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                                       Abstract 

Non-normally distributed response values, such as count data for instance, create 

challenges for factor screening. One problem is that variances may vary from run to run. 

Another is the choice of screening design for such responses. In this paper, we assess some 

screening performances for three popular screening designs: a definite screening design, a 

minimum resolution IV design and a Plackett-Burman design. Four distributions, two 

binomial, one gamma and one Poisson, are chosen for the response values. For each 

distribution we test out if it is best to use the raw data, a variance stabilizing transformation of 

the data or perform a generalized linear modelling assuming three factors are active. From our 

investigations, two-level non-regular designs gave the highest success rate in identifying the 

subset of active factors and a variance stabilizing transformation turned out to perform equally 

good or better than generalized linear modelling in most cases.  

 

Keywords: screening designs, variance-stabilizing transformations, generalized linear models. 

1. Introduction 

At the early stage of an experimental work, there may be many factors that potentially 

can be active. It is then common to perform a screening to find out which factors that really 

affect the response. Often the subspace of active factors is of low dimension, maybe 2, 3 or 4 

(Box and Tyssedal1,2). Box and Meyer3 suggested 0.25 to be a reasonable probability that a 

factor is active.  
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Two-level designs have been the preferred choices for factor screening. Responses are 

often assumed to be normally distributed, models assumed to be linear and the analysis, 

although not always trivial, has benefited from the widely developed theory of linear models.  

However, there are many practical situations where the assumptions of linear models and 

normally distributed responses are not even close to being valid. Typical examples are count 

data, often modeled as binomial or Poisson distributed. If the data are counts of rare events, 

the normal distribution is clearly not a good approximation and, for the aforementioned  two 

distributions, the variances and expectations are in all cases closely related. One option is then 

to use a variance stabilizing transformation of the response values whose distribution is often 

better approximated with a normal distribution. Another possibility is to use the framework of 

generalized linear models (GLM) at the expense of stepping out of the world of linear models.  

The simplest approach for count data is to use the method of least squares on a 

transformation of the response values obtained from a standard design. The standard variance 

stabilizing transformation for a binomial distributed random variable, X, is given by 

                                  
X

(X) arcsinh
n

 
   

 
 ,                                                                (1) 

where n is the number of trials, and for a Poisson distributed random variable, Z, it is 

  ZZ g . Various improvements exist, see Yu4 . For binomial distributed data, Mee5 

suggested to use the Freeman and Tukey6 transformation given by  

                                  
X X 1

(X) arcsin arcsin
1 1

h
n n

   
           

.                                         (2) 

This can be shown to give an approximate constant variance over a wider range of the 

probability, p , than (1). The Freeman and Tukey6 transformation for the Poisson case is  

                                             1h Z Z Z   .                                                                 (3) 

For the number of expected counts greater or equal 5, this transformation has better variance 

stabilizing properties than the single square root but performs considerably worse when the 

expected count is less than 2.5 (Mee5).  

For binomial distributed data, the probability range for which the transformation (1) 

and (2) give an approximate constant variance increases with n . A typical such range is the 
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


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

n

1
-1 ,

1

n
.  However, in performing an experiment certain level combinations may 

cause p to be close to its boundary in which case the response variances will be smaller even 

if they are transformed. Also, for Poisson distributed response values, small counts will cause 

a problem. It is therefore tempting to use generalized linear models for modelling such data.  

 Aguirre7 developed a Bayesian approach for analyzing data from experiments where 

the relation between the response and its explanatory variables was given by a generalized 

linear model and demonstrated its performance on data from a binomial distribution, a 

Poisson distribution and a gamma distribution.  All the data were obtained from a definitive 

screening design (DSD) (Jones and Nachtsheim8) with 13 runs. His procedure, particularly 

designed for the DSD, is a sequence of several steps and is, using his own words, not to be 

considered as a rigid procedure. 

The motivation for this paper is three-fold. First, Aguirre7 simulated data from a DSD 

for his analysis. How will other types of screening designs, like two-level Plackett-Burman 

(Plackett and Burman9) and the minimum run resolution IV (Webb10) designs perform for 

data obtained from the same type of distributions? Second, for normally distributed data there 

are several alternative analyzing methods (Tyssedal and Hussain11). Would any of these also 

work well for non-normal responses? Third, screening is about separating out the subset of 

active factors from the others. With data generated from one of the three types of designs 

given above, is it then preferable to use a variance stabilizing transformation on the responses, 

GLM modelling or simply the raw data?  

This paper is organized as follows. In Section 2 we give some motivational examples. 

Section 3 compares the performance of different screening designs on some given non-normal 

responses. In Section 4 a simulation study is conducted to test the overall performance of 

these designs. We devote Section 5 for reflections and some comparisons with earlier results 

obtained for normally distributed responses. Concluding remarks are given in Section 6.   

 

2. Motivational examples 

To investigate the performance of his proposed analysis procedure for non-normal 

responses, Aguirre7 used the DSD to generate 13 response values for three models, one 
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binomial, one Poisson, and one gamma. The thirteen run DSD  13DSD with the response 

values is given below.   

Table 1: The 13 run Definitive screening design for 6 factors, where the three responses are 

generated from the binomial, gamma, and Poisson models given in equation (4), (5) and (6). 

Runs A B C D E F binomialy  
gammay  

Poissony        

1 0 1 -1 -1 -1 -1 0 0.452 9 
2 0 -1 1 1 1 1 10 14.368 156 

3 1 0 -1 1 1 -1 5 0.043 16 

4 -1 0 1 -1 -1 1 9 2.105 25 

5 -1 -1 0 1 -1 -1 9 2.800 92 

6 1 1 0 -1 1 1 1 2.159 39 

7 -1 1 1 0 1 -1 7 3.961 26 

8 1 -1 -1 0 -1 1 10 2.973 242 

9 1 -1 1 -1 0 -1 10 14.455 254 

10 -1 1 -1 1 0 1 0 0.138 4 

11 1 1 1 1 -1 0 9 14.707 92 

12 -1 -1 -1 -1 1 0 5 0.605 96 

13 0 0 0 0 0 0 3 0.420 16 

 

The DSDs are three level designs and as such allow the estimation of quadratic terms. 

The one in Table 1 consists of six mirror image pairs in scaled units -1 and 1 with two factor 

settings of zero added to each column and with the last run as a center run. With the center 

run added for all factors, the design given in Table 1 projects onto a full 
23  design in every 

two dimensions. DSDs have several appealing properties. Main effect columns are not aliased 

with other main effect columns, with two-factor interaction columns or quadratic effect 

columns. The two-factor interaction columns, however, are aliased with each other as are the 

quadratic effect columns. Two-factor interaction columns and quadratic effect columns are 

also aliased.  

The three models used by Aguirre7 to obtain the three columns of response values 

were: 

 
i

i i-

1
y ~ Binomial  distributed (10, ) with =  and = 2A-3B+3C+ 2BC

1+ e
i ip p


 ,          (4) 

i

i i

1
y Gamma distributed with  = 2 and = e  where 

2
r

                                                   (5) 

        i 0.5A 0.5B C BB 0.5BC      ,  

i

i i iy  Poisson distributed with  e  and  = 3+0.5A-B+0.5C+BB+0.5BC
  .              (6) 
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For the gamma distribution, r is the shape parameter,   the scale parameter, and its  

variance stabilizing transformation is the logarithm. We note that Aguirre (2016) used the 

canonical link for the binomial and Poisson distributed data and the variance stabilizing link 

for the gamma distributed data.  

Screening procedures can mainly be classified as factor-based or effect-based.  An 

explanation of the differences between these two procedures is given in Tyssedal and Niemi12. 

The goal of a factor-based procedure is to identify the subspace of active factors  

(Box and Tyssedal2 ). The functional relationship between the response and the factors may 

then be further explored afterwards. Standard factor-based procedures normally start with 

investigating how well all subsets of m-factors, 1,2, ,m k , where k  seldom exceeds 3 or 

4,  explain the variation in the data according to some measure(s) (Box and Meyer3 , Tyssedal 

et al.13). An evaluation of the measure(s) is performed to decide how many factors and which 

subset of factors are likely active. The more factors that are active, the more difficult will it be 

to separate among subsets.  Several methods of analysis are preferably used and expert 

knowledge may be taken into account. A list of candidate sets of active factors can be created 

(Tyssedal and Hussain11) and follow-up runs may be needed.  

To investigate if such a procedure also could work for non-normally distributed data, we, 

for every subset of three factors, denoted { 321  x, x,x }, defined and fitted a search model of 

the following type  

                      


2
3

1

33

1

0 i

i

iij

ji

iiji

i

i xxxxY                                              (7) 

to the data, where 0  is the intercept, i  and ij represent half the main effects and half the  

two-factor interactions respectively, ii  represent the sizes of the quadratic terms and  is an 

error term with mean 0 and variance 
2 . Of course, all of the error terms are assumed to be 

independent. For the raw data and the transformed data the fit was evaluated using the mean 

squared error, MSE = 

 
2

1

1

N

i i

i

ˆy - y

N k



 


 , where N is the number of runs and k  is the number of 

terms (intercept excluded), and iŷ  is the fitted response.  

The natural extension to the GLM is then to let  
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                             
3 3 3

2

0

1 1

i i ij i j ii i

i i j i

x x x x    
  

     x                                             (8) 

and then evaluate the fit using the deviance. The corresponding link function,  .g  is then 

given by 

                                             g  x x  

where  .  is the expectation function, and the deviances are given by:  

                       
1

2 log log
ˆ ˆ

N
i i

Binomial i i

i i i

y n y
D y n y

n 

    
      

    
  ,                                   (9) 

                           









 

 i

i
N

i

iPoissonGam m a

y
yDD

̂
log2

1

                        (10) 

for models with a constant term. 

The model given in (7) is motivated by the fact that the 
13DSD  is a three level design 

and with a center run added for all factors allows the estimation of all 10 terms with a 

reasonable D-efficiency when applied to normally distributed data (Tyssedal and Chaudhry14 

).  Clearly, for four active factors such a model has more terms than can be estimated.  

In fitting a model with 10 terms to 13 response values, several subsets of factors may 

have a low MSE/deviance due to the fact that factor effects columns in the search model and 

those in the correct model may be “correlated”, and the correct subset of active factors may 

not necessarily be the one with the smallest MSE/deviance. In addition, the amount of noise 

matters. The correct subset of active factors will, however, often be among the ones with the 

smallest MSE (Wolters and Bingham15) or smallest deviance. Tables 2, 3 and 4 show the 

effect of this procedure on the data in Table 1 handling them as untransformed, transformed 

or with the same link functions for GLM as in Aguirre7. Used on the binomial distributed 

data, GLM picked a clear winner while both for the untransformed and transformed responses 

there are four subsets that need further investigation. For the gamma distributed response 

values, there are in each case two models that separate out from the others and only the 

untransformed case had the correct subset on the top. All three procedures gave a clear winner 

for the Poisson distributed response values.  
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Table 2: The five subsets of factors ranked according to the smallest MSE for untransformed and 
transformed data and according to smallest deviance using logistic regression (GLM) for the binomial 
data in Table 1 . 

Untransformed Transformed GLM 

Subset MSE Subset MSE Subset Deviance 
B  C  E 1.80 B  C  D 0.021 A  B  C 0.029 

B  C  D 2.14 A  B  C 0.023 B  C  D 6.78 

A  B  C 2.92 B  C  E 0.025 B  C  E 8.57 

B  C  F 3.40 B  C  F 0.035 B  C  F 11.61 

B  D  E 13.02 A  B  D 0.185 A  B  E 15.20 

 

Table 3. The five subsets of factors ranked according to the smallest MSE for untransformed and 

transformed data and according to smallest deviance using GLM with variance stabilizing link for the 
gamma distributed data in Table 1.  

Untransformed Transformed GLM 

Subset MSE Subset MSE Subset Deviance 
A, B, C 3.08 B, C, E 0.37 B, C, E 1.775 
A, C, D 3.87 A, B, C 0.40 A, B, C 1.896 
A, C, E 6.81 B, C, F 0.54 B, C, F 2.575 
A, C, F 6.88 B, C, D 0.58 B, C, D 2.637 
B, C, D 12.30 A, C, E 0.62 A, C, E 2.947 

 
 
Table 4: The five subsets of factors ranked according to the smallest MSE for untransformed and 
transformed and according to the smallest deviance using GLM with canonical link for the Poisson 
distributed data in Table 1.  

Untransformed Transformed GLM 

Subset MSE Subset MSE Subset Deviance 
A, B, C 497.18 A, B, C 3.580 A, B, C 3.795 
A, B, E 866.52 A, B, E 16.334 A, B, D 69.287 

A, B, F 1093.88 A, B, F 17.344 A, B, D 70.556 
A, B, D 1109.72 A, B, D 18.013 A, B, F 74.063 
B, C, E 3374.60 B, C, E 32.643 B, C, F 88.453 

 

To investigate if we were able to identify the correct terms and maybe resolve such 

ambiguities as happened for the binomial and gamma distributed data in the transformed and 

the untransformed case, subsets with approximately the same MSE were expanded to a model 

of the form given in (7). Backward elimination with alpha to remove = 0.15 was then performed 

to remove terms. Similarly, subsets with approximately the same deviance were investigated 

for the GLM modelling. However, this did not change the ranking among models. As Aguirre7, 

we were successful for the Poisson distributed data. For the gamma distributed data Aguirre did 

not find factor A, while we at least have the correct subset of factors as one out of two plausible 

explanations for the variation in the data. In our case, the GLM was superior for the binomial 

distributed data, and backward elimination resulted in the model given in (4) and one additional 
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AC interaction. Aguirre’s procedure ended up with the correct model. The success of the GLM 

modelling compared to the others in this case is not surprising considering the fact that the data 

have five values at the extreme and several others rather close, and our procedure also benefited 

from using the correct link function.    

3. Comparing screening designs for non-normally distributed 

responses 

The use of generalized linear models for modelling raises several issues with respect to 

the experimental design used for collecting the data. One is that inference is based on 

asymptotic theory but screening experiments seldom have large samples. Inferential problems 

related to the use of GLM for analysing very small unreplicated experiments are well 

demonstrated in Aguirre-Torres and Vara16 but considered less problematic for experiments 

with larger run sizes (Lewis et al.17, Myers et al.18). Optimal design criteria are frequently 

used, at least to have a benchmark for the choice of design. Woods et al.19 demonstrated the 

use of the Bayesian information capacity criterion for selecting designs where the response 

variable is approximated by a generalized linear model. Optimal design criteria are, however, 

more directed towards estimation and prediction than towards screening, and for nonlinear 

models the obtained designs will not only depend on knowing the model, but also the 

distribution, the size of the parameters and, for a GLM modelling, also the link function. We 

refer to Khuri et al.20 and Atkinson and Woods21 for reviews of optimal designs for 

generalized linear models.      

It seems therefore worthwhile to investigate how effective standard screening designs, 

normally evaluated based on projection properties and/or desirable alias structure, are when 

responses are non-normal. Examples of two-level designs with good projection properties are 

the minimum run resolution IV  MinresIV designs (Webb10) and the Plackett-Burman  PB

designs (Plackett and Burman9).  

A MinresIV  design for six factors in twelve runs ( 12MinresIV ) is given in Table 5.  

The MinresIV  designs belong to the class of nonregular two-level designs and can 

accommodate 𝑘 factors in 2𝑘 runs. Thereby they have very flexible run sizes, but at the 

expense of the number of experimental factors allowed. Their runs consist of k mirror image 

pairs, and as a result, main effects and two-factor interactions are not aliased. This is one of 

the reasons for their attractiveness. However, not all main effect columns are orthogonal and 
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main effects may thus be aliased with each other. The same applies to two-factor interaction 

columns.  

 

Table 5:  The MinResIV12 design for 6 factors in 12 runs. The design is taken from Design 

Expert. 

Run         A         B        C         D         E        F 

1 -1 1 -1 -1 -1 -1 

2 1 -1 1 1 1 1 

3 -1 -1 1 -1 -1 1 

4 1 1 -1 1 1 -1 

5 -1 -1 1 1 1 -1 

6 1 1 -1 -1 -1 1 

7 -1 -1 -1 -1 1 1 

8 1 1 1 1 -1 -1 

9 1 -1 -1 1 -1 -1 

10 -1 1 1 -1 1 1 

11 1 -1 1 -1 1 -1 

12 -1 1 -1 1 -1 1 

 

 

Another well-known class of screening designs is the orthogonal nonregular two-level 

designs. These apparently exist for all number of runs, 4N s , 3s  , where s  is an integer.  

Their projection properties are known to be good. Box and Tyssedal1 defined projectivity of 

two-level designs as follows: A N k  design with N runs and k  factors each at two levels is 

said to be of projectivity 𝑃 if the design contains a complete 2 p factorial in every possible 

subset of 𝑃 out of the 𝑘 factors, possibly with some points replicated. Projection properties 

thus concern the properties of a design when restricted to a subset of 𝑃 factors and thus fit 

well into the intention of screening. The alias pattern of the orthogonal nonregular two-level 

designs is often described as complex, but if only a few interactions are active, it is possible to 

take advantage of that effects are only partially aliased and hence can be estimated from the 

data.  

An example of an orthogonal nonregular two-level design, the twelve run PB ( 12PB ) design, 

is given in Table 6. 

 

 

 

 



10 

 

Table 6: The 12PB  design for 11 factor in 12 runs. 

Run   A     B     C    D     E     F    G    H      I      J    K 

1 1 1 -1 1 1 1 -1 -1 -1 1 -1 

2 -1 1 1 -1 1 1 1 -1 -1 -1 1 

3 1 -1 1 1 -1 1 1 1 -1 -1 -1 

4 -1 1 -1 1 1 -1 1 1 1 -1 -1 

5 -1 -1 1 -1 1 1 -1 1 1 1 -1 

6 -1 -1 -1 1 -1 1 1 -1 1 1 1 

7 1 -1 -1 -1 1 -1 1 1 -1 1 1 

8 1 1 -1 -1 -1 1 -1 1 1 -1 1 

9 1 1 1 -1 -1 -1 1 -1 1 1 -1 

10 -1 1 1 1 -1 -1 -1 1 -1 1 1 

11 1 -1 1 1 1 -1 -1 -1 1 -1 1 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

The 12PB design has two non-isomorphic projections onto six factors (Lin and 

Draper22 ). One of the designs, design 12PB (6.1), has no mirror image run (columns A to F in 

Table 6), while the other design, 12PB (6.2), has two mirror image runs (for instance run 7 and 

10 in columns A to E and G).  According to Wang and Wu23, design 12PB (6.1) has higher 

efficiency than design 12PB (6.2) and is therefore normally preferred when 6 columns are to be 

selected from a 12PB design.  

We used the same models as Aguirre7, given in (4), (5) and (6), and simulated new 

response values, 13 with the 13DSD  and 12 for the 12MinresIV and 12PB (6.1) designs for each 

choice of distribution. The obtained response values are given in the Tables 7, 9 and 11. For 

every subset of three factors, we fitted a search model of the same form as in (7) with the 

natural extension (8) for the GLM modelling to the response values from the 13DSD , and a 

search model of the form 

           
3 3

0 123 1 2 3

1

i i ij i j

i i j

Y x x x x x x    
 

                                                   (11) 

to the response values from the two-level designs with the same natural extension to the 

GLM. Tables 8, 10 and 12 show the five subsets with the smallest MSE (Proj1 , , Proj5) for 

the untransformed and transformed case and the five with the smallest deviance when the 

GLM was used.  
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Table 7: Binomial distributed responses obtained from the
13DSD , 12MinResIV and 12PB (6.1) 

designs. 

YDSD 0 10  2  8  8  4  3 10 10  0 10  8  5 

YMinres IV 0 10 10  0  9  0  3 10 10  3 10  0 

YPB 0  4 10  0  9  6 10  0 10  3 10  8 

 

Table 8. The five subset of factors with the smallest MSE/deviance (M/D) for all three 

designs with binomial distributed response values using untransformed (U), transformed (T) 

and GLM modelling (G) of the data. 

 Subset Proj1 M/D Proj2 M/D Proj3 M/D Proj4 M/D Proj5 M/D 

 DSD B C E 3.24 B C F    3.24 A B C    3.24 B C D    4.86 B E F 10.44 
U MinResIV B C F 0.08 A B C   0.08 B C D    0.08 B C E    0.11 A B E 11.33 

 PB A B C 0.41 A B F   1.50 B C D    3.33 B D F   3.75 B C F   4.50 

 DSD A B C 0.04 B C F   0.04 B C E    0.05 B C D   0.06 A B E   0.15 

T MinResIV B C D 0.001 B C F  0.001 A B C  0.001 B C E 0.002 A B E   0.16 

 PB A B C 0.003 A B F   0.03 B C D    0.04 B C E   0.05 B C F   0.05 

 DSD A B C 4.8e-10 B C F 11.36 B C E 17.67 B C D 19.26 A B F 23.32 

G MinResIV A B C 1.43 B C F   1.43 B C D   1.43 B C E   2.26 A B E 35.92 

 PB A B C 1.18 A B F   7.22 B C D 13.96 B C E 16.08 B C F 18.11 

 

 

Table 9: Gamma distributed  response values obtained from the 13DSD , 12MinResIV and 12PB

(6.1) designs. 

YDSD 0.39  3.12  0.80  1.19  0.20  4.05 7.24  2.67  4.58  0.09 11.72  0.74  0.51 

YMinres IV 0.23  5.15  5.94  0.44  0.34  0.90  2.66  7.28  1.68  1.82 11.72 0.10 

YPB 0.64  1.89 16.16  0.16  0.34  2.45 7.24  0.36  4.58  1.82 11.72 0.74 

 

Table 10: The five subset of factors with the smallest MSE/deviance (M/D) for all three 

designs with gamma distributed response values using untransformed (U), transformed (T) 

and GLM modelling (G) of the data. 

 Subset Proj1 M/D Proj2 M/D Proj3 M/D Proj4 M/D Proj5 M/D 

 DSD A B C 0.58 A C D 3.04 A C F 3.45 A C E 3.53 B C D 4.21 

U MinResIV A C D 2.41 A C F 3.73 A C E 3.83 B C D 4.75 D E F 4.78 

 PB A B C 1.89 A B F 2.28 A B D 3.37 A B E 3.65 A C F 4.47 

 DSD A C E 0.13 A C D 0.18 A B C 0.29 A C F 0.29 C D E 1.37 

T MinResIV A C E 0.38 D E F 0.49 A C D 0.76 A D F  0.77  A B E 0.82 

 PB A B C  0.15 B E F 0.48 A C F 0.53 B C D 0.66 C D E 0.84 

 DSD A C E 0.66 A C D 0.89 A B C 1.39 A C F 1.42 C D E 6.19 

G MinResIV A C E 2.13 D E F 2.64 A C D 3.96 A B C 4.08 A D E 4.23 

 PB A BC  0.89 B D F 2.64 A C F 2.96 B C D 3.48 A B F 4.37 

 

 

Table 11: Poisson distributed response values obtained from the 13DSD , 12MinResIV and 12PB

(6.1) designs. 

YDSD 9 140 19 13 79 33 41 243 259 4 93 83 17 

YMinres IV 5 234 89 6 79 12 103 89 259 31 237 6 

YPB 13 29 257 4 88 74 260 16 87 29 234 93 
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Table 12: The five subset of factors with the smallest MSE/deviance obtained for all three 

designs with Poisson distributed  response values  using untransformed (U), transformed (T) 

and GLM modelling (G) of the data. 
 Subset Proj1   M/D Proj2 M/D Proj3  M/D Proj4   M/D Proj5 M/D 

 DSD A B C  383.22 A B E 797.2 A B D 1013.2 A B F 1076.5 B C E 3736.9 

U MinResIV A B C   12.16 A B E 542.9 A B F 682.83 A B D  696.83 B C E 2726.8 

 PB A B C   74.91 A B F 125.5 A B D 518.3 A B E   558.5 B C E 2093.8 

 DSD A B C     0.92 A B E 14.39 A B D 15.22 A B F   15.27 B C E   36.34 

T MinResIV A B C     0.44 A B E 12.24 B C E 19.01 A B F   19.39 A B D   19.87 

 PB A B C     0.58 A B F   4.13 A B D 13.19 A B E   13.58 B C E   17.92 

 DSD A B C     1.88 A B D 66.40 A B F 69.51 A B E   76.33 B C E   94.18 

G MinResIV A B C     2.74 A B E 69.66 B C E 106.42 A B F  107.43 A B D 110.12 

 PB A B C     3.55 A B F 24.26 A B D 76.41 A B E   78.73 B C E   78.73 

 

For the Poisson data the correct subset of active factors was found with no ambiguity for 

all three designs, independent of if raw data, transformed data or GLM modelling was used. 

Only the 12PB (6.1) succeeded in all cases for the gamma distributed responses. For the 

binomial distributed responses, GLM modelling was successful for all three designs but the 

12MinresIV  design had three subsets with equal values for the smallest deviance. 

4. A simulation study to test the overall performance of the designs 

The results obtained in Section 3 did not leave any clear answer about whether to 

transform the data or not, or whether a GLM modelling should be preferred. In fact, the 

choice of design seems to matter more. To get a better impression of the overall performance 

for each of the three ways of handling the data, we used four distributions: binomial with 

n=10 and n=100, gamma and Poisson. The -functions were allowed to be of two forms:  

                         
3 3 3

2

0

1 1

i i ij i j ii i

i i j i

x x x x    
  

     x                                          (12) 

  and 

                           
3 3

0 123 1 2 3

1

i i ij i j

i i j

x x x x x x    
 

    x .                                (13) 

As in Tyssedal and Chaudhry14, we for each simulation, randomly draw each  

model coefficient uniformly from an interval. The constant term was held fixed at 2. The 

interval [-1, 1] was chosen to represent small values and the interval [-3, 3] to represent large 

values.  
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For the -function  given in (12) we investigated the following four cases:  

1. All coefficients are drawn uniformly from the interval [-1, 1]. 

2. All terms in the set  1 2 3 12 13 23, , , , ,       are drawn uniformly from [-1, 1] and all terms  

     in  11 22 33, ,    from the interval [-3, 3]. 

3. All terms in the set  1 2 3 12 13 23, , , , ,      are drawn uniformly from [-3, 3] and all terms 

    in  11 22 33, ,    from the interval [-1, 1]. 

4. All coefficients are drawn uniformly from the interval [-3, 3]. 

 

Since the coefficients are chosen in a low/high manner, one way to summarize the 

results is to define two factors 1F  and 2F  where 1F  represents the interval from which each of 

 11 22 33, ,    are randomly chosen and 2F  similarly represents  1 2 3 12 13 23, , , , ,      . For 

each of the four distributions, our simulation study will then constitute a 2 2 3 3    design 

with two two-level factors 1F  and 2F , both coded to -1 and 1 for low and high levels 

respectively, and two three level factors: “way of handling data” and “type of design”. For the 

last two factors we introduced two contrasts for each as follows:  

 

Way of handling data 
1T  2T  Type of design 

1D  2D  

  Untransformed -1 -1   13DSD  -1       -1 

  Transformed  1      0   12MinresIV   1        0 

  GLM  0  1   12PB (6.1)  0        1 

 

Hence, 1T  and 2T compare the effect of transforming the data and the effect of using GLM to 

having them untransformed respectively, and similarly 1D  and 2D  compare the 12MinResIV

and the 12PB (6.1) to the 13DSD . For each simulation and for every subset of three factors, we 

for the untransformed and transformed data fitted a search model of the form given in (7) to 

the response values obtained from the 13DSD  and a search model of the form given in (11) to 

the data obtained from the 12MinresIV and 12PB (6.1) designs with the natural extensions to 

the GLM. For each coefficient scenario, way of handling data and design, 1000 simulations 

were carried out. The number of times the model containing the correct subset of active 
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factors had the smallest MSE for the untransformed and transformed data was recorded and 

similarly for the GLM using the deviance. These numbers, divided by 1000, will be denoted 

success proportions.   

Our overall performance test does not follow all the steps of a factor based screening 

procedure. There are several reasons for our simplifications. First, the two level designs are 

both P=3 designs, and the 
13DSD  is also able to estimate all the terms in the search models 

given in (7 ) and (11) with natural extensions to the GLM modelling. Hence, to be able to 

identify three active factors, given that three really are, is something we hope and expect from 

these designs. If two or less factors are active, all three designs have convincing projection 

properties and the search models with extensions have rather few terms. We do not expect 

much difference between the designs in this case. For more than three active factors, our 

procedure runs into problems having too many terms. For some ways of handling this with the

12PB design, we refer to Tyssedal and Hussain11 and Hussain24. However, the current state of 

the analysis methods for more than three active factors in 12/13 runs is such that in general 

one should not trust the outcome unless several methods can confirm it, see also Jones and 

Nachtsheim25  when it comes to the 13DSD . We therefore concentrate on the case with three 

active factors, and think literature supports well that most often one ends up with not 

identifying more than the three most important factors in 12/13 run when data are real. 

Second, estimating success proportions only on how often the correct subset of active factors 

separates from the others in terms of lowest MSE/deviance is rather strict. In a single 

experiment, one or several of the additional steps given in Section 2 are natural to carry out, 

but they are not that easily automated in a simulation study. Our simplification likely makes 

the estimates of the screening success proportions conservative, but it is hard to imagine how 

this should affect the comparison between designs and between ways of handling data.  

Table 13 shows the 2 2 3 3    design with four responses given as success proportions 

obtained from the respective distributions. With 13 two-factor interactions added (the 

interactions 1 2T T and 1 2D D  were left out), the design was analysed using GLM with a logistic 

link. Table 14 shows the estimated coefficients in the logit for the respective terms after a 

backward elimination with   set to 0.05 has been performed. In order to interpret the results 

one should be aware that a 0.2 change in the link function can at most affect the probability of 

success with 0.05.   
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Table 13. Success proportions from the simulation study obtained with binomial distributions  

 with n=10 and n=100, a gamma distribution and a Poisson distribution. The results are set out 

as a 2 2 3 3    design. Three factors are assumed active and 

 
3 3 3

2

0

1 1

i i ij i j ii i

i i j i

x x x x    
  

     x . 

Run F1  F2 T1 T2 D1  D2  Biny  

  n=10 

Biny  

n=100 

Gammay  
Poissony  

1 -1 -1 -1  -1 -1  -1   0.255 0.486      0.262    0.356 

2  1 -1 -1  -1 -1  -1   0.165 0.327      0.140    0.137 

3 -1  1 -1  -1 -1  -1   0.395 0.465      0.356    0.414 

4  1  1 -1  -1 -1  -1   0.346 0.423      0.312    0.291 

5 -1 -1 -1  -1  1   0   0.379 0.813      0.286    0.728 

6  1 -1 -1  -1  1   0   0.328 0.671      0.247    0.663 

7 -1  1 -1  -1  1   0   0.690 0.922      0.437    0.884 

8  1  1 -1  -1  1   0   0.645 0.884      0.435    0.837 

9 -1 -1 -1  -1  0   1   0.342 0.841      0.212    0.744 

10  1 -1 -1  -1  0   1   0.279 0.660      0.194    0.680 

11 -1  1 -1  -1  0   1   0.700 0.955      0.259    0.895 

12  1  1 -1  -1  0   1   0.606 0.897      0.245    0.798 

13 -1 -1  1   0 -1  -1   0.241 0.439      0.333    0.478 

14  1 -1  1   0 -1  -1   0.245 0.126      0.353    0.285 

15 -1  1  1   0 -1  -1   0.463 0.746      0.695    0.440 

16  1  1  1   0 -1  -1   0.354 0.408      0.714    0.297 

17 -1 -1  1   0  1   0   0.371 0.821      0.475    0.832 

18  1 -1  1   0  1   0   0.324 0.692      0.465    0.682 

19 -1  1  1   0  1   0   0.743 0.946      0.903    0.978 

20  1  1  1   0  1   0   0.684 0.878      0.895    0.883 

21 -1 -1  1   0  0   1   0.331 0.871      0.474    0.783 

22  1 -1  1   0  0   1   0.389 0.691      0.465    0.678 

23 -1  1  1   0  0   1   0.753 0.985      0.962    0.943 

24  1  1  1   0  0   1   0.677 0.914      0.955    0.891 

25 -1 -1  0   1 -1  -1   0.139 0.578      0.326    0.488 

26  1 -1  0   1 -1  -1   0.146 0.552      0.366    0.467 

27 -1  1  0   1 -1  -1   0.144 0.574      0.707    0.430 
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28  1  1  0  1 -1  -1   0.142 0.580      0.715    0.390 

29 -1 -1  0  1  1   0   0.364 0.822      0.464    0.787 

30  1 -1  0  1  1   0   0.389 0.695      0.463    0.670 

31 -1  1  0  1  1   0   0.702 0.944      0.945    0.955 

32  1  1  0  1  1   0   0.662 0.882      0.718    0.893 

33 -1 -1  0  1  0   1   0.340 0.847      0.475    0.820 

34  1 -1  0  1  0   1   0.401 0.710      0.447    0.661 

35 -1  1  0  1  0   1   0.761 0.975      0.973       0.978 

36  1  1  0  1  0   1   0.680 0.903      0.728    0.913 

 

Since the size of the coefficients are chosen at random, while type of design and way of 

handling data is something we can control, it is possible to think of  our simulation experiment 

as a robust parameter design with type of design and way of handling data as control factors 

and 1F  and
2F  as noise factors. With that perspective, we, in this case, find it natural to divide 

the logit in a controlled part,  1 2 1 2, , ,C T T D D , and an uncontrolled part, 

 1 2 1 2 1 2, , , , ,U F F T T D D .  For the binomial distribution with n=10 the controlled and 

uncontrolled parts become:  

 1 2 1 2 1 2 1 2 1 1 1 2 2 1 2 2
ˆ , , , 0.32 0.17 0.18 0.42 0.42 0.14 0.10 0.20 0.28C T T D D T T D D T D T D T D T D           , 

and 

 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 1 2 2
ˆ , , , , , 0.08 0.57 0.06 0.07 0.06 0.08 0.12 0.17 .U F F T T D D F F F F FT F T F T F D F D           

The advantage of using two-level designs is evident and also that the success proportions 

increase with large main effects and interactions. Large quadratic effects have a small negative 

effect.  The effects of transforming or using a GLM analysis are not that easily observable from 

the equations. Considering the three ways of handling the data separately, we get:  

Untransformed responses, 1 2 1T T   , 

 1 2 1 2 1 2
ˆ , , , 0.31 0.36 0.24C T T D D D D     , and 

   1 2 1 2 1 2 1 2 1 2 1 2 2
ˆ , , , , , 0.15 0.43 0.06 0.12 0.17 .U F F T T D D F F F F D D F        

 

Transformed responses, 1 1T  , 2 0T  , 

 1 2 1 2 1 2
ˆ , , , 0.15 0.28 0.32C T T D D D D      , and 
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   1 2 1 2 1 2 1 2 1 2 1 2 2
ˆ , , , , , 0.08 0.63 0.06 0.12 0.17 .U F F T T D D F F F F D D F        

 

Generalized linear modelling,
2 1T  , 

1 0T  , 

 1 2 1 2 1 2
ˆ , , , 0.31 0.63 0.70C T T D D D D      , and 

   1 2 1 2 1 2 1 2 1 2 1 2 2
ˆ , , , , , 0.01 0.49 0.06 0.12 0.17 .U F F T T D D F F F F D D F        

In a robust parameter design setting there will be focus on choosing designs and ways 

of handling data such that the effect of variation in the noise factors is as small as possible. In 

performing a screening we want to have high probability of identifying factors with large 

effects. Therefore, an increase in the logit by increasing 1F  and 2F  is desirable and leads to 

smaller variation in the probability of identifying active factors as long as this probability is 

greater than 0.5. 

The 12PB (6.1) design together with a generalized linear modelling gives the highest 

estimated success proportion. We also notice that if a 13DSD  1 2 1D D    is used, 

generalized linear modelling performs worse than analysing the raw data while a variance 

stabilizing transformation, in this case, gives a slight improvement. For the binomial with 

n=100, the gamma and the Poisson distributions, transforming or using GLM we get equally 

good results or improvements for all designs compared to using the raw data. In particular, it 

seems to be important to avoid using the raw data from the gamma and the Poisson distributions.  

 

Tabel 14. Estimated coefficients for contrasts and interactions obtained by a GLM analysis 

with logistic link on the success proportions in Table 13.  

Distr
Effects

 Binomial, 

n=10 

Binomial, 

n=100 

Gamma Poisson 

Const -0.32 1.25 0.13 0.92 

1F  -0.08 -0.41 -0.11 -0.30 

2F  0.57 0.56 0.76 0.43 

1T  0.17 0.10 0.67 0.10 

2T      -0.18        0.08 0.44  0.18 

1D  0.42 0.53 0.26 0.74 

2D  0.42 0.83 0.13 0.73 

1 2F F  -0.06  -0.07  

1 1FT   -0.24 0.08 -0.08 

1 2FT  0.07 0.17 -0.10 0.07 
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1 1F D    -0.05  

1 2F D        -0.11 -0.07  

2 1F T  0.06 0.25 0.34  

2 2F T  -0.08      -0.14 0.12  

2 1F D  0.12 0.07 0.05 0.21 

2 2F D  0.17 0.24 0.09 0.20 

1 1T D  -0.14 0.09  0.10 

1 2T D  -0.10 0.22 0.30  

2 1T D  0.20 -0.14 -0.08 -0.13 

2 2T D  0.28 -0.17 0.12  

 

We then repeated the simulations generating the response values with the -function  given in 

(13). The following four scenarios for size of coefficients were investigated: 

1. All coefficients are drawn uniformly from the interval [-1, 1].  

2. All terms in the set  1 2 3, ,    are drawn uniformly from the interval [-1, 1] and all 

terms in  12 13 23 123, , ,     from the interval [-3, 3]. 

3. All terms in the set  1 2 3, ,    are drawn uniformly from the interval [-3, 3] and all 

terms in  12 13 23 123, , ,     from the interval [-1, 1]. 

4. All coefficients are drawn uniformly from the interval [-3, 3]. 

 

Table 15. Success proportions from the simulation study obtained with binomial distributions 

with n=10 and n=100, a gamma distribution and a Poisson distribution. The results are set out 

as a 2 2 3 3    design. Three factors are assumed active and  

 
3 3

0 123 1 2 3

1

i i ij i j

i i j

x x x x x x    
 

    x . 

Run F1 F2 T1 T2 D1 D2 Biny  

 n=10 

Biny  

 n=100 

Gammay  
Poissony  

1 -1 -1 -1  -1  -1  -1  0.241 0.424 0.266 0.395 

2  1 -1 -1  -1  -1  -1  0.092 0.129 0.218 0.220 

3 -1  1 -1  -1  -1  -1  0.590 0.689 0.544 0.615 

4  1  1 -1  -1  -1  -1  0.333 0.375 0.346 0.357 
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5 -1 -1 -1  -1   1   0  0.410 0.864 0.340 0.787 

6  1 -1 -1  -1   1   0  0.721 0.964 0.463 0.871 

7 -1  1 -1  -1   1   0  0.586 0.930 0.541 0.944 

8  1  1 -1  -1   1   0  0.780 0.956 0.561 0.933 

9 -1 -1 -1  -1   0   1  0.386 0.906 0.258 0.787 

10  1 -1 -1  -1   0   1  0.831 0.987 0.381 0.929 

11 -1  1 -1  -1   0   1  0.578 0.937 0.238 0.892 

12  1  1 -1  -1   0   1  0.793 0.973 0.329 0.887 

13 -1 -1  1   0  -1  -1  0.221 0.427 0.270 0.386 

14  1 -1  1   0  -1  -1  0.084 0.140 0.093 0.167 

15 -1  1  1   0  -1  -1  0.611 0.736 0.702 0.690 

16  1  1  1   0  -1  -1  0.373 0.411 0.460 0.408 

17 -1 -1  1   0   1   0  0.412 0.892 0.507 0.864 

18  1 -1  1   0   1   0  0.737 0.960 0.901 0.950 

19 -1  1  1    0   1   0  0.602 0.951 0.938 0.946 

20  1  1  1   0   1   0  0.773 0.956 0.941 0.964 

21 -1 -1  1   0   0   1  0.367 0.933 0.504 0.911 

22  1 -1  1   0   0   1  0.834 0.955 0.942 0.994 

23 -1  1  1   0   0   1  0.616 0.959 0.783 0.970 

24  1  1  1   0   0   1  0.770 0.984 0.939 0.988 

25 -1 -1  0   1  -1  -1  0.112 0.410 0.274 0.360 

26  1 -1  0   1  -1  -1  0.052 0.128 0.106 0.110 

27 -1  1  0   1  -1  -1  0.321 0.739 0.780 0.630 

28  1  1  0   1  -1  -1  0.195 0.408 0.444 0.282 

29 -1 -1  0   1   1   0  0.409 0.887 0.463 0.801 

30  1 -1  0   1   1   0  0.780 0.974 0.457 0.954 

31 -1  1  0   1   1   0  0.633 0.942 0.909 0.954 

32  1  1  0   1   1   0  0.781 0.960 0.910 0.960 

33 -1 -1  0   1    0   1  0.407 0.911 0.470 0.870 

34  1 -1  0   1   0   1  0.848 0.994 0.445 0.986 

35 -1  1  0   1   0   1  0.639 0.952 0.970 0.948 

36  1  1  0   1   0   1  0.819 0.983 0.980 0.990 
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Table 16 reports the results of a GLM analysis with logistic link after a backward 

elimination has been performed with  to remove set to 0.05. It is important to be aware that 

1F  now represents the product terms, and 2F  represents the first order terms.  

Table 16. Estimated coefficients for contrasts and interactions obtained by a GLM analysis 

with logistic link on the success proportions in Table 15. 

Distr
Effects

 Binomial, 

n=10 

Binomial, 

n=100 

Gamma Poisson 

Const 0.05 1.91 0.33 1,63 

1F  0.30 0.11 0.03 0.10 

2F  0.40 0.37 0.77 0.42 

1T  0.09 0.06 0.62 0.38 

2T      -0.15  0.27  

1D  0.55 0.91 0.63 0.89 

2D  0.70 1.38 0.32 1.27 

1 2F F  -0.16      -0.10 -0.12 

1 1FT        -0.05 0.33 0.05 

1 2FT  0.03      -0.34  

1 1F D  0.27 0.34 0.21 0.23 

1 2F D  0.45 0.50 0.34 0.45 

2 1F T   0.05  0.08 

2 2F T    0.53  

2 1F D  -0.15 -0.15       0.06  0.09 

2 2F D  -0.21 -0.16 -0.14 -0.17 

1 1T D      -0.11  0.26  

1 2T D      -0.14  0.32 0.26 

2 1T D  0.22      -0.08  

2 2T D  0.26  0.31 0.19  

 

Also in this case, GLM performed badly on data from a binomial distribution with 

n=10 obtained from a 13DSD . The main conclusions are the same. As expected there is an 

overall positive effect of increasing both linear terms and product terms but it is reduced 

somewhat when both are large and it is design dependent. 

Table 17 summarizes which combination of design and way of handling data that 

obtained the highest success proportion.  
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Table 17. The combination of design and way of handling data that gave the highest success 

proportion for the four distributions and the two link transformed expectation functions.  

 
 

3 3 3
2

0

1 1

i i ij i j ii i

i i j i

x x x x    
  

     x   
3 3

0 123 1 2 3

1

i i ij i j

i i j

x x x x x x    
 

    x  

Distribution Design Way of 

handling data 

Design Way of 

handling data 

Binomial, n=10 
12PB (6.1) GLM 

12PB (6.1) GLM 

Binomial, n=100 
12PB (6.1) Transform 

12PB (6.1) Transform or 

GLM 

Gamma 
12PB (6.1) Transform 

12MinResIV   Transform   

 

Poisson 
12PB (6.1) 

12MinResIV  

GLM 

Transform 
12PB (6.1) Transform 

 

The overall main conclusion from the study, if only screening is the purpose, seems to 

be that the largest increase in success proportions comes from using two-level design and the 

12PB (6.1) design performs a little better than the
12MinresIV design.  In addition, variance 

stabilizing transformations perform equally good or better than GLM, except for the binomial 

distribution with n=10.  

 

5. Some reflections and comparison to normally distributed 

responses   

The success of the two level designs compared to the 13DSD is not too surprising. Both 

the 12PB (6.1) design and the 12MinResIV design are projectivity P=3 designs, and the 12PB  

may be considered to have the best projections onto three dimensions. For instance, the 12PB

design projects onto a complete 32  + a half replicate in any three dimensions. Assuming a 

constant variance for the response variables and ,  3,m m   active factors, a model 

independent estimate of the variance is obtained from the MSE using a search model of the 

form given in (11) with m  factors included. When the variance is not constant, the 

performance of such a procedure is expected to be inferior. The deviance too has the same 

property as can be seen as follows.  For a binomial distribution, let 
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 log log
ˆ ˆ

i i
i i i

i i

y n y
d y n y

n 

   
     

   
.  Then, since 0,  i=1,2, ,id N , its minimum value is 

0 for ˆ
i iy   . If run number i and j are two replicated runs, than the minimum value of 

i jd d  is obtained for ˆ ˆ
2

i j

i j

y y
 


  . Hence, the minimum deviance can be found without 

knowing the functional relationship. This can be generalised to the case when a run has more 

than one replicate, and it also applies to the gamma and the Poisson distribution. Therefore, a 

screening may be performed without knowing the true functional relationship between the 

response and the factors.  

The 
13DSD  does not possess the possibility of providing a model independent estimate  

of the variance if three factors are active, and except for the logarithmic transformed gamma 

distributed responses obtained from the link transformed expectation function given in (12), it 

is in this case, as shown below, not able to take proper advantage of its ability to also estimate 

quadratic effects. It is, however, possible that other ways of analysing the data will improve the 

performance of the 13DSD . Jones and Nachtsheim25 provide interesting work in that direction. 

They also show how it is possible to get a model independent estimate of the variance, though 

at the expense of increasing the number of runs. 

To have a better understanding of the performance of the variance stabilizing 

transformations, a first order Taylor expansion around the expected value of the responses is 

presented below.  For simplicity, we first consider the standard variance stabilizing 

transformations for the binomial and Poisson distributed random variables since these provide 

the necessary insight. In the approximate models, the distribution is indicated with an index in 

the transformation, B for the binomial, G for the gamma and P for the Poisson. 
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Further the transformed responses can be characterized having approximate variances and 

skewness of  
1

4n
 and 

 

1 2

1

i

i i

p

np p




 for the binomial distributed data, 

1

2
and 2 for the 

gamma distributed data and 
1

4
 and 

1 2

1

i
for the Poisson distributed data. An approximate 

variance for the Freeman Tukey transformation of the responses is obtained by multiplying by 

4.  

We notice that the transformed binomial distributed response variables have small 

variances that decrease with n and small skewness for most values of
1 1

,  1-
n

p
n

 
  
 

, the 

transformed Poisson distributed response variables have approximate constant variances and 

skewness that decreases when   increases, while the transformed gamma distributed 

response variables have approximate constant variances and skewness. Further, it illustrates 

that the chosen models and transformations cannot provide response variables with 

comparable properties with respect to both variance and skewness.   

It might be reasonable to believe that if a variance stabilizing transformation is used, the 

screening performance is comparable to what can be obtained having normally distributed 

responses with the same variance. The results obtained show that a direct comparison is far 

from trivial. Both for the binomial distribution and for the Poisson distribution the 

approximate expectations for the transformed responses differ considerably from  i x . This 

concerns the range, but also the nature of the transformations that treat large values of  i x  

differently. Above a certain limit, increasing  i x  almost means nothing to an arcsine 

transformed response, while the effect may be substantial if a square root transformation is 

used.  Direct comparison of the results obtained from the 12PB (6.1) with the results from the 

simulation study in Tyssedal and Chaudhry14 also shows that the success proportions for the 

transformed binomial distributed responses with a variance of about 0.01  100n   are 

comparable to those obtained from a normal distribution with variance 0.4. The success 

proportions for the variance stabilized Poisson distributed responses are higher than for a 

normal distribution with variance equal to 1. 
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  The gamma distributed response values have approximate expectations equal to   ,i x

and Table 18 shows a comparison between success frequencies for normally distributed 

responses with variances 2 1 2   taken from Tyssedal and Chaudhry14, and logarithmic 

transformed gamma-distributed responses using the -function in (12). 

Table 18. Comparison of success proportions for all three designs using a normal distribution 

and a transformed gamma distribution with approximately the same variance 2 1 2  . Case 1 

and Case 2 correspond to small main effects and interactions, while the others correspond to 

large.  

Design Distribution Case 1 Case 2 Case 3 Case 4 

13DSD  Normal, 2 1 2   0.504 0.504 0.816 0.805 

 Transformed gamma 0.333 0.353 0.695 0.714 

12MinResIV  Normal, 2 1 2   0.720 0.724 0.961 0.955 

 Transformed gamma 0.475 0.465 0.903 0.895 

12PB (6.1) Normal, 2 1 2   0.757 0.736 0.988 0.996 

 Transformed gamma 0.474 0.465 0.962 0.955 

 

All three designs have an approximate decrease in success frequencies of 30-35 % for 

the transformed gamma compared to the normal distribution with the same variance, when the 

absolute value of the main effects and interactions are small. When the main effects and 

interactions are large, the decrease is considerable worse for the 13DSD than for the two-level 

designs where it only amounts to about 6 % or less. The decline in the success frequencies may 

be due to that the transformed responses still have some skewness.   

6.  Concluding remarks  

In this work, we have assessed some aspects of factor screening when the responses 

are non-normal using designs with 12 and 13 runs. We started out reanalysing some examples 

from Aguirre7 where we instead of using his sequential procedure, used a factor-based 

procedure based on factor sparsity and projection properties of the designs. In addition to the 

13DSD  used by Aguirre7 , we also tested two two-level designs, the 12MinResIV  and the 12PB

(6.1) designs. To test out the overall performance of the designs we used four types of 

distributions, two binomial, one gamma and one Poisson, and two types of link transformed 

expectation functions. One with quadratic terms (12) and one containing main effects and 

interactions (13). The two level designs had a clear overall better performance, and the 12PB

(6.1) design performed the best. Even though we knew the correct link function, transforming 
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the data gave, in most cases, equal or higher success proportions, although compared to a 

GLM modelling the differences are small. Both performed better than using the raw data 

except for the binomial distribution with n=10, where GLM performed badly on data obtained 

from a 
13DSD . 

It should be pointed out that our investigation is about how to do the best screening in 

the sense of finding the subset of factors that explains most of the variation in the data, and 

this should not be confused with how to best estimate the possible effects of the factors in this 

subset. Only the
13DSD  can estimate quadratic effects if these are present in the -function.  It 

might well be that GLM performs better than transforming the data in estimating the effects of 

the active factors once they are identified. This is, of course, a natural procedure to perform in 

order to plan what to do next. However, these valuable properties may be of little value if one 

has the wrong subset of active factors. 

Although we have tested out only a few cases of non-normal responses, the diversity 

of their distribution properties gives us reasons to have faith in what was observed. Two-level 

designs with good projection properties used together with a variance stabilizing 

transformation of the response values may be valuable for factor screening also when the 

distribution of the responses is non-normal.  
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