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Abstract—The ongoing softwarization of networks comes with
several advantages like cost efficiency, increased scalability, and
better flexibility by migrating functionality from static, applica-
tion specific hardware appliances to flexible, lightweight software
solutions running on COTS hardware. In order to maximize
the performance gains promised by the NFV paradigm, several
challenges remain to be solved. In this work, we address the
accurate acquisition of key performance indicators, specifically
the packet processing time, of softwarized network functions. To
this end, we present KOMon, a Kernel-based online monitoring
tool to reliably measure the packet processing times of network
functions through lightweight in-stack monitoring. We show that
KOMon reports highly accurate values in different scenarios and
discuss the applicability of the proposed mechanism for different
use cases.

Index Terms—Virtual Network Function, VNF Packet Process-
ing, Online Monitoring, In-stack Monitoring, KOMon Tool.

I. INTRODUCTION

The network function virtualization (NFV) paradigm

promises greater flexibility while reducing cost and main-

tenance overhead by moving from dedicated hardware ap-

pliances to software solutions running on commercial off-

the-shelf (COTS) hardware. In order to enable a successful

transition from legacy, hardware-based solutions to virtual

network functions (VNFs), multiple challenges remain to be

solved. These challenges involve, among others, the placement

of functions and function chains in the network, the dynamic

allocation of resources to enable automatic scaling, and the

performance evaluation of software implementations to replace

high performance, specialized hardware appliances. All of

these research aspects of the NFV paradigm eventually aim

to improve the performance of a VNF deployment with the

goal to provide consistent and reliable high performance

networking. The IETF is currently discussing the performance

evaluation of network functions as Benchmark-as-a-Service

[1]. The authors of [2] discuss the integration of profiling

into the NFV development cycle and analyze the components

needed to generate such performance characteristics within the

NFV DevOps workflow.

In this work, we propose a novel methodology to investi-

gate packet processing times of network functions in either

dedicated testing environments or live deployments. Current

methodologies mostly consist of offline solutions like classical

performance benchmarking. Such approaches are important

tools during network dimensioning and planning. On the other

hand, reliable online monitoring solutions are required in order

to exploit NFV flexibility aspects most efficiently.

Reliable and accurate measurement of network function

specific key performance indicators, like packet processing

times, is, however, not only relevant in live environments and

for monitoring purposes. Instead, the processing time can be

used as an input parameter for theoretical models ahead of

deployment when it comes to predicting performance under

certain circumstances [3]. Additionally, the softwarization of

networks is often accompanied by the application of software

development paradigms during network function development.

Especially in the area of continuous integration and continuous

development, the availability of fast, reliable, and automatable

mechanisms to obtain comparable performance metrics of a

new version of a network application is required [4].

To this end, we propose KOMon, a lightweight Kernel-

based online monitoring tool for measuring VNF packet pro-

cessing times. After introducing the architecture of KOMon,

we demonstrate its accuracy for different magnitudes of VNF

processing times and different load levels. To this end, we

use an industry-grade hardware traffic generator and compare

the results to baseline measurements reported by the custom

designed example network function used during the evaluation.

The goal of the measurement is to analyze the accuracy of the

proposed KOMon tool and investigate the time offset emerging

from KOMon when comparing monitored values to baseline

values reported by a known VNF. In particular, it is of interest

to determine the influence factors on a potential accuracy bias.

As a key contribution we show that the offset is independent of

the VNF processing time in terms of an added artificial delay.

Further, KOMon allows to measure the health of a VNF since

queuing time for packets in the Kernel are included and heavy

load situations lead to strongly increasing processing times,

which might not be captured by measurements performed

within the VNF. Finally, we show that KOMon reported values

are able to closely capture the distribution of the processing

time exhibited by our example VNF. Both, the KOMon Kernel

module as well as the example VNF as well as the dataset used

during our evaluation are available on GitHub1.

The remainder of this work is structured as follows. In

Section II an overview of different types of performance evalu-

ation mechanisms and related work from this area is presented.

Following, in Section III the architecture and monitoring

1https://github.com/lsinfo3/KOMon



methodology of the KOMon tool as well as the functionality of

the provided example VNF is provided. Section IV describes

our evaluation of the monitoring capabilities of KOMon. Fi-

nally, in Section V a discussion of applications and limitations

of the proposed approach is presented before the work is

concluded in Section VI.

II. BACKGROUND AND RELATED WORK

As already mentioned earlier, most work in the area of VNF

performance evaluation and measurements focuses on offline

benchmarking and prediction of network function performance

based on measurements performed in known environments.

Additionally, most of these approaches rely on dedicated test

beds to investigate functional and performance characteristics

of virtual network functions due to large overheads and

complicated test environments.

In [5], the authors propose an offline solution to gather

functional as well as performance data through static code

analysis without execution of the VNF itself. This approach

allows the evaluation of arbitrary workload characteristics in

an offline manner. To make use of this methodology, however,

the codebase of a VNF needs to be accessible, making it

impossible to perform blackbox testing or to evaluate closed

source network functions.

The authors of [6] propose another tool for offline perfor-

mance benchmarking of virtual network functions. The Gym

framework enables fully automated performance benchmark-

ing of virtually any VNF type by allowing the user to define

custom test cases suitable for the VNF that is to be tested.

This and the support for different underlying virtualization

platforms make this approach very flexible, while still limiting

it to offline, dedicated performance benchmarking.

The aforementioned approaches focus on resource utiliza-

tion, like CPU time or memory usage, in order to determine

VNF performance levels. However, research has shown that

this information might not always be sufficient to reliably

identify performance bottlenecks [9]. To alleviate this issue,

the approach proposed in [7] suggests to monitor VM-to-VM

communication to enable online performance monitoring of

network functions. However, port mirroring of all incoming

and outgoing packets is required by this solution, which

imposes a significant performance overhead in a field where

processing times and efficiency are crucial.

Another approach proposed by the SONATA-NFV project

[8] involves using information exposed by the Linux Kernel to

evaluate the performance of virtual network functions. How-

ever, the information exposed by the Kernel does not include

NFV-specific metrics, like the processing time distribution of

packets, but only provides generic information like interrupt

counters, buffer levels and number of dropped packets. In this

context, our methodology of using the /proc/ file system to

extend the information provided by the Kernel can be used

to increase the monitoring capabilities of the SONATA frame-

work. Therefore, the integration of monitoring data obtained

by our KOMon tool into the monitoring infrastructure of

SONATA, thereby extending it by an additional VNF-specific

metric, is possible.

III. THE KOMON APPROACH

The monitoring mechanism we propose is based around the

idea of in-stack monitoring. This novel approach eliminates

the need for port mirroring and allows online monitoring

with minimal overhead by hooking into the network stack

implementation, which needs to be traversed by every packet

destined for a hosted VNF. In the following, the architecture,

monitoring logic and current implementation of KOMon as

well as the example VNF are discussed. The code for both

of the components can be found on GitHub2. In the presented

use case, we use the network stack of the Linux Kernel v4.11.

The KOMon approach can, however, be applied to other stack

implementations such as DPDK [10] or Snabb [11].

A. KOMon Architecture

The KOMon architecture consists of two components. First,

the KOMon Kernel module hooks into the network stack by

injecting its monitoring code. Second, the KOMon controller

runs in user space and is responsible for configuration and

management tasks. Figure 1 shows this architecture and its

interaction with the network stack. For reference, the right

hand side of the figure shows an abstracted view of the NAPI

stack, according to the ISO/OSI model.

Initialization (1+2). Before starting the monitoring pro-

cedure, the module needs to be loaded into the Kernel,

thus injecting the monitoring code directly into the network

stack, thereby attaching its monitoring logic to existing Kernel

functions of the network stack. In this use case, we attach

two monitoring probes to the network stack responsible for

handling UDP traffic. In order to obtain timestamps for in-

coming datagrams, we inject the monitoring point into the

__udp4_lib_rcv function that is used to process UDP

datagrams before sending them to a user space application.

On the other hand, in order to gather timestamps of outgo-

ing packets, we inject a second measurement point into the

udp_sendmsg function that is used by a UDP socket to

send datagrams. After the injection process, the user space

controller configures sample size and monitoring interval and

thereby defines how often and how many packets are being

sampled by the Kernel module. Following, the monitoring

sequence consists of three main steps.

Monitoring Loop (2+3+4). The current version of the

KOMon Kernel module is entirely passive until it receives

an initial trigger issued by the user space controller. After the

controller triggers a monitoring interval, the Kernel module

is activated, samples the previously configured number of

consecutive packets, and calculates their processing times.

Therefor, at the first measurement point the timestamps of

incoming packets destined for the VNF to be monitored are

stored in a ring buffer together with a hash of the packet

payload. After the packets have been processed by the VNF

2https://github.com/lsinfo3/KOMon



TABLE I: Overview of related work in the field of VNF monitoring approaches.

Approach Online VNF agnostic Remark

SymPerf [5] Offline Code required Arbitrary workload
Gym Framework [6] Offline Yes Fully automated, user defined test cases
NFVPerf [7] Online Yes Port mirroring required, imposing performance overhead
SONATA [8] Online Yes Uses limited information exposed by Linux Kernel, may utilize KOMon reported data
KOMon Online Yes Allows monitoring of VNF health and characterization of processing time distribution

and are ready to be sent out, the second measurement point

monitors outgoing packets and compares payload hashes to the

oldest packet still in the ring buffer. If the hashes match, the

timestamps are simply subtracted and the processing time is

stored as a result. After the preconfigured number of packets

have been monitored, the Kernel module returns to its passive

mode in order to decrease overhead. The data obtained during

the active monitoring phase can then be queried by the user

space controller via a procfs interface that returns a list of

measured processing times. This mechanic of matching pack-

ets currently limits the functionality of the KOMon approach

to VNFs that process packets in a FIFO manner and do not

alter the payload of packets. The implications and challenges

of payload altering and prioritizing network functions are

discussed in Section V.

KOMon Controller

KOMon Kernel Module

Network Application

IPv4 IPv6 ARP L3

Ethernet L2

Network Interface Card L1

TCP L4UDP

1

2 3

L7

4

Fig. 1: Architecture and stack interaction.

Note that the highlighted nodes in Figure 1 correspond to

monitoring UDP over IPv4 traffic. The Kernel module can,

however, be attached to any protocol supported by the network

stack with only slight modifications.

B. Example VNF Functionality

The example VNF used during the evaluation of KOMon

is essentially a UDP mirror written in C that is able to

relay packets to a predifined destination after inducing an

arbitrary artificial delay. The delay can thereby be configured

to be constant or follow a predefined distribution. The VNF

currently supports negative exponential, uniform and normal

distributed artificial delays, but can easily be adapted to

support further processing time characteristics. Additionally,

the VNF supports sampling of its own processing time, which

is used in our evaluation scenario as a baseline to compare to

the values reported by KOMon. Thereby, the VNF stops the

time between receiving a packet after reading from the socket

and sending it back out. The time it takes the Kernel to pick

VNF Host
System-Under-Test

1

2

3

Fig. 2: Testbed setup used during the evaluation.

up the packet from the socket is thereby not included in the

processing time.

IV. EVALUATION

In this section we present the measurement data obtained

using the KOMon monitoring tool in combination with an

example network function. After outlining the testbed setup,

we illustrate the calibration process whose results are used as

an input for identifying characteristics of VNFs’ processing

time distributions.

A. Testbed Setup

The results have been generated in a dedicated testbed

consisting of a Spirent C1 hardware traffic generator that is

directly connected to a bare metal server equipped with an

Intel Xeon E5420, 16 GB RAM, and 2x 1 Gbit NICs that

is running Ubuntu 16.04.3 LTS and our modified version of

Kernel 4.11. The measurements have been performed using the

example VNF included in the project repository on GitHub.

Figure 2 shows the schematic structure of the testbed used

during the evaluation.

Thereby, the Spirent Testcenter C1 (1) serves as a traf-

fic generator as well as the traffic sink (3). It generates a

continuous stream of tagged UDP datagrams that can be

uniquely identified via their payload and sends them to the

system-under-test hosting the network function (2) over a

direct 1G copper connection. The network function is a simple

UDP relay as described in Section III-B. This test setup is

used throughout the evaluation presented in this work. In the

following, we evaluate the accuracy of the KOMon monitoring

tool in different scenarios and evaluate the influence of various

parameters on its performance. The data used in this evaluation

is provided in the public GitHub repository.

B. Calibration

The first performance metric of the KOMon monitoring tool

is presented in Figure 3. The figure shows the processing

time along the y-axis. The x-axis shows an increasing artificial

delay as it is added by the used network function. Thereby,



values in red represent the data measured using the KOMon

monitoring tool, while the blue data points show the baseline

data reported by the example VNF. The black markers in this

plot mark outliers whose distance to the mean is either smaller

than Q1 − 1.5 · IQR or larger than Q3 + 1.5 · IQR, where

IQR is the inter quartile range, Q1 is the 25% quantile and

Q3 is the 75% quantile. The data presented in this figure has

been obtained by generating a continuous stream of 1 000 UDP

datagrams per second of size 128 byte that are processed by

the VNF and consequently sent back to the traffic generator.

In the process, the VNF induces a predefined artificial delay

before sending back packets. In this scenario, both the VNF as

well as KOMon sample 10 packets in negative exponentially

distributed intervals with a mean of 0.2 seconds.
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Fig. 3: Comparison of VNF reported values and values ob-

served using KOMon for different artificial delays.

It can be seen that values monitored using KOMon exhibit

a roughly constant offset over the baseline values reported

by the VNF for all artificial delay levels. The differences in

outliers are explained by the fact that both the VNF as well

as KOMon obtain the values through packet sampling and it

cannot be guaranteed that both tools sample the exact same

packets. The general presence of these outliers is explained by

the general purpose operating system used to host the VNF that

performs task scheduling that may affect a time measurement

in the microsecond realm.

As already explained in Section III, the measurement points

created by KOMon are located in Kernel space. Thus, the

processing time observed by the monitoring tool includes an

offset formed by operations happening between the measure-

ment points and the processing performed by the VNF, e.g.

copying packet data from Kernel space to user space. This

explains the slightly higher variance exhibited by KOMon

reported values over the baseline data. In order to quantify this

offset as well as validate the observation of the measurement

accuracy being independent from the total processing time

of the VNF, Figure 4 shows the bootstrapped difference of

means for different levels of artificial delay. Thereby, 1 000

random samples, each consisting of 10 subsequent packets,

have been taken from both the VNF-reported as well as the

KOMon generated data set, respectively. In order to soften

the impact of scheduling on a general purpose operating
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Fig. 4: Bootstrapped difference of means for different artificial

delays.

system, the following figures only contain the 99% quantile

of the dataset. For each of the pairs of samples, the difference

of means has been calculated before finally determining the

95% confidence interval for the resulting distribution of the

difference of means.

Figure 4 shows the mean difference of means after 1 000

repetitions along the y-axis with the opaque area depicting the

95% confidence interval. The x-axis shows again the different

levels of artificial delay. The first observation made in this

figure is the fact that KOMon reported values are within a

range of 0.2 us. Considering the fact that these values have

been obtained by the means of software based measurements,

this difference falls well within the expected accuracy of

our methodology. Additionally, none of the 95% confidence

intervals exceeds a width of 0.03 us, further supporting the

fact that KOMon exhibits a constant offset over the baseline

values. Based on this values, we consider 5.2 us to be the

overhead of KOMon reported values over the baseline.

The second performance metric of the KOMon tool we

investigate is the influence of different load levels on its

monitoring capabilities. Therefor, Figure 5 shows the mean

as well as 95% quantiles of processing time values monitored

using KOMon as well as reported by the VNF. Thereby, the x-

axis shows the different load levels in packets per second. The

y-axis shows the observed processing time in microseconds.

Values obtained by KOMon are again reported in red while the

blue values show the values reported by the VNF. In addition,

the dotted lines show the mean value while the solid curve

depicts the 95% quantile. Similar to the scenario investigated

before, the traffic generator produces a continuous stream of

UDP datagrams of size 128 bytes. Both the VNF as well as

KOMon sample batches of 10 consecutive packets in negative

exponentially distributed intervals with a mean of 0.2 seconds.

Instead of adding an artificial delay, the VNF is configured to

flood out packets as fast as possible this time.

Two observations can be made in this figure. On the one

hand, it can be seen that the mean processing time reported

by the VNF is nearly constant for all evaluated load levels

between 1 000 and 175 000 packets per second with 150 000



●● ●● ●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

0 50000 100000 150000
Load [pps]

P
ro

c
e

s
s
in

g
 T

im
e

 [
u

s
]

95% quantile Mean ● ●KOMon VNF

Fig. 5: Comparison of VNF reported values and values ob-

served using KOMon for different load levels.

packets per second being the non-drop rate for the test setup as

any higher load leads to significant packet loss and is therefore

not included in this evaluation.

The mean of the VNF reported values is mostly constant for

all load levels. This observation is quite intuitive as the VNF

is processing packets as fast as possible for all load levels

and, since no packet loss occurs even at 150 000 packets per

second, it can even do so at high loads. The 95% quantile is

after a slight increase at around 30 000 packets per second also

mostly constant. On the other hand, the mean values obtained

by KOMon show a continuous growth with the 95% quantile

even exhibiting exponential growth behavior. This difference

in observed processing times is once again attributed to the

operations taking place between the VNF and the monitoring

points used by KOMon. Packets processed by the Linux

Kernel network stack are in general queued two times on their

way from the network interface card (NIC) to a user space

application. Once at the NIC itself in a process called interrupt

mitigation [12] that aims to decrease the overhead of sending

an interrupt to the Kernel for every incoming packet, thus

avoiding livelocks. Then, after having traversed most of the

network stack, packets are queued a second time in the socket

buffer of the socket opened by a user space application. This

second buffer is located between the KOMon measurement

points and the VNF and is filled to a different extent for

different load scenarios. Figure 6 shows the mean buffer fill

levels and 95% confidence intervals recorded during the load

test presented in Figure 5. The values have been obtained from

/proc/net/udp.

The figure shows the different load levels along the x-axis

and the mean buffer fill level along the y-axis. The opaque area

depicts the 95% confidence interval. It can be seen that the

buffer fill level develops similarly to the 95% quantile of the

monitored values in Figure 5, thereby exhibiting a correlation

of 0.85.

The combination of the information presented in Figures

5 and 6 shows that KOMon is able to take the queuing of

packets into account that not even the VNF itself can report

and can thus be used to trigger measures like scale-up or
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Fig. 6: Socket buffer fill levels for different load levels.

scale-out ahead of time, thereby avoiding packet loss. This

shows that KOMon can be used in live scenarios to monitor

the current performance of network functions and is able to

detect performance bottlenecks.

Additionally, as has been observed in Figures 3 and 4,

the monitoring values can be used to determine the packet

processing time of a network function. The values obtained

during the calibration show that the offset is statistically

independent from the total processing time of the VNF and

can be used to infer its real processing time.

C. Estimation of Processing Time Distributions

We demonstrate the applicability of the proposed approach

by using our KOMon tool to determine the processing time

distribution of VNFs. To this end, we configure our example

VNF in such a way that its processing time follows one of

four distributions with configurable mean processing times µ.

These distributions include a negative exponential distribution,

a uniform distribution that ranges from 0 to 2µ, as well as two

normal distributions whose coefficients of variation are equal

to 1 and 0.2, respectively. Furthermore, we vary the mean

processing time of the VNF from 2 to 100 microseconds.

We first provide qualitative results of the evaluation in

Figure 7. Each subfigure corresponds to one of the four

processing time distributions and displays the empirical cu-

mulative distribution function (ECDF) of the values that are

reported by the KOMon tool and the VNF, respectively. While

the data source is represented by the line type, differently

colored curves denote different mean processing times µ as

listed in the annotation in the first subfigure.

Two main observations can be made. First, the shape of the

distributions that are obtained by means of the KOMon tool as

well as the VNF are very similar w.r.t. to both their shape and

values in all considered scenarios. This phenomenon indicates

that KOMon is capable of capturing general properties of the

VNF processing time, in particular characteristics beyond the

first moment. Secondly, an almost constant offset between

the curves that correspond to KOMon and the VNF can be

identified. This offset can be explained by the fact that the

values which are reported by KOMon include the overhead

that is caused by operations that are performed in the Kernel.



µ ∈ {2, 25, 50, 75,100} us

Normal, c=0.2

Normal, c=1

Uniform

Negative Exponential

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Processing Time [us]

E
C

D
F

KOMon VNF

Fig. 7: Empirical CDFs for different delays and different

processing time distributions as sampled by the VNF as well

as KOMon.

By using the difference of means that is obtained during the

calibration phase in conjunction with the KOMon-based val-

ues, we can correct this shift and estimate the mean processing

time of the VNF as well as its coefficient of variation.

Results of this estimation are presented in Table II. We

show the mean values as well as the coefficient of variation

of processing times that are reported by the VNF itself as

well as the KOMon-based estimates. The latter are obtained

by subtracting the calibration offset from KOMon-reported

values. In the presented case, this offset is equal to 5.2

microseconds.

As evidenced by almost identical values in the context of

all processing time distributions and average processing times,

mean values can be estimated in a reliable manner. While this

is also true for most scenarios in the case of the coefficient

of variation, significant deviations are observed for µ = 2

microseconds. This behavior can be explained by the fact

that in these scenarios, the offset is larger than the mean

processing time and the small values are close to the resolution

of software-based measurements.

In summary, we have demonstrated that KOMon can be

TABLE II: Mean and coefficient of variation for different

artificial delays and different processing time distributions.

Distribution
Delay Mean Coeff. of Variation
µ VNF KOMon VNF KOMon

Negative

Exponential

2 2.75 2.68 1.43 1.75
50 50.91 50.59 0.99 0.99
100 100.53 101.37 0.99 1.00

Uniform
2 2.73 2.61 1.39 0.87

50 50.77 51.05 0.59 0.59
100 100.69 101.02 0.58 0.58

Normal
cv = 1

2 2.89 2.79 1.59 1.49
50 55.17 55.01 0.80 0.81
100 109.74 109.57 0.80 0.80

Normal
cv = 0.2

2 2.73 2.62 1.22 0.71
50 51.05 50.84 0.25 0.25
100 100.88 101.05 0.22 0.22

used to reliably reproduce the shape and estimate the mean as

well as the coefficient of variation of a wide range of VNF

processing time distributions. In particular, this estimation can

be performed without VNF-reported values or access to the

VNF code. It only requires a system-specific constant which

can be obtained by means of a single calibration run that needs

to be performed once prior to deployment.

V. DISCUSSION AND GUIDELINES

In this section, we briefly discuss the packet matching

problem and its impact on the proposed methodology and

provide an outline on how it can be applied to different use

cases.

The Packet Matching Problem. As described in Sec-

tion III, KOMon uses the hash value obtained from the packet

payload for packet identification. This limits the functionality

of the methodology in its current state to network functions

that do not alter the payload in any way. In addition, in order

to decrease the overhead induced by the monitoring logic

as far as possible, we currently compare outgoing packets

only to the oldest packet still in the incoming ring buffer,

thus eliminating the possibility of per flow prioritization. The

second issue of supporting non-FIFO network functions could

be solved by comparing all packets currently in the system

whenever a packet is sent out. This would lead to a slight

increment in monitoring overhead while at the same time

enabling more functionality. The initial problem, however,

still remains. Network functions that alter payloads, drop,

aggregate, or split up packets can, currently not be monitored.

This problem could be worked around by providing a VNF

policy description ahead of time. The policy description can

then be used to predict how the VNF is going to behave and

KOMon can monitor for the expected result. This functionality,

however, strongly depends on the type and functionality of

the network function and is thus not part of the generic

methodology proposed in this work.

Application in Performance Modeling. One of the out-

comes of the evaluation performed in Section IV is that, for



low loads, the reported monitoring values are very close to the

real processing time of the VNF. In addition, we have shown

that the offset included in the measurement is statistically

independent from the magnitude of the processing times of

the network function. This allows for KOMon to be used

to determine the distribution of processing times as it is

needed for theoretical performance models such as [3]. In

addition, this offset can be eliminated from the values as it is

possible to calibrate the system by performing measurements

involving a network function of which the processing time is

known. Hence, the offset, that depends on the hardware or

virtual environment, can be calculated and taken into account

by comparing the reported monitoring values to baseline

measurements reported by a known network function.

Application during Network Function Development.

Similar to the application of the approach in theoretical

models, it can be applied during the development phase of

a network function. Especially in the realm of continuous

integration and continuous delivery (CI/CD) [13], automatable

evaluations of application specific performance characteristics

are crucial. To this end, KOMon can be seamlessly integrated

into a build and evaluation pipeline to perform automated per-

formance evaluations of new versions of an application before

its deployment, thereby ensuring no performance degradation,

e.g., through added features. How the CI/CD paradigm can be

applied to the networking realm is discussed in [4].

Application in Network Function Monitoring. Finally,

the KOMon tool can be applied to monitor the performance

of network functions in live environments by continuously

gathering and evaluating samples. This allows for policing

of the remaining resources of a network function instance.

Upon reaching a certain threshold, scaling mechanisms can

be triggered to provide additional resources before packet loss

or processing time explosion can occur. As was observed in

Figure 5, the 95% quantile could serve as a suitable indicator

in most scenarios. In some cases other metrics extracted from

the processing time observations, e.g. entropy, might provide

better results.

VI. CONCLUSION

Reliable, low overhead online monitoring of VNF perfor-

mance and accurate characterization of application specific

performance metrics are key to leveraging the benefits of NFV

in terms of flexibility and scalability. To this end, we propose

KOMon, a lightweight mechanism for accurate Kernel-based

online monitoring of VNF packet processing times. KOMon

allows the accurate measurement of processing times when

used in dedicated environments while enabling accurate, low

overhead online monitoring in live deployments. In order to

substantiate these claims, experiments with an industry-grade

hardware-based traffic generator have been performed. Our

evaluation has shown that the values reported by KOMon

in controlled environments are valid and close to baseline

values, independent of the magnitude of processing times. In

addition, we have shown that KOMon can be used to monitor

the health of a network function instance as the reported values

Guidelines for using KOMon

Repository: https://github.com/lsinfo3/KOMon. The

following guidelines briefly describe how KOMon

can be used for different use cases. Installation,

configuration and general usage instructions can be

found in the repository.

Characterization of processing time distribution

1. Use VNF with fix, known processing time

2. Use KOMon to measure reported values

3. Compute overhead included in KOMon values as

the average difference of measurements

Continuous monitoring of VNF health

1. Perform load tests in controlled environment

2. Calibrate evaluation by continuously increasing

load until VNF is overloaded, using KOMon to

measure reported processing time values

3. Select metric to monitor as indicator for

impending performance bottleneck (e.g. 95%

quantile, entropy, maximum, ...)

4. Define threshold depending on specific use case

and previously selected metric

5. Monitor selected metric using KOMon in live

environment with unknown load profile

include the queuing time for packets before being processed

by the network function. Hence, performance bottlenecks can

be detected ahead of time and corresponding actions can

be triggered before severe performance degradation occurs.

Furthermore, our experiments demonstrate that KOMon can

be used to reliably estimate key characteristics of processing

time distributions, such as mean and coefficient of variation.

Finally, the packet matching problem and current limitations

of the methodology have been discussed and a brief outline

of possible applications for the proposed approach has been

presented.

Future work in this area includes the introduction of VNF

policy descriptions to counter the packet matching problem

and the investigation of sampling of heavy-tailed processing

time functions with arbitrary workload characteristics. Sam-

pling in the case of heavy-tailed processing time distributions

proves to be difficult due to the rarity of events with high im-

pact. In order to overcome limitations regarding performance

and accuracy, more sophisticated measurement algorithms and

data structures need to be revisited [14].
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