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Abstract

This paper investigates different methods for compensating the mean and slowly
varying environmental loads, and unmodeled dynamics (bias loads) in dynamic
positioning of marine vessels. Four different methods are compared; using the
bias estimate from an observer tuned to estimate position and velocity well, us-
ing a wave-filtered version of this bias load, using the estimate from a separate
observer tuned to work well for estimating the bias loads, and finally traditional
integral action on the tracking errors. The results show that the bias from the
bias observer is the best solution, both in transients and steady state. Standard
integral action matches the steady state performance, but is slower in transients.
The estimate from the observer used for position and velocity is fast in tran-
sients, but too oscillatory in the bias state. The wave-filtered version of this has
less oscillations, but falls short compared to the other methods due to added
phase lag from the extra wave filter. Using a bias estimate from an observer has
benefits over typical integral action, such as the possibility of offline or open-
loop tuning and avoiding integral windup issues. For the comparison study, a 6
DOF simulation model of a supply vessel is used.
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1. Introduction

In control systems for dynamic positioning (DP) of marine vessels it is com-
mon to include integral action to compensate for the mean and slowly varying
environmental disturbances and unmodeled dynamics. When using a model-
based observer, the sum of the environmental disturbances and unmodeled dy-
namics is estimated in what is typically called a bias load (Fossen and Strand,
1999). Use of this bias load estimate in feedback instead of integral action has
been proposed by Loria et al. (2000). However, for output feedback designs it
is common in the literature (Sørensen, 2011) to include integral action in the
controller even though this load is estimated in the observer. One reason for
this could be the assumption that the bias estimate from the observer is too
oscillatory to give good performance when used in feedback. Integral action is



therefore introduced and tuned such that it is slow, calm (small oscillations),
and works well in steady state.

Recently, however, there have been much focus on DP during transient condi-
tions, e.g. due to sudden large wave trains, ice loads, frequent setpoint changes,
etc., and the question has been asked if a slow integral action is suitable. As
seen for instance in Refsnes and Sørensen (2007), Værnø et al. (2016), Værnø
et al. (2017), Kjerstad and Skjetne (2016), Lindegaard (2003), and as discussed
in Brodtkorb et al. (2016) and in Brodtkorb et al. (2018), the bias load can vary
rapidly, even for common situations such as heading changes. In these instances,
effective compensation of the bias load is beneficial. In the following we compare
four different approaches for compensating the bias loads, with special focus on
transient events. This problem received some attention by Værnø et al. (2016),
but here the discussion is more rigorous.

A typical DP system is evaluated through numerical studies and model-scale
experiments in Tannuri and Morishita (2006), and a model-based Kalman filter
is presented for DP by Fossen and Perez (2009), initially proposed by Balchen
et al. (1976). A robust controller presented by Du et al. (2015) uses a high-gain
observer, in addition to neural networks to compensate for the unknown envi-
ronmental disturbances. Typically, fault tolerance and robustness are system
design properties that are considered (Blanke et al., 2003). For an overview of
the DP system and a historical overview, see Sørensen (2011) and the references
therein.

In this paper we refer to the bias compensation by a term b̂ in the control
law, where b̂ is the estimated bias in an observer. Integral action, on the other
hand, refers to an integral term ζ in the control law with ζ̇ = η̂− ηd(t), that is,
it integrates the tracking error based on the estimated vessel state η̂.

Using the bias estimate from a model-based observer instead of typical in-
tegral action on the output tracking errors has some benefits. First, if we use
the bias estimate from an observer instead of integral action, windup issues in
the integrator are of no concern. However, it should be noted that if a separate
observer is added to estimate the bias load, this adds similar complexity as an
anti-windup filter in the controller (Perez, 2009). Another benefit of using a
bias estimate from an observer is tuning. It is easier to tune an observer since
you only need offline data series. In addition you can use optimization methods
to find satisfactory gains. An advantage of using the integral action is that it
can be tuned independently of the bias response time. This means, for instance,
that the integral action can be tuned slow to account for steady-state offsets,
whereas the bias estimate in the observer can be made faster and letting it live
its own life. This tuning separation also applies if there is a separate observer
to estimate the bias load.

The main contribution of this paper is an in-depth study into several best
practices of compensating the unknown environmental loads and unmodeled
dynamics for DP of marine vessels. The analysis of performance is made fair by
the use of optimization in tuning of all observers, and also a thorough tuning
of controller and integral action. The results are demonstrated through a high-
fidelity simulation study. To the authors knowledge, such a comparison does not

2



exist in the literature. This study is important, as it allows for research-based
design choices to be made when developing DP control systems.

Notation and terminology: A column vector is stated as col (x, y, z) :=[
x>, y>, z>

]>
, R>0 denotes positive real numbers, and S represents the angle

defined on the interval [−π, π).

2. Problem formulation

There are two reference frames typically used for DP; the North-East-Down-
frame (NED) and body-frame. For operations in confined areas (such as DP) the
NED-frame can be assumed to be a non-rotating global and inertial frame. This
is a tangent plane to the Earth, with the x-axis pointing North, y-axis pointing
East, and z-axis pointing down to the center of the Earth. The body-frame is
a local frame with origin typically midships, in the centerline, and waterline of
the vessel, with the x-axis pointing to the bow, y-axis to starboard, and z-axis
down.

We separate between a simulation verification model (SVM) and a control
design model (CDM). The SVM is intended for observer and controller verifi-
cation, and is a high-fidelity model. The CDM includes the dynamics that is
most important for the operation. For low-speed application such as DP, this
typically implies that the Coriolis, centripetal, and nonlinear damping loads are
omitted from the model. As shown by Værnø et al. (2019), including nonlinear
damping gives a slight improvement. However, because the improvement is not
significant, and because it is not important for this study, it is not included in
the CDM of this paper.

2.1. Control design model

We consider the 3 degrees of freedom (DOF) CDM (Fossen, 2011),

ξ̇ = Awξ + Ewww (1a)

η̇ = R(ψ)ν (1b)

ḃ = wb (1c)

Mν̇ = −Dν +R(ψ)>b+ τ + τwind (1d)

y = η + Cwξ + vy, (1e)

where ξ ∈ R6 in (1a) is the first order wave-induced dynamics of the ves-
sel, and (1b)-(1d) is the low-frequency vessel dynamics. The first-order wave-
induced dynamics makes the vessel oscillate about the setpoint at the wave
frequency. Compensating this oscillatory motion causes extra wear and tear on
the thrusters, and it is often not possible due to thruster limitations. For both
of these reasons, we separate between the low-frequency and wave-frequency dy-
namics. The wave-frequency dynamics ξ in (1a) are modeled by a mass-spring-
damper dynamics, where Aw is a Hurwitz matrix that contains the damping
ratio and the peak frequency of the incident waves, and ww ∈ R6 is white
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noise (Sørensen, 2013). The vector η := col (ηN , ηE , ψ) ∈ R2 × S in (1b) con-
tains the low-frequency North/East position, and heading, respectively, and
ν := col (u, v, r) ∈ R3 is the surge/sway velocity in the body-frame, and the yaw
rate, respectively. The rotation matrix R(ψ) rotates a 3 DOF vector from the
body to the NED-frame according to

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2)

τ := col (τsurge, τsway, τyaw) ∈ R3 is the generalized control vector in the body-
frame, τwind ∈ R3 is the wind load, which is measured, and b := col (bN , bE , bψ) ∈
R3 is the bias load vector, and wb ∈ R3 is white noise. The vector b constitutes
the sum of the low-frequency loads, such as the slowly-varying second-order
wave loads, current loads, and unmodeled dynamics from errors in the mass,
added mass, hydrodynamic damping, wind loads, and thrust mappings. The
bias load vector is assumed constant (or slowly-varying) in the NED-frame.
Finally, the measurement vector y is the sum of low-frequency North/East posi-
tion and heading η, the wave-frequency North/East position and heading Cwξ,
where Cω =

[
03×3 I3×3

]
, and the measurement noise vy ∈ R3.

2.2. Model-based observer

To estimate the low-frequency position η, velocity ν, and the bias b, a non-
linear observer (NLO) similar to the observer proposed by Fossen and Strand
(1999) is chosen. The observer is given by

˙̂
ξ = Aw ξ̂ +K1ỹ (3a)

˙̂η = R(ψ)ν̂ +K2ỹ (3b)

˙̂
b = K3ỹ (3c)

M ˙̂ν = −Dν̂ +R(ψ)>b̂+ τ + τwind +K4R(ψ)>ỹ (3d)

ŷ = η̂ + Cw ξ̂, (3e)

where ξ̂ ∈ R6, η̂ ∈ R2 × S, b̂ ∈ R3, and ν̂ ∈ R3 are the state estimates. The

injection gains K1 =
[
K>11 K>12

]> ∈ R6×3,K2,K3,K4 ∈ R3×3 are non-negative
matrices, and ỹ = y − ŷ is the measurement error. The matrices K3 and K4

are constant, whereas K1 and K2 depend on the peak frequency of the wave
spectrum to obtain good wave-filtering. As in (Fossen and Strand, 1999) and
many later references, we asssume that:

(A1) R(ψm) ≈ R(ψ + ψw) ≈ R(ψ). First, because of the low noise on the
compass, we assume that the measured heading angle ψm is close to the
real heading angle, that is, the sum of the low-frequency heading ψ and
the wave-frequency heading ψw. Second, the heading angle due to wave-
induced motion, ψw is small (negligible effect on the rotation matrix).
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The assumption is justified because the wave-induced heading angle is typically
less than 1◦ for normal sea states, and less than 5◦ for extreme sea states. Thus,
the measured heading angle is used instead of the low-frequency heading angle
in the rotation matrix.

2.3. Controller

The controller τ is given by a feedback part τFB and a reference feedforward
part τFF ,

τ = τFB + τFF (4a)

τFF = Dνd(t) +Mν̇d(t)− τwind (4b)

τFB = τnPD + τBR, (4c)

where τnPD is a nonlinear PD-controller given by

τnPD = −KpR(ψ)>(η̂ − ηd(t))−Kd(ν̂ − νd(t)), (4d)

and ηd ∈ R2×S, νd ∈ R3, and ν̇d(t) ∈ R3 are bounded references generated by a
guidance system, Kp ∈ R3×3 and Kd ∈ R3×3 are positive definite gain matrices,
and τBR is a bias rejection term to compensate for R(ψ)>b in (1d). Designs for
τBR is the main focus of this paper and will be elaborated in Section 2.4.

2.4. Methods for bias compensation

In the following, four methods for compensating the bias load, τBR in (4c),
are presented:

• Method 1: Direct compensation

• Method 2: Wave-filtered bias estimate

• Method 3: Separate bias observer

• Method 4: Integral action.

All the methods use estimates of η and ν from the same observer in the
nPD-controller, called the position and velocity observer, based on (3). In order
to obtain meaningful results in the comparison of different versions of τBR, it
is important that the observer that provides the estimates of η and ν, as well
as the nPD-controller are well tuned. Details about the tuning for position and
velocity observer, the nPD-controller, and the bias compensation methods are
presented in Section 4.4.

2.4.1. Method 1: Direct compensation

The first method we consider, common in the literature (Loŕıa and Panteley,
1999), is to directly use the bias estimate from the position and velocity observer
based on (3), tuned for good η and ν estimates, that is,

τBR = R(ψ)>b̂. (5)
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2.4.2. Method 2: Wave-filtered bias estimate

When we optimize the observer to work well for position and velocity in
transients, we observe that the bias estimate is fast, but very oscillatory in
steady state. This is elaborated in Section 4.2. By assumption, the bias load
b from (3) is low-frequency, but for sufficiently high tuning of the observer (3)
the bias estimate will oscillate due to wave-induced behavior. Therefore, we
suggest to add an extra wave filter on the bias estimate before thisis sent to the
controller.

For this method we make the assumption that the bias load contains a wave-
component in addition to the low-frequency part that we want to compensate.
Accordingly, we redefine the bias load in (1c) to

b := blf + Cwbw, (6)

where Cwbw ∈ R3 and blf ∈ R3 are the wave-frequency and low-frequency
components of the bias load from (1c), respectively.

In the bias wave-filter we treat the bias estimate b̂ from the observer (3) as
the input to the filter and assume that:

(A2) The bias estimate b̂ from (3c) is given as b̂ := blf + Cwbw.

The model used for the bias dynamics has the same wave dynamics as in (3a),
where

ḃw = Awbw + Ewwbw (7a)

ḃlf = 0 (7b)

and the observer is given as

˙̂
bw = Aw b̂w +Kb,1(ω0)b̃ (8a)

˙̂
blf = Kb,2b̃ (8b)

b̂2 = b̂lf + Cw b̂w (8c)

where b̃ := b̂ − b̂2. The low-frequency estimate of the bias is used in feedback,
such that τBR is given as

τBR = R(ψ)>b̂lf . (9)

2.4.3. Method 3: Separate bias observer

The third bias compensation method is to use the bias estimate from a
separate observer with the same structure as in (3), but with a tuning optimized
to find a bias estimate that closely resembles the true low-frequency bias load.

Let us denote the estimate from this bias observer as b̂BO, and then τBR is
given as

τBR = R(ψ)>b̂BO. (10)
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Table 1: Simulation, platform supply vessel, main parameters

Parameters Value
Length between perp. 80 m
Breadth 17.4 m
Draft 5.6 m
Displacment 6150 tons

2.4.4. Method 4: Integral action

The last method we consider is perhaps the most common choice for τBR,
and that is integral action in the control law (Sørensen, 2011). A new integral
state ζ is defined with dynamics

ζ̇ = η̂ − ηd(t), (11)

such that

τBR = −KiR(ψ)>ζ. (12)

2.5. Problem statement

We consider both the case where the bias b is slowly-varying for long periods
of time, and also the case when b changes rapidly due to transient events. The
objective is to compare the four different model-based approaches for τBR to
compensate the bias loads, in order to gain insight on the efficiency of the
methods and make conclusions on when the best overall closed-loop performance
is obtained. The comparisons will be based on closed-loop key performance
indicators (KPIs) that measure the low-frequency positioning performance and
thrust utilization.

3. Setup and implementation

To test the different bias compensation methods, an SVM is used along with
two different test maneuvers that include a combination of transients and longer
periods of steady state.

3.1. Simulation verification model

The simulation model is a 6 DOF high-fidelity model of a platform supply
vessel, with main parameters given in Table 1. The model is based on building
blocks from the MSS Toolbox (Fossen and Perez, 2004), and includes Coriolis,
centripetal forces, and linear and nonlinear damping; see Appendix A. To give a
realistic load variation with heading angle of the vessel, lookup tables are used
to calculate the loads acting on the vessel. The model is subject to waves from a
sea state taken from the JONSWAP1 spectrum, with a significant wave height of

1Joint North Sea Wave Project
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6 meters, and a peak frequency of 0.53 rad/s. The mean incident wave direction
is 190◦ (head waves) in the North/East frame (Price and Bishop, 1974). The
simulation also includes a current with a speed of 0.5 m/s and direction of 30◦.
The sensor models include realistic noise and sensor effects. The GPS is updated
at 1 Hz, and the compass is updated at 10 Hz. The vessel is controlled by (4),
which operates at 1 Hz. In addition, a first order lowpass thrust dynamics with
a 5 second time constant is included.

3.2. Maneuvers

For the simulations presented in Section 5, two maneuvers are performed
under the environmental conditions described in above. One training maneuver,
which is used to tune the observers and controller, and another test maneuver
that uses the same tuning. This is to verify that the tuning is not an overfit to
the training maneuver.

Both maneuvers are 1500 seconds in duration. For the training maneuver
there is a combined North/East setpoint change and heading change of 90◦ at
300 seconds, and at 600 seconds there is a change of 45◦ in the direction of the
current. The current direction changes as a first order filtered step response
with time constant of 30 seconds. This is an exaggerated case, not necessarily
very realistic, designed to challenge the algorithms. It first gives three transient
events during a short time frame. Then in the last half of the maneuver, the
conditions are steady, in order to compare the steady state performance as well.
The test maneuver has a combined North/East setpoint and heading change at
300 seconds, where the heading changes 70◦, and at 500 seconds there is also a
combined setpoint and heading change with a heading change of 50◦. Finally,
at 800 seconds there is a pure heading change of 90◦.

3.3. Closed-loop performance evaluation

To evaluate the closed-loop positioning performance of the algorithms, com-
binations of the following metrics are used,

Jcη̃ =
∫ tf

t0

{|ηN − ηd,N |+ |ηE − ηd,E |+
180

π
|ψ − ψd|}dt (13a)

Jcτ,uv =
∫ tf

t0

{|τsurge|+ |τsway|dt (13b)

Jcτ,r =
∫ tf

t0

|τyaw|dt, (13c)

where the states and the elements of τ are defined in (1), and t0 and tf are the
initial and final time of the interval. Jcη̃ is a positioning performance metric,
whereas Jcτ,uv and Jcτ,r are control effort metrics.

4. Tuning

In this section the tuning for the observers, nPD-controller and the bias
compensation methods are presented. The maneuver used in the tuning is the
training maneuver described in Section 3.2.
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4.1. Derivative free optimization for tuning

In order to allow for a fair comparison of the bias compensation methods,
optimization is used to find observer tuning. Classic optimization methods are
not applicable due to a lack of information about the gradient, Hessian, or higher
order derivatives. Thus, derivative free optimization (DFO) is used, specifically
the MATLAB R© function fminsearch.

To illustrate how DFO works, consider the example where we have one state
variable x ∈ R where the objective is to minimize the error x̃ = x − x̂, and x̂
is our state estimate. The observer has an injection gain K ∈ R, and we select
a cost function that depends on the injection gain and the time of the interval
J(K, tint), where tint = tf−t0, and tf and t0 are the final and initial time of the
interval. We initialize the DFO by selecting an initial guess for K, and the DFO
evaluates the cost of J . Thereafter, the DFO algorithm selects values close to
the initial K value to see if they provide a lower cost for J. It then selects the K
that gave the lowest value and repeats the process. Note that the DFO can get
stuck in a local minimum, so several runs with varying initial conditions have
to be performed.

The different observer performance evaluations metrics used in this paper
are

Jη̂ =
∫ tf

t0

{|ηN − η̂N |+ |ηE − η̂E |+
180

π
|ψ − ψ̂|}dt (14a)

Jν̂ =
∫ tf

t0

{|u− û|+ |v − v̂|+ 180

π
|r − r̂|}dt (14b)

Jb̂N =

∫ tf

t0

|bN − b̂N |dt (14c)

Jb̂E =

∫ tf

t0

|bE − b̂E |dt (14d)

Jb̂ψ =

∫ tf

t0

|bψ − b̂ψ|dt, (14e)

where the states are defined in (1) and the estimates in (3).

4.2. Tuning of position and velocity observer

The injection gains K1 and K2 in (3) for the wave and η-dynamics are found
by the tuning rules proposed by Fossen and Strand (1999), which give good
wave-filtering. The tuning for K3 and K4 is optimized for finding good η and ν
estimates, and is found by derivative free optimization. The corresponding cost
function J used in the DFO is then

J = Jη̂ + cνJν̂ , (15)

where Jη̂ and Jν̂ are given by (14a) and (14b), and cν ∈ R>0 is a scaling param-
eter set such that the contributions from the velocity estimation error cνJν̂ and
the position estimation errors are balanced. The value we used was cν = 7. The
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Figure 1: Bias estimate from the position and velocity observer and the true bias load in the
North direction.

vessel is controlled by (4) using state estimates together with the integral action
(11)-(12). The tuning of the observer is found in several iterations, and for each
iteration the observer tuning is updated with the resulting DFO tuning from
the previous run. Thereafter, a new closed-loop run was performed, serving as
the dataset of the next round of DFO runs, until the observer tuning converged.

The resulting bias estimate from the observer tuned with (15), along with
the actual bias load found by solving for b in (1d), are shown in Figure 1. Note
that the bias estimate tracks the actual mean bias load well, but since the bias
estimation is not part of the evaluation function (15) it is quite oscillatory in
steady state.

4.3. nPD-controller tuning

The tuning for the nonlinear PD-controller is given by the tuning rules out-
lined in Fossen (2011) by specifying desired eigenfrequencies and damping ratios
of the response, as if the system is linear, that is, by setting the rotation matrix
to identity. Thereafter, the tuning is adjusted through trial and error using the
well-tuned η and ν estimates from the position and velocity observer.
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Table 2: Results for the integral action tuning on the training maneuver. The table shows
the KPI in (13a). The KPIs are normalized such that the worst performing has a value of
maximum of 100 for the whole maneuver.

Step Ki[105] Jcη̃

1 diag{0.0132, 0.0115, 6.314} 99.88
2 diag{0.0142, 0.0123, 6.765} 99.59
3 diag{0.0151, 0.0131, 7.188} 99.58
4 diag{0.0160, 0.0139, 7.6673} 99.74
5 diag{0.0170, 0.0148, 8.1183} 100.00

4.4. Tuning of the bias compensation methods

4.4.1. Tuning Method 1: Direct compensation

The tuning of Method 1 is given by the tuning of the position and velocity
observer as outlined in Section 4.2. No further tuning is needed.

4.4.2. Tuning Method 2: Wave-filtered bias estimate

Method 2 uses the bias estimate b̂ from the position and velocity observer
in Section 4.2 as input, that is, the bias estimate used in Method 1. The tuning
of the matrices Kb1 and Kb2 in the wave filter of (7) are found by the tuning
rules proposed by Fossen and Strand (1999). That is, Kb1 and Kb2 are similar
to K1 and K2 in (3), respectively.

4.4.3. Tuning Method 3: Bias observer

For Method 3 the cost function JBO used in the DFO is

JBO = cbNJb̂E + cbEJb̂N + cbψJb̂ψ (16)

where Jb̂N , Jb̂E , and Jb̂ψ are given by (14c)-(14e), and cbN , cbE , cbψ ∈ R>0 are

scaling parameters to balance the contributions from the three bias terms. The
values used were cbN = 0.587, cbE = 1, and cbψ = 0.055. This is to make the
observer equally responsive to all the three bias forces. For instance, in the
training dataset, the North bias force is larger than the East bias force over the
maneuver. An equal weighting with cbN = cbE would have made the observer
more aggressive in observing the North bias. With the chosen weights this is
avoided. The DFO tuning process is similar to that of Section 4.2.

4.4.4. Tuning Method 4: Integral action

For Method 4 the tuning for Ki in (12) was found through extensive trial
and error, starting at the tuning given in Fossen (2011). In the following we
provide a reasonable documentation for a good Ki-tuning, where it is shown that
Ki-values above and below the chosen tuning are less optimal. To document
the choice of a good Ki−tuning the cost function Jcη̃ from (13a) is shown for
several values of Ki in Table 2, applied on the maneuver described in Section
3.2 as the main maneuver. The different values for Ki in Table 2 are given as
Ki,j = ρjKi1, j = 1, . . . , 5, where ρj , j = 1, . . . , 5 are positive scalars that
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Figure 2: Results for the four different bias rejection methods for the training maneuver. The
right plot shows the KPI in (13a). The KPI is normalized such that the worst performing has
a maximum of 1 for the whole maneuver.

satisfy ρj+1 > ρj , j = 1, . . . , 4. The results of the table clearly show that
Ki3 gives the minimum value, and the lower and higher values of Ki give less
optimal performance.

5. Results and discussion

5.1. Simulation results

Results for the four different bias rejection methods are presented in the
following. The vessel performs the two different maneuvers presented in Section
3.2. The results on the training maneuver are shown in Figure 2, Figure 5, and
Table 4. Figure 2 has three plots. The upper left plot shows the low-frequency
position and heading for the run with Method 1. The lower left plot shows
the different bias rejection terms in surge only, and the right plot shows the
cumulative error Jcη̃ of the positioning performance from (13a). Table 4 shows
all the performance indices from (13) both for the whole maneuver and also for
the steady-state time interval from 1000 to 1500 seconds. Figure 5 shows the
thrust KPIs Jcτ,uv in (13b) and Jcτ,r in (13c) for the training maneuver and the
test maneuver.

The results for the training maneuver show that Method 3 (the bias observer)
has the best overall performance. It is both fast over transients and calm in
steady state. As seen from Table 4 and from Figure 5, the thrust effort of
Methods 3 and 4 are about equal, and lower than Methods 1 and 2, which also
are approximately equal. During the steady period, the thrust effort of all four

12



500 550 600 650 700 750 800 850
-200

-150

-100

-50

0

k
N

Bias rejection term, surge

500 550 600 650 700 750 800 850

Time [s]

0

20

40

60

80

k
N

Abs error bias estimation, surge

Method 1: Direct compensation

Method 2: Wave-filtered bias

Method 3: Bias observer

Method 4: Integral action

Figure 3: The top plot shows the bias rejection term in surge for the four different methods
on the training maneuver. The bottom plot shows the error between τBR and the true bias
in surge (absolute value).

Table 3: Summary of the bias compensation methods.

Method Description
1 Direct comp. from pos/vel observer
2 Wave-filtered bias compensation
3 Comp. from separate bias observer
4 Integral action

Table 4: Results for the training maneuver. The table shows the KPIs from (13). The KPIs
are normalized such that the worst performing has a value of maximum 100 (for the whole
maneuver). The time interval 1000-1500 seconds is in steady state.

Time: 0-1500 s 1000-1500 s
Controller Jcη̃ Jcτ,uv Jτ,r Jcη̃ Jcτ,uv Jτ,r
Method 1 95.5 100.0 99.5 7.3 42.4 29.6
Method 2 100.00 99.1 100.0 7.3 42.4 29.6
Method 3 88.8 97.5 98.7 6.3 42.4 29.6
Method 4 97.8 97.7 98.9 6.5 42.4 29.6
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Table 5: Results for the test maneuver. The table shows the KPIs from (13). The KPIs
are normalized such that the worst performing has a value of maximum 100 (for the whole
maneuver). The time interval 1000-1500 seconds is in steady state.

Time: 0-1500 s 1000-1500 s
Controller Jcη̃ Jcτ,uv Jτ,r Jcη̃ Jcτ,uv Jτ,r
Method 1 95.1 100.0 99.4 5.5 24.3 24.4
Method 2 98.7 94.2 99.4 5.4 22.1 24.4
Method 3 90.3 92.0 99.5 5.0 22.0 24.4
Method 4 100.0 90.5 100.0 4.7 21.3 24.3

methods are similar, but Methods 3 and 4 have a lower positioning error than
Methods 1 and 2.

Figure 3 shows the bias rejection terms in surge for the four different methods
in the upper plot. This is the same as the lower left plot of Figure 2 zooming in
on the transient at 600 seconds. The lower plot of Figure 3 shows the difference
between τBR and true bias force for the different methods for the respective
simulations. As observed from Figure 3, all four methods are quite fast in the
transient, with Method 4 as the slowest. In steady state Method 4 is very calm,
while Methods 2 and 3 are much calmer than Method 1.

As observed, Methods 1 and 2 have similar closed-loop performance. Even
though Method 2 has smaller oscillations than Method 1, it also has a slight
lag due to the extra filter, as observed from Figure 3. The lag seems to make
Method 2 underperform Method 1 during transients, and the two effects (lower
oscillations and added lag) cancel in steady state, making the two methods sim-
ilar in their steady-state performance. Method 3 has a good balance between
steady-state and transient performance, and therefore has a better overall per-
formance compared to Methods 1 and 2.

The results for the test maneuver is shown in Figure 4, Figure 5, and Table
5. The tuning used for the observers and controllers are the same as those
used for the training maneuver. Similar type of results are seen. In the test
maneuver there are more transient events and less steady state than in the
training maneuver. That is why Method 4 performs worse overall (in positioning
performance) than in the training maneuver. However, note that Method 4 has
the lowest thrust consumption. Method 3 still performs best, and Method 4 has
the best steady-state behavior, and Method 3 has close to the same steady-state
performance. This shows that the same tuning and observations also apply well
for the test maneuver.

5.2. General discussion

The findings presented in Section 5.1 justify that using a bias estimate from
a separate bias observer, with tuning optimized to estimate the bias, is the best
way of compensating the bias loads in DP. This is better than the traditional
integral action based on the tracking errors, since it mainly outperforms the
integral action in transients. In addition, the results show that using the bias
estimate (in feedback) from a single observer optimized for position and velocity
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Figure 4: Results for the four different bias rejection methods, on the test maneuver. The
right plot shows the KPI in (13a). The KPI is normalized such that the worst performing has
a maximum of 1 for the whole maneuver.
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Figure 5: Cumulative thrust results for the four different bias rejection methods, on the
training maneuver (left) and the test maneuver (right). The top plots show the KPI in (13b)
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estimates underperforms compared to using the separate bias observer both in
transients and in steady state. The wave-filtered version of this bias estimate
(from the position and velocity observer) underperforms the non-wave-filtered
version, seemingly due to the added phase lag from the extra wave-filter. Using a
separate bias observer is the best option among those presented in the paper. Di-
rect integral action and bias compensation from the single position/velocity/bias
observer have similar performance. If there are longer periods of steady state
conditions, integral action is better than the single observer bias compensation,
and vice versa for transient conditions.

6. Conclusion

In this paper, four methods for compensating the mean and slowly varying
environmental loads (and unmodeled dynamics) for DP of marine vessels have
been investigated. A high-fidelity simulation model was used to compare the
methods, using two different maneuvers; one training maneuver for tuning and
one test maneuver for verification. All methods were tuned to work well for the
training maneuver. Then this tuning was applied for the test maneuver to verify
the gains, and similar performances were shown. The standard integral action
was compared to three variations of using the bias estimate from a model-based
observer. The results indicated that the best method to compensate the bias
loads was using the bias estimate from a separate bias observer, for which the
tuning was optimized to estimate the bias loads. This method displayed both
the best transient and steady state behavior given the maneuvers in this paper.
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Appendix: Simulation verification model

The kinetics used in the SVM of the supply vessel, see Section 3.1, is
(Sørensen, 2013)

Mν̇ + CRB(ν)ν + CA(νr)νr +DLν + dNL(νr) +Gη = τ + τenv, (17)

where M ∈ R6×6 is the inertia matrix, CRB(ν) ∈ R6×6 and CA(νr) ∈ R6×6

are the rigid body and added mass Coriolis matrices, respectively, ν ∈ R6 and
νr ∈ R6 are the velocity and relative velocity, respectively, DL ∈ R6×6 is the
linear damping matrix, dNL(νr) ∈ R6 is the non-linear damping vector, G ∈
R6×6 is the restoring matrix, τ ∈ R6 is the thrust vector, and τenv ∈ R6 is the
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environmental load vector. The inertia matrix for the SVM is a sum of the rigid
body mass and the added mass, M := MRB +MA,

MRB =

[
mI3×3 −mS(rbg)
mS(rbg) Ib

]

= 108 ·


0.0615 0 0 0 −0.3198 0

0 0.0615 0 0.3198 0 −0.1414
0 0 0.0615 0 0.1414 0
0 0.3198 0 31.4290 0 −0.7355

−0.3198 0 0.1414 0 4.2767 0
0 −0.1414 0 −0.7355 0 16.6653

 (18)

MA = 108 ·


0.0053 0 −0.0036 0 −0.7101 0

0 0.0518 0 0.1135 0 0.0095
−0.0036 0 0.1993 0 1.9683 0

0 0.1128 0 2.6167 0 −1.9025
−0.7070 0 1.9664 0 177.7000 0

0 0.0095 0 −1.9082 0 15.2660

 (19)

where m is the mass of the ship, here m = 6150 tons, and Ib := Ig −mS2(rbg),

where Ig is the inertia matrix about the the body’s center of gravity, rbg =
col (−2.3m, 0,−5.2m). The matrix S(λ), where λ = col (λ1, λ2, λ3) ∈ R3, de-
notes a skew-symmetric matrix,

S(λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 . (20)

The rigid body and added mass Coriolis matrices are calculated online during
simulations from the inertia matricesMRB andMA given above, and the velocity
ν and relative velocity νr. The rigid body Coriolis can be written as Fossen
(2011):

CRB(ν) =

[
03×3 −mS(ν1)−mS(ν2)S(rbg)

−mS(ν1) +mS(rbg)S(ν2) −S(Ibν2)

]
, (21)

where the linear and angular velocities are written as ν1 = col (u, v, w), ν2 =
col (p, q, r). The added mass Coriolis is calculated in a similar way, see Sørensen
(2013) for a complete representation. The nonlinear damping is calculated from
a look-up table. The linear damping matrix DL, and restoring force matrix G
are

DL = 108 ·


0.0017 0 0 0 −0.0115 0

0 0.0014 0 0.0147 0 −0.0065
0 0 0.0387 0 0.0891 0
0 0.0147 0 1.6800 0 −0.0338

−0.0115 0 0.0891 0 16.5299 0
0 −0.0065 0 −0.0338 0 0.6386
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G = 109 ·


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0141 0 0.0324 0
0 0 0 0.1931 0 0
0 0 0.0324 0 4.2977 0
0 0 0 0 0 0

 .

References

Balchen, J. G., Jenssen, N. A. and Sælid, S. (1976). Dynamic positioning us-
ing kalman filtering and optimal control theory, IFAC/IFIP symposium on
automation in offshore oil field operation, Vol. 183, p. 186.

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2003). Diagnosis
and Fault-tolerant Control, Springer.

Brodtkorb, A. H., Værnø, S. A., Teel, A. R., Sørensen, A. J. and Skjetne, R.
(2016). Hybrid observer for improved transient performance of a marine vessel
in dynamic positioning, In Proceedings of the IFAC Symposium on Nonlinear
Control Systems 2016 49(18): 345–350.

Brodtkorb, A. H., Værnø, S. A., Teel, A. R., Sørensen, A. J. and Skjetne, R.
(2018). Hybrid controller concept for dynamic positioning of marine vessels
with experimental results, Automatica 93: 489–497.

Du, J., Hu, X., Liu, H. and Chen, C. P. (2015). Adaptive robust output feed-
back control for a marine dynamic positioning system based on a high-gain
observer., IEEE Trans. Neural Netw. Learning Syst. 26(11): 2775–2786.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion con-
trol, John Wiley & Sons.

Fossen, T. I. and Perez, T. (2004). Marine systems simulator (mss), https:
//github.com/cybergalactic/MSS. Accessed: 2017-02-24.

Fossen, T. I. and Perez, T. (2009). Kalman filtering for positioning and heading
control of ships and offshore rigs, IEEE Control Systems Magazine 29(6): 32–
46.

Fossen, T. I. and Strand, J. P. (1999). Passive nonlinear observer design for
ships using lyapunov methods: full-scale experiments with a supply vessel,
Automatica 35(1): 3–16.

Kjerstad, Ø. K. and Skjetne, R. (2016). Disturbance rejection by acceleration
feedforward for marine surface vessels, IEEE Access 4: 2656–2669.

Lindegaard, K.-P. (2003). Acceleration feedback in dynamic positioning, PhD
thesis, Norwegian University of Science and Technology, Trondheim, Norway.

18

https://github.com/cybergalactic/MSS
https://github.com/cybergalactic/MSS


Loria, A., Fossen, T. I. and Panteley, E. (2000). A separation principle for
dynamic positioning of ships: Theoretical and experimental results, IEEE
Transactions on Control Systems Technology 8(2): 332–343.
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