of parameters. When the reward
or penalty is much larger than the cost, the defender’s utility
is larger and the impact of the number of targets is directly
proportional to the utility. By contrast, when the reward or
penalty is only slightly larger than the cost, the defender’s
utility is smaller and potentially even negative. In this case,
the impact of the number of targets is directly proportional
to the utility. Hence, the parameter configuration, such as the
gap between the reward (or penalty) and cost, influences the
defender’s utility. Regardless of the parameter configuration,
the NE strategy based on our GTRA model is better than the
other strategies in terms of the defender’s utility.

5.3. Comparison in Terms of Various Evaluation Criteria. The
NE strategy is obtained by finding the maximum utility for
both players. In this subsection, we evaluate the vulnerability,
coverage, and effectiveness of our equilibrium strategy and
the other four strategies.

5.3.1. Vulnerability. We first evaluate the vulnerability of the
defender’s various strategies. The V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is defined as a
risk indicator for the targets as shown in [41]

V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 − f𝑎𝑖𝑙𝑢𝑟𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + f𝑎𝑖𝑙𝑢𝑟𝑒 (16)

the number of targets -- N

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Vu
ln

er
ab

ili
ty

NE
PartOnes
AllOnes

Rand
Average

200 400 600 800 10000

Figure 6: Vulnerability of 100 groups of instances.

where 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 denote the numbers of targets
in which an attack that is launched is not detected or
is detected, respectively. The assumption is made that if
the defender allocates resources to protect a target, then
that target will be successfully protected against attack by
the continuously operating defense system; otherwise, the
attack will be successful. Clearly, a greater 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 value
and a lower 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 value indicate a more vulnerable
strategy. Hence, the lower the V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦, the better the
strategy.

Figure 6 shows that the V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of AllOneS is −1,
which implies that the number of successes is 0. In this
situation, the targets are the most secure. The defender’s
protections cover all the targets, resulting in the most secure
environment. When the number of targets (N) is small, the
NE strategy achieves the most secure state; as N increases,
the V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 increases because the available resources
become insufficient to protect all targets. Additionally, once
N is greater than 400, the V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of NE varies only
slightly. These analyses reveal that NE can be scaled up to
protect a large number of targets. Furthermore, compared
with PartOneS, Rand, and Average, as the number of targets
to protect increases such that there are insufficient resources
to protect all of them, NE performs better. It enables control
of the trade-off between the security benefit and the resource
consumption and focuses on protecting targets that are more
likely to be attacked.

As a result, NE performs better than all the other
strategies except for AllOneS in terms of the V𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of
the targets.

5.3.2. Coverage. We evaluate the allocated resources’ cov-
erage of the targets next. The coverage is defined as the
proportion of protected targets among the total targets, as
shown in (17), where the protected targets are defined as those
that are attacked by attacker and also protected by defender,
those that are not attacked but protected, and those that are
not attacked and not protected, either, as denoted by AP, NP,
and NF, respectively, in Table 5.
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Figure 7: Coverage in 100 groups of instances.

Table 5: Protection type of target 𝑖.
Protect Fail to Protect

Attack AP AF
Not Attack NP NF

𝑐𝑜V𝑒𝑟𝑎𝑔𝑒 = 𝐴𝑃 + 𝑁𝑃 + 𝑁𝐹
𝑁 (17)

Figure 7 shows the coverage results for the five strategies
for 100 groups of experimental instances. AllOneS covers all
targets by protecting all of them, whereas NE covers almost
the fewest targets because NE protects only risky targets
attractive to the attacker. Thus, the number of protected
targets is smaller than the other strategies. The disadvantage
of this strategy is that it cannot guarantee the absolute
security of the targets, in contrast to AllOneS. However,
it may be useful for saving resources or improving the
effectiveness with which those resources are used, especially
when resources are valuable or limited.

5.3.3. Effectiveness. We now evaluate the effectiveness of the
five strategies. The greater the effectiveness is, the better the
strategy is. For 100 groups of experimental instances, the
quantities of resources consumed by each strategy are plotted
in Figure 8(b). It is noteworthy that AllOneS consumes the
most resources and NE consumes the least resources. The
resources consumed by PartOneS and Average are equivalent
since these two strategies use all the available resources.
When the number of targets is increased to 1000, the quantity
of resources consumed by AllOneS is close to four times the
resources consumed by NE. When these values are applied
to the real world, they represent a large amount of material
or financial resources that must be expended by the defender.
Consequently, our strategy aims to provide high effectiveness.

In Figure 8(a), there is an evident upward trend in the
effectiveness of NE when the number of targets is less than
200, which then gradually drops to a stable value with an
increasing number of targets. Moreover, NE has the highest
effectiveness among all five strategies. These results suggest

that increasing the number of targets does not affect the
effectiveness. In addition, althoughAllOneS protects themost
targets, its effectiveness is lower than that of NE because it
consumes more resources. AllOneSmay protect some targets
that are not likely to be attacked, which may cause resources
to be consumed without gaining benefits, thus decreasing the
defender’s effectiveness.

Now, we combine the number of targets, coverage, and
vulnerability in Figure 9(a) and combine the number of
targets, effectiveness, and vulnerability in Figure 9(b). From
Figure 9, it can be concluded that more targets must be
protected to maintain a low vulnerability or to decrease the
vulnerability. However, if the defender increases the number
of protected targets, more resources will be required. Take
AllOneS as an example.The vulnerability of the targets is near
zero, and the number of protected targets is the largest, but the
number of covered targets per resource is low because of the
high resource consumption. In this situation, to improve the
security of the targets, the NE strategy obtained based on the
proposed NE model, which balances the security utility and
the resource consumption, is the best choice for allowing the
defender to utilize limited resources effectively.

5.4. Parameter Analysis. The security utilities of the defender
and the attacker are related not only to their strategies but
also to certain specific parameters: the resource constraint 𝑀,
the prediction accuracy 𝛼, and the noise 𝜆 in the attacker’s
rationality.

5.4.1. Resource Constraint 𝑀. We generate 100 random game
instances with 1000 targets and consider different quantities
of resources to assess the impact of the resource constraint
𝑀 on the players’ utilities. In Figure 10, the x-axis shows the
proportion of available resources relative to the maximum
resources required, and the y-axis represents the players’
utilities.

Figure 10 shows that when the resource proportion is
zero, the defender’s utility is the lowest and the attacker’s
utility is the highest. As the proportion of available resources
increases, the defender’s utility increases and the attacker’s
utility decreases. When the proportion reaches 40%, the
utilities of both players become stable. Hence, we conclude
that, for the case in which 𝑅𝑚𝑖 > 𝑃𝑚𝑖 and 𝑃𝑚𝑖 > 𝐶𝑚𝑖 ,
40% of the maximum resources are an efficient rate of
utilization for the defender. When the proportion is greater
than 40%, both players’ utilities remain approximately stable.
The jitter in the raw data is due to the aggregated analysis
of resource consumption, which demonstrates that spending
more resources to protect targets may be less risky, but the
cost of the resources consumed will exceed the benefit.

The proposed NE model can compute the correspond-
ing best resource proportions for different combinations
of reward, penalty, and cost. Therefore, the proposed
model offers the defender an alternative means of gaining
greater utility while saving resources, thereby improving
the defender’s outcome from the perspective of economics.
When the defender needs to estimate the overall quantity of
resources required to protect a massive number of targets,
the proposed GTRA model can be used to compute the
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Figure 9: Comprehensive analysis of the number of targets, coverage, vulnerability, and effectiveness.

approximate quantity based on the configurations of all the
targets and thus provide the defender with a game theoretical
reference value.

5.4.2. Prediction Accuracy 𝛼. We generate 10 random game
instances with 100 targets and vary the prediction accuracy 𝛼
to assess its impact on the players’ utilities. 𝛼 is the accuracy
with which attacks are predicted by the defender. Figures
11(a) and 11(b) show the differences in the players’ utilities
with varying 𝛼 values (ranging from 0 to 1). The prediction
accuracy 𝛼 is plotted on the horizontal axis, and the player’s
utility is plotted on the vertical axis.

As the prediction accuracy increases, the defender’s utility
increases and the attacker’s utility decreases. For a typical
state in which 𝛼 is 0.8, the defender’s utility is -0.5323 and
the attacker’s utility is 0.411. The reason that the sum of the

defender’s utility and the attacker’s utility is not equal to zero
is that our game is a nonzero-sum game. In this paper, we
assume that the predictions are not fully accurate, so we take
𝛼 to be 0.8 without explicit explanation.

5.4.3. Noise 𝜆 in the Attacker’s Rationality. We generate 30
random game instances with 100 targets and vary 𝜆 to assess
its impact on the players’ utilities. 𝜆 represents the noise in
the attacker’s rationality during strategy planning. We vary
𝜆 from 0 to 15 in increments of 0.5. In Figure 12, the two
variables are the noise 𝜆 in the attacker’s rationality and the
player’s utility. 𝜆 is the independent variable, and the utility is
the dependent variable. The change in the utility is caused by
different values of 𝜆.

Figure 12 shows that the larger 𝜆 is, the greater the utility
of the attacker is and the lower the utility of the defender is.
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Figure 10: Impact of the quantity of resources on the players’ utilities.
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Figure 11: Impact of 𝛼 on the players’ utilities.

Additionally, when 𝜆 is greater than 4, both players’ utilities
remain nearly stable with 𝜆 increasing, especially that of the
attacker. We may argue that if the attacker is sufficiently
rational (𝜆 is sufficiently high), the players’ utilities are nearly
constant. In this paper, to model irrational attack behavior,
the value of 𝜆 is set to 1.5 in the analysis [35].

6. Conclusion

6.1. Summary. In this paper, we investigate how to allocate
resources to efficiently protect targets when the number of
targets is greater than the number of resources. A Game
Theoretic Resource Allocation (GTRA) model is constructed
based on a Stackelberg game. In the proposedmodel, an inde-
pendent item (i.e., the action cost) is included in the game
utility function compared with the previous studies, which
makes the resource allocation more flexible and convenient.
The proposed method correlates resource allocation with
security by means of the game utility function, simulates the
behavior of an attacker of the adversarial nature through the
introduction of the QR model, and enables the computation

of the Nash equilibrium (NE) strategy through an iterative
genetic algorithm.

In addressing these challenges, we draw the following
conclusions:

(i) Including the action cost in the utility function
provides the defender with greater utility and higher
effectiveness, regardless of the relationship between
the defense cost and the attack cost.

(ii) The size of the gap between different parameters
affects the defender’s utility and the trend of variation
in the defender’s utility with the number of targets.
Regardless of the parameter configuration, the NE
strategy based on our GTRA model outperforms the
other four resource allocation strategies considered
for comparison.

(iii) When the available resources are not sufficient to
protect all the targets, our strategy performs better
than the random allocation strategy, the average
allocation strategy, and the partial protection strategy.
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It can effectively balance security and resource con-
sumption.

(iv) When the resource constraint is relaxed, although
our strategy cannot maintain the target security best,
it nevertheless achieves higher effectiveness than the
one allocating resources to all the targets. Thus, it can
optimize the consumption of resources for protecting
targets.

(v) The quantity of resources and the security of the
targets are not directly related. Given a set of targets
and their corresponding asset values, the proposed
model provides advice on the quantity of resources
required to effectively protect the targets.

Given these findings, the security of targets can be
better protected by considering the cost of protection when
planning resource allocation. Last but not least, we hope
that this study can serve as a theoretical reference for the
allocation of security resources in multiple arenas.

6.2. Future Work. Our current work focuses on designing
an efficient resource allocation strategy to protect a massive
number of targets using limited resources. Next, we plan to
apply current research in an application leveraging the idea
of software-defined networking (SDN) and network function
virtualization (NFV), which is suitable not only for common
networks but also for computing environments such as cloud
computing.
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