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ABSTRACT. Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the
Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the
multiplicative structure of HR and the property that R is a Koszul algebra. More generally, we work in the setting
of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong
homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of
Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched
Cohen-Macaulay local ring are rational, sharing a common denominator.

INTRODUCTION

Let (R,m, k) denote a local Noetherian ring R with maximal ideal m and residue field k. Let KR denote
the Koszul complex on a minimal generating set of m, and let HR denote its homology. The Koszul complex
KR can be endowed with the structure of a differential graded (DG) algebra, and is the first step in constructing
a DG algebra minimal free resolution of k over R (called a Tate resolution of k over R) through the process
of adjoining DG algebra variables. It is thus natural to expect that the properties of the homology algebra HR

are related to other homological properties of R. Indeed, it is known that both the Gorenstein and complete
intersection properties of R can be characterized in terms of HR.

Certain higher order homology operations on Koszul homology, introduced by Golod [10], can be used to
characterize extremality in the growth of the minimal free resolution of k over R. If the ring R is Golod, then it
has the property that for all finitely generated R-modules M the Poincaré series

∑
i≥0 rankk(TorRi (M,k))zi

are rational and share a common denominator, see Ghione and Gulliksen [9]. This property is also satisfied
by other large classes of rings, and recent work of Rossi and Şega [24] and Kustin, Şega, and Vraciu [15]
provides insight into the fact that the multiplicative structure of Koszul homology plays a role in establishing
such results. In this paper we further explore how the structure of HR can be used to derive rationality of
Poincaré series and other homological properties of R. In particular, we give special attention in the graded
case to the Koszul property.

Recall that the Koszul homology of a Golod ring has trivial multiplication, see [10]. When R is not Golod,
we find it useful to consider conditions on HR that, to some extent, generalize the condition that multiplication
is trivial. We require that cycles living “deep” enough in KR (i.e. ones that are contained in mi KR for large
enough values of i) can be expressed, up to a boundary, in terms of certain cycles that have trivial products
among themselves. More precisely, we consider the following conditions on KR, depending on integers t, b, s:

Zt,b,s: There exists a finite set Z ⊆ Z(mt KR) such that zz′ = 0 in Z(KR) for all z, z′ ∈ Z and for every
v ∈ ms KR there exists m ∈ N and zi ∈ Z, ui ∈ Z(mb KR) for each i with 1 ≤ i ≤ m, such that
v −

∑m
i=1 ziui ∈ B(ms−1 KR).
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Pt: There exists [l] ∈ H1(KR) such that for every z ∈ Z(mt KR) there exists z′ ∈ Z(mt−1 KR) such that
z − z′l ∈ B(mt−1 KR).

After setting some ground work in the first two sections, in Sections 3 and 4 we prove various homologi-
cal implications of the conditions Zt,b,s and Pt, under specific conditions on the integers t, b, s. The main
results regarding these conditions are Theorems 3.1 and 4.2. We note that the hypotheses of Theorem 3.1
also require R to be artinian, while the hypotheses of Theorem 4.2 and its corollaries do not. The con-
clusions of these theorems and their corollaries are formulated in terms of vanishing of the natural maps
TorR∗ (mj , k) → TorR∗ (mi, k) induced by the inclusions mj ⊆ mi for certain values of i, j, as well as identi-
fying Golod homomorphisms, establishing generation of the Yoneda algebra ExtR(k, k) in low degrees, and
deducing rationality of Poincaré series. Our arguments utilize the DG algebra structure of the minimal free
resolution of k over R. This approach is inspired by, and generalizes, work of Levin and Avramov [18], where
homological properties of local Gorenstein artinian rings are derived from the fact that the Koszul homology
algebra of such a ring is a Poincaré algebra.

For appropriate values of t, the property Pt holds for the class of compressed Gorenstein artinian local rings
discussed in [24] and also for the class of compressed level local artinian rings of odd socle degree, see [15].
In particular, our results in Section 4 can be used to recover the results of [24] and [15] regarding the fact
that when the socle degree is different than three, these rings can be obtained as homomorphic images of a
hypersurface, via a Golod homomorphism.

In Section 5 we show that the propertyP2 is satisfied in the case of stretched artinian rings satisfying m3 6= 0
and rankk(m/m2) 6= rankk(0 : m). The class of stretched Cohen-Macaulay local rings was considered by
Sally in [25], where she proves that the Poincaré series of the residue field over such a ring is rational. A
consequence of our results on generation in the Koszul homology algebra is that the Poincaré series of all
finitely generated R-modules over a stretched Cohen-Macaulay local ring R are rational, sharing a common
denominator. Theorem 5.4 also states that the Yoneda algebra ExtR(k, k) of a stretched artinian local ring
(R,m, k) is generated in degree 1 if rankk(m/m2) 6= rankk(0 : m) and in degrees 1 and 2 if rankk(m/m2) =
rankk(0 : m).

For the remainder of the introduction, assume that R is a standard graded k-algebra. Let KR denote the
Koszul complex on a set of minimal generators of the irrelevant ideal of R and let HR denote the homology
algebra of KR. The k-algebra R is said to be a Koszul algebra if the resolution of k over R is linear, that is to
say, the differentials in the minimal graded free resolution of k can be represented by matrices of linear forms
(see e.g., [26] and [12]). The algebra HR is bigraded; when writing the bidegree (i, j) of an element, the index
i denotes homological degree and the index j denotes internal degree. The linear strand of HR is the set of
elements of bidegree (i, i+ 1), and the nonlinear strands are composed of elements of bidegree (i, i+ r) with
r > 1. We say that the nonlinear strands of HR are generated by a set Z ⊆ HR if the nonlinear strands are
contained in the ideal generated by Z in HR. If the nonlinear strands are generated by a subset Z of the linear
strand, it follows that HR is generated by the linear strand as a k-algebra.

In Section 6 we interpret our earlier results in the graded setting, with special attention to the Koszul property.
In particular, we obtain the following statements, which provide new homological criteria for verifying that an
algebra is Koszul:

(1) If the nonlinear strands of HR are generated by one element of bidegree (1, 2), then R is absolutely
Koszul, hence Koszul. (See [14] or Section 6 regarding absolutely Koszul algebras.)

(2) If R>3 = 0 and there exists a set of cycles Z representing elements in the linear strand in HR, with the
property that zz′ = 0 in Z(KR) for all z, z′ ∈ Z and such that the nonlinear strand of HR is generated
by Z = {[z] | z ∈ Z}, then R is Koszul.

If R is Koszul, then part of the Koszul homology algebra HR is generated by elements in the linear strand;
this point was made by Avramov, Conca, and Iyengar [4] and Boocher et al. [7]. More precisely, in [4, Theorem
4.1] it is shown that ifR is Koszul then HR

i,j = 0 for j > 2i and HR
i,2i = (HR

1,2)i for all i ≥ 0 and in [7, Theorem
3.1] it is proved that one has also HR

i,2i−1 = (HR
1,2)i−2 HR

2,3 for all i ≥ 2. Section 6 and Section 7 provide some
further insight into the connections between the fact that R is Koszul and the structure of HR. In Proposition
6.2 we note that if R is Koszul then the nonlinear strands of HR are contained in the set of matric Massey
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products of KR. However, generation of HR by the linear strand (which implies that the nonlinear strands of
HR are contained in the set of matric Massey products) does not imply that R is Koszul. This can be seen by
means of the example in 7.4, which relies on a ring from a paper of Roos [23]. (The fact that the linear strand
need not generate HR as a k-algebra whenR is Koszul is also noted in [7, Remark 3.2].) On the other hand, 7.2
describes a Koszul algebra R for which HR has the same bigraded Hilbert series as the homology algebra of
the ring of 7.4 and is also generated by the linear strand. It turns out that the ring in 7.2 satisfies the hypothesis
of statement (2) above. This observation sheds some light on our effort to understand what distinguishes one
homology algebra from the other in the two examples.

The examples in Section 7 utilize the Macaulay2 package DGAlgebras written by Frank Moore, which
provides an efficient way to verify rings for which statements (1) or (2) hold; using this, we apply our Theorem
6.1 to the rings studied in Roos [23]. The last section also contains a concrete example of how our results can
be used towards establishing homological properties of the ring and computations of Poincaré series, see 7.6.

Given the evidence that the properties considered in this paper show up in a large variety of situations, we
hope that this study will be useful in further explorations of homological properties of local rings.
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useful comments and suggestions.
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travel to this conference from the Department of Mathematics at the University of Michigan and IIT Bombay.

1. BACKGROUND

In this section we set notation and provide needed definitions. We recall the definition of a small homomor-
phism and provide some preliminary results centered on this concept.

1.1. Let (R,m, k) be a local ring and M a finite (meaning finitely generated) R-module. Fix a minimal
generating set of m and let KR denote the Koszul complex on this set. Let HR denote the homology algebra of
KR. The complex KR has a natural structure of a graded commutative algebra, and this structure is inherited
by HR. We denote by KM the Koszul complex KR⊗RM .

The Poincaré series PRM (z) of M is defined as

PRM (z) =
∑
i≥0

rankk(TorRi (M,k))zi.

If φ : (R,m, k)→ (S, n, k) is a surjective homomorphism of local rings then the following coefficientwise
inequality holds

PSM (z) 4
PRM (z)

1− z(PRS (z)− 1)
.

If equality holds for M = k then we say that φ is a Golod homomorphism.
The homomorphism φ induces maps

Extiφ(k, k) : ExtiS(k, k)→ ExtiR(k, k).

If Ext∗φ(k, k) is surjective then we say φ is small. Recall that if φ is Golod then φ is small (cf. Avramov [1,
3.5]).

When R is artinian, specific conditions formulated in terms of the concepts above allow for an explicit
computation of the series PRk (z).

Lemma 1.2. Let (R,m, k) be an artinian local ring with ms+1 = 0. Let n denote the minimal number of
generators of m and let a denote the dimension of ms.
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If the canonical projection R → R/ms is small and the ring R/ms is Golod, then the Poincaré series of k
over R is rational, satisfying the formula:

(1.2.1) PRk (z) =
(1 + z)n

1− z(HR/ms

(z)− 1) + az2(1 + z)n

where HR/ms

(z) stands for the Hilbert series (which is in this case a polynomial of degree n) of the Koszul
homology algebra HR/ms

.

Proof. As ms ∼= ka, we have PRR/ms(z) = az PRk (z) + 1.
Since R/ms is Golod and R → R/ms is small, R → R/ms is a Golod homomorphism by [26, 6.7].

Therefore, we have

PRk (z) = P
R/ms

k (z)
(

1− z(PRR/ms(z)− 1)
)

= P
R/ms

k (z)
(
1− az2 PRk (z)

)
.

By rearranging, we have that

(1.2.2) PRk (z) =
P
R/ms

k (z)

1 + az2 P
R/ms

k (z)
.

Finally, since R/ms is Golod, we have that

(1.2.3) P
R/ms

k (z) =
(1 + z)n

1− z(HR/ms

(z)− 1)
.

The conclusion follows from (1.2.2) and (1.2.3). �

In order to apply the lemma, we need to verify that the canonical projection R → R/ms is Golod or small.
In [18], Levin and Avramov prove that this homomorphism is Golod (thus small) whenever the artinian ring R
is Gorenstein. Their proof relies on the fact that HR is a Poincaré algebra when R is Gorenstein. This leads
us to believe that, more generally, the structure of the Koszul homology HR can be used to understand the
homological properties of the canonical projection R → R/ms. The next lemma shows that matric Massey
products play a role.

1.3. Let ϕ : R→ S be a homomorphism of local rings. The usual products of HR are understood to be the set
of products HR

>1 ·H
R
>1. We denote by MH(KR) the set of matric Massey products of HR

>1, as defined in [20].
This set of higher order homology operations is a submodule of HR

>1 and contains the usual products; see also
[2, (1.4.1)] for a more concise definition.

The induced map H(Kϕ) : H(KR) → H(KS) satisfies H(Kϕ)(MH(KR)) ⊆ MH(KS). By [1, 4.6], if ϕ
is small then the induced homomorphism

H≥1(KR)/MH(KR)→ H≥1(KS)/MH(KS)

is injective. From here we derive immediately the following statement:

Lemma. Let (R,m, k) be a local ring and let i ≥ 0. Consider the conditions:

(1) The canonical projection R→ R/mi is small;
(2) H≥1(mi KR) ⊆MH(KR).

Then (1) implies (2). �

Example 7.4 in Section 7 shows that the implication (2) =⇒ (1) does not hold when i = 2. Ideally, one
would like to replace condition (2) with a stronger one, that is equivalent to (1). While such a condition is
not yet known, we identify in Sections 3 and 4 two conditions on Koszul homology that imply (1), for certain
values of i.
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2. A PROPERTY OF THE TATE RESOLUTION

The purpose of this section is to record in Proposition 2.8 a general property of the Tate resolution. This
result will be used later, in the proof of one of the main theorems. We start with a description of the Tate
resolution, and we invite the reader to consult [3] for more details, in particular for the definition of a DG
algebra. We then build the ingredients of the proof of the proposition by means of a couple of lemmas.

2.1. Adjunction of variables. Let B be a DG algebra over R and suppose z is a cycle in B. We embed B into
a DG algebra B′ = B〈y〉 by freely adjoining a variable y such that ∂(y) = z as follows:

If |z| is even, the variable y such that ∂(y) = z is called an exterior variable and satisfies y2 = 0. Denote
by k〈y〉 the exterior algebra over k of a free k-module on a generator of degree |z| + 1. The differential on
B〈y〉 = B ⊗k k〈y〉 is given by

∂(b0 + b1y) = ∂(b0) + ∂(b1)y + (−1)|b1|b1z.

If |z| > 0 is odd, y is a divided powers variable. The k-algebra k〈y〉 on a divided powers variable y is the
free k-module with basis {y(i) : |y(i)| = i|y|}i≥0 and multiplication table

y(i)y(j) =

(
i+ j

i

)
y(i+j), for i, j ≥ 0.

We set y(1) = y, y(0) = 1, and y(i) = 0 for i < 0. Forgetting the differentials, B〈y〉 = B ⊗k k〈y〉. If z ∈ B is
a cycle of positive odd degree, then

∂

(∑
i

biy
(i)

)
=
∑
i

∂(bi)y
(i) +

∑
i

(−1)|bi|bizy
(i−1)

is a differential on B〈y〉 that extends that of B and satisfies the Leibniz rule.
The notationB〈y1, . . . , yn〉 stands for the DG algebra obtained by repeated adjunction of variables as above.

2.2. The Tate resolution. Let x1, ..., xn be a minimal generating set for m and KR the Koszul complex on
x1, ..., xn. Note that we can interpret KR as the DG algebra

KR = R〈T1, ..., Tn〉,

where Ti are degree 1 exterior variables (these exterior variables in degree 1 will be referred to as Koszul
variables) with ∂(Ti) = xi. One can continue to “kill” homology by adjoining variables to KR, following the
construction in [3, 6.3.1]. The resulting DG algebra A is a minimal free resolution of k over R, often referred
to as the Tate resolution of k over R.

Forgetting differentials, A is a free R-module: see [3, Remark 6.2.1] for a description of the basis in terms
of the variables adjoined. In particular, one can see that A is also a free KR-module.

2.3. Notation. We write K for KR when the ringR is understood. SinceA is a free algebra over K, we consider
a homogeneous K-basis of A. For each j, let χi,j with 1 ≤ i ≤ qj denote the elements of homological degree
j in this basis. If z ∈ Ap, then we write z in terms of this basis as

(2.3.1) z =

p∑
j=0

qj∑
i=1

zi,jχi,p−j

with zi,j ∈ Kj for each j.
As usual, Z(A) denotes the set of cycles of A and B(A) denotes the set of boundaries.

The following lemma provides the inductive step for our key lemma, Lemma 2.7, below.

Lemma 2.4. Let z ∈ Zp(A) and write it as in (2.3.1). Let a be an integer with 0 ≤ a ≤ p. Assume zi,j ∈ mt K
for all j with 0 ≤ j ≤ a− 1 and all i with 1 ≤ i ≤ qj . Then

∂(zi,a) ∈ mt+1 K

for all i with 1 ≤ i ≤ qa .
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Proof. Since z ∈ Z(A), we have ∂(z) = 0. On the other hand we can compute ∂(z) from (2.3.1), using the
Leibniz rule; this yields:

(2.4.1) 0 =

p∑
j=0

qj∑
i=1

(−1)jzi,j∂(χi,p−j) + ∂(zi,j)χi,p−j .

Let i be such that 1 ≤ i ≤ qa. We express all terms in the right hand side of (2.4.1) in terms of the K-basis of
A, and collect the terms to compute the coefficient of each basis element in the sum. We see that the coefficient
of χi,p−a in this sum is

∂(zi,a) +

a−1∑
j=0

qj∑
i′=1

zi′,jwi′,j with wi′,j ∈ mKa−j .

The coefficients wi′,j come from expressing ∂(χi,p−j) in terms of the K-basis, for j ≤ a − 1. In particular,
wi′,j ∈ mK since A is minimal. (Note that if j ≥ a then zi,j∂(χi,p−j) does not have any contribution to the
coefficient of χi,p−a, for degree reasons.) These coefficients of χi,p−a must equal 0, hence

∂(zi,a) = −
a−1∑
j=0

qj∑
i′=1

zi′,jwi′,j ∈ (mt K)(mK) ⊆ mt+1 K

for all i with 1 ≤ i ≤ qa. �

2.5. Let R̂ denote the completion of R with respect to m. We may write R̂ = Q/I , with (Q, n, k) a regular
local ring and I ⊆ n2; this presentation is called a minimal Cohen presentation. We set

v(R) = max{j | I ⊆ nj}.
As noted in [13], this integer is independent of the choice of the minimal Cohen presentation.

Remark 2.6. If v(R) ≥ t+ 1, that is, I ⊆ nt+1, then the map

(2.6.1) Hi(K
R /mt+1 KR)→ Hi(K

R /mt KR)

induced by the canonical homomorphism KR /mt+1 KR → KR /mt KR is zero for all i ≥ 1. In particular, we
have: If ∂(z) ∈ mt+1 KR, then z ∈ B(KR) + mt KR for all z ∈ KR

>1.
Indeed, to justify this statement it suffices to assume that R is complete, with R = Q/I as above. We can

write KR = KQ⊗QR, where KQ is the Koszul complex on a minimal generating set of n obtained by lifting
the minimal generating set picked for m. Since I ⊆ nt+1 by assumption, we can make the identifications
KR /mt+1 KR = KQ /nt+1 KQ and KR /mt KR = KQ /nt KQ. The map in (2.6.1) can then be identified
with the induced map

Hi(K
Q /nt+1 KQ)→ Hi(K

Q /nt KQ)

which is zero for all i ≥ 1 because the induced map Hi(n
t+1 KQ)→ Hi(n

t KQ) is zero for all i ≥ 0, since Q
is regular (for example, see [26, Theorem 3.3]).

We are now prepared to prove a key lemma; a reformulation of this will yield Proposition 2.8 below.

Lemma 2.7. Suppose (R,m, k) is a local ring, K is the Koszul complex on a minimal generating set x1, ..., xn
of m, and A is the Tate resolution of k. Let t ≥ 1 be an integer such that v(R) ≥ t + 1. If x ∈ A, then there
exists y ∈ K1A such that ∂(x− y) ∈ mt K1A.

Proof. Let x ∈ Ap+1. If p = 0, we may take y = x and the result follows trivially. Now assume p ≥ 1. Since
A is minimal, we have ∂(x) =

∑
xigi with xi ∈ m and gi ∈ Ap. Choosing Ai ∈ K1 such that ∂(Ai) = xi,

we have

∂
(
x−

∑
Aigi

)
= ∂(x)−

∑
∂(Aigi)

=
∑

xigi −
∑

∂(Ai)gi +
∑

Ai∂(gi)

=
∑

Ai∂(gi).
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Set y′ =
∑
Aigi. Then y′ ∈ K1A and ∂(x− y′) ∈ K1A.

Apply Lemma 2.4 with z = ∂(x − y′) and a = 1 (noting that zi,0 = 0 for all i with 1 ≤ i ≤ q0, so the
hypothesis is satisfied). For all i with 0 ≤ i ≤ q1 this yields ∂(zi,1) ∈ mt+1 K (indeed, this holds for all t in
Lemma 2.4, hence ∂(zi,1) = 0), and then Remark 2.6 shows

zi,1 = ∂(ei,1) + fi,1

for some ei,1 ∈ K2 and fi,1 ∈ mt K. Consequently, we have:

∂(x− y′) =

q1∑
i=1

(∂(ei,1) + fi,1)χi,p−1 + V, with V ∈ K2A.

Now take y1 =
∑q1
i=1 ei,1χi,p−1 and we have:

∂(x− y′ − y1) =

q1∑
i=1

(∂(ei,1) + fi,1)χi,p−1 + V −
q1∑
i=1

∂(ei,1χi,p−1)

=

q1∑
i=1

fi,1χi,p−1 +

(
V +

q1∑
i=1

ei,1∂(χi,p−1)

)

=

q1∑
i=1

fi,1χi,p−1 + V1, with V1 ∈ K2A.

Setm = min{p, n}, and let us assume inductively, for a−1 < m, that we constructed y1, y2, . . . , ya−1 ∈ K1A
such that

∂(x− y′ − y1 − · · · − ya−1) =

a−1∑
j=1

qj∑
i=1

fi,jχi,p−j + Va−1,

with fi,j ∈ mt K and Va−1 ∈ KaA. Applying again Lemma 2.4 and Remark 2.6, with z = ∂(x − y′ − y1 −
· · · − ya−1) we have that

zi,a = ∂(ei,a) + fi,a

with ei,a ∈ Ka+1 and fi,a ∈ mt Ka. Consequently, we can write

∂(x− y′ − y1 − · · · − ya−1) =

a−1∑
j=1

qj∑
i=1

fi,jχi,p−j +

qa∑
i=1

(∂(ei,a) + fi,a)χi,p−a + V,

with V ∈ Ka+1A. Now take ya =
∑qa
i=1 ei,aχi,p−a and, as above, we get:

∂(x− y′ − y1 − · · · − ya) =

a∑
j=1

qj∑
i=1

fi,jχi,p−j + Va,

with Va ∈ Ka+1A. Note that Va = 0 when a ≥ m, by degree reasons (if p < n) and since K>n = 0.
Set y = y′ + y1 + · · ·+ ym. Then the cycle z = ∂(x− y) satisfies the conclusions of our statement. �

We can now prove the useful decomposition property of the Tate resolution advertised above, which was
inspired by the work in [18].

Proposition 2.8. Let t ≥ 1 be an integer such that v(R) ≥ t+ 1, and let A be the Tate resolution of k over R.
Denote by A′ the DG subalgebra of A given by

A′ = {x ∈ A | ∂(x) ∈ mt K1A}.

Then A is generated by A′ as a K-algebra, that is: A = A′ + K1A′ + K2A′ + · · ·+ KnA′ = KA′.
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Proof. For x ∈ A, Lemma 2.7 provides an element y ∈ K1A such that x−y ∈ A′. A reformulation of Lemma
2.7 therefore gives that A = A′ + K1A. Applying this fact repeatedly, and noting that Kn+1 = 0, we get:

A = A′ + K1A = A′ + K1(A′ + K1A) = A′ + K1A′ + K2A = · · ·
= A′ + K1A′ + K2A′ + · · ·+ Kn(A′ + K1A)

= A′ + K1A′ + K2A′ + · · ·+ KnA′

= KA′.

�

3. GENERATION BY A SPECIAL SET

We continue with the notation of the previous sections for the Koszul complex and the Tate resolution of
a local ring R. In this section, we prove one of the main theorems, Theorem 3.1 below, and we point out its
applications. In particular, these applications include a computation of the Poincaré series PRk (z) and conditions
under which the map R→ R/ms is Golod.

Recall that the invariant v(R) was introduced in 2.5.

Theorem 3.1. Let (R,m, k) be a local ring and let s be an integer such that ms+1 = 0. Let t and b be integers
such that s− t ≤ b ≤ s− 1 and v(R) ≥ t+ 1 ≥ 2, and assume that the following condition holds:

Zt,b,s: There exists a finite set Z ⊆ Z(mt KR) such that zz′ = 0 for all z, z′ ∈ Z and for every v ∈ ms KR

there existsm ∈ N and zi ∈ Z, ui ∈ Z(mb KR) for each i with 1 ≤ i ≤ m, such that v−
∑m
i=1 ziui ∈

B(ms−1 KR).

The maps TorRi (ms, k)→ TorRi (mb, k) induced by the inclusion ms ⊆ mb are then zero for all i ≥ 0.

We postpone the proof of the theorem in order to give some corollaries. Concrete examples for which these
results can be applied will be given in Section 7. We will use below, and also in the next section, the following
result of Rossi and Şega.

3.2. [24, Lem. 1.2] Let κ : (R,m, k)→ (R,m, k) be a surjective homomorphism of local rings. If there exists
a positive integer a such that:

(a) the map TorRi (R, k)→ TorRi (R/ma, k) induced by the canonical quotient map R→ R/ma is zero for all
positive i, and

(b) the map TorRi (m2a, k) → TorRi (ma, k) induced by the inclusion m2a ⊆ ma is zero for all non-negative
integers i,

then κ is a Golod homomorphism.

Corollary 3.3. Under the hypotheses of Theorem 3.1, if 2b ≥ s then the homomorphism R→ R/ms is Golod.

Proof. We apply 3.2 to the natural projection κ : R → R/ms, with R = R/ms, m = m/ms and a = b. We
need to check that conditions (a) and (b) hold. Since 2a = 2b ≥ s, we have m2a = 0, so condition 3.2(b) holds
trivially. Theorem 3.1 gives that the induced maps TorRi (ms, k)→ TorRi (mb, k) are zero for all i > 0, and this
implies condition 3.2(a), since R/ms = R and R/mb = R/ma. �

Remark 3.4. Let R = Q/I be a minimal Cohen presentation of R, with (Q, n, k) a regular local ring. As first
noted by Löfwall [19], the ring R is Golod whenever there exists an integer t such that

(3.4.1) n2t ⊆ I ⊆ nt+1

Assume s and t are integers such that ms+1 = 0 and v(R) ≥ t + 1, and so ns+1 ⊆ I ⊆ nt+1. If s < 2t,
then the inclusions in (3.4.1) hold, and it follows that R is Golod. If s = 2t then R is not necessarily Golod,
but it follows that the quotient ring R/ms = Q/(I + ns) is Golod.

Corollary 3.5. Assume the hypothesis of Theorem 3.1 is satisfied. If s = 2t and b = t, then the hypotheses of
Lemma 1.2 are satisfied, and thus PRk (z) satisfies the formula (1.2.1).
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Proof. The homomorphism R→ R/ms is Golod by Theorem 3.1, and thus small (see 1.1). The ring R/ms is
Golod by Remark 3.4. �

Proof of Theorem 3.1. Let |Z| denote the cardinality of Z. Let {z1, ..., z|Z|} be the cycles in Z and let I denote
the set of all finite ordered lists of elements in {1, . . . , |Z|}, including the empty set.

Let I ∈ I. If I = (i) has length 1, we set I− = ∅. If I = (i1, . . . , ir) has length r ≥ 2, we set
I− = (i1, . . . , ir−1). We now define for each I ∈ I an element yI ∈ A, where A is the Tate resolution of k as
in 2.2, such that

(1) yI = 1 ∈ A0, if I = ∅;
(2) ∂(yI) = ziryI− , if I = (i1, . . . , ir) with r ≥ 1.

The details of constructing these elements are as follows. If I = ∅, we choose yI as in (1). If r = 1 and
I = (i), we can choose yI ∈ A such that ∂(yI) = zi, since zi ∈ Z is a cycle. Assuming that r ≥ 2 and the
elements yI have been defined for all I ∈ I of length r − 1, we can construct elements yI satisfying (2) for
I = (i1, . . . , ir) by noting that ziryI− is a cycle, so such a yI exists since A is acyclic. Indeed, we have

∂(ziryI−) = (−1)|zir |zir∂(yI−) = (−1)|zir |zirzir−1
y(I−)− = 0,

where the last equality is due to the hypothesis on the set Z.
We identify the map TorRi (ms, k) → TorRi (mb, k) with the map Hi(m

sA) → Hi(m
bA). In order to show

this map is trivial for i ≥ 0, we let x ∈ msAc for some c and must show that x ∈ ∂(mbA).
Set Y = {yI ∈ A|I ∈ I}. For i, j ≥ 0, define

A(i, j) := (ms Ki YjA′) ∩ Ac,

where Yj is the set of elements of Y of degree j.

Claim: For i, j ≥ 0,

(3.5.1) A(i, j) ⊆ ∂(mbA) +
∑

p+q=i+j

p>i

A(p, q) +
∑

p+q>i+j

A(p, q)

where only finitely many terms in this sum are not zero for degree reasons.

Proof of Claim: To prove the inclusion, it suffices to consider elements of A(i, j) of the form vyIa
′ for some

v ∈ ms Ki, a′ ∈ A′ and yI ∈ Yj ,with I = (i1, . . . , ir) ∈ I or I = ∅; in the last case, we set r = 0. (Note that
every element of A(i, j) can be written as a sum of elements of this form.)

By assumption there exist zι,v ∈ Z and uι,v ∈ Z(mb K) with 1 ≤ ι ≤ m such that

v −
m∑
ι=1

zι,vuι,v ∈ ∂(ms−1 Ki+1).

We need to show thus that (
∑m
ι=1 zι,vuι,v + w)yIA′ is contained in the right hand side of (3.5.1), for all

w ∈ ∂(ms−1 Ki+1), zι,v ∈ Z and uι,v ∈ Z(mb K). Note that it suffices to prove this statement when m = 1.
We assume thus that v − zir+1u ∈ ∂(ms−1 Ki+1) for some zir+1 ∈ Z and u ∈ Z(mb K) and we show that
vyIA′ is contained in the right hand side of (3.5.1).

In what follows, we will simplify the notation when I has length 1 and we will write yi = y(i). Define
I+ = (i1, . . . , ir, ir+1). Recall that we defined a set I− for any nonempty I ∈ I. Although we do not define
a set ∅−, we agree to set yI− = zir = yir = 0 when I = ∅. With this convention, note that the formula
∂(yI) = ziryI− also holds when I = ∅, so we will not treat this case separately.

Note that

|u| = i− |zir+1
| = i+ 1− |yir+1

|,
|yI− | = j − |zir | − 1 = j − |yir | when I 6= ∅, and

|yI+ | = j + |zir+1
|+ 1 = j + |yir+1

|.
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We now have

vyIA′ ⊆
(
∂(ms−1 Ki+1) + zir+1

u
)
yIA′

= ∂(ms−1 Ki+1)yIA′ + u∂(yI+)A′

= ∂(ms−1 Ki+1 yIA′) + u∂(yI+)A′ + ms−1 Ki+1 ziryI−A′ + ms−1 Ki+1 yI∂(A′)
⊆ ∂(ms−1A) + ∂(uyI+A′) + uyI+∂(A′) + ms−1 Ki+1 ziryI−A′ + ms−1 Ki+1 yI∂(A′),

where in line 2 we used the formula zir+1
yI = ∂(yI+), in line 3 we used the Leibniz rule and the formula

∂(yI) = ziryI− , and in line 4 we used again the Leibniz rule and the fact that u is a cycle.
Consider the terms from the last line in the previous display. Since u ∈ Z(mb K) and b ≤ s − 1, we

have ∂(ms−1A) + ∂(uyI+A′) ⊆ ∂(mbA). Additionally, since ∂(A′) ⊆ mt K1A by the definition of A′,
we have uyI+∂(A′) ⊆ mb+t K|u|+1 yI+A and ms−1 Ki+1 yI∂(A′) ⊆ ms−1+t Ki+2 yIA. Furthermore, since
zir = ∂(yir ), we have ms−1 Ki+1 ziryI−A′ ⊆ ms Ki+|yir | yI−A

′. Thus

vyIA′ ⊆ ∂(mbA) + mb+t K|u|+1 yI+A+ ms Ki+|yir | yI−A
′ + ms−1+t Ki+2 yIA.

Using Proposition 2.8 and the facts b+ t ≥ s and t ≥ 1, we have

vyIA′ ⊆ ∂(mbA) + ms K|u|+1 yI+A′ + ms Ki+|yir | yI−A
′ + ms Ki+2 yIA′,

with the provision that if I = ∅, the third term on the right of this inclusion is 0 by convention. Finally, since
|u| = i+ 1− |yir+1 |, we conclude

vyIA′ ⊆ ∂(mbA) +
∑

i′≥i+2−|yir+1
|

A(i′, j + |yir+1
|) +A(i+ |yir |, j − |yir |) +

∑
i′≥i+1

A(i′ + 1, j),

with the caveat that we remove the term A(i + |yir |, j − |yir |) from the right-hand sum when I = ∅. In the
display above, the second and last terms of the right-hand side are sums of the formA(p, q) with p+ q > i+ j
and the third term is of the form A(p, q) with p+ q = i+ j and p > i. The Claim is thus proved.

To finish the proof of the theorem, consider an order on the set M = {(i, j)|i, j ≥ 0} as follows: Order the
elements by i+ j first, then by i as a tiebreak. In other words:

(i, j) > (i′, j′) ⇐⇒ i+ j > i′ + j′ or (i+ j = i′ + j′ and i > i′).

Recall that x ∈ msAc and we need to show x ∈ ∂(mbA). Using Proposition 2.8, we know that x ∈∑n
i=0 m

s KiA′. Thus if M0 = {(i, 0) | 0 ≤ i ≤ n}, then

x ∈
∑

(i,j)∈M0

A(i, j) .

Using the Claim, we see that there exists a finite set M1 and an element

x1 ∈
∑

(i,j)∈M1

A(i, j)

such that x− x1 ∈ ∂(mbA), and such that the smallest element of M1 is strictly larger (in the order described
above) than the smallest element of M0.

Applying the Claim again, this time using x1, we see that there exists a finite setM2 and an element x2 such
that

x2 ∈
∑

(i,j)∈M2

A(i, j)

such that x1 − x2 ∈ ∂(mbA), hence x − x2 ∈ ∂(mbA), and such that the smallest element of M2 is strictly
larger (in the order described above) than the smallest element of M1. A repeated use of the argument ensures
the construction of elements xa and sets Ma such that for each integer a the smallest element of Ma is greater
than the smallest element of Ma−1 and such that x − xa ∈ ∂(mbA). When a is sufficiently large (so that
p + q > c for all (p, q) ∈ Ma) one sees that, for degree reasons, we have A(p, q) = 0 for all (p, q) ∈ Ma,
since the elements of A(p, q) are in Ac, with c fixed. We conclude that xa = 0 for a sufficiently large, hence
x ∈ ∂(mbA). �
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4. GENERATION BY ONE ELEMENT

We now turn our focus to the case where the Koszul homology algebra is generated by a single element.
Namely, here we are concerned with rings that satisfy the following condition, depending on integers t and r:
Pt,r: There exists [l] ∈ Hr(K) such that for every z ∈ Z(mt K) there exists z′ ∈ Z(mt−1 K) such that

z − z′l ∈ B(mt−1 K).
Note that this condition is independent of the choice of the representative l of the class [l] ∈ Hr(K).

Remark 4.1. The condition Pt,r is particularly strong when the cycle l is not a minimal generator of Zr(K).
In this case, we can choose l ∈ mZr(K). Since K is constructed using a minimal generating set for m, we have
that any cycle in Zr(K) is also in mK and thus in Zr(mK). Let i ≥ 0. We have thus lz′ ∈ mZi(m

t K) for all
z′ ∈ Zi−r(mt−1 K). The hypothesis that Pt,r holds then implies

Zi(m
t K) ⊆ mZi(m

t K) +Bi(m
t−1 K)

for all i, and so by Nakayama’s Lemma, we haveZi(mt K) ⊆ Bi(mt−1 K), hence the induced map Hi(m
t K)→

Hi(m
t−1 K) is zero for all i ≥ 0.

When l is part of a minimal generating set for Zr(K) and r is odd, we see below that a similar statement can
be deduced, only that the complex K needs to be replaced with a larger complex.

We denote by B the following DG algebra

B = K〈y | ∂(y) = l〉 .

Theorem 4.2. Let (R,m, k) be a local ring, let t ≥ 2 be an integer, and r ≥ 1 be an odd integer. If Pt,r holds,
then the map

Hi(m
tB)→ Hi(m

t−1B)

induced by the inclusion mt ↪→ mt−1 is zero for all i ≥ 0.

Proof. We will first prove two claims.

Claim 1: For a cycle z ∈ K, if z = z′ +w with z′ ∈ mt Kp y
(q) and w ∈ mt Kp+1 B, then z′ ∈ Zp(mt K)y(q).

Proof of Claim 1: Set |z| = c, hence p+ (r + 1)q = c. Write z′ = vy(q) with v ∈ mt Kp. We have

(4.2.1) 0 = ∂(z) = ∂(vy(q)) + ∂(w) = ∂(v)y(q) + (−1)pvly(q−1) + ∂(w) .

Since w ∈ mt Kp+1 B and |w| = c we can write ∂(w) =
∑
i,j kiy

(j) with ki ∈ mt Ki, where the sum is taken
over non-negative i, j with i+ (r + 1)j = c− 1, and i ≥ p. Since p+ (r + 1)q = c, we must have j < q for
all such j. Since 1, y, y(2), y(3), . . . is a basis of B over K, we conclude from (4.2.1) that ∂(v) = 0, and hence
v ∈ Zp(mt K).

Claim 2: If z′ ∈ Zp(mt K)y(q), then

z′ ∈ ∂(mt−1B) + mt Kp+r+1 y
(q−1).

Proof of Claim 2: Let z′ = vy(q) with v ∈ Zp(m
t K). The hypothesis of the theorem gives v − v′l ∈

∂(mt−1 Kp+1) for some v′ ∈ Zp−r(mt−1 K), and so z′ − v′ly(q) ∈ ∂(mt−1 Kp+1)y(q). An application of the
Leibniz rule yields

z′ − v′ly(q) = z′ − v′∂(y(q+1)) = z′ − (−1)|v
′|∂(v′y(q+1)),

and therefore

z′ ∈∂(mt−1B) + ∂(mt−1 Kp+1)y(q)

⊆∂(mt−1B) + ∂(mt−1 Kp+1 y
(q)) + mt−1 Kp+1 ∂(y(q)), by the Leibniz rule,

⊆∂(mt−1B) + mt Kp+1+r y
(q−1),

which verifies Claim 2.
Now suppose z ∈ B represents a nontrivial class in Hc(m

tB) and let p be the largest integer such that
z ∈ mt Kp B. Write z =

∑
kiy

(j), where the sum is taken over integers i, j with i+ (r + 1)j = c and i ≥ p,
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and ki ∈ mt Ki. Set z′ = kpy
( c−p
r+1 ) and w = z − z′. Then z = z′ + w and the hypotheses of Claim 1 are

satisfied. Putting together Claim 1 and Claim 2, we have:

(4.2.2) z ∈ ∂(mt−1B) + z1, for some z1 ∈ mt Kp+1 B .

As z1 is also a cycle, we may repeat the argument for z1, and so on. Inductively, we obtain z ∈ ∂(mt−1B) +
mt Ki B for all i > p. Since Ki = 0 for i� 0, we get z ∈ ∂(mt−1B). �

We recall below a result of Levin [17, Lemma 2].

4.3. Let F be a differential graded R-algebra and E a differential graded F-module which is free as a graded
F-module (i. e. forgetting differentials) and such that ∂(E) ⊆ mE . Let M , N be R-modules such that mM ⊆
N ⊆ M , and such that the canonical map N ⊗R E → M ⊗R E is injective. If the induced homomorphism
H(N ⊗R F)→ H(M ⊗R F) is zero, then so is the induced homomorphism H(N ⊗R E)→ H(M ⊗R E).

Corollary 4.4. If Pt,1 holds, then the following hold:

(1) The map

TorRi (mt, k)→ TorRi (mt−1, k)

induced by the inclusion mt ⊆ mt−1 is zero for all i ≥ 0.
(2) If v(R) ≥ t, then the algebra ExtR(k, k) is generated in degrees 1 and 2.
(3) If t = 2, then the algebra ExtR(k, k) is generated in degree 1.

Proof. If l /∈ mZ1(K), we can then construct a minimal Tate resolution A of k over R by starting with the
Koszul complex K, then adjoining a variable y with ∂(y) = l, and then the rest of the needed variables as
described in 2.2. The description of the basis of A in [3, Remark 6.2.1] shows that, forgetting differentials, A
is free over the algebra B = K〈y | ∂(y) = l〉. Using 4.3 and Theorem 4.2, we conclude that the induced map

Hi(m
tA)→ Hi(m

t−1A)

is zero for all i ≥ 0, and this yields the desired conclusion.
If l ∈ mZ1(K), then we showed in Remark 4.1 that the induced map Hi(m

t K) → Hi(m
t−1 K) is zero for

all i ≥ 0, and the conclusion follows again by applying Levin’s result in 4.3.
In view of (1), part (2) follows then from [13] and part (3) from [22, Corollary 1]. �

Corollary 4.5. Let (Q, n, k) be a regular local ring, and I an ideal with I ⊆ n2, and consider the local ring
(R,m, k) defined by R = Q/I . Let h ∈ I r nI and let L ∈ KQ such that ∂(L) = h. Let l denote the image of
L in K = KQ⊗QR. Assume that Pt,1 holds, with l as above.

If P = Q/(h), then the induced map TorPi (mt, k)→ TorPi (mt−1, k) is zero for all i ≥ 0.
Furthermore, let a be an integer such that I ⊆ na+1. If h ∈ I r na+2 and a + 1 ≤ t ≤ 2a, then the

canonical projection P → R is a Golod homomorphism.

Proof. The hypothesis implies that h is part of a minimal generating set of I .
SetB = K〈y | ∂(y) = l〉 andB′ = KQ〈y | ∂(y) = L〉. Note thatB = (B′⊗QP )⊗PR andB′⊗QP is a min-

imal free resolution of k over P . We can identify thus the induced map TorPi (mt, k) → TorPi (mt−1, k) with
the induced map Hi(m

tB)→ Hi(m
t−1B), and the latter is zero, by the theorem. Under the additional hypothe-

ses in the last paragraph of the statement, it also follows that the induced map TorPi (m2a, k) → TorPi (ma, k)
is zero for all i ≥ 0, since t ≤ 2a and t − 1 ≥ a. Since I ⊆ na+1, [24, Lemma 1.4] gives that the induced
map TorPi (R, k)→ TorPi (R/ma, k) is zero for all positive i, and then applying 3.2 to the canonical projection
κ : P → R gives the final conclusion. �

Remark 4.6. The existence of a surjective Golod homomorphism from a complete intersection ring to the local
ring R is a rather remarkable property: Using a result of Levin recorded in [6, Proposition 5.18], this property
allows one to conclude that the Poincaré series of all finitely generated R-modules are rational, sharing a
common denominator.
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Compressed Gorenstein artinian local rings, and, more generally, compressed level artinian local rings are
defined in terms of an extremal condition involving the length, embedding dimension, and the socle of the ring.
We refer to [24] and [15] for the precise definitions. Such rings can be viewed as being “generic”, in a sense
explained in more detail in [15, Theorem 3.1], for example.

Remark 4.7. Let (R,m, k) be a compressed Gorenstein local ring of socle degree s 6= 3 and assume k is
infinite. Set t = s + 2 − v(R) and a = v(R) − 1. When s 6= 3, the inequalities a + 1 ≤ t ≤ 2a follow from
general properties of compressed Gorenstein rings, and more precisely from the fact that s = 2v(R) − 1 or
s = 2v(R)− 2, as noted in [24].

The proof of [24, Proposition 4.6] shows that Zn(mt K) ⊆ lZn−1(mt−1 K) for some cycle l ∈ K1, and [24,
Lemma 4.4] shows that the induced map Hi(m

t K) → Hi(m
t−1 K) is zero for all i < n, where n denotes the

minimal number of generators of m. It follows that the ring R satisfies Pt,1. We can then construct h ∈ I such
that ∂(L) = h, where L is a preimage of l in KQ. With this data, the hypotheses of Corollary 4.5 are satisfied,
hence we recover the main structural result in [24] stating that R is a homomorphic image of a hypersurface
via a Golod homomorphism.

Remark 4.8. The condition Pt,1 is also satisfied for compressed level artinian local rings of socle degree s =
2t− 1, with s 6= 3. This can be seen from the proof of [15, Lemma 6.3] and [15, Lemma 4.4]. The conclusion
that such rings are homomorphic images of a hypersurface via a Golod homomorphism is established there
using the results of [24]. Corollary 4.5 recovers the same conclusion, as well.

Another class of rings for which the condition Pt,1 holds is discussed in the next section.

5. STRETCHED COHEN-MACAULAY LOCAL RINGS

Let (R,m, k) be an artinian local ring. We set

v = rankk(m/m2); e = length(R); r = rankk(0 : m); h = e− v .
Note that mh+1 = 0. The ring R is said to be stretched if h is the least integer i such that mi+1 = 0. Assume
further that R is not a field. Then R is stretched if and only if m2 is principal. Sally [25] computed the series
PRk (t) for a stretched artinian local ring R as follows:

(5.0.1) PRk (t) =

{
1/(1− vt) if r = v;

1/(1− vt+ t2) if r 6= v.

In this section we show that finitely generated modules over R have rational Poincaré series as well, sharing
a common denominator. The main result is Theorem 5.4; its proof involves an application of the results in
Section 4.

5.1. Structure of stretched artinian local rings. Assume that (R,m, k) is a stretched artinian local ring, not a
field. We further set

p = v − r and q = r − 1 .

Assume that h ≥ 3. (The case h ≤ 2 has been treated in [5] and will be recalled later.) As described in
[25], we choose elements t, z1, . . . , zp, w1, . . . , wq forming a minimal generating system of m such that the
following hold:

(1) mi = (ti) for all i ≥ 2;
(2) The elements w1, . . . , wr−1, t

h form a basis of (0 : m); in particular, twj = 0 and ziwj = 0 for all i, j
with 1 ≤ i ≤ p and 1 ≤ j ≤ q;

(3) tzi = 0 for all i with 1 ≤ i ≤ p;
(4) zizj = aijt

h, with aij = 0 or aij a unit of R, for all i, j with 1 ≤ i, j ≤ p.
(Note that there are no elements wi if r = 1 and there are no elements zi if r = v.)

If r 6= v, let aij denote the image of aij in k = R/m and note that the matrix (aij) is invertible. Indeed,
if this matrix is not invertible, then there exists an element z =

∑p
i=1 bizi, with bi ∈ R such that bi is a unit

for at least one index i, and such that zzj = 0 for all j for all 1 ≤ j ≤ p. This implies that z ∈ (0 : m), hence
z ∈ (w1, . . . , wr−1, t

h), contradicting the fact that t, z1, . . . , zp, w1, . . . , wq is a minimal generating set of m.
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The fact that the matrix (aij) is invertible also implies that for every i with 1 ≤ i ≤ p there exists an element
yi ∈ (z1, . . . , zp) such that

(5.1.1) ziyi = th and zjyi = 0 for all j with i 6= j, 1 ≤ j ≤ p .
Since yi ∈ (z1, . . . , zp) we also have

(5.1.2) tyi = 0 = wjyi for all i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ q .

5.2. Structure of Koszul homology. Let R be as in 5.1. We consider the Koszul complex KR on the set
{w1, . . . , wq, z1, . . . , zp, t}. As a DG algebra it can be described as the complex

KR = R〈W1, . . . ,Wq, Z1, . . . , Zp, T 〉
with ∂(Wi) = wi, ∂(Zi) = zi and ∂(T ) = t.

In what follows, we will consider products of some of the variables Wi or Zi, with the index i ranging over
certain sets I . We adopt the convention that the product is equal to 1 if I = ∅; for example Z1 · · ·Zp = 1 if
p = 0. We set

W = {Wj1Wj2 · · ·Wji | 1 ≤ j1 < j2 < · · · < ji ≤ q, 0 ≤ i ≤ q}
where Wj1Wj2 · · ·Wji = 1 when i = 0.

Lemma. Let s ≥ 1. Every cycle of Zs(m2KR) has the form∑
aW t

hTZ1 · · ·ZpW + V, with V ∈ Bs(mKR) and aW ∈ R,

where the sum ranges over all W ∈ W with |W | = s− p− 1.

Proof. If L = Zi1Zi2 · · ·ZimWj1Wj2 · · ·Wjn with 1 ≤ i1 < i2 < · · · < im ≤ p and 1 ≤ j1 < j2 < · · · <
jn ≤ q, then the Leibniz rule and the fact that twj = 0 = tzi for all 1 ≤ i ≤ p and 1 ≤ j ≤ q imply that
t∂(L) = 0. Consequently, another application of the Leibniz rule gives

t2L = ∂(tTL) .

Since m2 = (t2), it suffices to consider cycles of the form z =
∑
L aLt

2TL with L ranging over all possible
products L as above (if p = 0 = q, then we only have one term where L = 1). Taking differentials, we have

0 = ∂(z) =
∑

aLt
3L

where the last equality follows again from the Leibniz rule and the fact that t∂(L) = 0, as noted above. Since
the products L are linearly independent over R, we have aLt3 = 0 for all L, and hence aL = th−2bL + cL,
with bL ∈ R and cL ∈ (w1, . . . , wq, z1, . . . , zp). We have thus z =

∑
L bLt

hTL.
Consider a cycle thTL, with L as above. Set Z = Zi1Zi2 · · ·Zim and W = Wj1Wj2 · · ·Wjn , so that

thTL = thTZW . We will show that thTZW ∈ ∂(mKR) whenever Z 6= Z1Z2 · · ·Zp.
Indeed, assume Z 6= Z1Z2 · · ·Zp. In particular, we have p 6= 0. Without loss of generality, we may assume

Z1 is not a factor in Z. Then for any such Z and any W as above we have:

thTZW = z1y1TZW = ∂(y1Z1TZW )

where the element y1 is as defined above, and the last equality follows from the Leibniz rule, in view of the
relations in (5.1.1) and (5.1.2). �

5.3. Generation of Koszul homology. We continue with the notation and hypotheses of 5.1 and 5.2. In addition,
we assume r 6= v, hence p 6= 0. We set:

J1 = {(i, j) | 1 ≤ i ≤ j ≤ p, aij 6= 0} and J2 = {(i, j) | 1 ≤ i ≤ j ≤ p, aij = 0} .
Consider the following element in KR

1 :

F =
∑

1≤i<j≤q

αijwiWj +
∑

1≤j≤q,1≤i≤p

βijwjZi +
∑

1≤i≤q

γiwiT+(5.3.1)

+
∑

1≤i≤p

δitZi +
∑

(i,j)∈J1

ηij(t
h−1T − a−1ij ziZj) +

∑
(i,j)∈J2

θijziZj
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where αij , βij , γi, δi, ηij , θij ∈ R. Recall that the elements aij were introduced in 5.1. The relations in 5.1
yield that F is a cycle.

Lemma. Assume in addition that at least one of the coefficients δi, ηij , or θij is a unit. If z is a cycle in m2KR,
then z = AF + A′ for some A ∈ Z(mKR) and A′ ∈ B(mKR). In other words, condition P2,1 holds with
l = F .

Proof. Using Lemma 5.2, we see that it suffices to consider cycles of the form thTZ1 · · ·ZpW , with W ∈ W .
Now consider the following element, which can be seen to be a cycle in mKR:

C =
∑

1≤i<j≤p

dij

(
yiTZ1 · · · Ẑj · · ·ZpW + (−1)j−iyjTZ1 · · · Ẑi · · ·ZpW

)
+

+
∑

1≤i≤p

dii(yiTZ1 · · · Ẑi · · ·ZpW ) +
∑

1≤i≤p

bi

(
th−1TZ1 · · · Ẑi · · ·ZpW + (−1)iyiZ1 · · ·ZpW

)
with dij , bi ∈ R, where the notation Ẑj indicates that the element Zj is missing from the product. Set

α =
∑

1≤i≤p

(−1)ibiδi −
∑

(i,j)∈J1

(−1)jdijηija
−1
ij +

∑
(i,j)∈J2

(−1)jdijθij .

Then we have
FC = α(thTZ1 · · ·ZpW ).

Since at least one of the coefficients δi, ηij , or θij is a unit, we can choose the coefficients dij and bi such that
α is a unit. Then, if we take A = α−1C, we have thTZ1 · · ·ZpW = AF . �

Theorem 5.4. Let (R,m, k) be a stretched artinian local ring with minimal Cohen presentation R = Q/I ,
where (Q, n, k) is a regular local ring and I ⊆ n2. Assume R is not a field.

Set v = rankk(m/m2) and r = rankk(0 : m). The following hold:
(1) If r 6= v, then I 6⊆ n(I : n) and we have:

(a) If m3 6= 0, then the induced homomorphism Q/(f)→ R is Golod for all f ∈ I r n(I : n).
(b) The algebra ExtR(k, k) is generated by its elements of degree 1.
(c) (1 + t)v(1− vt+ t2) PRM (t) ∈ Z[t] for all finitely generated R-modules M .

(2) If r = v, then
(a) R is a Golod ring.
(b) The algebra ExtR(k, k) is generated by its elements of degree 1 and 2.
(c) (1− vt) PRM (t) ∈ Z[t] for all finitely generated R-modules M .

Remark 5.5. If R is a stretched artinian local ring with m3 = 0 and r 6= v, then the hypotheses of [5, Theorem
4.1] apply. In view of [5, Theorem 1.4], we have that, after a faithfully flat extension, there exists a regular
local ring (Q, n, k), an element u ∈ n, and a Golod surjective homomorphism Q/(u2) → R. In this case, as
noted in [5], the ring R is Koszul, in the sense that the associated graded ring with respect to m is a Koszul
algebra, implying in particular part (1b) of the theorem. In this case, one has (1 − vt + t2) PRM (t) ∈ Z[t] for
all finitely generated R-modules M [5, Theorem 1.1], and in particular (1c) holds.

Proof. Choose w̃i, t̃, z̃i preimages of the elements wi, t, zi in Q. Let KR be the Koszul complex described
earlier, and let KQ be the Koszul complex over Q on the set {w̃1, . . . , w̃q, z̃1, . . . , z̃p, t̃}, and note that KR =
KQ ⊗Q R, hence we can identify KR with KQ/IKQ.

(1) Assume r 6= v and m3 6= 0. In this case, the ideal I is generated by the elements

w̃jw̃l, w̃j z̃i, w̃j t̃, z̃it̃ with 1 ≤ j ≤ l ≤ q and 1 ≤ i ≤ p ;

t̃h − ã−1ij z̃iz̃j with (i, j) ∈ J1; z̃iz̃j with (i, j) ∈ J2 .

We also have
(I : n) = (w̃1, . . . , w̃q, t̃

h) + I and n(I : n) = n(w̃1, . . . , w̃q) + nI.

(Note that, if R is Gorenstein, then q = 0 and n(I : n) = nI . ) In particular, note that I 6= n(I : n).
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Let f ∈ I r n(I : n). Then we can choose elements αij , βij , γi, δi, ηij , θij ∈ R in (5.3.1) such that at least
one of the elements δi, ηij , or θij is a unit, and such that we can lift the element F in (5.3.1) to an element L
in KQ with ∂(L) = f . Then Lemma 5.3 shows that the ring R satisfies P2,1, with l = F . Part (1a) follows
then from Corollary 4.5 and (1b) follows from Corollary 4.4. Furthermore, the existence of a surjective Golod
homomorphism onto R from a hypersurface ring, together with formula (5.0.1) and a result of Levin, see [6,
Proposition 5.18], prove (1c).

Remark 5.5 explains the statements (1b) and (1c) when m3 = 0.
(2) Assume now that r = v, hence p = 0. We see that the ideal I is then generated by the elements

w̃jw̃l, w̃j t̃, t̃h+1 with 1 ≤ j ≤ l ≤ q .

We setA = R/(w1, . . . , wq) andB = R/(t). Note that (A, a, k) is a local ring withA ∼= Q′/(τh+1), whereQ′

is the regular local ring Q′ = Q/(w̃1, . . . , w̃q) and τ is the image of t̃ in Q′; in particular, A is a hypersurface.
Also, note that (B, b, k) is a local ring whose maximal ideal satisfies b2 = 0. Then R is isomorphic to the
fiber product A×k B. Since A and B are both Golod rings, [16, Théorème 4.1] implies that R is a Golod ring,
establishing (2a). Also, by [21], the algebra ExtR(k, k) is then the coproduct of the algebras ExtA(k, k) and
ExtB(k, k); see loc. cit. for the definition of the coproduct. Since b2 = 0, the Yoneda algebra ExtB(k, k) is
generated by its elements of degree 1. The Yoneda algebra of the hypersurface A is generated in degrees 1 and
2. It follows that the coproduct is generated in degrees 1 and 2, establishing (2b).

By a result of Ghione and Gulliksen [9] and formula 5.0.1, the fact that R is Golod implies that PRM (t) is
rational, with denominator (1 + t)v(1− vt). The more precise denominator 1− vt in (2c) requires additional
discussion. To compute PRM (t) we use a method employed in the proof of [5, Corollary 4.4]. By [8, Rem. 3]
one has ΩR2 (M) = K ⊕ L, where K is an A-module and L is a B-module. Using further a formula in [8,
Thm. 2], we have

PRM (t)− βR0 (M)− βR1 (M) · t = PRK (t) · t2 + PRL (t) · t2(5.5.1)

=
PAK (t) · PBk (t) + PAk (t) · PBL (t)

PAk (t) + PBk (t)− PAk (t) · PBk (t)
· t2.

Since A is a hypersurface, we have that PAk (t) = 1/(1− t), and the Poincaré series of every finitely generated
A-module can be written as a rational function with denominator 1 − t, since every A-module M has an
eventually periodic resolution. Since b2 = 0 and rankk(b/b2) = v − 1, we have that PBk (t) = 1/(1 − (v −
1)t) and the Poincaré series of every finitely generated B-module can be written as a rational function with
denominator 1−(v−1)t. Plugging these formulas into (5.5.1) we obtain that PRM (t) can be written as a fraction
with denominator 1− vt, establishing (2c). �

If (R,m, k) is a d-dimensional local Cohen-Macaulay ring of multiplicity e, then R is said to be stretched if
there exists a minimal reduction x = x1, . . . , xd of m (that is, there exist d elements x1, . . . , xd of m such that
mr+1 = (x1, . . . , xd)m

r for some non-negative integer r) such that R/(x) is stretched. Standard arguments
allow us to reduce computations of Poincaré series over R to computations over the stretched artinian local
ring R/(x1, . . . , xd), and we obtain:

Corollary 5.6. Let (R,m) be a d-dimensional stretched local Cohen-Macaulay ring of type r. Set mult(R) = e

and rankk(m/m2) = v. There exists then a polynomial dR(t) ∈ Z[t] such that dR(t) PRM (t) ∈ Z[t] for all
finitely generated R-modules M , where

dR(t) =

{
1− (v − d)t if r = v − d;

(1 + t)v−d(1− (v − d)t+ t2) if r 6= v − d.

6. GRADED RINGS AND KOSZUL ALGEBRAS

We give here graded versions of the main statements. While our results have been stated so far for local
rings, they can be stated similarly in the case that R = Q/I , with Q = k[x1, . . . , xn] with k a field and I a
homogeneous ideal, and with m denoting the irrelevant ideal (x1, . . . , xn). Furthermore, in the graded case,
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the hypotheses can be formulated into more suggestive language, as we shall point out below, and in particular
we obtain the applications to the study of the Koszul property mentioned in the introduction.

Let R be as above, and let K denote the Koszul complex on the images of the variables. Let H denote the
homology. Note that K and H are bigraded algebras. When we say that an element of K or H has bidegree
(i, j), the entry i denotes homological degree and the entry j denotes internal degree. If [z] ∈ Hi,j is nonzero
we set

d(z) = j − i.
When looking at the Betti table of the resolution ofR overQ given by Macaulay2 [11], which can be interpreted
as also describing the graded Hilbert series of H, the information d(z) = r indicates that the element [z] lies in
the rth line (strand) of the table.

With this terminology, we can restate conditions Zt,b,s and Pt,r as follows:

Pt,r: There exists [l] ∈ Hr such that for every [z] ∈ H with d(z) ≥ t, there exists [z′] ∈ H with d(z′) ≥ t−1
such that [z] = [z′][l].

Zt,b,s: There exists a set of cycles Z in K with d(z) ≥ t for all z ∈ Z and zz′ = 0 for all z, z′ ∈ Z, and such
that for every [v] ∈ H with d(v) = s there exists m ∈ N and zi ∈ Z, [ui] ∈ H with d(zi) ≥ b for each
1 ≤ i ≤ m, such that [v] =

∑m
i=1[zi][ui].

We now concentrate on the consequences of our results to the study of the Koszul property ofR. As recalled
earlier, [22, Corollary 1] shows that the map TorRi (m2, k)→ TorRi (m, k) induced by the inclusion m2 ⊆ m is
zero for all i ≥ 0 if and only if the Yoneda algebra ExtR(k, k) is generated in degree 1. Since R is a standard
graded k-algebra, the last statement is equivalent to the fact that R is a Koszul algebra.

We also consider a property that is stronger than Koszulness. As defined in [14], a local (or graded) ring
is said to be absolutely Koszul if the linearity defect of every finitely generated R-module is finite. While we
refer to [12] for the original definition of linearity defect, we mention that a module M has finite linearity
defect if and only if it has a syzygy N whose associated graded module grm(N) has a linear resolution over
the associated graded ring grm(R). In the graded case, if R is absolutely Koszul, then it is also Koszul, see [12,
Proposition 1.13].

As defined in the introduction, the linear strand of H is the set of elements [z] with d(z) = 1. The nonlinear
strands are composed of those elements with d(z) > 1. We say that the nonlinear strands of H are generated
by a set Z with Z ⊆ H if the nonlinear strands are contained in the ideal generated by Z in H. If the nonlinear
strands are generated by a subset Z of the linear strand, it follows that H is generated by the linear strand as a
k-algebra.

Theorem 6.1. Assume one of the following conditions holds:
(1) There exists an element [l] of bidegree (1, 2) such that the nonlinear strands are generated by [l], that is,

every element in the nonlinear strands of H is a multiple of [l].
(2) R>3 = 0 and there exists a set of cycles Z representing elements in the linear strand, with the property

that zz′ = 0 for all z, z′ ∈ Z, such that the set Z = {[z] | z ∈ Z} generates the nonlinear strand of H.
Then R is Koszul. Moreover, R is absolutely Koszul when (1) holds.

Proof. If (1) holds, then P2,1 holds. By Corollary 4.4, the induced maps TorR∗ (m2, k)→ TorR∗ (m, k) are zero.
This implies that R is Koszul.

One of the consequences of the hypothesis in (1) is that there are no elements in bidegree (1, i) with i > 2.
Consequently, the ideal I is quadratic and v(R) = 2. Let L denote a preimage of l in KQ and set h = ∂(L).
Note that h ∈ I r n3. We can apply then Corollary 4.5 with a = 1 and t = 2 to conclude that R is a
homomorphic image of a quadratic hypersurface via a Golod homomorphism, hence R is absolutely Koszul by
[12, Theorem 5.9].

If (2) holds, thenZ1,1,2 holds. We apply then the graded version of Theorem 3.1 to conclude that the induced
map TorRi (m2, k)→ TorRi (m, k) is zero, hence R is Koszul. �

There exist Koszul algebras that do not satisfy either of the conditions of the theorem, since, as noted in
[7], the fact that R is Koszul does not necessarily imply that the Koszul homology is generated by the linear
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strand. On the other hand, the fact that R is Koszul does impose conditions on the Koszul homology; see the
introduction for more details on known results. Of particular interest is the following reformulation of Lemma
1.3 from Section 1. The statement of this result was communicated to us orally by S. Iyengar, who arrived at it
in work with L. Avramov and A. Conca.

Proposition 6.2. If R is Koszul, then the nonlinear strands of H are contained in the set of matric Massey
products MH(K).

Proof. If R is Koszul, then the induced map TorR∗ (m2, k) → TorR∗ (m, k) is zero, hence the canonical projec-
tion R→ R/m2 is Golod, and thus small. Apply then Lemma 1.3 to see that H≥1(m2 K) ⊆MH(K). �

In the next section, we discuss an example of a graded algebra R with R>3 = 0 for which the nonlinear
strand is generated by the linear strand, but R is not Koszul, see 7.4. Thus, the converse of Proposition 6.2 does
not hold. Stronger hypotheses on the generation of Koszul homology such as the ones in our theorem are thus
needed in order to ensure R is Koszul.

7. EXAMPLES

We now proceed to give the relevant examples mentioned above. The computations here are done with
the help of the Macaulay2 package DGAlgebras written by Frank Moore, but all computations can also be
checked by hand (for example, see 7.6 below). In this section, k denotes a field of characteristic 0.

Let Q = k[X,Y, Z, U ], and R = Q/a for an ideal a. Set m = (x, y, z, u), with x, y, z, u the images of
X,Y, Z, U in R, respectively, and T1, ..., T4 the degree one variables of the Tate complex mapping to x, y, z, u,
respectively. As before, KR is the Koszul complex on (x, y, z, u) and HR is its homology algebra. If z ∈ KR

is a cycle, we denote by [z] its homology class in HR. Recall (e.g., [23]) that HR ∼= TorQ(R, k), and so the
Betti table of R over Q gives an indication in which bidegrees elements of HR reside.

We start by applying Theorem 6.1 to rings having the form R = Q/a where a is an ideal generated by
quadratic forms in (X,Y, Z, U); such rings were studied by Roos in [23]. We verify the conditions of Theorem
6.1 hold for 40+2=42 of the 104 rings in [23, Tables A-D], showing in particular that 40 of them are absolutely
Koszul.

7.1. For our first example, consider the ring R which is case 66 in [23, Table C]:

R = k[X,Y, Z, U ]/(XZ, Y 2, Y U, Z2, ZU, U2).

We claim that the nonlinear strand of HR is generated by a single element in bidegree (1, 2), i.e., it satisfies
Theorem 6.1(1). As a result, we can conclude that this ring is absolutely Koszul, hence Koszul. To do this, we
use the Macaulay2 package DGAlgebras.

In the following code, the set C is a list of cycles whose images (given by G) generate H (= HR) as a
k-algebra and P is the list of generators in G which are not in the linear strand. We define an ideal I in H
to be generated by the elements in P and all products hk with h, k ∈ G; this ideal is equal to the union of
all nonlinear strands of H, together with the zero element. Showing generation of the nonlinear strands by an
element in bidegree (1, 2) now reduces to checking ideal containment.

needsPackage "DGAlgebras"
R=QQ[x,y,z,u]/ideal(x*z,yˆ2,y*u,zˆ2,z*u,uˆ2)
K=koszulComplexDGA(R)
C=getGenerators(K)
H=HH K
G=generators H
P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1 then P=append(P,G_n)}
I=(ideal G)ˆ2+(ideal P) --I is the ideal of nonlinear strands of H
m=0; for n from 1 to length(G) do { if degree X_n =={1,2} then m=m+1 else continue}
M=sum(m, j-> G_j)
N=sum(m, j-> C_j)
J=ideal(M)
isSubset(I,J) -- returns true if the nonlinear strands are generated by M
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In this example, we see that the homology class of the cycleN = zT1 +(y+u)T2 +(z+u)T3 +uT4 generates
the nonlinear strands of HR, hence by Theorem 6.1(1), R is absolutely Koszul.

Moreover, a similar argument shows that 40 of the rings from [23, Tables A-D] have the nonlinear strand
of their Koszul homology algebra generated by a single element in bidegree (1, 2), and hence are absolutely
Koszul rings; these are cases 1-4, 8-10, 23, 25-28, 49, 50, 52, 53, 66-68, 70, 72, 75-83, and isotopes 46va,
66v5, 68v, 71v4, 72v2e, 75v2, 78v1, 78v2e, 78v3v, and 81va from [23, Tables A-D]. Indeed, in all these cases
we show that the homology class of the sum of generating cycles in bidegree (1, 2) found by DGAlgebras
can be taken to be such a generator.

The next example is a ring satisfying condition (2), but not condition (1), of Theorem 6.1.

7.2. Let R be the ring which is case 54 in [23]:

R = k[X,Y, Z, U ]/(X2, XZ, Y 2, Z2, Y U + ZU,U2).

The nonlinear strand of HR cannot be generated by a single element in bidegree (1, 2) as in the previous
example, which can be seen by computing the Betti table for R over Q:

0 1 2 3 4
total: 1 6 13 12 4

0: 1 . . . .
1: . 6 4 . .
2: . . 9 12 4

and observing there is no way for an element in bidegree (4, 6) to be a multiple of an element in bidegree (1, 2).
Next, we use the package DGAlgebras again to show that the nonlinear strand of HR is generated by a

finite set of classes of cycles with trivial self-multiplication, that is, the ringR satisfies condition (2) of Theorem
6.1.

R=QQ[x,y,z,u]/ideal(xˆ2,x*z,yˆ2,zˆ2,y*u+z*u,uˆ2)
m=ideal vars R; mˆ3==0
betti res(ideal R)
K=koszulComplexDGA(R)
C=getGenerators(K)
H=HH K
G=generators H
P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1 then P=append(P,G_n)}
I=(ideal G)ˆ2+(ideal P) --I is the ideal of nonlinear strands of H
Cyc = {C_0,C_2,C_3,C_6,C_7}
Cls = {G_0,G_2,G_3,G_6,G_7}
for m from 0 to length(Cyc)-1 do {

for n from 0 to length(Cyc)-1 do {
if Cyc_m*Cyc_n==0 then TrivMult=true else {TrivMult=false; break} }}

print TrivMult --returns true if Cyc has trivial self-multiplication
J=ideal Cls
isSubset(I,J) --returns true if the nonlinear strands are generated by Cls

In this example, the set Cyc is the desired generating set contained in the linear strand and its elements corre-
spond to the following cycles:

{xT1, zT3, zT1, zT1T3, xT1T3}.
The Macaulay2 code first checks m3 = 0, and then verifies that all the products of elements in Cyc are 0 and
that the nonlinear strand I is contained in the ideal generated by Cls (the images in H of cycles in Cyc). A
similar argument shows that the ring in case 71 of [23, Tables A-D] also satisfies Theorem 6.1(2); for that ring,
one can show that the set Cyc={C0, C1, C2, C7, C8, C9, C11, C15} is the desired generating set with trivial
self-multiplication.

Remark 7.3. Even among other rings with m3 = 0 in [23], there are limitations to Theorem 6.1(2): For
example, the ring in case 71v16 of [23] has no generating set satisfying this condition, despite being Koszul.
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Using DGAlgebras as above, we see that the ring

R = k[X,Y, Z, U ]/(X2, Y 2 + Z2, XY, Y Z,ZU,XZ + U2, XU),

has m3 = 0 and has HR generated by X1, ..., X17 such that X2
13 6= 0, hence the cycle corresponding to X13

cannot be a part of any set with trivial self-multiplication. However, without X13, we cannot generate the
nonlinear strand:

R=QQ[x,y,z,u]/ideal(xˆ2,yˆ2+zˆ2,x*y,y*z,z*u,x*z+uˆ2,x*u)
G=generators HH koszulComplexDGA(R)
X_13*X_13==0 -- returns false
P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1 then P=append(P,G_n)}
I=(ideal G)ˆ2+(ideal P) --I is the ideal of nonlinear strands of H
isSubset(I,ideal delete(G_12,G)) -- returns false

Hence no set satisfying the conditions of Theorem 6.1(2) can exist for this ring, but R is Koszul by [23, Main
Theorem].

The next example shows that generation of HR by the linear strand alone cannot detect Koszulness of R.

7.4. Consider the ring which is case 55 in [23]:

R = k[X,Y, Z, U ]/(X2 +XY,XZ + Y U,XU, Y 2, Z2, ZU + U2).

The graded Betti table of R over Q is the same as for the ring in 7.2. Moreover, we see that HR is generated
by the linear strand. This code can also be used to show the ring in 7.2 is generated by its linear strand.

R=QQ[x,y,z,u]/ideal(xˆ2+x*y,x*z+y*u,x*u,yˆ2,zˆ2,z*u+uˆ2)
betti res(ideal R)
H=HH koszulComplexDGA(R)
G=generators H
for n from 0 to length(G)-1 list degree G_n
betti res(coker vars R, LengthLimit =>7)

We see that HR has 6 generators in bidegree (1, 2) and 4 generators in bidegree (2, 3), all in the linear strand;
further, the resolution of k over R is not linear, hence R is not Koszul.

Remark 7.5. The Koszul homology algebras of the rings in 7.2 and 7.4 share the same Hilbert series and are
both generated by the linear strand, yet one ring is Koszul and the other one is not. Thus, generation by the
linear strand and “good” Hilbert series of the Koszul homology are not sufficient to decide whether the ring is
Koszul. The particularities of the generation of certain nonlinear strands in the Koszul homology seem to be
relevant factors in detecting good homological behavior.

We now showcase the applicability of our results with a non-quadratic example: a non-compressed level
algebra of socle degree 4, with defining ideal generated in degree 3.

7.6. Let Q = k[A,B,C,D], and let I be the ideal

(A3, A2C,A2D,AC2, B3, B2C,B2D,BC2, BD2, C2D,AB2 + CD2, ABD − C3, BCD +D3),

and set R = Q/I . Write m for the maximal homogeneous ideal of R and write a, b, c, d for the images of
the variables. As before we denote by T1, . . . , T4 the variables of the Tate complex in degree one, mapping to
a, b, c, d. One computes with Macaulay2 the Betti table of R over Q:

0 1 2 3 4
total: 1 13 22 12 2

0: 1 . . . .
1: . . . . .
2: . 13 19 5 .
3: . . 3 6 .
4: . . . 1 2

Proposition. The following hold:
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(1) The last strand of the Koszul homology H is generated by one element in H1,3.
(2) R→ R/m4 is a Golod homomorphism and R/m4 is a Golod ring.

(3) PRk (t) =
(1 + z)3

1− z − 12z2 − 10z3 − z4 + 2z5
.

To give a feel for how computations in HR are done by hand, and because the computations in this example
are not too tedious, we give a proof that does not rely on the DGAlgebras package in Macaulay2.

Proof. Using Macaulay2, we check that the reduced Gröbner basis of I with respect to the lexicographic order
is composed of the elements:

A3,A2C,A2D,AC2, B3, B2C,B2D,BC2, BD2, C2D,AB2 + CD2,

ABD − C3BCD +D3, BC3, AD3 + C4, D4, CD3, C5.

Using this information, one sees that c4 and acd2 generate the two-dimensional socle of R.
Note that the element k1 = (ac− bd)T1 + c2T3 ∈ K1,3 is a cycle. We will show that its class [k1] generates

H4,8 and H3,7.

Claim 1. H4,8 is generated by the following two elements:

[c4T1T2T3T4], [acd2T1T2T3T4]

This can be seen from the fact that c4, acd2 form a basis for the socle of R.

Claim 2. H3,7 is generated by the following element:

[c4T1T3T4]

To verify this claim, note first that c4T1T3T4 is a cycle. Then, compute the module of boundaries m3∂(K4)
as being generated by the classes of the following elements:

c4T1T2T3, c
4T1T2T4, acd

2T1T2T4, acd
2T1T3T4, c

4T2T3T4, acd
2T2T3T4, acd

2T1T2T3 − c4T1T3T4
and check that [c4T1T3T4] /∈ m3∂(K4). Since dim H3,7 = 1, this proves the claim.

Consider now the elements k2 = c2T1T2T4 and k3 = (bc + d2)T2T3T4 − b2T1T2T4, and k4 = c2T1T4
which are also cycles. To verify that [k1] generates H4,8 and H3,7, we note the following relations:

k1k2 = c4T1T2T3T4

k1k3 = acd2T1T2T3T4

k1k4 = −c4T1T3T4
We conclude that the ring R satisfies the graded version of condition Z2,2,4, as stated in Section 6.
Corollary 3.5, together with a usage of Macaulay2 for computing the Poincaré series of R/m4 over the

polynomial ring, gives:

PRk (z) =
(1 + z)4

1− z(15z + 30z2 + 23z3 + 7z4) + 2z2(1 + z)4
=

(1 + z)3

1− z − 12z2 − 10z3 − z4 + 2z5
.

�
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[24] Maria Evelina Rossi and Liana M. Şega. Poincaré series of modules over compressed Gorenstein local rings. Adv. Math., 259:421–

447, 2014.
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