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Multi-bit Decentralized Detection
Through Fusing Smart & Dumb Sensors

Based on Rao Test
X. Cheng, D. Ciuonzo, Senior Member, IEEE, and P. Salvo Rossi, Senior Member, IEEE

Abstract—We consider Decentralized Detection (DD) of an
unknown signal corrupted by zero-mean unimodal noise via
Wireless Sensor Networks (WSNs). We assume the presence of
both smart and dumb sensors: the former transmit unquantized
measurements, while the latter employ multi-level quantizations
(before transmission through binary symmetric channels) in
order to cope with energy and/or bandwidth constraints. The data
are received by a Fusion Center (FC), which relies on a proposed
Rao test, as a simpler alternative to the Generalized Likelihood
Ratio Test (GLRT). The asymptotic performance analysis of the
multi-bit Rao test is provided and exploited to propose a (signal-
independent) quantizer design approach by maximizing the non-
centrality parameter of the test-statistic distribution. Since the
latter is a non-linear and non-convex function of the quantization
thresholds, we employ the particle swarm optimization algorithm
for its maximization. Numerical results are provided to show the
effectiveness of Rao test in comparison to GLRT and the boost
in performance obtained by (multiple) threshold optimization.
Asymptotic performance is also exploited to define detection gain
measures allowing to assess gain arising from (a) use of dumb
sensors and (b) increasing their quantization resolution.

Index Terms—Decentralized detection, multilevel quantization,
Rao test, threshold optimization, wireless sensor networks.

I. INTRODUCTION

A. Motivation and Related Works

DECENTRALIZED Detection (DD) via Wireless Sensor
Networks (WSNs) has received significant attention by

the scientific community over the last two decades [1]–[11].
A WSN with a centralized architecture typically consists of
a large number of spatially-distributed sensors and a Fusion
Center (FC). The sensors collect measurements of a given
physical process (temperature, humidity, etc.) or, in case of
DD, are in charge of detecting some specific events in a
region of interest [12]. These may correspond to target/signal
presence or anomalies, e.g. deviations from normal behavior
attributed to unforeseen changes in the system/environment.
Relevant applications for the aerospace field include detection
of solar flares (big energy releases from the sun), cyber-attacks
targeting the power grids [13], fault-detection in aircraft sys-
tems and inertial navigation systems, pervasive monitoring of
critical infrastructures and (cooperative) spectrum exploitation
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for aeronautical communications [14]. Collectively, a WSN is
able to exploit spatial diversity similarly to multistatic [15] or
distributed MIMO radars [16], [17].

Sensor nodes are usually subject to strict energy and/or
bandwidth constraints and, therefore, they may be compelled
to quantize their measurements, before reporting them to
the FC. Therein, a final (improved) decision is made [18],
[19] based on a corresponding fusion rule, which is object
of design efforts. The simplest and coarsest compression is
accomplished by a one-bit quantizer, namely the measurement
statistic is compared to a single threshold. In DD case, it
is well-known that the optimal per-sensor statistic (under
Bayesian/Neyman-Pearson frameworks) corresponds to a one-
bit quantization of the local Likelihood-Ratio (LR) [20], [21].
Unfortunately, incomplete knowledge of the parameters of the
event to be detected precludes the sensors from computing
local LRs. Additionally, the search for quantization thresholds
is exponentially complex [2], thus the bit sent is either the
result of a “dumb” quantization [22] or embodies the estimated
binary event, based on a sub-optimal rule [23]. Also, since the
signal model is only partially-known, the FC is faced either to
learn the parameters adaptively [24] or to tackle a composite
hypothesis test; in the latter case the Generalized LR Test
(GLRT) is usually employed as the relevant fusion rule [19],
[25]–[27].

Accordingly, in [19] DD of an unknown deterministic signal
is tackled (i) based on one-bit quantizers, (ii) over error-
prone reporting channels and (iii) via a GLRT at the FC.
Differently, in [22], a one-bit Rao fusion rule is proposed as
a simpler (from a computational viewpoint) alternative to the
aforementioned one-bit GLRT. In both these works, threshold
optimization was performed via their common (weak-signal)
asymptotic performance and it has been shown that the optimal
value corresponds to zero in many practical cases, except for
some heavy-tailed distributions, such as the Generalized Gaus-
sian Distribution (GGD). Similar findings, referring however
to a decentralized estimation problem, were later obtained in
[28]. More recently, a detailed study on threshold optimization
for one-bit DD in GGD noise has appeared in [29].

Remarkably, the one-bit DD problem considered in [19],
[22] has been tackled in [30] under a sequential setup and
a sequential version of the GLRT as been employed at the
FC for revealing the event of interest. On the other hand, we
remark that one-bit DD of an unknown random signal (with
uncertain variance) has been also analyzed in the literature
[11], [25], where similar composite hypothesis testing tools
have been capitalized for fusion rules design and threshold



2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. *, NO. *, MONTH YYYY

optimization. Finally, a generalized form of one-bit Rao test
has been recently devised for DD of uncooperative targets [31]
and threshold optimization achieved via a heuristic rationale.

Apparently, there is a noticeable performance gap between
the one-bit detector and a detector using unquantized obser-
vations, due to the considerable amount of useful information
lost for the DD task [19]. In this respect, multi-level quantiza-
tion is sought to fill this gap by trading off performance and
complexity.

In view of the aforementioned reasons, Gao et al. [26] have
recently considered multi-bit DD of a signal parameter in
Gaussian noise for multisensor fusion in WSNs, where a non-
closed form (multi-bit) GLRT has been devised. Indeed, the
aforementioned GLRT detector requires the evaluation of the
Maximum Likelihood (ML) estimate of the unknown signal
parameter [32], which cannot be obtained in closed form,
thus increasing the computational complexity of its imple-
mentation. In the same work, a (weak-signal) asymptotically-
optimal threshold set choice has been obtained, resorting to
the popular Particle Swarm Optimization Algorithm (PSOA)
[33]. Numerical results therein have demonstrated that 2- or
3-bit quantization is sufficient for the GLRT to approach the
performance of its unquantized counterpart.

Additionally, we mention that a further realistic complica-
tion is represented by the need for fusing sensors with different
quantization resolutions, and, in some cases, able to provide
their unquantized analog data to the FC, as recently studied in
[34], [35] for a decentralized estimation problem. The need for
considering this type of sensors can be motivated by sensors
being very close to the FC, then capable of transmitting their
unquantized data with little cost in terms of battery depletion
(as opposed to further sensor nodes, whose measurements
need to be quantized). Taking into account quantized and
unquantized measurements at the FC also well suits to model-
ing measurement fusion of human-originated (quantized) and
sensors-originated (analog) measurements [34].

In the following, a sensor will be referred to as dumb (resp.
smart) if it transmits a quantized (resp. unquantized) version
of its observation.

B. Contributions and Paper Organization
The main contributions of this paper are summarized as

follows:
• We study the problem of DD of a noise-corrupted un-

known signal parameter in WSNs [19], [22], [26]. To
cope with WSNs stringent energy and bandwidth budgets,
we consider multi-level quantized (dumb) sensors and,
additionally, we assume the quantized data to be trans-
mitted through (error-prone) Binary Symmetric Channels
(BSC) to a FC, similarly as in [26]. However, as opposed
to [26], we only constrain the noise to be zero-mean
unimodal-symmetric. Furthermore, to enrich and make
our setup more flexible, the presence of unquantized
measurements at the FC from smart sensors is also
considered [34].

• To capitalize multi-level measurements and perform a
global decision at the FC, we develop a computationally-
simpler alternative fusion rule to the GLRT (analyzed in

[26] only for dumb sensors’ case), based on the Rao test.
The corresponding multi-bit Rao fusion rule comprises
the one-bit counterpart in [22] as a special case, although
it does not represent a trivial extension of the above
simplified scenario, and represents an appealing method
for capitalizing fusion of both smart and dumb sensors.
Indeed, the main advantage is that it does not require any
estimation procedure [36] and it is available in closed-
form even in the considered general model.

• We provide the asymptotic (weak-signal) performance
of Rao fusion rule. Leveraging its explicit expression,
first we adopt a quantizer design approach for dumb
sensors which aims at maximizing the corresponding
non-centrality parameter. Since the objective function is
nonlinear and non-convex in the quantization levels to
be optimized, a gradient search is not effective (and a
closed-form cannot be obtained, as in the simpler one-
bit case [23]), and thus we resort to a PSOA, following
[26]. Secondly, the asymptotic performance is capitalized
to define (for the first time) asymptotic detection gains
which concisely allow to assess the improvement on
WSN system performance of (i) dumb sensors and (ii)
increasing the bit resolution of dumb sensors.

• Finally, the Rao test is compared to the GLRT through
simulations (pertaining to relevant Gaussian and Gener-
alized Gaussian noise cases) showing that, in addition
to sharing the same asymptotic distribution, it achieves
practically the same performance for a finite number of
sensors.

We highlight that the present work extends our earlier
conference paper [37], which provided (i) only a preliminary
analysis of the quantizer optimization based on PSOA, (ii)
considered only dumb sensors and (iii) did not introduce
asymptotic detection gains of Rao test (as well as GLRT)
versus resolution.

The rest of the manuscript is organized as follows. Sec. II in-
troduces the model whereas in Sec. III the multi-bit Rao test is
derived; in Sec. IV an asymptotic analysis of the multi-bit Rao
detector is presented, and the multilevel quantizers is designed
by using the PSOA. Performance analysis versus resolution
of quantization is investigated in Sec. V. Numerical results
and comparisons are provided in Sec. VI. Finally, concluding
remarks and further avenues of research are given in Sec. VII.
Additional proofs are deferred to dedicated appendices.

Notation - Lower-case bold letters denote vectors, with an
being the nth element of a; upper-case calligraphic letters, e.g.
A, denote finite sets; E{·}, var{·} and (·)T denote expectation,
variance and transpose, respectively; P (·) and p(·) are used
to denote Probability Mass Functions (PMF) and Probability
Density Functions (PDF), respectively, while P (·|·) and p(·|·)
their corresponding conditional counterparts; F (·) is used to
denote the Complementary Cumulative Distribution Function
(CCDF); N (µ, σ2) denotes a Gaussian PDF with mean µ and
variance σ2; χ2

k (resp. χ
′2
k (ξ)) denotes a chi-square (resp. a

non-central chi-square) PDF with k degrees of freedom (resp.
and non-centrality parameter ξ); U(a, b) denotes a uniform
PDF with support [a, b]; L(µ, β) denotes a Laplace PDF
with mean µ and scale parameter β; GN (µ, α, ε) denotes a
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Generalized Normal PDF with mean µ, scale α and shape ε;
Q (·) denotes the CCDF of the standardized normal random
variable and Q−1 (·) is its inverse function; Γ(x) and γ[s, x]
denote the complete and lower-incomplete Gamma functions,
respectively; the symbols ∼ and a∼ mean “distributed as” and
“asymptotically distributed as”.

II. PROBLEM STATEMENT

The system model, depicted in Fig. 1, is described as
follows. We consider a binary hypothesis test in which a set
of K sensors, divided in Kq dumb sensors and Ku smart
sensors, collaborate [34] to detect the presence of an unknown
deterministic parameter θ ∈ R, associated to a Phenomenon
Of Interest (POI).

The problem at each sensor can be summarized as follows{
H0 : xk = wk,

H1 : xk = hk θ + wk,
(1)

where xk ∈ R denotes the kth sensor measurement, hk ∈ R
is a known observation coefficient and wk ∈ R denotes the
noise random variable (RV) with E{wk} = 0 and unimodal
symmetric PDF, denoted with pwk(·) in what follows. These
assumptions imply that the PDF is strictly increasing (resp.
decreasing) before (resp. after) the mode value, also coinciding
with the mean and the median, and being zero in this case1.
Furthermore, the RVs wk are assumed mutually independent,
namely pw1,··· ,wK (·) =

∏K
k=1 pwk(·). Consequently, it holds

E[w` wk] = E[w`]E[wk] = 0 for ` 6= k. We observe that
w1, . . . , wK statistical knowledge corresponds to a reliable
estimation of the sensor noise PDF(s) based on past historical
(training) data. Finally, it is worth noting that Eq. (1) refers
to a two-sided test [36], where {H0,H1} corresponds to
{θ = θ0, θ 6= θ0} (in our case θ0 = 0).

Sensors are indexed such that the first Kq are dumb, and the
remaining Ku are smart, which are assumed to be linked to
the FC through ideal (error-free) channels. In order to better
differentiate the characteristics of dumb and smart sensors, we
denote:
• bk the (compressed) sensing data transmitted from the
kth dumb sensor based on multi-level quantization of the
observation xk as described in the following, where k =
1, 2, . . . ,Kq;

• sκ = xKq+κ the (fine-grained) sensing data transmitted
by the κth smart sensor, where κ = 1, 2, . . . ,Ku.

More specifically, we assume that the kth dumb sensor
employs a (multi-level) q(k)-bit deterministic2 quantizer, in
which the observation xk is compared with a set of quan-
tization thresholds {τk(i)}2q(k)i=0 , (being τk(0) , −∞ and
τk(2q(k)) , +∞ two “dummy” thresholds set for notational
convenience), determining 2q(k) non-overlapping quantization
intervals covering the whole R. Specifically, the corresponding
quantizer output is encoded as a binary codeword denoted by

1This class of PDFs comprises many noteworthy examples, such as the
Gaussian, Laplace, Cauchy and generalized Gaussian distributions [36].

2In this work we restrict our attention to deterministic quantizers for
simplicity; the more general case of probabilistic quantizers [10], although
interesting, falls beyond the scope of this paper.

bk ∈ {0, 1}q(k), where k = 1, 2, . . . ,K. The non-overlapping
quantization intervals are associated to q(k)-bit binary code-
words v(i) =

[
v1(i) · · · vq(k)(i)

]T
, where vt(i) ∈ {0, 1}.

Hence, the output codeword of q(k)-bit quantizer at the kth
sensor can be expressed as:

bk ,


v(1) −∞ < xk < τk(1)

v(2) τk(1) ≤ xk < τk(2)
...

...
v(2q(k)) τk(2q(k) − 1) ≤ xk < +∞

(2)

We observe that herein raw measurement quantization (as
opposed to other local sensor processing, e.g. quantization of
energy statistic [11]) is pursued to keep the signal polarity in
case an estimate of θ is required after detection.

The codeword of kth (dumb) sensor is then transmitted to
the FC over an error-prone reporting link, and the transmission
process of each bit is modeled as an independent BSC with
(known) Bit-Error Probability (BEP) Pe,k. The FC will then
receive a distorted codeword yk from kth sensor, whose
conditional probability is:

P (yk = vk(i)|bk = vk(j)) = P
di,j
e,k (1− Pe,k)(q(k)−di,j)︸ ︷︷ ︸

,Gq(k)(Pe,k,di,j)

(3)

where di,j , d(vk(i),vk(j)) denotes the Hamming distance
between codewords vk(i) and vk(j).

Remark: We highlight that the formulation pursued in this
work allows for some useful generalizations, e.g. a more
general channel (vector) transition (from codeword v(j) to
v(i)) probability expression. This could be simply achieved
by replacing Gq(k)(Pe,k, di,j) (cf. Eq. (3)) with a more com-
plicated functional Pe,k(v(i),v(j)), allowing to remove the
assumption of independent BSC uses.

For the sake of notational convenience, we collect mea-
surements sensed and transmitted by smart sensors in the
vector s =

[
s1 · · · sKu

]T ∈ RKu whereas the noisy
codewords (viz. soft-quantized measurements) received from
the dumb sensors in the set Y , { y1 · · · yKq} (recall
that yk ∈ {0, 1}q(k) and thus codewords from dumb sensors
may differ in length).

The hybrid PDF/PMF of the observations {Y , s} as a
function of θ is then given by

p(Y , s; θ) =

Kq∏
k=1

P (yk; θ)

Ku∏
κ=1

pwKq+κ(sκ − hKq+κ θ). (4)

Clearly, p(Y , s; θ0) denotes the hybrid PDF/PMF under H0.
The corresponding PMF of the quantized and (channel-)
distorted measurement from kth (dumb) sensor can be further
expanded as

P (yk; θ) =

2q(k)∑
i=1

P (yk|bk = v(i))P (bk = v(i); θ). (5)
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Fig. 1: WSN system model with dumb (multi-bit and error-prone) and smart (full-precision and error-free) sensors.

Based on the quantizer law reported in Eq. (2), the PMF
P (bk = v(i); θ) is given by

P (bk = v(i); θ) = Pr{τk(i− 1) ≤ xk < τk(i)}
= Fwk (τk(i− 1)− hkθ)− Fwk (τk(i)− hkθ) ,

(6)

where Fwk(·) denotes the CCDF of wk. Clearly, for i = 0
(resp. i = 2q(k)), the simplified expression P (bk = v(0); θ) =
1 − Fwk (τk(1)− hkθ) (resp. P (bk = v(2q(k)); θ) =
Fwk

(
τk(2q(k) − 1)− hkθ

)
) holds, given the “dummy” thresh-

old τk(0) = −∞ (resp. τk(2q(k)) = +∞) definition.
The problem here is the derivation of a (computationally)

simple test (resorting to the decision statistic Λ) on the basis of
{Y , s} and the corresponding quantizer design for each dumb
sensor. We highlight that the fusion rules and the (multi-bit)
quantizer design obtained in this paper rely on the knowledge
of the noise (through ρ(bk = v(j); θ) and P (bk = v(j); θ))
and channel models (through Gq(k)(Pe,k, di,j)), with optimiza-
tion benefits reduced in the case of mismatch. Accordingly,
the performance will be evaluated in terms of the well-known
system detection PD0

, Pr{Λ > γ|H1} and false-alarm
probabilities PF0

, Pr{Λ > γ|H0}, where γ represents the
usual system (decision) threshold, needed to ensure a desired
false-alarm rate or to minimize the fusion error-probability [9].

III. FUSION RULES DESIGN

A common approach to handle detection in the presence
of unknown parameters (viz. composite hypothesis testing)
resorts to the GLRT [36]. For the DD problem at hand, the
corresponding decision statistic is obtained by replacing the
unknown parameter θ with its ML estimate θ̂ (under H1) in
the LR, i.e. [26]{

ΛG ,
p(Y , s; θ̂)

p(Y , s; θ0)

}
H1

≷
H0

γ , (7)

where θ0 = 0, γ is the system threshold, and the ML estimate
θ̂ is evaluated as

θ̂ , arg max
θ

p(Y , s; θ). (8)

It is clear from Eq. (7) that ΛG requires the solution to
an optimization problem, which increases the computational
burden of its implementation.

For example, in the case of a WSN made of sole dumb
sensors trying to reveal a signal buried in Gaussian noise, it

has been shown in [26] that p(Y , s; θ) is a concave function
of θ, and consequently any one-dimensional gradient-based
search starting from a random initial estimate is guaranteed
to converge to the global maximum. Unfortunately, a closed
form of θ̂ is not available even in this peculiar case.

Therefore, we resort to the Rao test a simpler and closed-
form alternative to GLRT, available in closed-form for the
broad class of unimodal noise PDFs. In this context, the Rao
test is expressed in implicit form as [36]

ΛR ,

(
∂ ln p(Y ,s;θ)

∂θ

∣∣∣
θ=θ0

)2

I (θ0)


H1

≷
H0

γ, (9)

where γ retains the same meaning as Eq. (7) and I(θ0) denotes

the Fisher Information (FI), i.e. I(θ) , E
{(

∂ ln[p(Y ,s;θ)]
∂θ

)2 }
,

evaluated at θ0. The motivation of our choice is the extreme
simplicity of the test implementation (since θ̂ is not required,
cf. Eq. (9)), but with the same weak-signal asymptotic perfor-
mance as the GLRT [36]. Hereinafter, we briefly describe the
key steps needed to obtain the explicit form of Rao test.

First, the numerator term in Eq. (9) (before evaluation at
θ = θ0) can be expressed as shown in Eq. (11) at the top
of next page (see Appendix A for a detailed proof), where
p′wKq+κ (·) represents the first derivative of pwKq+κ(·) with
respect to θ, and the auxiliary definition

ρ(bk = v(i); θ) ,

pwk (τk(i− 1)− hkθ)− pwk (τk(i)− hkθ) , (10)

has been employed.
Secondly, by denoting with Iq (θ) and Iu (θ) the FI cor-

responding to the set of dumb and smart sensors, respec-
tively, it can be shown (the proof is given in Appendix B)
that the total FI has the form reported in Eq. (12) at the
top of next page, where the additional notation IwKq+κ ,∫

[∂ ln pwKq+κ (ζ) /∂ζ)]2 pwKq+κ (ζ) dζ has been exploited for
compactness.

Thus, combining Eqs. (11) and (12), we obtain ΛR in closed
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(
∂ ln [p(Y , s; θ)]

∂θ

)2

=

Kq∑
k=1

hk
∑2q(k)

i=1 P (yk|bk = v(i)) ρ(bk = v(i); θ)∑2q(k)

i=1 P (yk|bk = v(i))P (bk = v(i); θ)
−

Ku∑
κ=1

hKq+κ p
′
wKq+κ

(
sκ − hKq+κθ

)
pwKq+κ

(
sκ − hKq+κθ

)
2

(11)

I(θ) , Iq (θ) + Iu (θ) =

Kq∑
k=1

h2
k

2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (bk = v (j) ; θ)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (bk = v (j) ; θ)

+

Ku∑
κ=1

h2
Kq+κ IwKq+κ (12)

form as

ΛR =
1

I (θ0)


Kq∑
k=1

hk
2q(k)∑
i=1

P (yk|bk = v(i)) ρ(bk = v(i); θ0)

2q(k)∑
i=1

P (yk|bk = v(i))P (bk = v(i); θ0)

−
Ku∑
κ=1

hKq+κ p
′
wKq+κ

(sκ)

pwKq+κ (sκ)

)2

(13)

Despite the seemingly difficulty in its evaluation, ΛR can
be easily evaluated as all the involved terms can be pre-
computed off-line. Some relevant examples for calculation of
the Rao auxiliary terms are reported in Tab. I for Gaussian,
Laplace and Generalized Gaussian noise PDFs. Also, it is not
difficult to show that the computational complexity involved
is O

(∑Kq
k=1 2q(k) +Ku

)
, i.e. with a linear scaling in the

number of smart and dumb sensors, and an exponential scaling
in the bit resolution.

Furthermore, it is apparent that ΛR (as well as ΛG) is
a function of {τk (i)}2q(k)i=0 , k = 1, 2, . . . ,Kq , through the
terms P (bk = v(i); θ0) and ρ(bk = v(i); θ0) in the first
sum of Eq. (13). Therefore, the thresholds of dumb sensors’
(multi-bit) quantizers can be optimized to achieve improved
performance. More specifically, one of the objectives of this
work is to design quantizers which are asymptotically-optimal
(the meaning will be clarified in what follows). Next section
is devoted to fulfill this objective.

IV. QUANTIZER DESIGN FOR DUMB SENSORS

In this section, we first state results for the asymptotic
performance of the GLRT and the Rao test. Then, we focus
on asymptotically-optimal quantizer design for dumb sensors.
According to [36], the asymptotic (i.e. large WSN) PDF of
ΛR (as well as 2 ln ΛG) is3

ΛR
a∼

{
χ2

1 under H0

χ
′2
1 (λq+u) under H1

(14)

where the non-centrality parameter λq+u (the subscript (·)q+u
is employed here to underline that both dumb and smart

3We notice that Eq. (14) holds for H1 under the weak-signal condition,
i.e., θ is assumed to be relatively small compared to the noise variance
[36]. Indeed, for most WSN applications, weak-signal detection is of primary
interest. On the other hand, if the signal to be detected is strong, a few sensors
adopting naive quantization schemes (e.g., a uniform quantizer) would suffice.

sensors contribute to the non-centrality parameter) is given
by

λq+u , (θ1 − θ0)2 I(θ0) = θ2
1 I(θ0) , (15)

with θ1 being the true value under H1 (in our case θ0 = 0).
Clearly the larger λq+u, the better the GLRT and Rao tests
will perform.

From Eq. (15) we can see that the non-centrality pa-
rameter λq+u is a monotonically increasing function of the
FI evaluated at θ = 0. The latter is a function of the(
2q(k) − 1

)
-dimensional quantization threshold vectors τk ,[

τk(1), . . . , τk(2q(k) − 1)
]
, where the two extreme thresholds

are obviously fixed as τk(0) = −∞ and τk(2q(k)) = +∞. In
other words, by optimally choosing the quantizer thresholds
τk’s for dumb sensors, we can optimize the detection perfor-
mance of the Rao test (viz. GLRT).

As a consequence, the asymptotic detection performance of
the Rao test (as well as GLRT) can be optimized by solving
the following optimization problem

max
{τk}

Kq
k=1

Iq

(
θ0, {τk}

Kq
k=1

)
, (16)

where (a) the term Iu (θ0) = Iu is not included since it is
independent from the quantization thresholds and (b) we have
highlighted, with a slight abuse of notation, the dependence
of the FI on the τk’s.

Finally, exploiting mutual independence of distortion chan-
nels, the optimization problem can be further decoupled (see
Eq. (12)) into the following Kq independent optimization
problems

τ ?k , arg max
τk

gk(τk), k = 1, . . . ,Kq, (17)

where the explicit form of gk(τk) is given as follows:

gk(τk) ,
2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (bk = v(j); θ0)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (bk = v(j); θ0)

.

(18)
We remark that each problem is subject to the ordered con-
straints τk(i) < τk(i+ 1), for i = 1, . . . 2q(k) − 1.

Remark: It is worth noticing that in the ideal BSC case
(Pe,k = 0), the objective gk(τk) assumes the following
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wk P (bk = v(i); θ0) ρ(bk = v(i); θ0)

∼ N (0, σ2
w) Q

(
τk(i−1)
σw

)
−Q

(
τk(i)
σw

) 1
(2πσ2

w)1/2

[
exp

(
− τk(i−1)2

2σ2
w

)
(Gaussian) − exp

(
− τk(i)2

2σ2
w

)]
∼ L(0, β) 1

2

{
sign[τk(i)]

[
1− exp

(
|τ(i)|
α

)]
1

2β

[
exp

(
− |τk(i−1)|

β

)
(Laplace) −sign[τk(i− 1)]

[
1− exp

(
|τ(i−1)|

α

)]}
− exp

(
− |τk(i)|

β

)]
∼ GN (0, α, ε) 1

2Γ(1/ε)

{
sign[τk(i)] γ

[
1
ε
,
(
|τ(i)|
α

)ε]
ε

2αΓ(1/ε)

[
exp

(
−
[
|τk(i−1)|

α

]ε)
(Gen. Gaussian) −sign[τk(i− 1)] γ

[
1
ε
,
(
|τ(i−1)|

α

)ε]}
− exp

(
−
[
|τk(i)|
α

]ε)]
TABLE I: Auxiliary terms needed for Rao test computation evaluated for some noteworthy noise PDFs.

simplified expression (since Gq(k) (Pe,k, di,j) = 1 only if
i = j):

gk(τk) ,
2q(k)∑
i=1

ρ (bk = v(i); θ0) 2

P (bk = v(i); θ0)
(19)

Additionally, as explained in Sec. II, we stress out that the
proposed optimization relies on the perfect knowledge of the
noise (through ρ(bk = v(j); θ) and P (bk = v(j); θ) ) and
channel models (through Gq(k)(Pe,k, di,j)).

Clearly, given the same asymptotic performance achieved
by both GLRT and Rao test, the optimization problem (17)
has the same form as [26, Eq. (22)], developed to optimize
the performance of the more complex GLRT. Consequently,
we can utilize the same method there, i.e. the PSOA, to search
the optimal quantization thresholds in Eq. (17).

In brief, the PSOA is an iterative stochastic optimization
approach4 inspired by the social cooperative and competitive
behaviors of bird flocking and fish schooling, resorting to a
swarm of m = 1, . . . ,M particles to tackle high-dimensional,
non-convex optimization problems [38]. Accordingly, the ob-
jective and the vector argument will be referred to as g(·) and
τ (as opposed to gk(·) and τk, respectively).

When applying the PSOA to Eq. (17), we assume that a
swarm of M particles is employed to explore the (2q − 1)-
dimensional space ∆ in search of a (hopefully) globally-
optimal solution. Also, we assume that the search interval
for each dimension is restricted to [−τmax, τmax], where τmax

denotes the maximum position limitation (see [26] for a
detailed explanation), that is ∆ , [−τmax, τmax]2

q−1.
At the `th iteration, the mth particle is described by two

characteristics: the position τ `m = [τ `m(1), τ `m(2), . . . , τ `m(2q−
1)] (representing the argument of the objective) and the
velocity ν`m = [ν`m(1), ν`m(2), . . . , ν`m(2q−1)] (corresponding
to the direction of improvement) vectors. The PSOA evolution
is characterized by the best personal position of mth particle
pbest`m (i.e. the argument of the objective which achieved the
highest value so far) and the overall best position denoted with
sbest` (representing its collective behaviour). The (iterative)
PSOA is summarized as Algorithm 1 and detailed henceforth.

Init: At the init step (` = 0), for mth particle position
we first randomly (and independently) initialize τ0

m(n) ∼
U(−τmax, τmax) for n = 1, . . . , 2q − 1, and then sort them

4In the following, for the sake of a lighter notation, we will drop the
subscript “k” referring to the sensor index, so as to generically focus on
the optimization of a generic (dumb) sensor.

in ascending order. Additionally, in order to prevent the
particles from leaving the search space ∆, we initialize ν0

m

according to a uniform distribution in [−νmax, νmax], where
νmax = [τmax − (−τmax)]/2 = τmax, following [38].

Based on the initial particles positions {τ 0
m}Mm=1, we set

the initial personal best position pbest0m of the mth particle
to be

pbest0m = τ 0
m, m = 1, 2, . . . ,M. (20)

Substituting the initial particles {τ 0
m}Mm=1 into the objective

function g (·) in (18), we obtain a set of values {g(τ 0
m)}Mm=1,

which allow to set the initial global best position sbest0 as

sbest0 = arg max
{τ0
m}Mm=1

{g(τ 0
1 ), g(τ 0

2 ), . . . , g(τ 0
M )}. (21)

Update: At the (` + 1)th iteration, the position (τ `+1
m ) and

velocity (ν`+1
m ) vectors of mth particle are updated as:

τ `+1
m , τ `m + ν`+1

m ,

ν`+1
m , cf · [ν`m + c1 r

`
m,1

(
pbest`m − τ `m

)
+c2 r

`
m,2

(
sbest` − τ `m

)
] ,

(22)

where r`m,1 and r`m,2 are randomly drawn such that r`m,j ∼
U(0, 1); the positive (tunable) constants c1 and c2 represent
the acceleration coefficients that “attract” the particles towards
the personal best and global positions, respectively; κ is a
constriction factor evaluated as cf , 2 / |2−ϕ−

√
ϕ2 − 4ϕ|,

where ϕ , c1 + c2 (the coefficients cj are chosen to ensure
ϕ > 4). For the order constraint in (17), we sort the elements
of τm(n) (given m) in ascending order for n = 1, . . . , 2q− 1.
Notice that it is possible for some particles to move outside
[−τmax, τmax]2

q−1 during the iteration process. To avoid this,
we impose the following correction step at each iteration
(immediately after Eq. (22) and ordering operation):

τ `+1
m (n)→ τmax; if τ `+1

m (n) > τmax

τ `+1
m (n)→ −τmax; if τ `+1

m (n) < −τmax

τ `+1
m (n)→ τ `+1

m (n); otherwise

(23)

The update criterion for the best personal position of mth
particle at (`+ 1) iteration is (straightforwardly) given by

pbest`+1
m ,

{
pbest`m if g(τ `+1

m ) ≤ g(pbest`m)

τ `+1
m if g(τ `+1

m ) > g(pbest`m)
(24)
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Accordingly, the global best position at (` + 1)th iteration
sbest`+1 is obtained by comparing all the personal best
positions at the same iteration, namely

sbest`+1 , arg max
{pbest`+1

m }Mm=1

{g(pbest`+1
1 ), . . . , g(pbest`+1

M )}

(25)

Termination: The update step is repeated until the following
exit condition is met

max
m=1,...,M

‖ν`m‖ ≤ νtol, (26)

where νtol denotes the stop tolerance velocity.

Algorithm 1 : PSOA for Quantizer Optimization [26].

Input: q, M , τmax, cj , νtol;
Output: a solution τ ? for each optimization problem in

Eq. (17).
1: Set ` = 0;
2: for m = 1, . . . ,M do
3: randomly initialize τ 0

m ∈ [−τmax, τmax]2
q−1 and ν0

m ∈
[−τmax, τmax]2

q−1;
4: Alter the initial position τ 0

m by sorting ascendingly its
entries;

5: Evaluate g(τ 0
m) and set pbest0m via Eq. (20);

6: end for
7: Set sbest0 via Eq. (21);
8: do
9: for m = 1, . . . ,M do

10: Update the velocity ν`+1
m and the position τ `+1

m via
Eq. (22);

11: Alter the position τ `+1
m by sorting ascendingly its

entries and correction step in Eq. (23);
12: Evaluate g(τ `+1

m ) and update pbest`+1
m via Eq. (24);

13: end for
14: Update sbest`+1 according to Eq. (25);
15: Set `→ `+ 1;
16: until max

m=1,...,M
‖ν`+1

m ‖ ≤ νtol;

17: τ ? = sbest`+1.

V. ASYMPTOTIC DETECTION GAINS

Tackling a complementary analysis to [34] (referring to
a decentralized estimation problem), we now establish the
detection gain provided by the use of dumb sensors, employing
arbitrarily multi-level quantized (i.e. non-necessarily designed
according to the criterion devised in Sec. IV) measurements.
To this end, by relying on Eq. (14), we express the asymptotic
detection probability PD0

as a function of the asymptotic
probability of false-alarm PF0

:

PD0
(λ(q→s)+u, PF0

) = Q
(
Q−1 (PF0

/2)−
√
λ(q→s)+u

)
+Q

(
Q−1 (PF0

/2) +
√
λ(q→s)+u

)
, (27)

where the subscript “(q → s) + u” indicates the adoption
of dumb sensors with s-bit resolution for the multi-level
quantizer, along with smart sensors. Apparently, q → 0

denotes the absence of dumb sensors in the WSN, and it
is equivalent to PD0(λu, PF0), i.e. the (asymptotic) detection
probability achieved with the sole use of smart sensors. Also,
for DD problem under consideration, it holds the simpler form
λ(q→s)+u = λ(q→s) + λu, i.e. the non-centrality parameter
can be expressed as the sum of the contributions of dumb and
smart sensors, respectively. Finally, we recall that the above
asymptotic PD0 expression relies on the same assumptions
required for the quantizer design in Sec. IV, i.e. knowledge of
both (sensing) noise and (communication) channel statistics.

Based on these explicit quantities, we are able to define the
Asymptotic Detection Gain (ADG) between a WSN employing
s-bit resolution and one employing t-bit resolution (t > s) as

Gd(PF0
) , PD0

(λ(q→t)+u, PF0
)− PD0

(λ(q→s)+u, PF0
) ,
(28)

to measure the increase in detection rate arising from the use
of finer quantizers. Additionally, we define the Asymptotic
Normalized Detection Gain (ANDG) as

Ḡd(PF0
) ,

PD0
(λ(q→t)+u, PF0

)− PD0
(λ(q→s)+u, PF0

)

PD0(λ(q→t)+u, PF0)
,

(29)
to assess the corresponding relative increment. It is worth
noticing that both these measures can be employed to quantify:

1) the (normalized) detection gain when using dumb sen-
sors other than smart sensors (following [34]), i.e. q → 0
and λ(q→s)+u = λu;

2) the (normalized) detection gain when increasing the bit
resolution from s > 0 to t bits.

Qualitative profiles of ADG and ANDG in the above relevant
cases will be analyzed and commented later in Sec. VI.

VI. NUMERICAL RESULTS

In this section, we perform and investigate threshold op-
timization via PSOA (Sec. IV) for both Rao test and GLRT,
compare their relative performance, and also assess the impact
of improvements in quantization resolution on the (asymptotic)
detection capabilities of the detectors, resorting to the asymp-
totic detection gains defined in Sec. V.

Herein, we define the kth sensor observation Signal-to-
Noise Ratio (SNR) as Γk ,

(
h2
kθ

2/E{w2
k}
)
. For simplicity, in

what follows we assume hk = h and pwk(·) = pw(·) for all the
sensors, and Pe,k = Pe for all dumb sensors. These parameters
determine a (simplified) homogeneous scenario, e.g. Γk = Γ,
k = 1, . . .K. In addition, without loss of generality, we set
h = 1 and E{w2

k} = 1, respectively.

A. PSOA for Threshold Set Choice

We first analyze the result of PSOA in optimizing the
function g(τ ) (cf. Eq. (18)) with respect to the vector of
quantization thresholds τ . Indeed recall that, since we are con-
sidering a homogeneous scenario, the optimization function is
the same for all the sensors, i.e. gk(·) = g(·), k = 1, . . . ,K.

To investigate in detail PSOA capabilities in optimizing
different noise PDFs, we investigate two relevant scenarios.
Specifically, we consider threshold set design in the cases
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of (i) Gaussian noise, that is pw(ω) = 1

(2πσ2
w)

1
2

exp(− ω2

2σ2
w

)

and (ii) Generalized Gaussian noise, that is pw(ω) =
ε

2αΓ(1/ε) exp
[
−( |ω|α )ε

]
, respectively. We observe that scenario

(i) corresponds to a widely-employed noise PDF arising due
to many independent contributions (as a result of the central
limit theorem), while scenario (ii) represents a flexible class of
PDFs allowing to model long-tail behaviour, e.g. possibly due
to outliers. It is known from [22] that τ∗ = 0 holds for q = 1
in cases of Gaussian and Generalized Gaussian (only when
0 < ε ≤ 2) distributions. On the other hand, when ε > 2, g(τ)
becomes bimodal and τ∗ 6= 0. For the mentioned reasons, to
stress PSOA capabilities and diversify our analysis, we will
consider ε = 3 in the GGD case.

Furthermore, to appreciate adaptiveness to different re-
porting channel conditions, we will consider both ideal and
imperfect channel scenarios, i.e. Pe ∈ {0, 0.2}. Finally, re-
ferring to PSOA parameters, we set M = 300, τmax = 5,
c1 = c2 = 2.05 and νtol = 10−6, respectively.

Accordingly, in Figs. 2(a) and 2(b), we show the position
of the optimized thresholds for an increasing bit resolution,
i.e. q ∈ {1, 2, 3}, respectively, for wk ∼ N (0, σ2

w) and
GN (0, α, 3), respectively. From inspection of the results, it
can be seen that in the case of Gaussian noise, the optimized
threshold τ? is zero for q = 1 and the displacement of the
threshold set τ ? symmetric for q ∈ {2, 3}. This is consistent
with the results in [19], [22] and [26], respectively. On the
other hand, in GGD case, the optimized threshold τ? is
non-zero for q = 1 (as observed in [22], [28]), and the
displacement of the threshold set τ ? becomes asymmetric
for q ∈ {2, 3}. Additionally, by analyzing the two different
reporting channel conditions, an imperfect BSC (Pe = 0.2)
does not affect symmetry (although makes the quantization
intervals more irregular) in the Gaussian case (thus agreeing
with [26]), whereas the same non-ideal channel conditions
partially-mitigate the asymmetry of τ ? in GGD case. The latter
effect was observed, for the simple case q = 1, in [22], [28].

B. Rao Test Versus GLRT

We now turn our attention to performance comparison of
threshold-optimized Rao test and GLRT in a WSN with a
finite number of sensors (since, asymptotically, they share
the same performance [36]). For the mentioned reason, we
consider a WSN with Kq = 5 dumb sensors using q = 1, 2, 3
quantization bits and Ku = 2 smart sensors. Herein, we
assume θ = 1, which implies Γ = 0 dB. We remark that
lower SNR values imply a condition in which the GLRT and
Rao test would lead approximately to the same performance,
due to the low-signal design assumption underlying Rao score
test [36].

For the sake of completeness, corresponding WSNs with
(Kq + Ku) = 7 and Ku = 2 smart sensors are assumed
as a reference, providing an upper and lower bounds on the
performance, respectively. It is worth noticing that in Gaussian
case, GLR and Rao statistics coincide in the unquantized (viz.
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Fig. 2: Quantizer thresholds obtained by PSOA for a varying
number of bits q = 1, 2, 3 with Pe = 0, 0.2 under (a): Gaussian
and (b): Generalized Gaussian (ε = 3) noise background,
respectively.

only smart-sensor) case, and are given in closed form as

Λupp =

(
K∑
k=1

hk sk
σ2
w,k

)2

/

(
K∑
k=1

h2
k

σ2
w,k

)
(30)

On the other hand, in GGD case their expressions differ.
Specifically, the GLR statistic in the unquantized case is equal
to

Λ
upp

G =

(
K∑
k=1

|sk − hkθ̂|
αw,k

)εk
/

(
K∑
k=1

|sk|
αw,k

)εk
(31)

whereas the Rao statistic closed-form is

Λupp
R =

(∑K
k=1 hk

εk sign(sk)|sk|(εk−1)

α
εk
k

)2

∑K
k=1 h

2
k
εk(εk−1)Γ(1−1/εk)

α2
k Γ(1/εk)

(32)

Then, in Fig. 3 we illustrate PD0 vs. PF0 (viz. Receiver Op-
erating Characteristic, ROC) in a WSN with wk ∼ N

(
0, σ2

w

)
,

whereas in Fig. 4 we illustrate analogous results pertaining to
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a WSN with wk ∼ GN (0, α, 3). In both figures, we report the
results for the two BEP levels Pe ∈ {0, 0.2}. All the results
are based on 105 Monte Carlo runs.

First, it is shown that the proposed Rao test (as well as the
GLRT) works well in the presence of a hybrid combination
of both dumb and smart sensors. Secondly, it is apparent
that the ROC performance of the GLR and Rao tests are
practically the same for Gaussian noise scenario. On the other
hand, in GGD case, the performance of GLRT and Rao test
in the finite sensor case slightly differs. This is reasonable
both for unquantized measurements (since the expressions in
Eqs. (31) and (32) are different), and for quantized measure-
ments (since, in general, the performance of GLRT and Rao
test may differ in the finite sensor case). Nonetheless, the
implementation of the Rao test has the advantage of being
significantly simpler than the GLRT (linear with the number of
sensors). Finally, the implementation of multi-bit quantization
shows a significantly higher detection probability than one-bit
quantization in both noise scenarios considered. In particular,
the detection performance of the hybrid combination (smart +
3-bit quantized sensors) is very close to the upper-bound, when
the channel is perfect. On the other hand, in the presence of
reporting channel errors (e.g., Pe = 0.2 in this example), the
WSN performance degrades and the whole system is limited
by the uncertainty of the communication channel.

As a complementary analysis, in Figs. 5 and 6 to assess the
sensitivity of the considered threshold-optimized rules to the
uncertainty in the knowledge of (i) reporting channel error and
(ii) noise statistics, we focus on the case q = 3, Pe = 0.1 and
Γ = 0 dB. In the first analysis, we assume that Rao test and
GLRT have been derived (and optimized) both in matched
(i.e. P̂e = 0.1) and mismatched scenarios (i.e. P̂e = 0.2)
with respect to the channel error probability. Similarly, in the
second analysis, we assume that Rao test and GLRT have
been derived (and optimized) both in matched (i.e. Γ = 0 dB)
and mismatched scenarios (i.e. Γ = 3 dB) with respect to
the SNR value. As apparent from both figures, although
there is a slight degradation in both the mismatched cases,
the performance loss is not significant, thus proving some
robustness of the proposed design. Clearly, higher uncertainty
in the noise and/or channel error statistics would require
implicit estimation of these parameters, based on adaptive
designs.

C. Asymptotic Detection Gains

Finally, we investigate the asymptotic trends of WSN de-
tection capabilities by means of the ADG and the ANDG
defined in Sec. V (Eqs. (28) and (29), respectively). We
recall that, since these are defined based on the asymptotic
performance of GLRT and Rao test, they apply to both and
are thus independent on the peculiar fusion rule considered at
the FC. In the following analysis, we take into account the
presence of both smart and dumb sensors to assess explicitly
the detection gain (i) from using dumb sensors other than
smart sensors and (ii) from increasing the bit resolution
of dumb sensors, respectively. Henceforth, dumb sensors’
quantizers are threshold-optimized according to the criterion
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Fig. 3: PD0
vs PF0

; WSN for Gaussian noise wk ∼ N
(
0, σ2

)
with (a): Pe = 0; (b): Pe = 0.2.

in Sec. IV. Nonetheless, as remarked in Sec. IV, the provided
ADG/ANDG formulas apply to any multi-bit quantizer choice,
e.g. also to uniform quantization.

To this end, in Figs. 7.(a) and 7.(b) we draw the afore-
mentioned ADG (viz. Gd(PF0

)) and ANDG (viz. Ḡd(PF0
)),

respectively, in a WSN with Kq = 5, Ku = 2 and Gaus-
sian noise, e.g. wk ∼ N

(
0, σ2

w

)
. Similarly, in Figs. 8.(a)

and 8.(b) we illustrate the same metrics in a WSN with
Generalized Gaussian noise, e.g. wk ∼ GN (0, α, 3). The
two noise scenarios are considered in conjunction with the
channel cases Pe ∈ {0, 0.2}. Finally, we will consider three
(s, t) configurations: one corresponding to the addition of
(one-bit) dumb sensors to a WSN with (Ku = 2) smart
sensors (i.e. (s, t) = (0, 1)) and two corresponding from a
resolution increase of dumb sensors (i.e. (s, t) = (1, 2) and
(s, t) = (1, 3), respectively).

First, it is apparent a different behavior for Gd(PF0
) (uni-

modal) and Ḡd(PF0) (decreasing), respectively. This is ex-
plained as any gain from resolution increase (or dumb sensors’
addition) has its effect decreased (increased) on Gd(PF0

) as
PF0

tends to one (resp. to zero), since accordingly, also PD0
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Fig. 4: PD0 vs PF0 ; WSN for Generalized Gaussian noise
wk ∼ GN (0, α, 3) with (a): Pe = 0; (b): Pe = 0.2.
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in the matched (resp. mismatched) case.
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Fig. 6: PD0
vs PF0

; WSN for Gaussian noise wk ∼ N
(
0, σ2

)
(left) and Generalized Gaussian noise wk ∼ GN (0, α, 3)
(right) with q = 3, Γ = 0 dB and Γ̂ = 0 dB (resp. Γ̂ = 3 dB)
in the matched (resp. mismatched) case.

will tend to unity (resp. to zero), independently on the WSN
considered. On the other hand, in Ḡd(PF0), the trend for
PF0 in proximity of zero is suppressed by the normalization
in Eq. (29). Secondly, the figures reveal that a configuration
with both dumb and smart sensors can significantly improve
system performance against one with only smart sensors, at
the expenses of modestly-increased bandwidth requirements.
Thirdly, compared to one-bit quantization, the implementation
of multi-bit quantization can further improve detection per-
formance. However, a less appreciable gain is observed when
considering three-bit quantizers as opposed to two-bit ones.
Finally, we observe that a degraded channel reasonably affects
in a negative fashion both ADG/ANDG in (s, t) = (0, 1)
configuration, because of the less informative bits received
from dumb sensors. On the other hand, in the other two
configurations the relative trend of ADG/ANDG with respect
to their ideal-channel counterparts is less intuitive and depends
on both the configuration and the type of noise considered.

VII. CONCLUSIONS AND FURTHER DIRECTIONS

We proposed the Rao test for DD of an unknown determin-
istic signal in WSNs in zero-mean, unimodal and symmetric
noise. The WSN model considered is quite general, as it
encompasses both smart sensors (i.e. reporting full-precision
measurements to the FC) and dumb sensors (employing multi-
bit quantization and transmitting these bits over non-ideal and
non-identical BSCs). The Rao fusion rule proposed represents
a simpler (and thus attractive) alternative to GLRT, since it is
in closed form (even under such general model) and obviates
the need for cumbersome ML estimation. Additionally, we
provided the explicit expression of the asymptotic (weak-
signal) performance of Rao (viz. GLRT) fusion rule, here
exploited from a two-fold perspective. First, to better capitalize
dumb sensors, we optimized the system detection performance
(namely, the non-centrality parameter) by tuning each sen-
sor quantizer via PSOA. Secondly, asymptotic performance
allowed to define detection gains (ADG and ANDG) to assess
performance improvement arising from the use of additional
dumb sensors and from increasing their resolution, as a useful
designers’ tool. It was shown through simulations that the
Rao test, in addition to being asymptotically equivalent to
the GLRT, achieves practically the same performance in the
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Fig. 7: (a): ADG (viz. Gd vs. PF0 ) and (b): ANDG (viz. Ḡd
vs. PF0 ) for a homogeneous WSN with wk ∼ N

(
0, σ2

w

)
,

Pe ∈ {0, 0.2} and different configurations (s, t).

finite number of sensors case. In addition, results also demon-
strated the advantage of multi-bit quantization against one-
bit quantization and that a few quantization bits are sufficient
to approach with negligible gap the performance of a WSN
using only smart sensors in the case of perfect reporting
channels. Differently, the presence of errors on the reporting
phase increases the performance gap with the unquantized
benchmark.

Further directions will include design of Rao test for al-
ternative, more general and realistic measurement & channel
models: (a) unknown random signal parameters [26], (b)
vector measurement models [39], (c) incompletely specified
noise PDFs (e.g. unknown variance [40]), (d) models enjoying
sparsity [27], (e) energy-efficient censoring sensors [41] and
(f ) time-correlated reporting channels [42]. Additionally, the
validation of the proposed Rao fusion rule on experimental
data, to assess the sensitivity to model mismatch, is of clear
interest and left to future work. Finally, optimization of the
number of dumb & smart sensors subject to both (i) commu-
nication and (ii) performance budgets [43], [44] will be also
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Fig. 8: (a): ADG (viz. Gd vs. PF0 ) and (b): ANDG (viz. Ḡd
vs. PF0 ) for a homogeneous WSN with wk ∼ GN (0, α, 3),
Pe ∈ {0, 0.2} and different configurations (s, t).

considered as a future study.

APPENDIX A
PROOF OF EQ. (11) (SCORE FUNCTION)

Based on the factorization form in (4), the log-likelihood
function p (Y , s; θ) is given by

ln[p (Y , s; θ)] = (33)
Kq∑
k=1

lnP (yk; θ) +

Ku∑
κ=1

ln pwKq+κ
(
sκ − hKq+κθ

)

For notational convenience, we then define LY (θ) ,∑Kq
k=1 lnP (yk; θ) and Ls(θ) ,

∑Ku
κ=1 ln pwKq+κ(sκ −

hKq+κθ), respectively. Accordingly, the derivatives of LY (θ)
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and Ls (θ) with respect to θ can be written respectively as

∂LY (θ)

∂θ
=

Kq∑
k=1

P ′ (yk; θ)

P (yk; θ)
(34)

=

Kq∑
k=1

hk
2q(k)∑
i=1

P (yk|bk = v(i)) ρ(bk = v(i); θ)

2q(k)∑
i=1

P (yk|bk = v(i))P (bk = v(i); θ)

,

and

∂Ls (θ)

∂θ
= −

Ku∑
κ=1

hKq+κ p
′
wKq+κ

(
sκ − hKq+κθ

)
pwKq+κ

(
sκ − hKq+κθ

) , (35)

where P ′ (yk; ·) and p′wKq+κ (·) denote the derivative of
P (yk; ·) and pwKq+κ (·), respectively. Additionally, in Eq. (34)
we have exploited the definition:

ρ(bk = v(i); θ) , pwk (τk(i− 1)− hkθ)− pwk (τk(i)− hkθ)
(36)

As a consequence, gathering the above results, we obtain

∂ ln [p(Y , s; θ)]

∂θ
=
∂LY (θ)

∂θ
+
∂Ls (θ)

∂θ

=

Kq∑
k=1

hk
2q(k)∑
i=1

P (yk|bk = v(i)) ρ(bk = v(i); θ)

2q(k)∑
i=1

P (yk|bk = v(i))P (bk = v(i); θ)

−
Ku∑
κ=1

hKq+κ p
′
wKq+κ

(
sκ − hKq+κθ

)
pwKq+κ

(
sκ − hKq+κθ

)
(37)

Finally, based on Eq. (37), the desired result in (11) is obtained
by simple squaring operation. This concludes the proof.

APPENDIX B
PROOF OF EQ. (12) (FISHER INFORMATION)

Since the measurements among the sensors are independent,
the FI with respect to the parameter θ can be rewritten as
follows

I(θ) ,E{Y ,s}
{(∂ ln [p(Y , s; θ)]

∂θ

)2 }
(38)

=E{Y ,s}
{(∂LY (θ)

∂θ
+
∂Ls (θ)

∂θ

)2 }
(39)

= EY
{(∂LY (θ)

∂θ

)2 }
︸ ︷︷ ︸

,Iq(θ)

+Es
{(∂Ls (θ)

∂θ

)2 }
︸ ︷︷ ︸

,Iu(θ)

(40)

that is, we can express the FI as the result of two terms, the
first due to dumb sensors (viz. Iq(θ)) and the second due to
smart sensors (viz. Iu(θ)).

The first term can be obtained by directly resorting to the
result for quantized measurements in [26], which provides
Iq(θ) in closed form as

Iq(θ) = (41)

Kq∑
k=1

h2
k

2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (bk = v (j) ; θ)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (bk = v (j) ; θ)

,

where the definition in Eq. (36) has been again exploited. We
highlight that the additive form in Eq. (41) directly follows
from independence of sensors (multi-bit) decisions.

On the other hand, it can be easily shown that the second
term Iu(θ) has the form (exploiting smart sensors’ indepen-
dence)

Iu(θ) = Iu =

Ku∑
κ=1

h2
Kq+κ IwKq+κ , (42)

where IwKq+κ ,
∫

[∂ ln pwKq+κ (ζ) /∂ζ)]2 pwKq+κ (ζ) dζ. The
latter term appears to have a very simple form in many
cases of interest, such as wk ∼ N (0, σ2

w) (equal to 1/σ2
w),

wk ∼ L(0, β) (equal to 1/β2) and wk ∼ GN (0, α, ε) (equal to
(1/α2) [ε(ε− 1) Γ(1− 1/ε)]/Γ(1/ε)) [45]. Finally, combining
(41) and (42), the FI can be written as in Eq. (12). This
concludes the proof.
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