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Abstract—Network Functions Virtualization (NFV) is among
the latest network revolutions, bringing flexibility and avoiding
network ossification. At the same time, all-software NFV im-
plementations on commodity hardware raise performance issues
with respect to ASIC solutions. To address these issues, numerous
software acceleration frameworks for packet processing have
appeared in the last few years. Common among these frameworks
is the use of batching techniques. In this context, packets are
processed in groups as opposed to individually, which is required
at high-speed to minimize the framework overhead, reduce
interrupt pressure, and leverage instruction-level cache hits.

Whereas several system implementations have been proposed
and experimentally benchmarked, the scientific community has
so far only to a limited extent attempted to model the system
dynamics of modern NFV routers exploiting batching accelera-
tion. In this paper, we fill this gap by proposing a simple generic
model for such batching-based mechanisms, which allows a very
detailed prediction of highly relevant performance indicators.
These include the distribution of the processed batch size as well
as queue size, which can be used to identify loss-less operational
regimes or quantify the packet loss probability in high-load
scenarios. We contrast the model prediction with experimental
results gathered in a high-speed testbed including an NFV router,
showing that the model not only correctly captures system
performance under simple conditions, but also in more realistic
scenarios in which traffic is processed by a mixture of functions.

Index Terms—Discrete-Time Model, Queueing Theory, NFV,
DPDK, netmap, FD.io, VPP.

I. INTRODUCTION

All-software processing of network traffic has unleashed

the possibility to rapidly deploy and update new protocols

and features, in both the control and the data plane. Par-

ticularly, ASICs still dominate the network core, where the

network fabric performs simple processing like IP forwarding

or MPLS switching at several Terabits-per-second. In contrast,

all-software stacks are gaining popularity at the network edge,

where software can deliver feature-rich packet processing for

a large variety of protocols at tens to hundreds of Gigabits-

per-second. Software routers have been introduced nearly two

decades ago [1] but their adoption has been slow due to severe

performance bottlenecks, which made the idea appealing but

limited to research prototypes. Yet, the situation changed

drastically in the last decade, with the introduction of the

so-called “kernel-bypass” network stacks [2], [3], that started

offering efficient low-level building blocks for multi-threaded

user-space processing of network traffic at line-rate. As a

result, full-blown software stacks, enabling more complex

use cases in the Software Defined Networks (SDN) and

Network Functions Virtualization (NFV) areas started rising

in the software ecosystem. Open Virtual Switch (OVS) [4]

and Vector Packet Processor (VPP) [5] are two examples.

To achieve high-speed processing, these software frame-

works share commonalities [6] such as the use of lock-free

multi-threading as well as the use of poll-mode batched pro-

cessing. If the use of multi-threading allows horizontal scaling

and makes each thread independent from the others, the use of

batching is a distinctive characteristic of modern high-speed

packet processing frameworks: particularly, batching is used

for both fetching packets from the Network Interface Card

(NIC) by low-level drivers to reduce interrupt pressure [2],

[3], as well as for processing batches of packets in higher-

level applications to amortize framework overhead [5]–[8].

Yet, while a large number of system implementations exist,

and while some work recently started undertaking an experi-

mental comparison of these implementations [6], [9], [10], to

the best of our knowledge a system model that can explain and

accurately predict the measurable system performance of such

batch-based packet processors has yet to appear. Although

a model for VNF processing times is proposed in [11], its

applicability is restricted to systems that process each packet

individually. However, batching departs radically from such

classic models where packets arrive independently and are

independently buffered and treated. Indeed, batching not only

correlates arrival and departure, but can also influence the

average per-packet processing time. While queueing models

that feature batched arrivals at the processing unit are not

entirely new and have been used to better capture phenomena

such as bursty TCP behavior [12]–[15], both the use case and

the particular processing schemes differ significantly.

This paper presents the first simple yet accurate model of

high-speed software routers using batching acceleration. We

present a general model that is able to accurately characterize

the most distinctive parameters of new-generation software

routers, including the packet loss probability and processed

batch size. In particular, the model allows deriving the full dis-

tribution of the batch size and not just the first few moments.

Experiments with a real software router confirm the model

to be very accurate in realistic scenarios where a mixture of

network functions with different levels of complexity is present

and each requires a different number of CPU cycles.

In the remainder of this paper, we first introduce the

architecture of a modern NFV software router in Sec. II. We

develop a discrete-time queuing model in Sec. III, after which

we describe the experimental setup that is used for the model

validation in Sec. IV. Results of the validation are presented

in Sec. V. Finally, we put this work in the context of related

efforts in Sec. VI and summarize our findings in Sec. VII.



II. BATCHED PACKET PROCESSING

We start by presenting background information about the

latest generation of high-speed software packet processors, that

is represented at a high level in Fig. 1. We refer to the same

figure later to detail our experimental testbed in Sec. IV. The

Device Under Test (DUT) consists in a Common Off-The-

Shelf (COTS) server equipped with one or more Network

Interface Cards (NICs). The DUT runs an instance of a

software router that implements a set of Virtual Network Func-

tions (VNFs): examples of such functions include Ethernet

switching, IPv4/IPv6 forwarding, Access Control Lists, load

balancing, proxying, intrusion detection, etc. Irrespectively

of the specific functions, the system has a number of low-

level architectural characteristics that we introduce here, and

abstract in the next section, to provide a tractable yet accurate

analytical model.

A. Packet Ring and RSS

When packets are received at the NIC, they are written

to a buffer, called packet ring, that is also accessed by the

software to retrieve the incoming packets. Writing happens

without involving the CPU, using the Direct Memory Ac-

cess (DMA) technique, and does not involve costly memory

copy operations. This memory area acts as a circular queue:

when the input rate is higher than the processing rate, the

oldest packets might be overwritten by the newcomers. Hence,

unlike in classic FIFO queues, older packets are dropped when

the buffer is full.

Modern NICs expose multiple RX/TX hardware queues for

the same link. Software frameworks can leverage the Receive

Side Scaling (RSS) technique [16] to bind different CPUs to

different of these RSS hardware queues. Thereby, incoming

traffic is balanced across different RSS queues based on a

hashing function, which allows parallelizing packet processing

with the number of available CPU cores. Therefore, each CPU

is assigned with a separate instance of the software router,

managing its own specific RSS queue with its own packet ring.

Since the RSS techniques makes each thread independent,

it is sufficient to analyze the performance of a single RSS

queue as handled by a single core: indeed, due to the lack

of synchronization and locking issues, the aggregated system

performance scales linearly in the number of cores. Hence, for

modeling purposes, it is sufficient to focus on a single RSS

queue.

B. Polling and I/O Batching

Traditionally, the networking stack generated an interrupt

every time a new packet was received by the NIC, signaling

the CPU that all processing should stop in order to deal

with packet I/O. Under heavy load, this mechanism has been

proven to be very inefficient and to overload the CPU, for

which different interrupt mitigation mechanisms have been

introduced. One such mechanism is polling [17]: at very high

traffic rates, the CPU continuously checks for packets stored

in the packet ring without raising any interrupt.
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Fig. 1: Synopsis of the device under test considered in this

manuscript.

Polling mechanisms are typically coupled with batching:

when the CPU polls a device, it gathers a group of contiguous

packets in the ring and the whole batch is passed to the

processing application. A similar procedure is executed during

packet transmission, when packets scheduled to be transmitted

are forwarded in batches. Batching is a powerful mechanism

that speeds-up the overall processing, as it amortizes the fixed

costs of the I/O over multiple packets [7], [18] and is as such

supported by all modern networking stacks [2], [3].

A maximum batch size β is usually defined to fix a limit on

the number of packets to be taken by an atomic poll operation,

so that the size of the polled batch can take any value in

[0, β]. Thus, defining a simple model capable of faithfully

representing batched operations is a relevant goal.

C. Compute Batching

Furthermore, the use of batching is not limited to packet I/O.

Indeed, network function computation can similarly benefit

from grouped processing, which is known as compute batch-

ing.

Shortly, when a VNF is executed over a batch, this allows

sharing the overhead of the packet processing frameworks on

multiple packets, e.g., all processing instructions are initialized

once per batch rather than once every packet. Additionally, it

increases the efficiency of the underlying CPU pipelines since

the VNF code raises a single miss for the first packet in the

batch, but is then subsequently cached in the L1 instruction

cache for the remainder of the batch.

Whereas the actual implementation of compute batching

differs among frameworks (e.g., the compute batching im-

plementations of G-opt [8], DoubleClick [7], FastClick [6]

and VPP [5]), compute batching is another popular technique

in modern high-speed packet processing frameworks. Hence,

defining a general model that can be applied to different

frameworks with heterogeneous implementations of compute

batching techniques is another relevant goal.

III. SYSTEM MODEL

In this section, we describe the queueing model that is

used to evaluate the performance of batching-based packet

processors. Fig. 2 illustrates its main components, namely an

arrival process with arbitrarily distributed packet interarrival
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times, a limited-capacity FIFO queue as well as a processing

unit that regularly polls the queue, picks up limited-sized

batches, and processes them with service times that depend

on the batch size. We deliberately abstract the circular packet

ring with a FIFO queue for the sake of tractability. Intuitively,

this does not alter the system performance w.r.t. the amount of

lost packets, only which packets are lost changes. Furthermore,

experiments show that the model achieves a high level of

accuracy even despite this simplification (Sec. V). In this

section, after a brief overview of the system states that are

captured by the model, we outline how to extract the key

performance indicators from the system steady state.

A. Discrete-Time Model

For the sake of readability, we provide an overview of

the notation used in this manuscript in Tab. I. The top half

contains constants and random variables that constitute the

model input, whereas outputs are listed in the bottom half. To

disambiguate between random variables (RVs), distributions,

and distribution functions, we use the following convention:

uppercase letters such as A denote RVs, their distribution is

represented by

a(k) =def P(A = k), k ∈ [0,∞) ,

and the corresponding distribution function is defined as

A(k) =def P(A ≤ i) =

k
∑

i=−∞

a(k), k ∈ [0,∞) .

In the proposed model, the system state at a given time is

represented by the corresponding queue size Qn at the time the

n-th batch is polled from the NIC. As highlighted in Fig. 3,

TABLE I: Notation.

Variable Description

L Queue capacity, equals 4096 if not stated otherwise.

β Maximum batch size, equals 256 if not stated otherwise.

A, a(k) Packet interarrival time.

Bi, bi(k) Service time of size i batches.

xτ,a(k) Number of arrivals whose interarrival time is distributed
according to a during an interval whose length is dis-
tributed according to τ .

Qn, qn(k) Queue size immediately before the n-th batch is picked
up.

Q, q(k) Queue size at embedding times.

Vn, vn(k) Batch size immediately before the n-th batch is picked
up.

V , v(k) Batch size at embedding times.

ploss Packet loss probability.

all system events such as packet arrivals as well as polling

and batch processing have a direct impact on the queue size.

While each packet arrival leads to an increment of the queue

size by one, polling by the processing unit decrements it by

the number of packets that are picked up. The latter is limited

by the maximum batch size which is denoted as β and the

number of packets that reside in the queue at the time of the

polling event. Finally, if an arriving packet finds the queue at

its maximum capacity L, the packet is dropped. Hence, the

queue size distribution Q(k) can be used to derive all relevant

performance indicators for the modeled system, e.g., the batch

size distribution as well as the packet loss probability.

In order to derive the distribution of the queue size, we

consider an embedded Markov chain whose embedding times

are defined to be immediately before the busy polling events

of the processing unit. Based on the queue size Q at these

embedding times, we can derive the state probability distribu-

tion at consecutive embedding times by taking into account

the current batch size and the number of arrival events during

the corresponding service time. Finally, we use a fixed-point

iteration in order to determine the queue size distribution

q(k). To this end, we leverage the recursive relationship in

(1) to compute the queue size distribution immediately before

the (n + 1)-st batch is picked up, based on the queue size

distribution immediately before the n-th batch is picked up.

qn+1(k) =























































L
∑

i=0

qn(i)xbmin(i,β),a(k − (i−min(i, β)))

for k < L,
L
∑

i=0

qn(i)

∞
∑

j=0

xbmin(i,β),a(L+ j − (i−min(i, β)))

for k = L,

0 otherwise.
(1)

The first case covers the probability to reach a state with a

queue size that is below its capacity L. In order to calculate



this probability, every possible previous value for the queue

size i at the previous time of embedding is considered.

Given i, the size of the batch that is processed between

embeddings equals min(i, β) since the processing unit can

pick up at most β packets. From this, we can derive the

number of arrivals during the corresponding service time -

which is distributed according to bmin(i,β) - by means of

xbmin(i,β),a. Since embeddings are placed immediately before

polling events, a queue size of k is reached when the number

of arrivals during the service time is equal to the difference

between k and i−min(i, β), the size of the queue immediately

after the batch is picked up.

The special case of k = L is calculated in an analogous

fashion but it is necessary to take into account packet loss,

i.e., the arrival of packets beyond the queue capacity which

also results in a queue size of L.

Finally, we remark that under stationary conditions, the

indexes n and (n+ 1) in (1) can be suppressed, i.e.,

q(k) = lim
n→∞

qn(k).

B. Key Performance Indicators

Given the queue size distribution, the batch size distribution

and packet loss probability can be derived according to (2)

and (3), respectively. While the former is representative of the

system’s efficiency, i.e., larger batches correspond to lower

per-packet processing times, a non-zero value of the latter is

indicative of an under-dimensioned system.

1) Batch Size Distribution: If the queue size is lower than

the maximum batch size β, the two are identical, i.e., the entire

queue is emptied upon batch pickup, which is covered in the

first case of (2). Queue sizes larger than β result in batch sizes

of exactly β and are instead covered by the second case.

v(k) =























q(k) k < β,
∞
∑

i=β

q(i) k = β,

0 otherwise.

(2)

2) Packet Loss Probability: As noted in the description of

(1), packet loss occurs when the number of arrivals during a

service interval would lead to a queue size that exceeds the

capacity L. Hence, we can describe the packet loss probability

as the ratio of the expected number of arrivals beyond this

threshold NLost and the expected total number of arrivals

NArrivals:

ploss =
E [NLost]

E [NArrivals]

=

∑L

i=0 q(i)
∑

∞

j=0 j xbmin(i,β),a(L+min(i, β)− i+ j)
∑L

i=0 q(i)
∑

∞

j=0(j xbmin(i,β),a(j))

(3)

Similarly to (1), we consider all possible queue sizes i and

use the corresponding probability q(i) as a weighting factor.

For each number of lost packets j, we calculate the probability

for the arrival of (L + min(i, β) − i + j) packets that are

required for filling and exceeding the queue. For the expected

total number of arrivals, we proceed in an analogous fashion

but do not have to shift the distribution of the number of

arrivals.

IV. EXPERIMENTAL SETUP

To validate our model, we instrument a testbed operating a

real NFV software router following the IETF benchmarking

guidelines [19]. This section describes our hardware and

software setups as well as the scenarios we use to assess the

accuracy of our model.

A. Hardware Setup

We reproduce the experimental setup that is illustrated

early in Fig. 1. Our hardware consists of two COTS servers,

equipped with two Intel X520 dual port NICs operating at

10 Gbps. Each server has 2 Intel Xeon E52690 processors,

with 12 physical cores per processor, running at 2.60 GHz.

Each processor has 3 levels of cache hierarchy, ranging from

576 KB for the L1 to 30 MB for the L3. The RAM consists of

two Non-uniform Memory Access (NUMA) nodes for a total

size of 128 GB.

We use one server as Device Under Test (DUT) and another

server for traffic generation (TX) and reception (RX). The

DUT receives traffic from one input line-card, performs the

packet processing, and then proceeds with the forwarding to

the designated output port. We conduct our measurements at

the TX and RX side in order to assess the packet ingress and

egress rate as well as packet loss. Additionally, we measure

directly within the DUT in order to obtain batch sizes, packet

loss at the NIC, and packet loss at the DUT.

Given that traffic comes from a single 10 Gbps line-card, the

hardware setup would be vastly over-provisioned w.r.t. CPU

and memory in case all cores would be used. Therefore, we

run the DUT on a single CPU core attached to a single RSS

queue, as typically done in stress-test conditions.

B. Software Setup

1) DUT: To validate the model, we select a state-of-the-

art NFV software stack that employs batched processing. In

particular, we conduct experiments with the Vector Packet

Processor (VPP) [5]. In a nutshell, VPP implements VNFs as

software components (aka nodes) that can be linked together

in a specific configuration (aka forwarding graph). A specific

input node (aka dpdk-input) polls the line-card for new pack-

ets, grabbing a batch (aka vector) from the ring for processing.

Notice from Tab. II that VPP compute-batches may aggregate

several DPDK I/O-batches, as the maximum VPP batch size

is larger than DPDK’s. VPP then processes all packets in the

vector node-by-node instead of traversing the graph packet-by-

packet: in addition to sharing the framework overhead over the

batch, only the first packet triggers fetching of processing code

in the L1-instruction cache of the CPU, whereas processing

of subsequent packets benefits from L1-instruction cache hits.



TABLE II: Experimental configuration parameters.

Parameter Value

H
W

NIC Intel X520 dual-port 10 Gbps

CPU 2× Intel Xeon E52690 @ 2.6 GHz

Caches L1/L2/L3 32 KB/256 KB/30 MB

D
U

T

Software router VPP 17.04

Number of CPU cores 1

Number of RSS queues 1

Memory allocated 4 GB

Size of input queue (pkts) L = 4096

Max DPDK batch size (pkts) 32

Max VPP batch size (pkts) β = 256

T
X

/R
X

Traffic Generator MoonGen

Rate span [min..inc..max] [0.5..0.5..10]Gbps

Hi/Lo rates 10 Gbps / 2.5 Gbps

Arrival rate process Constant bit-rate (CBR)

Data points per rate (pkts) 138k

Functions { XC, Eth, IPv4, IPv6 }

Scenarios Homogeneous vs Heterogeneous

Also notice that this process naturally introduces branches,

as packets may trigger different functions implemented in

different nodes of the forwarding graph. This requires splitting

the original heterogeneous batch into smaller homogeneous

batches for the subsequent nodes. This is expected to change

the operational point of the NFV router, as not only the split-

ting process incurs an additional overhead, but also since the

framework overhead is now shared over a smaller batch, and

the code heterogeneity increases the L1-instruction cache miss

rate. It is thus important to assess experimental performance

under realistic scenarios involving multiple functions.

2) TX/RX: For traffic generation and reception, we use

MoonGen [20], a state-of-the-art scriptable tool capable of

sustaining 10 Gbps line-rate. MoonGen also provides APIs

to perform basic measurements from the TX/RX side. For

example, it is possible to access the NIC’s hardware counters

to precisely measure the number of packets transmitted and

received, which allows to derive the experimental forwarding

and loss rates for comparison with the model.

Typically, a single DUT thread on a single RSS queue under

commonly considered NFV workloads is able to sustain a rate

of 12–14 Mpps [3], [6]. As such, when sending 10 Gbps worth

of traffic at minimum-sized 64 Bytes packets on a wire, corre-

sponding to a rate of 14.88 Mpps, we expect the system to be

in a lossy regime. As such, we assess the system performance

for different rates, ranging from 0.5 Gbps to 10 Gbps with a

step increment of 0.5 Gbps. For the sake of illustration, we

also consider two exemplary operational points, representing

a high-load (10 Gbps) and a low-rate (2.5 Gbps) regimes.

C. Scenarios

We consider two VNF cases, where the router is stressed

with either homogeneous traffic that triggers the same function

or heterogeneous traffic that activates a mixture of functions.

We select popular functions in the NFV ecosystem that allow

us to focus on different components of the framework. We use

the simplest function to investigate I/O batching, and introduc-

ing different types of lookup and data structures to provide

instances of compute-batching with different complexity.

1) Homogeneous Cross-Connect Function: In this sce-

nario a single simple VNF, usually referred to as cross-

connection (XC), is applied to all packets before the imme-

diate forwarding, representing the baseline of homogeneous

functions in an NFV router. In this case, the VPP DUT is

configured to take all the packets from one input interface and

immediately forward them to a fixed output interface. Notice

that for the XC VNF, no computation is needed on the headers

of the transferred packets since the DUT simply moves batches

from the input to the output NIC. Therefore, this scenario helps

assessing whether the model faithfully reproduces the impact

of I/O-batching.

We generate our workload using a MoonGen script that

sends a stream of packets at a fixed rate, namely copies of

a templated UDP traffic. Notice that for such a simple VNF,

the type of traffic does not affect the processing time. Since

neither processing nor branching happens, XC performance

represents an upper bound for the performance of the NFV

router.

2) Heterogeneous Eth/IPv4/IPv6 Functions: As pointed out

in [10], as network traffic is heterogeneous, NFV routers

need to handle a mixture of different functions. We therefore

consider the case of three different functions that operate on

the same traffic batch. Specifically, we consider three functions

with different sizes of inputs (48, 32, and 128 bits), lookup

types (exact vs longest-prefix match), and data structures (hash

tables vs tries). In particular, we consider traffic that triggers

the following operations, in increasing order of complexity: (i)

a 48 bit exact-match Ethernet lookup, (ii) a 32 bit IPv4 longest-

prefix match lookup using a trie structure, and (iii) a 128 bit

IPv6 longest-prefix match lookup that performs a lookup over

multiple hash tables, for different netmask lengths.

For the sake of simplicity, our experiments are performed

with an even split of the functions, i.e., each of the above

traffic types have 1
3 of the bandwidth, so that each function

activates with probability 1
3 , resulting in different function

breakdowns across batches. We leave the investigation of even

more complex scenarios, e.g., featuring an uneven split, a

larger set of functions, or longer chains of functions for future

work. In this scenario, both the function and the vector split

are heterogeneous, which already makes it a quite challenging

use case for our model.

V. MODELING VS EXPERIMENTAL RESULTS

Before we validate our model via experimental results from

the homogeneous and the heterogeneous traffic scenarios,

we discuss several options that are available for tuning the

model inputs. These options represent different trade-offs in

terms of the resulting prediction accuracy, the model’s general

applicability, as well as the amount of measurements that are

required prior to its application.



Per−Rate Fitting Global Fitting

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

0

5

10

15

20

25

Batch Size

M
e

a
n

 S
e

rv
ic

e
 T

im
e

 [
µ

s
]

Rate [Mbps] 2500 5000 7500 10000 All
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A. Model Tuning Options

As detailed in Sec. III, the model input consists of the queue

capacity L, the maximum batch size β, the distribution of

packet interarrival times a(k), and the size-dependent distri-

butions of batch processing times bi(k). Due to our choice of

hardware and software components, the values for L and β
are fixed at 4096 and 256, respectively.

While the mean packet interarrival time E [A] can be

determined from the applied rate, our model provides a degree

of freedom by allowing to set an arbitrary distribution to

reflect aspects like the traffic’s burstiness: to this end, we

consider a total of four distributions that have varying degrees

of variation. In particular, these include (i) the Poisson dis-

tribution whose coefficient of variation equals 1/
√

E [A], (ii)

the geometric distribution with a coefficient of variation that

equals 1, and (iii)-(iv) negative binomial distributions whose

parameters are set to achieve coefficients of variation equal to

0.5 and 2, respectively.

Furthermore, we use our measurements to obtain E [Bi],
the mean size-dependent batch service times. Similarly to the

packet interarrival time, we can use different distributions to

model the behavior of the processor. However, all conducted

measurements yielded a very low degree of variation when

considering a particular combination of applied rate and the

corresponding per-size batch service time. Hence, we use

Poisson distributions for the service time.

Additionally, the model might require service time distribu-

tions for batch sizes that did not occur in the measurements.

In order to provide suitable distributions for these batch sizes,

linear fitting of the mean per-batch service times is performed.

The Poisson distributions for the service time are then gen-

erated with measurement-based means where available and

with fitted means otherwise. Finally, the mean batch service

time E [Bi] can depend on the applied rate due to internal

specifics of the packet processing framework. Hence, the

aforementioned fitting can be done either globally or on a

per-rate basis. These choices represent trade-offs between the

overhead for per-rate measurements of the service time, risking

overfitting the model to a particular scenario, and a possible

improvement w.r.t. the resulting accuracy.
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Fig. 5: Mean batch sizes for different rates, arrival processes,

and fitting strategies.

B. Homogeneous Scenario

1) Per-rate vs Global Fit: We illustrate the immediate

effects of the chosen fitting strategy in Fig. 4. While the x-axes

denote the batch size, the y-axes represent the mean service

time in microseconds, and different colors represent different

packet arrival rates. Each dot represents a mean service time

that is obtained from measurements and lines correspond to

linear fits. In particular, we observe that the slope of the linear

fit can significantly change depending on the considered arrival

rate and therefore might lead to a larger error when the model

has to take into account batch sizes that did not appear in a

measurement run. In particular, at low rate 2.5 Gbps the size

of the processed batch is small, which is not as efficient to

process as a larger batch, resulting in longer mean service

times. Starting at 7.5 Gbps, it can be seen that batch size spans

a much larger range, whereas for 10 Gbps the batch size is

consistently maximal and the system likely operates in a lossy

regime.

In order to evaluate the impact of the fitting strategy as well

as the distribution of the packet interarrival time, we apply our

model to the XC scenario and compare the resulting mean

batch size with our measurements. For different rates on the

x-axes, the graphs in Fig. 5 display the mean batch size on

their y-axes.

The two subplots correspond to evaluations that use Poisson

(left) and negative binomial distributions (right) and bars of

different colors represent the measurement data (middle, blue)

surrounded by results from the model with the two fitting

strategies: the global fit (red bars to the left of measurement

data) vs per-rate fit (green bars to the right).

As evidenced by the similar development of the mean batch

size and the correct identification of the saturation for rates

greater than 7 Gbps, all four considered model variants lead to

a high degree of agreement with the measurements. However,

the models using the global fitting strategy consistently out-

perform those that rely on per-rate fitting of the service time.

In the former case mean values differ by only up to 1 packet,

whereas differences of up to 8 packets are observed for the

latter. This effect can be explained by the fact that the per-rate

fitting strategy can suffer from performance issues when the
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Fig. 6: Batch size distributions for different rates and arrival

processes.

model requires service time information for batches that have

not been observed in the corresponding measurements. Hence,

for the remainder of our evaluation, we show results that are

obtained with the global fitting strategy.

2) Arrival Process Distribution: In contrast to the fitting

strategy, the chosen distribution of the arrival process does not

have a significant impact on the mean batch size returned by

the model, which we can capture with the relative error (RE)

of the normalized difference of means and is defined as

|E [P ]− E [Q]|

E [P ]
.

Therefore, we extend our evaluation and compare the batch

size distributions that are returned for different arrival pro-

cesses. We quantify the difference between the distribution that

is returned by the measurements, p(k), and the model, q(k),
by means of the Jensen-Shannon divergence (JSD) which is

symmetric and bounded, allows to equally weight differences

among p(k) and q(k) over their full support, and is defined as

∞
∑

k=0

(

1

2
p(k) ln

p(k)
1
2p(k) +

1
2q(k)

+
1

2
q(k) ln

q(k)
1
2q(k) +

1
2p(k)

)

.

For three exemplary rates that represent a low, a medium,

and a high load as well as our four arrival distributions in

increasing order of coefficient of variation, Fig. 6 displays the

batch size distribution obtained by means of measurements

and our model. Given the batch size on the x-axis, the y-

axis represents the corresponding probability and annotations

provide the JSD and RE values. When inspecting the distri-

butions obtained by the measurements, we can observe that

there is usually one peak around which the main portion of

the probability mass is centered. This can be explained by the
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Fig. 7: Packet loss probability for different rates.

fact that there is an equilibrium between the per-packet service

time that is achieved in the context of a particular batch size

and the mean packet interarrival time. Hence, the number of

arrivals during the service time of a batch is nearly constant. In

the case of higher rates, shorter interarrival times lead to larger

mean batch sizes which, in turn, allow for larger fluctuations

in terms of the number of arrivals during the corresponding

service time.

When comparing the subfigures column-wise, we observe

that while these peaks are also reconstructed by all model

variants, their dispersion increases significantly with the coef-

ficient of variation of the chosen arrival distribution. Similarly

to the previous argument, the higher variance of packet interar-

rivals leads to a wider range in terms of the number of arrivals

during a service period. Finally, the best match regarding both

the shape of the resulting distributions as well as the achieved

JSD measure is achieved when using arrivals that follow a

Poisson distribution. This is also in line with the settings of

the MoonGen traffic generator that is set to send packets at

a constant rate. Since it is a software-based generator, minor

fluctuations of the corresponding sub-microsecond interarrival

times are to be expected. Therefore, we use interarrival times

that follow a Poisson distribution for the remainder of this

work.

As already noted, the mean batch size takes on a constant

value of 256 for rates of 8 Gbps and above. In these high-

load regimes, packet loss begins to occur since the number

of arrivals during the batch service time exceeds 256 and the

queue fills up steadily. In Fig. 7, the actual packet loss that

is reported in the measurements is compared to the model’s

predictions. Given the rate on the x-axis, the height of the bars

denotes the packet loss percentage. Rates below 7.5 Gbps are

omitted since they are equal to 0 for both the measurements

and the model. For the remaining rates, the model accurately

predicts the occurrence and quantity of packet loss which

increases linearly with the applied load.

In summary, our model achieves a very high accuracy for

both key performance indicators in the cross-connect scenario,

faithfully modeling I/O batching over a wide range of arrival

rates, including overload scenarios that result in packet loss.

C. Heterogeneous Scenario

We continue our validation with the heterogeneous scenario

which features three types of packets that receive different
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treatment by the network function. Based on the insights from

the cross-connect case, we use packet interarrival times that

follow a Poisson distribution and employ Poisson distributions

for the batch service time. The means of the latter are based on

the means obtained in our measurements for observed batch

sizes, or on a global linear fit otherwise.

For the high load scenario of 10 Gbps, the model accurately

predicts a batch size distribution that has 100 % of its probabil-

ity at the maximum value of 256. Furthermore, it also reports a

packet loss probability of 56.61 % which very closely matches

the 56.65 % that are obtained via testbed measurements.

For the low load scenario of 2.5 Gbps, Fig. 8 shows the

cumulative distribution function (CDF) of the batch size

obtained by means of measurements and the model. Despite

applying the unmodified generic model to a significantly more

complex scenario, the model achieves a very high accuracy

regarding the batch size distribution. However, a small shift

near the batch size of 75 indicates a systematic mismatch.

Hence, we perform an in-depth analysis of the measurements

in order to further investigate the cause of this behavior.

To this end, Fig. 9 portrays a time series view of consecutive

batch sizes during an experimental run, reporting just 50

batches for the sake of illustration. A repeating pattern of

batch sizes can be observed: the pattern begins with a batch

of around 80 packets, that is followed by batches whose

size steadily declines until it falls below 32, after which the

pattern starts again. The monotonous decrease of batch sizes

can be explained by the more efficient processing of large

batches, during which fewer packets arrive than are processed.

In contrast, during the service time of batches whose size is

below 32, the overhead of the framework can be amortized

over fewer packets, causing the system to enter a less efficient

regime during which significantly more packets arrive.

This alternating behavior suggests the presence of (at least

two) different processing regimes. We further analyze this

phenomenon by checking the mean service time for different

batch sizes in the mixed traffic case. In particular, for different

batch sizes on the x-axis, Fig. 10 displays the mean service

time on the y-axis. Differently colored dots correspond to

values obtained in the low and high load context while the

grey line corresponds to the global linear fit. As suggested

by the previously observed traffic pattern, a significant change

in terms of the mean batch service time occurs for batches
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having size 32. Incidentally, notice that this drop is related to

DPDK’s internal batch size of 32 (cf. Tab. II), which causes

a drastic change of slope for the linear fit (service time drops

by a factor of 2 around that DPDK batch value) which is the

likely cause of the observed mismatch.

In summary, even when not taking into account these

highly implementation-specific details and autocorrelations,

our model generalizes very well and provides accurate pre-

dictions for both performance indicators, i.e., the batch size

distribution and the packet loss probability.

VI. RELATED WORK

Related to our work is either experimental work [2]–[10]

of NFV systems or modeling work [11]–[15], [21]–[26] that

either shares a similar technique or NFV focus.

1) Experimental Viewpoint: As introduced earlier, the

ecosystem of high-speed all-software packet processing has

flourished in the last decade with both low-level building-

blocks that use I/O batching (e.g., netmap [3] and DPDK [2]),

as well as high-level full-blown stacks that apply NFV func-

tions with a compute batching paradigm [5]–[8]. Whereas

such frameworks offer a similar set of features, comparison

is difficult so that most related work relies on extensive

evaluation campaigns of a single tool – as we do in this work

using VPP over DPDK.

More recently, work started to appear that extends the

comparison to a limited subset of the aforementioned tools [6],

[9], [10]. For example, [9] focuses on accelerated low-level

frameworks, namely netmap, DPDK, and PF_RING. The

authors perform an experimental campaign assessing not only

throughput, measured in Mpps, but also consider the impact of

factors such as batch size or misses in CPU caches. Similarly,



FastClick performance is evaluated over both DPDK and

netmap in [6]. Finally, [10] experimentally compares NFV

throughput with chains of heterogeneous functions using OVS-

DPDK, SR-IOV, and FD.io VPP. Given findings in [6], [9],

[10], it is reasonable to assume that the model presented in

this paper should also be fit to express the performance of

other frameworks, which we aim at tackling as future work.

2) Modeling Viewpoint: The theory of bulk queueing sys-

tems has long been studied [21]. For Markovian bulk input

M [X]/M/1 and service M/M [X]/1 systems, [22] provides

closed form solutions under Poisson arrivals and exponentially

distributed service times. Particularly, bulk-input Batch Marko-

vian Arrival Processes (BMAP) have been well studied [12],

[13], and applied to study long lived TCP connections [14],

[23] or to model aggregated IP traffic [15]. Similar studies for

bulk-service systems, which would be more relevant w.r.t. our

batch-processing perspective, are missing to date.

Models of Network Functions Virtualization (NFV) have

also recently appeared [11], [24]–[26]. In particular, queueing

models are used in [24] and [25] to describe software-based

networks. Both these models adopt a global network view and

strongly abstract the mechanisms of specific network elements,

as opposed to this work. Under this perspective, studies closer

to ours are [11], [26], which both aim at predicting virtual

function performance on multi-core systems. Yet, [26] does

not take into account mechanisms like batch arrival or batch

processing of packets, which both are crucial characteristics

of nowadays NFV routers. In contrast, the authors of [11]

assume fixed processing times, which we show not to hold

true in practice, and omit a proper experimental validation.

VII. CONCLUSION

This paper presents the first discrete-time NFV model that

takes into account the most recent and relevant aspects of

modern NFV routers. These include the use of batching for

both low-level I/O data transfer as well as for high-level data

transformation and computation. We validate the model with

experimental results that are gathered in a testbed with state-

of-the art NFV routers. The experimental scenarios include

a simple cross-connect case as well as a realistic setting in

which traffic triggers heterogeneous functions with different

processing complexity.

While our proposed model is simple and general, as it only

needs few aggregated measurements from a real NFV router,

it is very accurate in reporting detailed performance indicators

even in complex scenarios with multiple functions. The perfor-

mance indicators include not only the packet loss probability

and mean batch size, but also the distribution of the batch

size. On the one hand, this allows to precisely characterize the

router’s performance, e.g., in terms of batching delay. On the

other hand, it can be used as an operational tool to dimension

the router hardware, e.g., the number of CPU cores required

to sustain mixed traffic with a classic 5-nines reliability.

As part of our future work, we plan to validate the generality

of the model beyond the experimental results gathered in this

paper by considering a larger set of NFV routers such as

FastClick and G-opt as well as more realistic traffic patterns,

e.g., with chains of functions of different lengths.
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