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Abstract

Reliable and efficient underwater acoustic communications are challenging prob-

lems because of complex underwater channel properties. With the recent ad-

vancements in underwater technologies, there is a need for a robust underwater

communication system which can endure high data rate and optimize the use

of resources like bandwidth and time. In this work, a blind deconvolution based

equalizer is proposed, which uses the received signal to compute the channel

impulse response estimates and equalizes the received signal using these chan-

nel impulse response estimates. The performance of the proposed system is

tested with both simulated and real data. The real data were obtained during

an experiment in September 2017 in TrondheimFjord. In the case of real data,

the difference in performance in terms of mean square error between the pro-

posed equalizer and the probe-based channel estimation equalizer is only 0.68

dB. This suggests that the proposed blind deconvolution technique can provide

good channel estimates to equalize the underwater channel effects. In addition

to that, it can save the resources allocated for the probe signal estimation.

1. Introduction

The underwater channel is a bounded medium and poses great challenges

to underwater acoustic communications. The underwater channel is character-
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ized as a dually spread channel in time and frequency. The time spreading of

the channel is due to multiple paths from the surface and the bottom. The5

frequency spreading is caused by the source and/or receiver motion and the

surface variations. The temporal and frequency spreading results in intersym-

bolic interference (ISI) and Doppler effects at the received signal respectively.

To combat these complex channel variations, there is a need for a robust equal-

ization system.10

Due to recent developments in underwater acoustic systems, there is a grow-

ing need for efficient equalization techniques to combat the channel variations.

Both coherent and non-coherent modulation schemes are used in the current

underwater systems. In this work, the main focus will be on coherent schemes

[1]. Coherent modulation schemes ensure high data rates but they are very15

sensitive to the time and frequency spreading of the underwater channel [2].

Different equalization techniques have been proposed in the literature for co-

herent schemes, including linear equalizers [3, 4] and direct sequence spread

spectrum techniques [5, 6].

The performance of the underwater channel equalizers can be improved by using20

the spatial diversity which helps in reducing ISI [7]. In [8], the spatial diver-

sity gain is combined with equalization gain to improve the performance of the

underwater communication system. The equalization gain is mainly achieved

by channel estimation. The channel estimate based equalizers have gained a

lot of interest and different variants of these equalizers have been proposed, in-25

cluding time reversal equalizer [9, 10] and reduced complexity spatio-temporal

equalizers [11]. One of the main challenges in the channel estimation based

equalizers is the accuracy of the channel estimates. The effects of imperfect

channel estimates have been studied in [12] and it shows that the performance

degrades significantly in the presence of channel variations like surface motion.30

Some improved versions of these equalizers are proposed to update the channel

impulse response (IR) estimates [12, 13, 14].

In addition to the accuracy of the channel IR, the underwater channel varies

rapidly with time. To estimate these temporal channel variations, probe signals
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need to be transmitted frequently which requires significant additional resources35

like bandwidth and time. In some cases of offshore underwater applications, it

is impossible to get channel IR estimates. For all these underwater applica-

tions, there is a need for a blind channel estimation technique which can save

the additional bandwidth and battery time and also provide good channel IR

estimates.40

In this paper, a blind deconvolution based equalizer is proposed. Blind deconvo-

lution refers to the process of getting both the channel estimates and the source

signal from the array-recorded signal. Different techniques have been proposed

in the literature for blind deconvolution for underwater applications including

time-frequency analysis [15], least-square criterion [16], and multiple convolu-45

tions [17]. In this work, artificial time reversal (ATR) technique proposed in [18]

is used for blind deconvolution. ATR is based on the stable features of the lower

order acoustic normal modes and on a receiving array with sufficient elements

and aperture. In the ATR-based system, the channel IR estimates are obtained

by applying a weighting functions on the received data signal.50

In this paper, the ATR technique is used for designing an equalizer for the un-

derwater communication system. It computes the channel IR estimate from the

received information signal and uses this channel IR estimate to equalize the

effects of the channel. The quality of the channel IR estimates varies depending

on the weighting technique and it also affects the performance of the commu-55

nication system. Three weighting functions are tested in this paper. These

weighting functions are proposed in [18, 19]. In [19], the ATR based technique

is used for source localization. The performance of the proposed system is com-

pared with a known channel case in terms of the mean square error (MSE) and

bit error rate (BER). The known channel case refers to the conventional time60

reversal system in which the channel IR estimate is obtained from the probe

signal. The proposed system is tested with simulated as well as real data. The

real data were obtained during the experiment in TrondheimFjord in September

2017. The results have shown that the proposed system provides good perfor-

mance in terms of MSE and BER. In addition to that, the ATR system only65
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requires the received signal to compute the channel IR estimate. Hence, it saves

the resources allocated for channel IR estimation. The main contributions of

this work are; 1) To design a communication system based on blind deconvolu-

tion technique to combat the channel variations, 2) To study the performance

of different ATR-based channel estimation techniques on the underwater com-70

munication system.

The paper is organized as follows. Section 2 describes the theoretical back-

ground. Section 3 discusses the receiver structure. Section 4 presents the

results and observations for simulated as well as the real data cases. Section 5

provides the conclusions.75

2. Theoretical Background

This section presents the mathematical formulation of the blind deconvo-

lution technique. The blind deconvolution is based on the ATR technique.

Consider a point source emitting a signal s(t). All the formulation is done in

the frequency domain so the Fourier transformed S(ω) is given by80

S(ω) = |S(ω)|eiθs(ω) (1)

where ω is the angular frequency and θs(ω) is the phase of the transmitted signal

as a function of frequency. The transmitted signal passes through the channel

and reaches the receiver array having N elements. The received signal at the

jth element is described by Rj(ω)

Rj(ω) = G(rj , rs, ω)S(ω) (2)

where G(rj , rs, ω) is the channel IR between the source position rs and receiver85

position rj at the frequency ω. The main advantage of ATR is that it uses only

the received signal at each array element to estimate the channel IR. These

channel IR estimates are combined with the received signal in a maximum ratio

combiner to obtain the output of the equalizer. The performance of the com-

munication system relies on the channel IR estimation. The equalizer output90
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Z(ω) is given by

Z(ω) =

N∑

j=1

Ĝ∗(rj , rs, ω) ·G(rj , rs, ω) · S(ω) (3)

where Z(ω) is the output of the maximal ratio combiner which selects the opti-

mal value based on the maximum power. Ĝ(rj , rs, ω) is the channel IR estimate

and ”∗” denotes the conjugate operation.

According to ATR technique, the channel IR estimates are given by [18]95

Ĝ(rj , rs, ω) =
Rj(ω)e−iα(ω)√

N∑
k=1

|Rk(ω)|2
(4)

where

α(ω) = arg




N∑

j=1

WjRj(ω)


 (5)

In (5), Wj is the weight for the jth element of the array. Different weighting

functions are used in this paper. Using the value of Rj(ω) from (2) in (4), the

estimated channel IR is given by

Ĝ(rj , rs, ω) =
G(rj , rs, ω)e−iα(ω)eiθs(ω)√

N∑
k=1

|G(rk, rs, ω)|2
(6)

The optimal value of α(ω) should cancel the phase term θs(ω) or the remainder100

should be a linear function of frequency in the form of a + bω which will only

result in a shift in time.

In order to explain the weight functions, the expression for α(ω) in (5) is studied

in more detail. Inserting (2) into (5), α(ω) becomes

α(ω) = arg




N∑

j=1

WjS(ω)G(rj , rs, ω)eiθs(ω)


 (7)

By expanding G(rj , rs, ω) using normal mode model [20],105

α(ω) = arg




N∑

j=1

WjS(ω)eiθs(ω)
e−iπ/4

ρ(z)
√

8π

∑

m

Φm(zs)Φm(zj)√
km(ω)rj

eikm(ω)rj


 (8)
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where Φm and km are the mode shape and wavenumber for the mth mode

respectively and ρ(z) is the density at depth z. The optimal weights Wj should

be such that it cancels the mode shape Φm(zj), which will simplify (8) to

α(ω) ≈ kn(ω)R+ θs(ω)− π/4 (9)

where R is the distance between the source and the receiver array. If the cutoff

frequency of the nth mode is well below the frequencies of interest, the phase110

speed cn will be independent of frequency and kn(ω)R = ωR/cn [18]. Using

this value of α(ω) in (6), the channel IR estimate is obtained with an extra

term ωR/cn which is a linear function of frequency and produces a shift in the

time domain. These time-shifted channel IR estimates are used to equalize the

channel effects.115

The main objective of the weighting function is to cancel the Φm(zj) term which

is achieved by the mode orthogonality principle

N∑

j=1

Φm(zj)Φn(zj)

ρ(zj)
≈ δmn (10)

where Wj corresponds to Φn(zj). The efficiency of the ATR based technique

relies on weighting function and how it satisfies (10). The limitation of a densely

populated array is also to ensure this condition.120

In this paper, three types of weighting functions are used. In the first two types

of weighting functions, constant weights are applied to each array element. In

“array weights 1” all the weights of the array elements are set to +1. In “array

weights 2”, the weights of the first half of the array elements are set to +1

while the weights for the rest of the elements are set to −1. The third type of125

weighting function is based on beamforming (BF) technique. In the BF-based

technique, the weight of each array element is computed by

Wj = exp {−iωτ(θk, zj)} (11)

where τ(θk, zj) is the delay applied to each array element and it is a function

of the BF angle θk and k is the index for the BF angle. In this case, plane ray
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beamforming is used130

τ(θk, zj) = (j − 1)(d/c̄) sinθk (12)

where d is the spacing between the array elements and c̄ is the mean sound

speed profile (SSP). The optimal weight is obtained as a function of θk based

on the maximum output power Z(ω) as given in (3).

In order to explain the concept of the weighting function and how the weighting

functions help in providing better channel IR estimates, a simulated example is135

presented. In this simulation scenario, a waveguide of 200 m depth is considered

and source and receiver array is located at 30 m depth. The receiver array

contains 8 elements from 30 m - 37 m depth with 1 m spacing between each

element. Using this geometry in KRAKEN [21], the modes shape functions of

first 26 modes are computed. Using each of this mode shape function as a weight140

function Φn(z) in (10), the performance of the system is computed in terms of

MSE and shown in Fig. 1 (a). Fig. 1 (a) shows that mode number 5, 11, 17 and

23 give the best performance. The optimal weighting function should enhance

these modes and suppress the rest of the modes.

Fig. 1 (b) shows the sum of the weighted-mode shapes along the depths which145

is represented by (10). For comparison, the best BF weights are presented

here which gives the maximum output power in (3). All three array weighting

techniques give different weights to each mode. Fig. 1 (c) shows the product

of Fig. 1 (a) and (b). The “array weights 2” does not give larger weights to

lower order modes but enhances the higher order modes by giving them bigger150

weights. The “array weights 1” and “BF weights” have similar performance for

lower order modes but the “BF weights” outperforms the “array weights 1” by

suppressing the modes 13, 20 and 26, which have worst performance in terms

of MSE.

Fig. 2 shows the channel IR estimates for the constant SSP at the fourth array155

element at 33 m depth. These channel IRs are obtained from the received signal

by applying different weighting techniques according to (4). For comparison, the

actual channel IR is presented in Fig. 2 (d) which is obtained from the model.
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(a)

(b)

(c)

Figure 1: Using the simulated scenario with constant SSP, (a) Performance in terms of MSE

for each mode shape function used as weight function Φn in (10), (b) shows how different

weighting techniques enhance some modes and suppress other modes. The continuous line

represents “array weights 1”, dashed line represents “array weights 2” and the dotted line

represents “BF weights”, (c) Product of the MSE and mode weights for different weight

functions.

In the case of BF weights, only the optimal channel IR is presented which gives

the maximum output power. There are differences between the channel IR160

estimates obtained by ATR and the channel IR estimate from the model. These

mismatches result in the degradation in the performance of the system.
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(a)

(b)

(c)

(d)

Figure 2: Channel IR estimates obtained for the simulation case of constant SSP at the fourth

array element at 33 m depth. a) Channel IR obtained by “array weights 1”, b) Channel IR

obtained by “array weights 2”, c) Channel IR obtained by “BF weights”, d) Actual channel

IR obtained by the model.

3. Receiver structure

This section explains the receiver structure of the proposed communication

system. Fig. 3 shows the block diagram of the proposed system. The block di-165

agram is derived from the passive time reversal system with the addition of the

weight function block which is represented by e−iα(ω). All the operations are
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Figure 3: Block diagram of the proposed system.

performed in the frequency domain, therefore, a Fourier transform is applied to

the received signal r(t). The Fourier-transformed signal is fed to the weighting

function block which provides the channel IR estimate. The PC block performs170

the phase conjugation. The phase-conjugated channel IR estimate is combined

with the received signal and summed to give the output Z(ω) as given in (3).

The block diagram presented in Fig. 3 is generalized for different types of weight-

ing functions. In the case of constant weights for each array element, the output

Z(ω) is a single vector while in case of BF-based weighting technique the output175

Z(ω) is a function of the BF angle. The “combining” block selects the optimal

angle based on the maximum output power.

During data processing, the information bits are divided into blocks of 0.25 s

and it is assumed that the channel is constant during this time. In the case of

a BF-based system, the combining block works in two steps. In the first step,180

it splits the output into blocks and selects the optimum angle based on (3) for

each block. In the next step, it selects the maximum power from all blocks and

the corresponding BF angle. This BF angle is used for computing the chan-

nel IR estimates. The output of the combining block goes to the sync block.
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The sync block performs two operations. Firstly, it is shown in section 2 that185

the weighting function produces a time shift. The sync block synchronizes the

output with the known M-sequence, which is inserted at the start of the data

signal. Secondly, using the same known M-sequence the phase correction is also

performed. After sync block, the final output Zoutput is obtained.

190

4. Results and Observations

In this section, the results and observations are presented. The performance

of the proposed algorithm is tested with simulated as well as real data. The sim-

ulated environment is obtained from Time Variable Acoustic Propagation Model

(TVAPM) [22]. The specifications of the transmitted signals are shown in ta-195

ble 1. During the experiment, linear frequency modulated (LFM) signals are

transmitted as probe signal for channel IR estimation and data signal contains

information bits. The same signal specifications are used for both simulations

and experiment.

The performance comparison is presented between three weighting techniques200

and the known channel IR case. In the “known channel” case, the exact chan-

nel IR estimates are used and this case is presented here to show the best

performance. In the simulated case, the channel IR estimates are obtained from

TVAPM. In the case of real data, the channel IR estimates are obtained from

the probe signal. The “known channel” case is equivalent to the conventional205

time reversal equalizer.

4.1. Simulated case

In the simulated scenario, both the source and receiver are considered static.

The source is set at 30 m depth and 8-element receiver array is located between210

30 m - 37 m depth with the first element at 30 m depth and the spacing of 1

m between each element. The water depth is 200 m, the source-receiver range
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Table 1: Signal Specifications

Central Frequency (Hz) 8500

Sampling Frequency (Hz) 44100

Frequency band Data (Hz) 7000 - 10000

Data rate (bits/s) 2000

Modulation BPSK

Frequency band LFM (Hz) 6320 - 10680

Time one LFM (s) 0.1

Silence Time (s) 0.2

Figure 4: SSP obtained during an experiment in the TrondheimFjord in September 2017.

is 100 m and the flat bottom is considered. Two types of sound speed profiles

(SSPs) are used. One is a constant SSP along depth and the second is a SSP

obtained during the experiment in Sept. 2017 which is shown in Fig. 4. Fig. 5215

shows the characteristics of the channel for the case of constant SSP. Fig. 5 (a)

shows the arrival pattern at each element of the receiver array. The first arrival

is the direct arrival because it arrives at all the receiver elements at the same

time. The second arrival is the surface reflected arrival because it arrives first at

the top element of the receiver. Fig. 5 (b) shows the beamforming results. The220

negative angles represent the arrival from the surface while the positive angles

represent the arrival from the bottom. The first arrival reaches the receiver

array at -2o and the second arrival reaches the receiver array at -32o.
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Fig. 6 (a) shows the performance comparison in terms of MSE for different

weighting techniques in case of constant SSP. The performances in terms of MSE225

of the constant array weighting techniques are -0.27 dB and -1.09 dB respec-

tively. The better performance for the “array weights 2” can be explained from

Fig. 1 because “array weights 2” gives larger weights to modes 17 and 23 which

give good performance in terms of MSE. The BF-based weighting technique

gives 2.3 dB and 1.4 dB gain in terms of MSE as compared to “array weights 1”230

and “array weights 2” respectively. The optimal BF weights are selected based

on the maximum output power from all time slots. The dotted line shows the

performance of the system in the case of perfect knowledge of the channel which

is the ideal case. The BF-based weighting function case is outperformed by the

ideal case by only 1.3 dB. This degradation in the performance is due to channel235

IR estimation error which can be seen from Fig. 2 (c) and (d). Fig. 6 (b) shows

the performance comparison in terms of BER in case of constant SSP. The BER

is calculated for a time slot of 0.25 s which contains 500 information bits. The

“array weights 1” and “array weights 2” give a mean BER of 0.17 and 0.14.

The BERs for “BF weights ” and “known channel” are 0.089 and 0.104 where240

the BF-based weighting technique gives a gain of 1.5%.

Fig. 7 (a) shows the arrival pattern at each element of the receiver array for the

(a) (b)

Figure 5: Characteristics of the channel for the case of constant SSP. (a) The channel IR

estimates along the receiver array, b) The beamforming results showing the angle of arrival.
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(a)

(b)

Figure 6: Performance comparison of different weighting function as a function of time for

static source and receiver and constant SSP. (a) Performance in terms of MSE, (b) Performance

in terms of BER

depth varying SSP. Similar arrival pattern is observed in this case. Two arrivals

reach the receiver array. The first one is the direct arrival and the second is

the surface-reflected arrival. Fig. 5 (b) shows the beamforming results. The245

first arrival reaches the receiver array at -2o and the second arrival reaches the

receiver array at -32o.

Fig. 8 (a) shows the performance comparison when the depth varying SSP is

used. There is a sharp gradient between 30 - 37 m depth in the SSP where
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(a) (b)

Figure 7: Characteristics of the channel for the case of depth varying SSP. (a) The channel IR

estimates along the receiver array, b) The beamforming results showing the angle of arrival.

the array elements are located. The performance in terms of MSE of the two250

array weighting techniques is 0.7 dB and -0.04 dB. The BF-based weighting

technique gives a gain of 3.809 dB and 3 dB in terms of MSE as compared

to “array weights 1” and “array weights 2” respectively. Fig. 8 (b) shows the

performance comparison in terms of BER in the case of depth varying SSP. The

“array weights 1” and “array weights 2” give a mean BER of 0.47 and 0.38.255

The BER for “BF weights ” and “known channel” are 0.166 and 0.107 where

the BF-based weighting technique is outperformed by “known channel” case by

5.9%.

Comparing Fig. 6 and Fig. 8, the performance of constant weighting techniques

degrades in case of depth varying SSP. In the case of “array weights 1” and “ar-260

ray weights 2’, the performance degradation is 0.97 dB and 1.05 dB respectively,

while the performance of BF-based weighting technique improves by 0.51 dB.

The degradation in the performance for constant array weights is because of

the channel IR estimation errors. The BF-based weighting technique performs

better as compared to constant weighting technique because it provides better265

channel IR estimates.
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(a)

(b)

Figure 8: Performance comparison of different weighting function as a function of time for

static source and receiver and depth varying SSP. (a) Performance in terms of MSE, (b)

Performance in terms of BER

4.2. Real data case

In this section, the results for the real data are presented. The data were

obtained from an experiment in the TrondheimFjord on 29 September 2017.

Fig. 9 shows the bathymetry of the area of experiment and the source and re-270

ceiver positions. The water depths at the source and receiver positions were 150

m and 200 m respectively. The source-receiver range was 480 m. The receiver

array was deployed at 50 m depth. The receiver array consisted of 8 elements
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Figure 9: Bathymetry diagram of the TrondheimFjord region with source and receiver posi-

tion. The source is shown by the circle and the receiver is shown by the cross. The depth

at the source position is 150 m and depth at the receiver position is 200 m respectively. The

source-receiver range is 480 m.

(a) (b)

Figure 10: Characteristics of the channel for the experimental data. (a) The channel IR

estimates along the receiver array, b) The beamforming results showing the angle of arrival.

with the spacing of 1 m between each element. The source was deployed at 50

m depth. The SSP was obtained at the receiver position and shown in Fig. 4.275

Fig. 10 (a) shows the channel IR estimates at all eight hydrophones of the ar-

ray. The figure is zoomed to show the first two arrivals. The first arrival reaches

all the receiver at almost the same time which shows that it is the direct arrival.

The second arrival reaches the bottom part of the array first. Fig. 10 (b) shows

17



(a)

(b)

(c)

(d)

Figure 11: Channel IR estimates obtained from the experimental data at the fourth element

of the array at 53 m depth. a) Channel IR obtained by “array weights 1”, b) Channel IR

obtained by “array weights 2”, c) Channel IR obtained by “BF weights”, d) Channel IR

obtained by the pulse compression using the known LFM signal.

the beamforming results obtained from the channel IR estimates. The two ar-280

rivals reach the array at 7.7o and 11.7o.

Figs. 11 (a)-(c) show the channel IR computed by “array weights 1”, “array

weights 2” and “BF weights” respectively. Fig. 11 (d) shows the channel IR

computed by the pulse compression using the known LFM signal. All the chan-

nel IR estimates are computed at the fourth element of the array at 53 m depth.285
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(a)

(b)

Figure 12: Performance comparison of different weighting function as a function of time for

real data obtained during the experiment in the TrondheimFjord in Sept. 2017.

There are multiple arrivals reaching the receiver. In case of “array weights 1”

and “array weights 2” there is extra arrival in the channel IR at 0.158 s. The

arrival pattern obtained by the BF weights technique matches with the arrival

pattern obtained by pulse compression.

Fig. 12 (a) shows the performance comparison in terms of MSE for differ-290

ent weighting techniques and the “known channel” case. Both the constant

array weighting techniques, “array weights 1” and “array weights 2”, provides

mean MSE of 0.35 dB and 0.4 dB respectively. The BF-based weighting tech-
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(a) (b)

(c) (d)

Figure 13: Constellation diagrams for different cases, (a) Array weights 1, (b) Array weights

2, (c) BF weights, (d) Known channel

nique performs better and gives a mean MSE of -2.65 dB. The performance

of the known channel gives mean MSE of -3.18 dB. There is a difference of295

0.53 dB between the BF weights and known channel case and the BF weighting

technique outperforms the known channel at few instants. This is because the

channel IR estimates are obtained from the probe signal which is transmitted

before the data signal and the underwater channel varies during the data trans-

mission. Fig. 12 (b) shows the performance comparison in terms of BER for300

different weighting techniques and the “known channel” case. The mean BER

for “array weights 1” and “array weights 2” are 0.27 and 0.31 respectively. The

performance in terms of BER for BF-based weighting technique and the known

channel case are 0.098 and 0.099 respectively.
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Fig. 13 shows the constellation diagram for different cases. Figs. 13 (a) and305

(b) show the constellation diagram in the case of “array weights 1” and “array

weights 2”. The performance is not good as the constellation appears a single

cloud. Fig. 13 (c) shows the constellation diagram for the case of “BF weights”

where the performance improves. Fig. 13 (d) shows the constellation diagram

for the “known channel” case. For all the four cases, the phase rotation is310

compensated by using a known M-sequence.

5. Conclusions

In this work, a blind deconvolution based equalizer is proposed which uses

the received array signal for channel IR estimation. These channel IR estimates

are used for equalizing the effects of the channel. The channel estimation is315

done by applying different weighting functions to the received signal. The per-

formance of different weighting functions is studied in terms of MSE and BER.

The proposed equalizer is tested with simulated as well as real data. In both

simulations and experimental results, the BF-based weights give better perfor-

mance than the constant array weights. In addition to that, the performance320

of the BF-based weights is very close to the ‘known channel” case which shows

that BF-based technique provides good channel estimates and it can be used

for blind channel estimation and equalization.

The main advantage of the proposed system is that it computes the channel

estimates from the received array signal. This feature is very important for325

communications in different underwater applications including sensor networks

and underwater vehicles. For underwater sensor networks, it can save the re-

sources allocated for channel estimation which will result in longer battery time.

For underwater vehicles, the underwater channel is changing very fast and in

such scenarios, the blind channel estimation techniques will be very beneficial.330

In this work, the proposed method is tested for a static environment and future

work will involve testing it in a time-varying environment.
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