
Claude Fiifi Hayford 

A Computational Analysis of Motif-
Negative VDR-DNA Interaction and 
Possible Explanations of Its 
Mechanism of Interaction 

Master’s Thesis in Molecular Medicine 

Trondheim, June 2014 

Supervisor: Professor Finn Drabløs 

Subject Supervisor: Kjetil Klepper 

Norwegian University of Science and Technology 

Faculty of Medicine 

Department of Cancer Research and Molecular Medicine 



 



iii 
 

Abstract 

Transcription factor binding to DNA has generally been assumed to be as a result of the 

recognition of sequence-specific motifs in the transcription factor binding sites. Recent 

studies have however shown several examples of transcription factor binding where no 

recognizable motif was identified. The exact mechanisms by which these associations occur 

remain unclear, although several explanations have been put forward. By employing 

MotifLab, a computational tool for the analysis of regulatory regions and data from the 

ENCODE project, this study examines the properties of these motif-positive and motif-

negative regions and how they relate or differ from each other to get a better understanding of 

the factors that lead to transcription factor binding in these cases. Two well-described 

Vitamin D receptor datasets where there is a mixture of binding sites both with and without a 

clear motif is utilised. 

The results showed that there are differences between motif-negative regions and motif-

positive regions in terms of DNA accessibility, the type of regions in which either type of 

binding takes place, as well as in the types of motifs that are overrepresented in each case. 

These findings suggest that VDR binding in motif-negative regions does employ a 

mechanism different from its sequence-specific binding; however a clear elucidation of this 

mechanism has not been possible.  
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1. Introduction 

1.1. Genes and gene regulation 

Genes are regions of nucleic acids (DNA) in the genome said to be the basic units of heredity 

in living organisms that direct the manufacture of specific molecular products (RNA or 

proteins). These products are essential for the processes in the cell that contribute to growth 

and development of living organisms. In eukaryotes, the structure of the gene is made 

complex by the fact that a single gene may be responsible for several gene products. The 

average eukaryotic gene comprises exons and introns which play different roles. The exons 

are the regions of the gene that encode the product and the selective removal of the introns 

(non-coding part of the gene) in posttranscriptional processing such as splicing result in the 

different molecular end products. Interspersed between these regions of information are also 

stretches of regulatory regions that afford control over when and how these genes are 

transcribed. 

The interaction of these regulatory DNA regions and regulatory proteins known as 

transcription factors (TF) constitute one of the mechanisms responsible for the expression and 

repression of genes. These transcription factors achieve their effect by identifying a specific 

stretch of nucleotides in the DNA and by hydrogen bonds and Van der Waals forces interact 

with the DNA. Transcription factors work in a combinatorial manner in which the control of 

single gene falls under the purview of several TFs acting in concert. This complexity allows 

for a small number of TFs to regulate a large number of genes and provides for a more 

smooth regulation. These TFs bind at the regulatory regions of these genes which usually are 

located at the start of the gene in locations termed as core promoters. These core promoters 

may be comprised of a TATA-box or TATA-binding region and an initiator region (INR) 

upstream and proximal to the translation start site (TSS). Other regulatory regions are found 

in introns, exons and non-coding DNA regions. These are usually termed distal regulatory 

regions and comprise enhancers, silencers and other modules that are distal to the TSS (1, 2). 

The function of these regulatory regions is usually dependent on the TFs which bind thus 

allowing them to act as either activators or repressors of transcription. 



2 
 

 

Figure 1 Different types of gene regulatory regions involved in the control of gene expression as 

shown in (2) 

Binding of these factors to the regulatory elements causes the recruitment of other molecules 

such as members of the DNA polymerase family, histone modifiers and co-activators which 

form multi-unit complexes responsible for the actual transcription process.  

Aside the proteins which interact with DNA, several other factors influence the regulation of 

these genes. The chromatin state has huge bearing on which genes are available for 

transcription at any given time (3). The formation of heterochromatin, a dense packaging of 

DNA and histones into nucleosomes restricts access to DNA and gene regulatory regions and 

this also contributes to the regulation process as does the presence of euchromatin; a more 

open region featuring active genes. Epigenetic modifications such as DNA methylation and 

the different types of histone modifications influence the chromatin state and thus gene 

regulation in several contexts, be it tissue, cell or even species (4). 

 

1.2. The role of epigenetic modifications in gene regulation 

Epigenetic modifications are mechanisms that change patterns of gene activity but do not 

involve a change in the underlying DNA sequence (5). These modifications mainly comprise 

DNA methylation and histone modifications. The histone modifications have several roles in 

the genome ranging from modifying the structure of chromatin to regulating the binding of 

chromatin factors (3, 4). The predominant modifications are the addition of single to multiple 

methyl (methylation) groups to lysines and arginines (e.g. H3K4me3, H3K4me1 and 

H3K27me3) and acetyl (acetylation) to lysines (e.g. H3K27ac and H3K9ac) on histones. 

DNA has a net negative charge whereas these histone proteins tend to have a positive charge. 

There exist therefore electrostatic forces of attraction that tends to wrap the DNA tightly 
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around the histone cores in the nucleosome. This tightly packaged region of the genome 

forms the heterochromatin or closed chromatin. Histone modifications such as acetylation of 

lysine by histone acetyltransferases (HATs) reduces the positive charge on the histones and 

this decreases the electrostatic forces between the histone and DNA, leading to a less tightly 

bound structure.  DNA can then be easily assessed by proteins and transcription factors that 

bind to DNA. These acetylation modifications are reversed by histone deacetylases (HDACs) 

restoring the charge and thus tightening the chromatin structure (6). Methylation on the other 

hand does not alter the charge on the histone protein. The presence of these methylated marks 

on the histone drives the interaction of several chromatin-associated factors with chromatin. 

These chromatin associated factors bear domains that are able to recognise the methylations 

and bind to them (3). By binding, they recruit other factors that are responsible for the 

chromatin remodelling process such as the previously mentioned HATs and HDACs. By 

influencing the chromatin state of the genome, these modifications are able to control which 

genomic regions are accessible to the transcription machinery for gene regulation. 

 

1.3. Transcription factors and their role in gene regulation 

Transcription factors are a group of protein molecules that act to regulate gene expression 

either positively or negatively. They have modular functional domains which function in 

different ways allowing for the regulation of the transcription factor itself and also of the 

gene they regulate (7, 8). Regulation of TFs is either by ligands which bind or interact with a 

part of the TF known as the ligand-binding domain or by interaction with other TFs and 

proteins through the activation function domain (8, 9). Extra regulation of these TFs is 

achieved by post-translational modifications such as phosphorylation, ubiquitinylation and a 

host of others which act to activate, suppress or even mark them for destruction (10). One 

other important part of the TF is the DNA-binding domain (DBD) with which it interacts 

with DNA. The identification of the response element, a specific string of nucleotides which 

serves as a template/motif for DNA interaction by the DBD forms the basis of most 

sequence-specific TF activity (9).  TFs may act individually as monomers or in combination 

with itself or other TFs as mono- or hetero- dimers in binding DNA (11, 12). 

The amino composition of the DNA-binding domain allows for some specificity in the 

regions of DNA these TFs recognize and bind to. These TFs may bind proximally or distally 

to the regulated region and through several mechanisms exert their effects. In cases where 

they bind in regions which are distal to the genes they regulate, DNA looping has been 
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suggested to be a mechanism with which these distally located TFs are able to interact with 

their target genes (13-15). Even in cases where they are located proximally, interaction with 

the transcription machinery may also involve the activity of co-activators or co-repressors 

which act as a bridge. 

 

1.4. TF’s and cis-regulatory modules 

Cis-regulatory modules (CRMs) are long stretches of DNA ranging from some 50-1500bp 

long that contain the binding sites for several different transcription factors (16). The TF’s 

with binding sites in the CRM allow for the combinatorial control over target genes 

depending on the levels of the individual TF’s and cofactors present at/in a specific 

time/space. Extra control is also achieved by different CRMs acting together on a single gene. 

CRMs are believed to exert their influence over their target genes via three main mechanisms 

the first of which is the looping of DNA to interact with the promoter after TF binding in the 

CRM (DNA looping model). The second mechanism involves the assembly of TF’s and its 

cofactors at the CRM and subsequent scanning of DNA by the formed complex until it finds 

the general transcription machinery (DNA scanning model). The third mechanism is thought 

to be a combination of the other two mechanisms and is termed the facilitated tracking model. 

In this, assembly of the TF’s and their cofactors takes place at the CRM as previously 

described and although this complex scans the intervening DNA sequence for the promoter, 

this is done in small steps with the complex still bound to the CRM. The initial step creates a 

small loop which increases in size as scanning continues until the target promoter is found 

(16, 17). 

 

1.5. Identification of TF binding sites 

The importance of TFs and their role in gene regulation necessitates the ability to recognise 

the DNA regulatory regions to which they bind. The process of identifying protein-DNA 

interaction sites are based on experimental and in silico methods. The process can begin with 

either one or the other depending on the information available at the time. These methods 

tend to be complementary with one serving to augment and help refine the results of the other 

(18). Several methods exist to determine the binding locations of proteins and transcription 

factors in the laboratory. Some common methods applied are DNA mobility shift assay, 

DNAse I footprinting assay, SELEX (Systematic Evolution of Ligand by Exponential 

Enrichment) and ChIP (Chromatin Immunoprecipitation). 
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1.5.1. Systematic Evolution of Ligand by Exponential Enrichment (SELEX) 

SELEX is an in vitro method that is used to select nucleic acids from a large pool based on 

their selectivity and sensitivity for different molecules (19). In its application in identifying 

TF binding sites, a pool of  DNA oligonucleotides (10
13

 to 10
15

) comprising sequence 

nucleotides flanked by constant sequences at each end (19, 20) is partitioned into functional 

and non-functional sequences based on their affinity for a particular TF of interest. The 

randomised sequences that are bound to the TF are then selected for an amplification process 

using a polymerase chain reaction process. The amplified sequences are transformed into a 

new single stranded DNA pool which is further incubated with the TF and a more stringent 

selection made for those sequences that have higher affinity for the TF. The selection and 

amplification steps are repeated until only those nucleotides with the desired binding 

stringency are left over from the starting population of nucleotides. These are then cloned and 

each characterized by sequencing (21). 

 

1.5.2. DNAse I footprinting 

DNAse I footprinting is a method that employs the DNA cleaving enzyme 

Deoxyribonuclease I (DNAse I) to identify or create a map of DNA regions of interest that 

are protected from the action of the enzyme due to specific protein-DNA interactions (22). 

This method identifies the sequence-specific binding of proteins. The idea behind this 

approach is that the DNAse I enzyme cleaves DNA randomly at several sites and when the 

labelled cleaved products are run on an electrophoretic gel, these fragments produce a ladder-

like distribution which are visualised in the gel or by using Southern blot assays (23). The 

presence or inclusion of a ligand or protein that interacts with the DNA however would 

prevent the DNAse from cutting the site at which the ligand or protein is attached whereas 

other sites are randomly cleaved as usual. Running this on the gel thus results in a profile 

similar to the previous run but with gaps where the DNA was protected from the DNAse by 

the protein-DNA interaction. This gap is what is referred to as the footprint of the protein on 

the DNA sequence (22, 24). 
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Figure 2 Representation of the DNAse I footprinting experiment. Labelled DNA fragment with 

bound ligand is digested with DNAse I and run on a polyacrylamide gel. Segment of DNA 

bound by the ligand appears as a gap. Reprinted with permission from Elsevier: Methods (24), 

copyright (2007). 

In recent times this process has been modified to a high throughput one which allows the 

simultaneous identification of all such DNAse hypersensitive sites in the genome (25). This 

DNAse-seq footprinting approach utilizes high throughput sequencing technologies after 

PCR amplification of the DNAse I digested DNA (23, 26, 27). The idea behind DNAse-seq 

footprinting is that within the DNAse hypersensitive sites, cleavage of DNA occurs at 

nucleotides that are not protected by the bound protein and so the distribution of the cleavage 

sites would not be uniform within the sites. Analysis of individual sites would reveal the 

presence of peaks and troughs within the signal where the troughs correspond to the binding 

site of the protein or TF (27, 28). 

 

Figure 3 Identification of TF binding sites using DNAse-seq. The troughs represent the sites 

bound by protein within the hypersensitive site which protects from DNAse cleavage. Adapted 

with permission from Nature Publishing Group, Nature Reviews Genetics (28), copyright 

(2012). 
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1.5.3. Chromatin Immunoprecipitation (ChIP) 

Chromatin Immunoprecipitation (ChIP) is a method that allows for the large scale analysis of 

protein interaction with DNA and thus provides a good means of identifying transcription 

factor as well as other protein binding sites across the genome of organisms under given 

conditions. This is achieved by chemically crosslinking proteins to DNA under specific 

conditions to ensure that the interactions of proteins with DNA are explicitly captured across 

the whole genome of the cell (29). Following cell lysis and shearing of the DNA into small 

fragments, an antibody specific to the protein of interest is used to purify and extract DNA 

fragments to which the cross-linked protein is bound. A reversal of these crosslinks thus 

yields segments of DNA that under specific conditions are bound by these proteins. 

Identification of these fragments is achieved by hybridizing with microarrays containing the 

reference genome as DNA segments (30, 31). This process of ChIP followed by microarray 

analysis (ChIP-Chip) has however been superseded by ChIP-Seq where the second step of 

microarray hybridization has been replaced by the more efficient process of next generation 

sequencing (32). In ChIP-Seq, the purified fragments of DNA obtained after ChIP is 

sequenced to determine their nucleotide composition. The information obtained from 

sequencing consists of tens to hundreds of millions of short DNA sequence fragments (reads) 

of the 5’-ends of both the forward and reverse strands of DNA obtained from ChIP. 

Comparison of these reads with a reference genome yields regions of overlap (Figure 4). 

These regions of overlap are subjected to statistical analysis using a control to establish 

enrichment. Statistically significant regions indicate the regions of the genome where the 

DNA-interacting protein binds under those specific conditions (33, 34). 
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Figure 4  A depiction of the processing steps involved in sequencing genomic data (DNA or 

RNA) obtained from chromatin immunoprecipitation. Reprinted with permission from Nature 

Publishing Group: Nature Reviews Genetics (34), copyright (2009) 

Sequence-specific motifs with which these proteins interact with the DNA can be identified 

from ChIP-Seq data following a motif scanning or discovery process. ChIP-Seq provides 

better performance over ChIP-Chip in that it minimizes noise in the data, provides a better 

resolution and covers a larger region of the genome as compared to the latter which depends 

on the size of the microarray being used (29, 34, 35). 

 

1.5.4. Computational analysis of TF binding sites 

In silico identification strategies for TF binding sites are based on searching for patterns that 

tend to be overly present in sets of related sequences as opposed to their presence in unrelated 

sequences (36). Knowledge of genomic regions which are co-regulated or believed to partake 

in the same processes obtained by the previously described experimental methods and others 

is used to derive the patterns. These patterns represent the specificity of the transcription 

factor of interest and may be depicted in either one or several forms namely: a consensus 

sequence, a position weight matrix (PWM), or a position specific scoring matrix (PSSM). 
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These patterns are then stored in large databases such as TRANSFAC (37) and JASPAR (38) 

for use by motif identification algorithms and researchers. 

Consensus sequences are obtained by aligning sequences from identified or suspected 

binding sites. By virtue of the fact that these regions seem to be co-regulated, a pattern of 

conserved nucleotide positions which run through these sequences is constructed following 

the alignment which is then used to derive a consensus representation (based on a statistical 

overrepresentation of the pattern using suitable background frequencies) of the actual region 

of protein-DNA interaction (39). The derived consensus sequence matches closely in all sites 

in the sample but this match may not be exact (40) as each position is represented by a 

consensus nucleotide for all nucleotides present in that position (41). An example of a 

consensus sequence for the heterodimer of the Vitamin D receptor and Retinoid X receptor is 

shown in Figure 5. The representation of binding sites by consensus sequences can have 

variations depending on the number of mismatches allowed or even the positions within 

which these variations are specified to be allowed in the representation. Although this form of 

representation may be easy to achieve, obtaining an optimal consensus sequence that is quite 

capable of predicting new sites may not be too trivial (40). 

 

Figure 5 A consensus representation of the Vitamin D receptor-Retinoid X receptor 

heterodimer response element as derived by Colnot et al in (42). (A) An alignment of the cloned 

sequences used showing the number of times each clone was isolated on the left. (B) Table 

showing the percentage of each nucleotide present at each position within the response element 

(region enclosed in the box). (C) Consensus representation of the motif where A, G, T, C are the 

four nucleotides, N means any nucleotide accepted in that position and R represents an A/G. 

Position weight matrices (PWM) and position specific scoring matrices (PSSM) provide an 

alternative to consensus sequences as a way of representing these TF binding sites. These 

representations express the probabilities of finding a particular nucleotide at a given position. 

These representations tend to be more informative about these patterns than the consensus 



10 
 

representation as they contain information with regard to the occurrence frequencies of 

nucleotides in each position of the pattern (41) and allows for inference of how well the TF 

can bind to such a site based on the idea that the strength of a site is dependent on the 

contribution of each of the positions making it up.  

PWMs are constructed by aligning a set of closely related sequences just as in the case of 

constructing a consensus motif. A consensus motif can thus be converted to a PWM and vice 

versa although conversion from a PWM to a consensus representation results in some loss of 

information (40). A frequency table is then made with each element of the table representing 

the frequency of each nucleotide at any given position in the alignment. These elements are 

what are termed the weights. These weights could be expressed as absolute or relative 

frequencies of each base in a given position. Other methods of computing the weights of the 

PWM are based on a log likelihoods ratio where the relative frequency of each base in the 

sequence collection is taken into account. A simple example using 10 sequences for the 

Vitamin D receptor as shown in the Jaspar_Core database is illustrated in Figure 6. Other 

implementations may include a pseudocount to correct for small sample sizes. 

 

Figure 6 Derivation of a PWM for the RXR::VDR heterodimer using 10 sequences obtained 

from SELEX experiments as described in (38). (A) The sequence set used. (B) A multiple 

alignment of VDR binding sequences. (C) Frequency based PWM derived for the RXR-VDR 

binding site. 

Identifying a match to the binding site for a known TF would be achieved by calculating 

scores for the suspected region. The score of a probable binding site is thus the sum of the 

matrix values for each nucleotide at each position in the sequence in the case of the log-based 

PWM. A high score indicates close similarity to the consensus indicating that each position 

may have one of the most common nucleotide in that position for the motif and a threshold 

may be applied for selection of the most probable sites. 

A B 

C 
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Computational analysis methods can be categorised into two: methods which seek to identify 

patterns without a priori information about the binding sites (motif discovery) and those that 

use already known patterns of TFs to identify similar in new sets of sequences which are 

believed to contain binding sites for those TFs (motif scanning/mapping methods) (40). The 

motif scanning methods use the pattern representations described above in the process. De 

novo motif discovery can as well identify already known motifs in new sequence collections. 

 

1.5.5. Use of additional information to guide binding site prediction and motif 

discovery 

The motif scanning and discovery process is however not as straight forward as it may seem. 

TFs tend to usually bind to short stretches of DNA sequences (4-10bp) (43) and together with 

the small DNA alphabet (AGCT), makes the identification of real binding sites difficult. The 

short motif and small alphabet means that any combination of bases making up a binding site 

will occur multiple times in the genome by random chance and the highly repetitive nature of 

nucleotides in the genome also makes it more than likely to identify these short stretches 

occur at other regions of the genome aside from the actual regulatory or binding sites. This 

means there is a high likelihood of the sites identified by these methods being false positives 

(44). In addition, not all genomic regions are available for protein interaction. To help 

address these challenges several algorithms allow the inclusion of knowledge about these 

binding sites in the prediction and discovery process. Advances in technology over the past 

few years means that methods exists that allow the identification of regulatory regions and 

the features that distinguish them from the surrounding background. The ENCODE 

(Encyclopedia of DNA Elements) project (45) has yielded a lot of information that has 

prescribed functions to different parts of the genome and also delineated the features 

associated with the different parts allowing for a better understanding of the gene regulatory 

process. Using information such as sequence conservation, histone marks as well as DNAse 

hypersensitivity information, motif discovery and prediction algorithms are better able to 

discriminate real binding regions from spurious occurrences (41, 43, 46, 47). 

 

1.6. Workbenches for analysing biological data 

The analysis of biological data requires the use of one or several types of resources ranging 

from databases containing sequence annotations or collections of transcription factor binding 

profiles to algorithms that enable the processing of raw signals from sequencing experiments. 
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These resources form an integral part of most analysis pipelines and there has been an 

increasing number of such resources being made available to help in the solution of the 

complex questions that arise from biological data. That notwithstanding, there are challenges 

which arise from having so many resources developed by different groups or even if from the 

same group, differing in their requirements for use such as input formats. Another challenge 

in the analysis of biological data using these resources lies in the fact that these resources 

most often than not are not in one central place requiring that analysis data be moved from 

one place to another in cases where a multiplicity of these tools are required for a single 

analysis. The development of workbenches or suites has been of tremendous benefit. These 

workbenches create a framework that enables the accessibility of these resources from a 

localized place be it as a standalone application that can be installed on a computer or as 

cloud-based services that can be accessed from a single web interface. Some notable 

examples of such workbenches are Galaxy (48) and Mobyle (49). 

MotifLab (50) is another example of such a workbench that was developed by researchers at 

the Norwegian University of Science and Technology. It is a workbench focussing on the 

integration of tools and data for the analysis of regulatory sequence regions. MotifLab allows 

for the identification of binding sites for TFs using different motif scanning and discovery 

tools as well as allowing for the integration of related information from different sources in 

unrestricted ways in the process. All these processes can be performed from a graphical user 

interface which makes it easy to use. 

 

1.7. Gene Regulation by the Vitamin D Receptor (VDR) 

Vitamin D is a prohormone formed in the skin from 7-dehydrocholesterol with the help of 

sunlight. Vitamin D is then hydrolysed into a pre-active form, 25-dihydroxy Vitamin D3 by 

the 25-hydroxylase enzyme in the liver. Further processing in the kidneys by the 25-

hydroxyvitamin D-1-α-hydroxylase enzyme results in the formation of active 1,25-dihydroxy 

Vitamin D3. Several other tissues are capable of synthesizing this active form depending on 

the levels of pre-active Vitamin D. It is this active form that mediates the pleiotropic effects 

of Vitamin D uptake including calcium and phosphate absorption in the intestines and bone 

formation (51-53). The varied effects of this hormone are achieved by binding to its cognate 

receptor in the cell. 

The Vitamin D receptor is a transcription factor belonging to the family of nuclear receptors 

that mediate the effects of small steroid ligands and molecules on cellular processes (54). The 
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VDR is however primarily known to mediate the action of 1,25-dihydroxy Vitamin D3 (52, 

55). It is composed of 5 principal functional domains which play different roles. The domains 

include the localization domain which localises the VDR protein to the nucleus after 

translation, the DNA-binding domain which recognises and binds to the response element, 

the dimerization domain, the ligand-binding domain to which active 1,25-dihydroxy Vitamin 

D3 binds and the transcriptional activation (ligand-dependent Activating Function (AF2)) 

domains (56). 

In the absence of its cognate ligand, Vitamin D3, VDR exhibits basal functionality regulating 

several genes including the gene for the VDR. By ligand binding to its ligand-binding 

domain, the VDR undergoes conformational changes which activates it and from its 

monomeric state, forms a heterodimer with the Retinoid X receptor (RXR), another member 

of the nuclear receptor family (57, 58). Studies have shown the formation of heterodimers of 

RXR with other nuclear receptors on activation by their cognate stimulatory ligands. 

 

Figure 7 Vitamin D Receptor activation by 1,25(OH)2 Vitamin D3 and its mechanism of action. 

Adapted by permission from Nature Publishing Group: Nature Reviews Cancer (59), copyright 

(2014) 

The VDR can bind to DNA as a monomer or even as dimers but these interactions are not 

stable. Activation by Vitamin D and heterodimerization with RXR however stabilizes this 

interaction (11, 12, 60). VDR binds to DNA as described earlier by recognizing the Vitamin 

D response element (VDRE), a heptad repeat sequence that has a spacer element between the 
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two half-sites. Several values have been given to this spacer region however evidence 

suggests a preference for a spacer of 3 nucleotides between the half-sites (11, 58). This is 

known as the DR3-type VDRE where DR indicates that the element is a direct repeat and the 

value of 3 indicates the spacing between the repeats. As mentioned previously, the VDREs 

can be located at sites close to the TSS or at distal sites upstream or downstream to the 

promoter and these sites can contain one to multiple VDREs. 

Binding of the VDR heterodimer to the VDRE results in the induction of several genes 

including the  24-hydoxylase (CYP24A1) gene which encodes the enzyme responsible for 

catalysing the degradation of 1,25-dihydroxy Vitamin D3 and its precursor (58). To achieve 

transactivation, the VDR heterodimer acts as a seed which recruits factors responsible for 

chromatin remodelling such as histone acetyl transferases (HATs) in the form of SRC-1 

(Steroid receptor coactivator) or CBP/p300. In addition, TATA binding protein associated 

factors (TAFs) and the basal transcription machinery are recruited further down in the 

process.  Other factors involved in the transactivating function of the VDR heterodimer 

include the Vitamin D receptor-interacting protein 205 (DRIP205) which upon binding to the 

AF2 of VDR, recruits the mediator complex comprising other DRIPs that link the VDR to 

transcription factor 2B and the RNA polymerase II for transcription initiation. The VDR has 

been to shown to interact with some members of the mediator complex which serves as a 

bridge to connect gene-specific regulatory proteins to the RNA polymerase II transcription 

machinery (56, 61). 

Negative regulation by the VDR involves interaction with the VDR-interacting repressor and 

the recruitment of histone deacetylases (HDACs). In this role VDR has also been shown to 

interact with the Williams Syndrome Transcription Factor (WSTF) which allows the 

recruitment of the chromatin remodelling complex WINAC (61-63). A model of gene 

regulation by the VDR and its co-modulators utilizing chromatin looping as described by 

Haussler, Jurutka (58) is shown in Figure 8. 
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Figure 8 Chromatin looping model of gene regulation by the VDR. (A) Sequential model of gene 

activation of the rat osteocalcin gene (containing a single VDRE) by the 1α,25(OH)2D3 -bound 

VDR-RXR heterodimer. Numbers inside circles refer to discreet stages in the activation of a 

VDR target gene. (B) The presence of several potential VDREs in the 5-prime flanking region of 

the mouse RANKL gene. (C) Depiction of how these VDREs might cooperate in a chromatin 

looping model. Multiple VDR-RXR heterodimers may be capable of simultaneously recruiting 

coactivators to form a regulatory super-complex at the promoter. Adapted by permission from 

Elsevier: Best Practice & Research Clinical Endocrinology & Metabolism (58), copyright 

(2011). 

 

1.8. Context and aims of the study 

Generally, transcription factors identify a specific string of nucleotides; the response element, 

which serves as a template/motif with which they interact with the DNA sequence to either 

activate or repress the transcription of the gene they regulate. In recent times however, it has 

been observed that some factors do associate with DNA without any clearly recognizable 

motif for those factors. 

One such identified transcription factor is the above-mentioned nuclear hormone receptor for 

Vitamin D. There is interest in this receptor and its ligand because it has been suggested to 

play a role in diseases including certain forms of cancer (59, 64). A number of ChIP-Seq 

experiments carried out for VDR to elucidate and better understand its role and function in 

gene regulation on a genomic scale have identified sequence regions which have the classic 

VDR in addition to sequence regions which have no such motif but are indicated by ChIP-

Seq as being positive for VDR binding. This observation has not been limited to the VDR as 
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similar observations have been made for other factors of interest (45, 65). Although it has 

been suggested that these VDR-motif negative regions and others like it could be false 

positives, they are frequently found in most ChIP-Seq data and the binding events are too 

strong to be just noise (66). Recent knowledge calls for alternative explanations for the 

existence of such regions. 

Knowledge on transcription related factors and regions of high occupancy of these factors 

uncovered by the human ENCODE project coupled with recent publications alluding to 

alternative methods of protein-protein and protein-DNA interactions such as transcription 

factor co-operativity, motifless binding as well as higher order structure interactions raise 

several questions and hypotheses with regard to how transcription factors interact with these 

regions identified in ChIP-Seq experiments. One important question raised by these known-

motif-negative regions is the mechanism by which these transcription factors are able to 

recognise these regions. The closest assumption that may provide insight to this is the 

presence of a previously unknown alternative motif that is recognised by these transcription 

factors. The change in recognised binding site could be attributed to conformational changes 

in the transcription factor protein due to interactions or proximity to other proteins. Co-

operativity has also been postulated as a possible explanation for this phenomenon as recent 

publications describe instances of transcription factor binding to weak sites due to induced 

stabilization of protein-DNA interactions by cooperative effects of interacting proteins (67). 

An extension of this hypothesis is the possibility of these transcription factors acting as 

secondary factors that bind indirectly to these regions by binding to other transcription factors 

with motifs in this region and piggy-backing. Such a process has previously been described 

for the VDR where it interacts with the Vitamin D receptor interacting repressor (VDIR) in 

the transrepression of the Vitamin D 1α hydroxylase gene (68). Some other studies have also 

shown the estrogen and progesterone nuclear receptors interacting with other transcription 

factors instead of directly binding to DNA to regulate transcription (69, 70). 

This study seeks to provide some explanation of transcription factor binding where there is no 

clearly recognizable motif as compared to instances from the same experiment where a motif 

is found by analysing ChIP-Seq data from VDR experiments to identify any characteristics 

that may be overrepresented in these motif-negative regions. 

Through the analyses to be performed, the study would establish whether the motif-negative 

regions differ from the motif-positive ones with respect to its GC-content, the presence of 

CpG sites or chromatin marks and modifications that are associated with high probability 
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binding events. In addition, the study would seek to answer the question of whether the 

motif-negative regions are enriched in other motifs compared to the positive regions 

indicating the possibility of indirect TF binding and also test the hypothesis of co-operativity 

by identifying motif pairs enriched in these motif-negative regions. 
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2. Methods 
2.1. Datasets and tools 

ChIP-Seq data for VDR in human lymphoblastoid cell lines (LCL) (71) and THP-1 human 

monocytic leukaemia cells (MCL) (72) subsequently referred to as Ramagopalan and 

Heikkinen respectively were used in this work. MotifLab versions 1.07 and 1.08 (50) was the 

main workbench used for analysis.  

Data for the CCCTC factor (CTCF) and the Structural Maintenance of Chromosome (Smc3) 

unit, a key component of the Cohesin complex, was retrieved for the GM12878 cell line from 

the ENCODE database
1
. Information on transcription factor interaction partners in mouse and 

human from (73) was retrieved as supplementary data
2
.  

Genomic data used from research articles that were based on the human genome 19 (hg19) 

assembly were converted to hg18 using the LiftOver tool on the University of California 

Santa Cruz (UCSC) Genome Bioinformatics website. Other tools and resources used include 

BioGrid 3.2 (for protein interaction data), UniprotKB (for protein information), NetPath, and 

STRING. Others are indicated as and when they were used. 

2.2. Motif discovery and comparison 

Initial motif discovery was carried out using the online version of MEME-ChIP 4.9.0 (74). 

The bed file for each dataset was converted to fasta format using MotifLab before submission 

to MEME. MEME-ChIP was set to report 3 motifs between 6 and 30 bases in length with all 

other parameters set to default. Jaspar_Core and mouse (UniPROBE) (38) was selected as the 

motif database to use. Identified motifs were submitted to TOMTOM 4.9.0 (75) for motif 

comparison using the Pearson correlation coefficient as motif column comparison function 

and an E-value threshold of less than 10. 

2.3. Background modelling 

DNA sequence data from ChIP-Seq was imported into MotifLab using information from 

human genome version 18 (hg18). A fourth order background model was created using the 

background model procedure in MotifLab. The model was created from the imported 

sequences by setting the model order and strand orientation to 4 and relative respectively.  

                                                            
1 http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeAwgTfbsUniform 
2
http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0092867410000796/1-s2.0-

S0092867410000796-

mmc2.xls/272196/FULL/S0092867410000796/7a324eec378f4ed8963a6eafb6c3b47f/mmc2.xls 

 

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeAwgTfbsUniform
http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0092867410000796/1-s2.0-S0092867410000796-mmc2.xls/272196/FULL/S0092867410000796/7a324eec378f4ed8963a6eafb6c3b47f/mmc2.xls
http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0092867410000796/1-s2.0-S0092867410000796-mmc2.xls/272196/FULL/S0092867410000796/7a324eec378f4ed8963a6eafb6c3b47f/mmc2.xls
http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0092867410000796/1-s2.0-S0092867410000796-mmc2.xls/272196/FULL/S0092867410000796/7a324eec378f4ed8963a6eafb6c3b47f/mmc2.xls
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Table 1 Parameters for background model generation 

Background model (from track) 

Parameter Value 

DNA track DNA 

Sequences All sequences 

Model order 4 

Strand orientation relative 
 

The DNA track of input sequences were then masked with random bases from the 

background model to create five different sets of simulated sequences using the mask 

procedure 5 times. Other parameters for this were kept at default. 

Table 2 Parameters for deriving simulated sequences for establishing statistical significance 

Transform (mask) 

Parameter Value 

Source DNA 

Mask with random bases (background model) 

Strand relative 

Condition none 

In sequence collection All sequences 
 

2.4. Motif scanning 

Sequences were scanned using the SimpleScanner algorithm in MotifLab at a threshold level 

of 90% with all other parameters kept at the default. Motifs from a predefined motif 

collection (of 459 motifs (04/10/13)) from Jaspar_Core_2009 database was used for 

scanning. The source parameter was varied depending on the transformation carried out on 

the DNA sequences such as masking repeat regions. 

Table 3 Motif scanning parameters for the SimpleScanner algorithm 

Motif scanning 

Parameter Value 

Source DNA (varied) 

Method SimpleScanner 

Motif Collection varied 

Threshold type percentage 

Threshold 90 

Score absolute 

In sequence collection All sequences 
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2.5. Motif overrepresentation 

The occurrence of motifs from motif scanning was calculated for each set of simulated 

sequences using the motif numeric map procedure. The value for each motif in the map was 

obtained by setting the property parameter of the method to frequency.  

Table 4 Parameters for generating motif counts in sequences 

Motif numeric map (from track) 

Parameter Value 

Motif Track Varied (total of 5 tracks used) 

Property frequency 

Sequence Collection All sequences 

Within regions none 
 

The average values for each motif was obtained from the set of values for each simulated 

sequence, using the increase procedure and finally dividing the sum by the total number of 

simulated sequence sets (five). The relative occurrence of motifs in the input sequences was 

calculated using the count motif occurrences procedure with parameters for motifs and 

significance threshold specified as Jaspar_Core and 0.05 respectively. Average motif 

occurrences calculated for the simulated sequences served as background frequencies for 

reporting p-value and establishing statistical significance of motif overrepresentation. A 

Bonferroni correction was applied using the number of motifs. 

2.6. Region comparison and nucleotide level statistics 

Feature annotation tracks containing information for CpG regions, DNAse HotSpots, general 

regions bound by transcription factors identified by ChIP-Seq (TFBS_ChIP-Seq), gene 

coding regions (CCDS), Repeat regions detected by Repeatmasker 3.2.7 (RepeatMasker327), 

histone modifications (H3K4me1, H3K4me3, H3K9ac and H3K27ac regions for the 

GM12878 and K562 cell lines depending on the cell line used for acquiring the ChIP-Seq 

data) and FAIRE-Seq regions from the UCSC Genome Browser (76) as well as Ensembl gene 

regions from Ensembl (77) were used. These feature tracks were retrieved using the 

predefined list of feature tracks in MotifLab. Additional data was retrieved from the genome 

browser. The feature tracks used are: 

wgEncodeBroadChipSeqPeaksGm12878H3k27ac 

wgEncodeBroadChipSeqPeaksK562H3k27ac 

wgEncodeBroadChipSeqPeaksGm12878H3k4me1 

wgEncodeBroadChipSeqPeaksK562H3k4me1 

wgEncodeBroadChipSeqPeaksGm12878H3k4me3 
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wgEncodeBroadChipSeqPeaksK562H3k4me3 

wgEncodeBroadChipSeqPeaksGm12878H3k27me3 

wgEncodeBroadChipSeqPeaksK562H3k27me3 

wgEncodeBroadChipSeqPeaksGm12878H3k9ac 

wgEncodeBroadChipSeqPeaksK562H3k9ac 

wgEncodeBroadChipSeqPeaksGm12878 

Percentage overlap of VDR binding sites with different annotated features was calculated 

using the compare region datasets procedure. All binding sites (VDR and VDR-like) were 

compared to each feature annotation track. Analysis was performed using only VDR-positive 

sequences. 

Table 5 Parameters for comparing motif sites and DNA feature regions 

Compare region datasets 

Parameter Value 

First Varied (TFBS tracks for 

MEMEVDR,JSVDR,NR4A2) 

Second Varied (Each feature region track) 

Sequences Varied (Specific sequence collection) 

VDR_positive 

VDR_negative 

MEMEVDR_positive 
 

Enrichment of regions in the different sets of sequences was compared using the compare 

region occurrences procedure of the analysis feature in MotifLab. A hypergeometric test was 

applied to compute p-values at the 0.05 significance level. The number of region types that 

were present for each comparison was used for Bonferroni correction. VDR- positive and 

negative sequence sets were compared using each feature track. The positive set was 

specified as the control in all instances. Comparisons were also made between classic VDR 

(JSVDR)-positive and MEMEVDR-positive, NR4A2-positive and MEMEVDR-positive, and 

NR4A2-positive and JSVDR-positive. 

Table 6 Parameters for comparing occurrence of DNA feature regions in VDR positive versus 

negative sequences 

Compare region occurrences 

Parameter Value 

Region track Varies (Each feature region track) 

Target set VDR_negative 

Control set VDR_positive 

Statistical test Hypergeometric 

Significance threshold 0.05 

Bonferroni correction Present types 
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GC-content for all sequences in the dataset and for the different sequence collections was 

obtained using analyse procedure and the parameters below. The value for the Groups 

parameter was varied depending on which sequence collection was being analysed. 

Table 7 Parameters for the calculation of GC-content 

Analyze 

Parameter Value 

Analysis GC-content 

DNA track DNA 

Groups Varied 
 

2.7. Evaluating the power of feature regions to predict binding sites 

The potential of the imported feature tracks to discriminate or predict binding sites in the 

sequences was assessed by plotting Receiver Operating Characteristic (ROC) curves for each 

numeric feature track using the observed binding sites for MEMEVDR, JSVDR and NR4A2 

as targets. This was to evaluate whether these numeric feature tracks have higher values 

inside the observed TF binding sites as compared to the surrounding regions. The evaluate 

priors procedure in MotifLab was called with the following parameter values to achieve this. 

The priors tracks were the ChIP-Seq signals for these features in the GM12878 and K562 cell 

lines depending on the dataset being analysed. 

Table 8 Parameters for evaluating the predictive power of DNA feature regions for TF binding 

sites 

Analyze: Evaluate priors 

Parameter Value 

Target track Varied (TF binding site tracks for JSVDR, 

MEMEVDR and NR4A2) 

Priors track H3K4me1 

H3K4me3 

H3K27ac 

H3K9ac 

Sequences JSVDR_positive 

MEMEVDR_positive 

NR4A2_positive 

Threshold Above or equal 
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2.8. Automatic generation of positional priors 

VDR binding site overlap with feature regions were used as inputs to the automatic priors 

generator in MotifLab. The priors generator was specified as a neural network and the input 

nodes varied using combinations of features above a certain threshold of overlap of binding 

sites. Three clusters were used; above 50% (ChIP-Seq, DNAse HotSpots, Ensemble Genes, 

FAIRE-Seq, H3K4me1, H3K4me3 and H3K27ac), above 70% (ChIP-Seq, DNAse HotSpots, 

FAIRE-Seq, H3K4me1, H3K4me3 and H3K27ac) and above 90% overlap (DNAse 

HotSpots). The neural network classifier forming the basis of the priors generator was trained 

on the classic RXR-VDR containing set of sequences. 

2.9. Manual generation of priors 

Histone modification signals were imported into MotifLab. Each signal peak was processed 

using the apply procedure with a sum window of 10 anchored at the start of the sequence. A 

priors track was generated by summing signal peaks in regions having values greater than 0. 

The increase procedure was used. Generated prior was normalized to change 0 signal peak 

values in each sequence to 0.01 while maintaining the maximum in each sequence. Tracks 

whose AUC values indicated bad predictive ability were reversed with a reciprocal function. 

Combinations of these reversed tracks were also made. 

2.10. De novo motif discovery 

PRORITY and ChIPMunk were used for de novo motif discovery. Generated positional 

priors were used in de novo motif discovery using PRIORITY. ChIPMunk was also used on 

the VDR-positive and negative sets. ChIPMunk was parameterised to find motifs 7 to 19 

bases in size, zero or one occurrence per sequence (ZOOPS) using a simple model. 

ChIPMunk was further used with manually generated priors by setting the method 

parameters: maximum motif length as 16, minimum motif length as 7, model type as peak 

and motif to report as one occurrence per sequence (OOPS). The peaks parameter was 

specified as a manually generated prior track. 

2.11. Comparison of classic VDR and VDR-like sequences collections 

Sequence collections were compared using the compare sequence collections procedure in 

MotifLab. A binomial statistical test using a significance threshold of 0.05 was used in all 

comparisons made. The threshold was corrected using a Bonferroni correction of the number 

of all motifs. Motifs overrepresented from the background were specified as the motif 

collection for use. Analysis was carried out between classic RXR-VDR and VDR-like 
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sequence collections to establish whether there was any intersection between the two 

sequence collections.  

2.12. Motif distribution 

Having established the overrepresented motifs in all the clusters of sequences, further 

analysis of how these motifs were distributed with respect to the features of interest in each 

cluster was performed. This involved calculating average distance of present motifs to other 

motifs such as those for known or putative interaction partners as well as chromatin opening 

factors such as Sp1. Information about interaction partners were retrieved using BioGrid 3.2, 

IntAct, Human Protein Reference Database (HPRD) and the UniprotKB database. Additional 

information was obtained from STRING 9.05, a database of known and predicted protein 

interactions as well as the supplementary table of transcription factor interactions in humans 

from (73). 

The distance procedure was used to calculate the positions of individual nucleotides from 

VDR binding sites (upstream, downstream and both directions) in VDR-positive sets and 

sequence upstream ends in VDR-negative sets. This created a numeric data track that was 

used in the next step. 

Table 9 Parameters for esimating motif distribution in sequences 

Derive: Distance 

Parameter Value 

Direction Both/Upstream/Downstream 

From anchor point Region (VDR_TFBS)/Sequence upstream end 

Relative to Sequence upstream end () 
 

2.13. Comparing motif positions in VDR positive and negative sequences 

To derive distances in the negative sequences, a sequence numeric map was generated using 

the statistic procedure to count the number of bases in each sequence which is equivalent to 

the length of the sequences. Values in the generated sequence numeric map were then divided 

by 2 to obtain an approximate location value for the midpoint of each sequence. This map of 

midpoint positions was then specified as the parameter value of ‘From anchor point’ in the 

distance procedure.  

Table 10 Parameters for determining the base count (length) of each sequence 

Derive: Statistic 

Parameter Value 

Source DNA 
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Statistic Function Base count 

Strand Relative strand 

In sequence collection All sequences 
 

Table 11 Parameters for obtaining the position of each nucleotide relative to the centre of each 

sequence 

Derive: Distance 

Parameter Value 

Direction Both 

From anchor point Position (numeric map of sequence midpoints ) 

Relative to Sequence upstream end 
 

To determine the relative distances of other TFBSs from the identified VDR and VDR-like 

binding sites, a comparison was made between the average nucleotide position from the sites 

and the location of these other TFBSs. This was achieved using the compare motif track to 

numeric track procedure. 

Table 12 Parameters for calculating the the distance of motifs from a specified motif 

Compare motif track to numeric track 

Parameter Value 

Motif track Observed_TFBSs 

Motifs Enriched_Ramagopalan/Enriched_Heikkinen 

Numeric track Varied (Distances calculated for specific motif of 

interest) 

Sequences Varied (Specific motif-positive set of sequences) 

Threshold 150 

  

  
 

2.14. Motif position distribution 

Table 13 Parameters for generating the distribution of motifs in sequences in each dataset 

Parameter Value 

Motif track Varied 

Motifs Enriched_Ramagopalan/Enriched_Heikkinen 

Sequences Varied 

Alignment anchor centre 

Motif anchor centre 

Support No 

Bins 999/383 
 

The chosen values for the bins are based on the maximum length of sequence in 

Ramagopalan and Heikkinen datasets which was 9981 and 3821bp respectively. 



27 
 

2.15. Other data processing methods 

CTCF and Cohesin data for the GM17828 cell line was retrieved from the UCSC genome 

browser and further manipulated using bedtools
3
 v.2.17. For testing the region overlap 

between the datasets used and data for different genomic regions, the command used was 

‘bedtools intersect -a inputA.bed -b inputB.bed –u > 

output.bed’ where inputA was the Ramagopalan/Heikkinen dataset and inputB 

was the region to be compared. The parameter –u was specified to report only single 

instances in inputA where there was at least one overlap. 

 

 

                                                            
3 Downloaded from http://code.google.com/p/bedtools/downloads/detail?name=BEDTools.v2.17.0.tar.gz  
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3. Results and Discussion 
3.1. VDR binds to an RXR-VDR-like motif 

Ligand-bound VDR has a known consensus motif with which it interacts with DNA after 

heterodimerization with RXR (Figure 5 and Figure 10). Identification of this template in 

ChIP-Seq data is in most cases an indication of positive binding however actual presence of 

transcription factor binding sites may be affected by sequence composition and other features 

resulting in inactive sites or by chance occurrences (36). Using ChIP-Seq data from (71) and 

(72), the Jaspar_Core database in MotifLab and the MEME-ChIP tool in MEME Suite (74), a 

search was made for highly represented motifs in the 2776 and 2338 sequences which make 

up the two datasets as compared to a background.  

MEME de novo motif discovery yielded three motifs which were substantially enriched 

(Figure 9) in the submitted sequences from Ramagopalan. The second most enriched (E-

value=3.1e
-41

), on submission to TOMTOM (75) had a high significant similarity to the RXR-

VDR motif (p-value=3.3e
-12

). The other two motifs identified by MEME had no similarity to 

the known VDRE as ascertained by TOMTOM. Two other high scoring motifs similar to that 

identified by MEME were the NR4A2 and usp motifs (Figure 10) (p-value<10
-3

 using 

TOMTOM). Seventeen other motifs were retrieved in total based on the settings used. A 

visual comparison of the de novo motif from MEME and the Jaspar_Core profile for RXR-

VDR (MA0074.1) referred to as the classic VDR in subsequent mentions showed that the 

Jaspar_Core profile had a predominant T at positions 4, 12 and 13 unlike the de novo motif 

which allowed for a bit more variability in these positions. A similar observation has been 

made in ChIP-Seq data from a different cell line (72). 

Sequences from the Heikkinen dataset analysed with MEME however, had no clear motif that 

matched the classic VDR motif. All the motifs returned by MEME when submitted to 

TOMTOM had no RXR-VDR matching result. DREME on the other hand produced a motif 

that had some similarity to the VDR-like NR4A2 (E-value=1.6e
-3

, Figure 9 and Figure 11).  

Table 14 Summary of key properties of analysis datasets 

 Ramagopalan dataset Heikkinen dataset 

Cell line GM10855/GM10861 (LCL) THP-1 MCL 

Duration of Vit. D stimulus 36 hours 40 minutes 

Concentration of ligand 0.1µM unknown 
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Figure 9 Sequence logos of VDR binding motifs found by de novo motif discovery. (A) Top 

motifs discovered by MEME in Ramagopalan dataset. (B) Motif discovered by DREME in 

Heikkinen dataset. 

 

Figure 10 Top three motifs similar to motif 2 (Figure 9) from MEME identified by motif 

comparison using TOMTOM  

 

Figure 11 DREME discovered motif and the top 3 motifs matching the discovered consensus 

after submitting to TOMTOM for the Heikkinen dataset. The de novo motif has some similarity 

B 

A 
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to the RXR half-site of the RXR-VDR motif. The VDR half-site of the heterodimer has a 

predominant T in the fourth position from the 3’ end. 

A fourth order background model based on each dataset’s sequences was subsequently 

created to distinguish enriched motifs from those occurring by chance by virtue of the base 

composition of the sequences. Higher order background models have been shown to improve 

the results obtained from motif-finding algorithms (78). The background model was scanned 

using the Jaspar_Core database of transcription factor motifs as was the actual sequences. 

Occurrence frequencies of motifs in the background were calculated and used to calculate 

occurrence frequencies of motifs in the actual dataset and thus establish motif 

overrepresentation. This background model was also used in subsequent motif discovery 

steps where a background had to be specified. 

Out of the 459 motifs that are included in the Jaspar_Core database, 135 were identified as 

overrepresented (Appendix A.2) in sequences from the Ramagopalan dataset as compared to 

149 in the Heikkinen set. These motifs formed the focus of the subsequent analyses 

performed on each dataset respectively. Comparison of the seventeen motifs retrieved by 

TOMTOM with the 135 motifs observed to be overrepresented in Ramagopalan showed an 

intersection of only 2 motifs; RXR-VDR and NR4A2. Using these two motifs for motif 

scanning within MotifLab as previously described yielded 65% of the scanned sequences 

showing the presence of one or more of the two motifs (Table 15). This was not too different 

from results earlier published on the same dataset (71) which had 67% of sequences having 

the VDR-like sites. This difference may however be attributed to the threshold applied to 

motif scanning, filtering out of VDR-like motifs which were not indicated as being 

statistically enriched in these sequences, for example  the usp motif, as well as a difference in 

the number of motifs returned by MEME which had similarity to the classic VDR motif. 

Similarly, motif scanning using MotifLab with only the MEME-derived motif showed 

multiple to one occurrence per sequence in 18% of sequences in the Ramagopalan dataset 

(504 out of 2776). 

Table 15 Percentage of sequences indicated by motif scanning as being positive for VDR or 

VDR-like motifs. Most sequences were positive for the VDR-like NR4A2 motif in both datasets 

compared to the MEME de novo motif or the Jaspar_Core profile for RXR-VDR. Some 

sequences were positive for all three motifs whereas others had different combinations of the 

three motifs. 

Motif 
Number of sequences (%) with motif 

Ramagopalan Heikkinen 

MEME de novo 504 (18.2) 1110 (47.5) 

JSVDR(RXR-VDR) 192 (6.9) 163 (~7.0) 
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VDR-like (NR4A2) 1741 (62.7) 1937 (82.8) 

JSVDR+NR4A2 1810 (65.2) 1950 (83.4) 

De novo+JSVDR+NR4A2 1924 (69.3) 2023 (86.5) 

 

Following a similar process of analysis on the Heikkinen dataset showed that about 47% of 

sequences had the DREME-derived VDR-like NR4A2 motif (1110 out of 2338). Scanning 

with the Jaspar_Core RXR-VDR however had 163 sequences (~7%) being positive for the 

motif although MEME de novo motif scanning results was negative for this motif. Of the 

similarities to the DREME-motif identified by TOMTOM, 10 motifs were included in those 

overrepresented from the background. 

The differences observed between the two datasets can be attributed to the fact that samples 

were from two different cell lines and the treatment conditions were different (36hrs and 

40mins after ligand stimulation for samples from the LCL and THP-1 MCL respectively). 

The longer time before harvest after stimulation may explain the higher fraction of RXR-VDR 

motif-positive regions in the Ramagopalan dataset as compared to Heikkinen in that the VDR 

has more time to be fully activated by ligand and is thus more able to identify and bind to 

high affinity sites such as its classic response element. This would however mean that sites 

bound but without a motif are as a result of inactive VDR or not fully activated VDR. This 

explanation is supported by evidence that there is a shift in binding sites from those lacking 

classical VDREs to DR3-type response elements after stimulation (72) but it however does 

not account for how the VDR binds to these motifless regions. A time course experiment with 

ChIP-Seq in the same cell line for both VDR and its heterodimerization partner, RXR, may 

give further insight as to whether these motifless regions are simultaneously occupied by both 

VDR and RXR under the same conditions and also elucidate whether VDR binds to the DR3 

response element in a time dependent manner as the information from these two datasets 

seem to suggest. It is important to note however that, a study utilizing this suggested 

approach in a different cell line found that the VDR and RXR did not always co-localize to 

the same region (79) supporting the view that VDR may bind as a monomer or dimerize with 

alternative partner(s) and not require RXR even after ligand stimulation. 

It was also hypothesised that the huge difference in the type of VDR binding between the two 

datasets could mean an associated difference in other features between them particularly in 

terms of presence of motifs for other DNA binding factors. A comparison of enriched motifs 

between the two datasets showed a significant overlap (p-value=2.87e
-40

) of 105 motifs 
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which were present (Appendix A.6, Figure 12). Further analysis was performed to understand 

the role and distribution of these common motifs and those that were unique to each dataset. 

 

Figure 12 Venn diagram showing the intersection of enriched motifs in Ramagopalan and 

Heikkinen datasets. A large fraction of enriched motifs are shared between the datasets from 

LCL and THP-1 MCL  

To facilitate the subsequent analysis, a distinction was made between sequences with and 

without the motif(s) of interest. Sequences indicated by scanning as bearing a VDR motif 

were selected as the VDR-positive subset. This subset of sequences comprised sequences 

with the classic RXR-VDR motif and those with VDR-like motifs. These two classes were 

clustered as well. Sequences bearing no VDR or VDR-like motif formed the VDR-negative 

subset. 

 

3.2. VDR binds in HOT (High Occupancy of Transcription Factor) regions 

DNA sequence regions, depending on their base composition, acquired modifications and 

structure confer properties which in most cases distinguish them from other regions. These 

properties and characteristics also influence the type and manner of interactions in which 

these sequence regions are involved. Knowledge of associated properties of regions of 

interest can therefore be used for predictive purposes. In the case of transcription factor 

binding, data exists on the human genome which can be used to potentially predict regions of 

high likelihood of transcription factor binding (65). In addition, knowing these regions can be 

used to focus the search for transcription factor binding sites (47).   

Based on the different human genomic regions defined by Yip, Cheng (65), a comparison 

was made between the VDR ChIP-Seq datasets and these genomic regions to identify the 

defined regions within which the VDR datasets fell. VDR peaks from the Ramagopalan 

dataset had an overlap of 81.6% and 94.1% with High Occupancy of Transcription related 
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factor (HOT) regions and Binding Active Regions (BAR) respectively. HOT regions were 

defined as genomic “regions bound by many transcription related factors that do not usually 

co-associate globally in the whole genome” and BARs as “broad genomic regions that 

transcription related factors tend to bind” (65). On the other hand, there was low overlap with 

Binding Inactive Regions (BIR) and Low Occupancy of Transcription related factor (LOT) 

regions. These observations were similar in the Heikkinen dataset but with lower values for 

the percentage overlap (Table 16). 

Table 16 Comparison of VDR binding peaks and defined genomic regions 

Region types 
Number of sequences 

Ramagopalan dataset Heikkinen dataset 

VDR-binding peaks (Peaks) 2776 2338 

HOT regions 92551 81398 

LOT regions 199325 166941 

BAR regions 213438 175957 

BIR regions 2611774 1738767 

PRM regions 105147 100781 

DRM regions 58222 47733 

Peaks∩HOT 2264 (81.6%) 940 (40.2%) 

Peaks∩LOT 9 (0.3%) 29 (1.2%) 

Peaks∩BAR 2614 (94.1) 1538 (65.8%) 

Peaks∩BIR 28 (1.0%) 211 (9.0%) 

Peaks∩PRM 1575 (56.7%) 1094 (46.8%) 

Peaks∩DRM 635 (22.9%) 327 (14%) 
For the Ramagopalan and Heikkinen datasets, defined genomic regions for the GM12878 and K562 

cell lines were used. The number of regions is given with the percentage of VDR-binding regions that 

overlap the different regions in parenthesis. ∩ is intersection. High occupancy of transcription related 

factors (HOT), Low occupancy of transcription related factors (LOT), Binding active regions (BAR), 

Binding inactive regions (BIR), Promoter-proximal regulatory modules (PRM) and Gene-distal 

regulatory modules (DRM). 

These observations together with the fact that a large number of TF motifs were enriched in 

the sequences served to bolster the assumption that most if not all the VDR peak regions in 

both datasets were real binding sites. These HOT regions have also been noted for having 

significant overlaps with motifless binding peaks of other TFs (65) and thus our datasets were 

not different in this regard. 

Analysis of the observed binding sites from motif scanning and data of known features for 

DNA regions of the human genome showed that the binding sites had a high propensity to 

overlap with regions of different histone modifications; H3K27ac (80.2% overlap), 

H3K4me1 (77.4% overlap) and H3K4me3 (75.7% overlap) (details provided in Appendix 

A.1) in sequences with VDR-like sites as compared to MEME-derived or classic VDR sites 
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(Table 17, Appendix A.7). The highest overlap was recorded in DNAse HotSpots (97.5%). 

These were not unexpected because these features and chromatin marks tend to be indicative 

of active regulatory elements (65) and were also marks that were enriched in the HOT and 

BAR regions. Of interest however is the fact that these features were predominant in the 

VDR-like sequences as compared to the others in the Ramagopalan dataset. In the case of the 

Heikkinen dataset, there were no significant differences observed between the different 

clusters in the VDR-positive sequences. This can be attributed to the fact that the MEME-

derived motif was similar to the VDR-like motif and thus these clusters contained mostly the 

same sequences as was ascertained by comparing the sequences in the two clusters. This 

observation was also made for the classic RXR-VDR and the VDR-like cluster. Of importance 

in these analyses however is the fact that these genomic features were commonly enriched at 

the observed binding sites despite the disparity between the two datasets. H3K4me1 and 

H3K9ac are found usually in enhancer regions distal to the transcription start site whereas 

H3K4me3 and H3K27ac are indicative of active promoters. The presence of H3K4me1 

marks is also thought to influence the recruitment of chromatin modifiers or pioneer factors 

(4, 80). The high enrichment of these marks particularly H3K4me1 compared to H3K4me3, 

suggested the probability of these regions being predominantly enhancer regions. The low 

overlap between sequences in the Ramagopalan dataset and those in the Heikkinen dataset 

also indicated some cell-type specificity and this specificity to cell types has been shown to 

be a feature of enhancers as compared to promoters which show activity in multiple cell types 

(81). This suggestion was however not in tandem with the earlier results which indicated a 

large majority of peak regions being in proximal positions with respect to TSSs (Table 16). 

Additional information in the form of H3K27me3 peak regions was thus added to the analysis 

feature set. H3K27me3 marks are associated with repressed regions and high frequency of 

occurrence of this mark together with about 50% observation frequencies for H3K4me1 and 

H3K4me3 and low occurrence frequencies for H3K27ac have been shown to be associated 

with inactive/poised promoter states (81). The results however showed relatively low 

occurrence of H3K27me3 marks in the whole dataset. To ascertain the region types present, 

the VDR datasets were compared to chromatin segmentation information derived by 

Hoffman, Ernst (82) which describes different chromatin states based on combinations of 

chromatin accessibility data and histone modifications learned by applying unsupervised 

learning methods. The results for this analysis showed the enrichment of active regions in the 

form of TSSs, flanking regions to TSSs and enhancers in the Ramagopalan dataset supporting 

the finding of proximal regulatory regions in this dataset. The results also further highlighted 
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the difference between the two datasets in the analysis, with the Heikkinen dataset showing 

enrichment for repressed regions compared to the Ramagopalan dataset (Figure 13, Appendix 

A.10). 

 

Figure 13 Distribution of chromatin segments in the two analysis datasets using segmentation 

tracks. There is enrichment of TSSs and enhancers in (A) Ramagopalan dataset as compared to 

a higher overlap with repressed chromatin segments in (B) Heikkinen dataset. Segmentation 

track used was the consensus combination track of ChromHMM and Segway. TSS=Predicted 

promoter regions including TSSs, T=Predicted transcribed regions, WE=Weak enhancer 

regions, MA0139=CTCF enriched regions, PF=Promoter flanking regions, E=Predicted 

enhancer regions and R=Predicted repressed or low activity regions. 

 Assuming VDR binding to different genomic regions occurs in a time dependent manner, 

there seems to be a trend in the results which suggest that at the early stage (Heikkinen 

dataset), VDR has a preference for inactive gene regions with low levels of open chromatin 

and over time moves to active chromatin outside of genes in late stages (Ramagopalan 

dataset). This observation is consistent with the strong representation of repressive regions in 

the Heikkinen dataset as opposed to the Ramagopalan dataset but drawing substantive 

conclusions from this may be erroneous due to the differences between the datasets 

mentioned previously. There was low overlap with regions of repeat and CpG islands and the 

absence of these low complexity regions also lowers the probability that the observed binding 

sites could be spurious events. 

A 

B 
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Table 17 The percentage overlap of identified sites of motifs of interest with different sequence 

feature regions in the genome. The significance of these features in sequence collections based 

on these motifs is also shown. Result for the Heikkinen dataset is shown as Appendix A.7 

Feature 
Percent overlap of binding sites from motif scanning (PPV) 

MEME de novo  JSVDR (RXR-VDR) VDR-like (NR4A2) 

DNAse HotSpots 96.9 94.8 97.5
*/**

 (p-value<0.001) 

TFBS_ChIP-Seq 78.7 69.4 91.3
*/**

 (p-value<0.0009) 

H3K27ac 59.1 49.2 80.2
*/**

 (p-value<0.05) 

H3K4me1 74.5 68.0 77.4
**

 (p-value<0.05) 

H3K4me3 53.0 44.1 75.7
*/**

 (p-value<0.05) 

H3K9ac 45.4 37 72.4
*/**

(p-value<0.05) 

H3K27me3 29.8 40.7 15.5 

FAIRE-Seq 73.4 65.6 78.8
*/**

 (p-value<0.003) 

RepeatMasker327 29.3 27.8 26.8 

CpG islands 7.4 7.6 9.2 

CCDS 32.3 34.5 29.1 

Ensembl Genes 54.1 52.3 50.3 
*Significant difference in region overrepresentation between MEME de novo and VDR-like, 

**Significant difference in region overrepresentation between classic VDR and VDR-like. These 

features were similar in MEME-motif sequences and the classic VDR sequences. 

 

3.3. Differences in enriched DNA feature regions in VDR- positive versus 

negative sequences 

Having clustered the sequences into VDR- positive and negative (based on the Jaspar_Core 

profile for RXR-VDR and NR4A2), the sequences in each cluster were analysed for any 

similarities and differences. It was expected that VDR-positive sequences would have feature 

sets that distinguished the observed binding sites from their surrounding regions and thus 

influenced the binding of VDR to its response element. Knowing these features and their 

occurrence could thus be used to identify such regions in the negative set of sequences and 

consequently aid the identification of VDREs in them. This could be achieved by the 

generation of positional priors which would be used to guide motif discovery in the negative 

set. In addition, any differences unique to the negative set of sequences as compared to the 

positive could form the basis for explanation for the phenomenon of motifless binding or 

even form the basis for the identification of an erstwhile unknown motif.  

Comparing the different regions of sequences in the VDR-positive and negative sets was not 

informative for DNAse hypersensitivity sites and FAIRE-Seq for the Gm12878 and K562 

cell lines (cell lines comparable to those used to derive ChIP-Seq data for Ramagopalan and 

Heikkinen respectively), as well as for CCDS and Ensembl genes. These occurred at the same 

rate in both positive and negative sets. On the other hand, a repeat type (MIRb, p-value=0.2e
-
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4
 and 6.3e

-9
 in Ramagopalan and Heikkinen respectively) was overrepresented in the positive 

set of sequences whereas the negative set had higher GC-rich repeats (p-value=8.3e
-7

 and 

0.3e
-4 

in Ramagopalan and Heikkinen respectively). The MIRb (Mammalian-wide 

Interspersed Repeat) is a member of the small interspersed nuclear element (SINE) family of 

repeats and as the name suggests is found in most mammalian genomes accounting for close 

to 2% of primate DNA (83). It has been suggested that MIRs located upstream of enhancers 

play a role in their regulation and also increase their activity (84). Analysis of the position of 

this repeat showed very little overlap with the binding sites of interest although majority of 

sites seemed to be within 100bp of the repeat on average. 

There was also a difference in the types of histone modifications that were enriched in the 

two sequence sets; H3K27ac and H3K4me3 were enriched in the negative set (p-value=0.018 

and 0.008 respectively) whereas H3K4me1 was enriched in the positive set (p-value=4.7e
-6

). 

Inclusion of the MEME-derived motif in the definition of VDR-positive sequences yielded a 

similar trend of enrichment but with stronger significance values (p-value=1.4e
-4

, 4.2e
-6

 and 

4.7e
-7

 for
 
H3K27ac, H3K4me3 and H3K4me1 respectively). A similar observation was made 

for the Heikkinen dataset with the exception of H3K4me1 which was the same in positive 

and negative sequences. As mentioned previously, H3K4me3 has a role in chromatin 

remodelling by recruitment of modifiers and pioneer factors and hence it’s overrepresentation 

in sequences without any identifiable VDR consensus motif may be informational with 

regards to this phenomenon of motifless binding. H3K27ac and H3K4me3 however, tend to 

be predominantly located in active promoter regions whereas H3K4me1 has a tendency for 

being in enhancer sites. These modifications have also been observed to show a bimodal 

distribution around most active transcription factor binding sites in TFBS regions in other 

datasets (85). This observation could however not be ascertained with regard to the analysis 

datasets as data for such an analysis was unavailable. Nevertheless, observations of 

enrichment of these marks at sites without the full consensus sequence for VDR binding 

could be indicative of a support mechanism which allows for weaker interactions. The 

NR4A2 motif which is predominant in most of the sequences analysed corresponds to the 

RXR half-site of the VDR DR3-type motif as do some other motifs which are enriched from 

the background. 

In addition, the analysis of the distribution of different chromatin segments in the different 

sequence clusters and how they compared to each other was also carried out. The results from 

this showed that sequences without the known VDR motif were predominantly in TSS 
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regions whereas motif-positive sequences were enriched for enhancer as well as repressed 

regions (Figure 14). From these observations, it can be argued that TF binding to distal 

regulatory regions or low activity regions requires a motif that closely matches the consensus 

to facilitate stronger binding whereas much more flexibility may be allowed in regions 

proximal to genes. Another suggestion that can be put forward from these results is that VDR 

binds in these distal regulatory regions and by the mechanism of DNA looping participates in 

a complex with the transcription machinery and other TFs present at the promoter regions. 

This suggestion is likely because ChIP-Seq data only represents DNA segments where there 

are protein-DNA interactions and does not capture the manner of these interactions or 

interactions between fragments. Chromatin Interaction Analysis by Paired-End Tag 

Sequencing (ChIA-PET) could be employed to these regions to test the suggestion. 

 

Figure 14 Distribution of chromatin segmentation states in VDR-positive (Control) versus VDR-

negative (Target) sequences as determined by a combined track derived from the ChromHMM 

and SegWay software on the (A) Heikkinen and (B) Ramagopalan datasets. TSS=Predicted 

promoter region including TSSs, T=Predicted transcribed regions, WE=Weak enhancer 

regions, MA0139=CTCF enriched regions, PF=Promoter flanking regions, E= Predicted 

enhancer regions and R=Predicted repressed or low activity regions. (Bonferroni corrected p-

value threshold= 0.007, Red=overrepresented in target, Yellow=equally present and 

Green=overrepresented in control) 

Analysis of the imported feature tracks was expected to give an indication of the sequence 

features of the observed VDR binding sites that were distinct from regions without VDR 

motif. The results of the region comparison showed no clear distinction or trend between 

actual binding sites and surrounding regions aside the fact that signals of some chromatin 

marks and features were stronger in motif-negative regions indicating that VDR binding to 

B 

A 
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the classic VDRE may have some preference of sequence features. There is evidence to also 

suggest that motif-negative peaks are more likely to occur in regions close to TSSs than other 

regulatory regions. 

 

3.4. DNA feature regions not discriminative for VDR/VDR-like binding sites 

As part of the motif discovery process, additional information in the form of chromatin marks 

and conservation of bases have been shown to improve the efficiency of discovery algorithms 

and thus some algorithms are implemented to allow the incorporation of such information in 

the process. In the analyses datasets, it was observed that there was some but not much 

difference between motif positive and negative regions with respect to some of these features. 

Nevertheless, it is possible that these feature regions could be used to identify the observed 

binding sites by having high signal values in regions that overlap with the observed TF 

binding sites (or vice versa). Should that be the case, then these features could form the basis 

for positional priors either as individual priors or as combinations of features, depending on 

their predictive ability. An evaluation of the potentials of these features to discriminate 

binding sites was thus carried out. 

From the ROC curve results shown in Figure 15 for the Ramagopalan dataset, the potential of 

the selected features to identify the VDR-like NR4A2 had values no better than that from 

random guessing. Similar values were obtained for MEME-derived VDR and the classic 

VDR using H3K4me1 signals (Table 18). For very bad AUC values (H3K27ac and 

H3K4me3 for MEME-VDR and JSVDR), the signals were inverted using a reciprocal 

function to try and obtain better values, however this resulted in no appreciable improvement. 

Different combinations of these two signals were also unable to discriminate positive sites 

from surrounding regions. The results from the Heikkinen dataset were similar with none of 

the features able to select positive sites from the background (results not shown). 
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Figure 15 Receiver Operating Characteristic (ROC) curves showing the potential of selected 

DNA features to discriminate different positive binding sites from the background. Shown are 

curves for the observed sites for (A) the MEME-derived motif, (B) the Jaspar_Core profile for 

the VDR and (C) the VDR-like NR4A2. Values for AUC given in Table 18 

Table 18 Area under the curve values for the ROC curves shown in Figure 15 using DNA 

features and chromatin marks signals to discriminate positive binding sites from their 

surrounding background. Values in parenthesis are AUC values after the signals for these 

features were transformed using a reciprocal function to improve performance 

Feature 
AUC values for ROC curves 

MEME-VDR JSVDR VDR-like (NR4A2) 

H3K4me1 0.497  0.479  0.548 

H3K4me3 0.437 (0.584) 0.443 (0.560) 0.472 

H3K27ac 0.413 (0.602) 0.421(0.571) 0.481 

H3K9ac 0.426 (0.608) 0.439 (0.591) 0.472 

Conservation 0.512 0.533 0.531 

    

 

3.5. Enrichment of Sp1-like motif in VDR-negative sequences  

Despite the negative results from the preceding analysis, some of these features were used to 

guide the motif discovery process because they showed a high overlap with VDR-binding 

sites in the VDR-positive sequence sets. Properties that were pro-transactivation such as 

histone modifications (H3K4me3, H3K27ac, H3K9ac and H3K4me1), DNAse 

hypersensitivity sites, conservation and gene coding regions were used to generate positional 

priors using the inbuilt Priors Generator. The generated positional prior was used in de novo 

motif discovery using PRIORITY. Several combinations of the feature tracks were also used 

to derive positional priors which were subsequently used in de novo motif discovery. The 

generated priors were applied to the different subsets of sequences. Motif discovery by 

ChIPMunk was also used on the VDR-positive and negative sets. The motif discovery 

process is particularly important in identifying stretches of nucleotides that are consistently 
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present in the analysis set and thus form the basis for extrapolation to a known motif or 

postulation of a new motif. Motif discovery using positional priors helps in the prediction of 

motif presence based on characteristics observed from confirmed binding sites. 

Using the priors generated for de novo motif discovery yielded no general consensus motifs 

for all the different priors. This result could be attributed to the noisy nature of the priors that 

were derived based on the region comparisons carried out earlier (the lack of a difference and 

discriminative potential). Discovery with ChIPMunk and no priors however yielded a 

consensus motif that had high similarity (p-value=3.4e
-6

, TOMTOM) to the Sp1 motif in the 

negative set of sequences (Figure 16). Comparison of motif enrichment between VDR- 

positive and negative sequences also showed the Sp1 motif as one of the overrepresented in 

the VDR-negative set (p-value=1.48e
-40

, Appendix A.3). Heikkinen, Vaisanen (72) have in an 

earlier study reported identifying a Sp1-matching motif from de novo motif discovery in a 

subset of sequences from VDR ChIP-Seq in human monocytic leukaemia cells although there 

was no specific enrichment in sequences that lacked a VDR-like motif compared to those in 

which it was present. The fact that Sp1 is enriched in both datasets, especially in VDR-

negative sequences as compared to the positive sequences, suggests a role for Sp1 in the 

DNA-binding activity of VDR in the absence of its classic response element. Earlier studies 

by Huang, Chen (86) have observed in vitro and in vivo interaction of the VDR with Sp1 with 

suggestions that this interaction may modulate the expression of genes lacking the VDRE. 

Further studies have also proposed a model for this interaction where Sp1 serves as an anchor 

to which VDR binds and through its transactivation domain, recruit the transcription 

machinery to effect the regulation of genes (87). 

 

Figure 16 Sp1 motif identified by TOMTOM as most similar to motif discovered by ChIPMunk 

in de novo motif discovery in VDR-negative sequences 

Using similar parameters on the positive set of sequences unsurprisingly resulted in a 

consensus representation that matched the classic RXR-VDR motif and MEME-VDR. Of 
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interest though was the fact that these predicted sites did not always overlap the positive sites 

identified by motif scanning using the Jaspar_Core database or MEME-derived motif. The 

motif discovery process was to confirm the presence of the VDR motif and thus it was 

expected that the identified sites would be direct overlaps. Such differences can be attributed 

to the matrices and profiles created by the different discovery algorithms which may be 

different from that contained in the Jaspar_Core database. These identified sites could also be 

additional VDR binding sites not identified in the motif scanning process as a high threshold 

of 90% was applied as cut-off. This would not be surprising as it has been observed that 

multiple VDREs can exist in each region with suggestions that the synergistic activity of 

these binding sites helps increase the inductive efficiency of the TF(58). 

 

3.6. VDR- positive and negative sequences have differences in enriched 

motifs 

Having discovered no clear motif(s) in sequences without VDR sites present using the motif 

discovery process with priors, it was reasoned that there may be information gleaned from the 

motifs that were present in the different sets of sequences. VDR may have interacting 

partners present which facilitate its binding without a clear response element. A comparison 

of the motifs present in the two sets of sequences (positive versus negative) as well as the two 

clusters in the positive set (classic VDR versus VDR-like) showed that some motifs were 

overrepresented in some groups compared to others (Figure 17 and Figure 18). 

 

Figure 17 Overrepresentation of motifs in motif-negative (target) and positive (control) 

sequences in the Ramagopalan dataset. 
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Figure 18 Overrepresentation of motifs in motif-negative (target) and positive (control) 

sequences in the Heikkinen dataset 

Visual observation of the motifs overrepresented in the VDR-negative subset of sequences 

showed that the most significantly enriched of these motifs had stretches of single nucleotides 

with majority of these being either G or C. Comparing the GC-content of the motifs 

overrepresented in each also showed that there was a difference between the two sets 

(Appendix A.12). The preponderance of G and C nucleotides was not surprising when taken 

in the context of the high GC-content of the sequences. Indeed, motif discovery yielded a 

Sp1-like motif which has high GC-content. A point of interest in this observation is the 

homooligonucleotide stretches present in these motifs and by extension sequences. An earlier 

model developed by Sela and Lukatsky (88) to explain non-specific transcription factor-DNA 

binding affinity has suggested that these homooligonucleotide stretches increases the 

propensity of sequences for non-specific TF binding by lowering the binding free energy. 

This lowering of binding free energy allows TFs to bind in such regions and by the process of 

one-dimensional sliding along DNA, search for and bind to the cognate response element. 

Whether a similar conclusion can be drawn from our observations remains unclear although 

they further suggest that this principle is applicable genome-wide in yeast regulatory 

sequences especially in regions of high TF occupancy. Another possible explanation for the 

presence of these GC-rich motifs is the interaction of VDR with a TF that binds in such 

regions. Such a mechanism has been reported for some other nuclear receptors, including the 

estrogen receptor, where it forms a complex with Sp1 and interacts with GC-rich motifs to 

induce the retinoic acid receptor alpha 1 gene (69). 

 

3.7. Weaker VDR binding may be supported by other transcription factor 

activity/response elements 

An interesting motif which was overrepresented in the VDR-like set was h (a basic Helix 

Loop Helix (bHLH) type factor). Activated VDR has been reported to exert transrepressive 
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effects indirectly via interaction with a bHLH-type transcription factor bound to DNA (68). 

Additionally, chromosome opening activity has been reported for TFE3, a bHLH-type factor 

(80). A similar role may be indicated in this case.  It was generally expected that there would 

be a difference in the motifs that were overrepresented from the background in the two 

clusters particularly with a higher enrichment of motifs for factors that would enhance VDR 

binding in the VDR-like set. The VDR-like motifs are similar to the RXR half-site of the 

classic RXR-VDR motif and thus may more likely represent weaker binding of the formed 

heterodimer. On the other hand, these single half sites could be binding sites for ligand-bound 

VDR monomer species. Although this suggestion may not be directly supported, observations 

by Cheskis and Freedman (11) have indicated the predominant presence of monomeric 

ligand-bound VDR on the DR3 element. 

In addition, the enrichment of Sp1, a ubiquitous factor that participates in transactivation and 

repression and binds with high affinity to GC-rich motifs, in the VDR-like cluster of 

sequences could also indicate a role of opening up chromatin for transcription factor access to 

the weaker binding sites (89) thereby acting as  a pioneer factor for VDR (60). Observations 

in vitro indicate that some transcription factors are unable to bind to target sequences in 

nucleosomal DNA and may require cooperative interaction with other factors (80, 90). This 

same argument could be applied for its presence in the VDR-negative set of sequences. The 

overrepresentation of Sp1 could however be attributed to the GC-rich composition of the 

sequences (50.7% and 53.7% on average (Appendix A.11), compared to the human genome-

wide average of 41% (91)), in which case it may not play any significant role. The choice of 

the 4
th

 order model, coupled with using the original sequences as input for background model 

generation however ensures a higher likelihood that the simulated sequences are similar to 

the input sequences and thus have comparable GC content. Huang, Chen (86) have also 

described in an earlier study, the formation of a complex between Sp1 and VDR that 

facilitates transactivation of genes without the classic VDRE in their promoter especially 

after ligand treatment. The functional importance of Sp1 overrepresentation in these 

sequences, although uncertain, can therefore not be discounted. 

Also, unliganded VDR is known to constitutively bind to DNA forming homodimers to 

stabilize the interaction and protect VDR from degradation. Activation by Vitamin D disrupts 

and minimizes this homodimerization, stabilizing the bound monomer and positively 

influencing the heterodimerization process (11). The presence of single half-sites in some 

sequences could thus be attributed to unliganded or ligand-bound VDR binding and would 
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have to be analysed by comparison with data from unstimulated VDR to identify region 

overlaps particularly with the VDR motif-negative sequences. In addition, RXR has been 

observed to be bound to DNA sites in the absence of ligand, acting as markers for potential 

VDR binding after stimulation (92). The preponderance of these single half-sites could thus 

be attributed to this function as well but the heterodimerization of RXR with other members 

of the nuclear receptor family makes this a non-trivial problem. Heikkinen, Vaisanen (72) 

report that there is a genomic shift in VDR binding locations from non-DR3 to DR3-type 

response elements upon ligand stimulation. This could also indicate a potentially 

indiscriminate VDR-DNA interaction process in the absence of ligand and quite possibly in 

the ligand stimulated state.  

 

3.8. VDR binding and cluster formation is Cohesin and CTCF independent 

Cohesin is a complex structure formed by members of the Structural maintenance of 

chromosomes (Smc) family of proteins in addition to non-Smc units. It has been known to 

play a role in the cell cycle and recent studies have further indicated that aside this role it may 

also have a role in gene regulation by mediating long range DNA interactions, marking the 

formation of dense clusters of TFs as an anchor  and strengthening the binding of TFs to 

motifs to which they have low affinity (93, 94). The presence of Cohesin has been also been 

shown to correlate to the presence of binding sites for the CCCTC binding factor (CTCF) 

which acts as an insulator separating active chromatin regions from non-active regions. In 

this analysis, it was hypothesised that sequence regions negative for the VDR or VDR-like 

motif would have some correlation with the presence of signals for Cohesin and or CTCF 

which could then be used in the search for motifs in the negative sets of sequences. 

Majority of regions in sequences from the Ramagopalan dataset when compared with 

Cohesin (using ChIP-Seq data for the Smc3 subunit of the Cohesin complex) and CTCF 

regions showed very low coverage with classic VDR, VDR-like and VDR-negative 

sequences having greater than 50% coverage in regions without both Cohesin and CTCF 

(Table 19). The low coverage by CTCF regions was expected as results from the earlier motif 

scanning had shown that although the motif for CTCF was enriched, it only occurred in 2% 

of all the sequences (less than 4% in the Heikkinen dataset) and occurred at the same rate in 

both motif- positive and negative sequences. The low coverage by Cohesin was however not 

expected as CTCF-depleted Cohesin regions have been strongly correlated with active 

enhancer elements (95) and from the earlier analyses carried out, there was evidence 
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suggesting the substantial presence of enhancers. In addition, the observation that a high 

number of TFs were seemingly overrepresented (from the results of motif scanning) and were 

closely located in the sequences suggested the possibility of cis regulatory modules formed 

by different clusters of these TFs. These clusters may or may not be functionally related, 

however, Faure, Schmidt (96) have in an earlier study described the stabilization of CRMs 

formed by dense clusters of TFs by Cohesin in the absence of CTCF, and this is believed to 

help regulate expression in a tissue specific manner in addition to mediating long range 

looping of DNA. The co-localization of Cohesin and TFs in these sequences would thus have 

supported the idea that VDR acts in a synergistic manner with varying combinations of these 

TFs to exert its regulatory control on the target genes as it has also been suggested that the 

function of CRMs may be achieved through molecules such as Cohesin (97). In addition, the 

stabilization offered by Cohesin has been suggested to allow TFs to bind to motifs with less 

similarity to their canonical motifs (96) and this would have been applicable to findings in 

this analysis. This was however not apparent from the analysis carried out as only 11% of 

VDR-negative sequences had coverage with CTCF-independent Cohesin. 

There was a somewhat higher coverage in regions with both CTCF and Cohesin than in 

regions with either one or the other (Table 19) in the different sequence collections. CTCF is 

known to recruit Cohesin (94) serving as a positional marker and this co-localization was not 

surprising. CTCF is also a marker that segregates euchromatin from heterochromatin by 

binding in insulator regions and preventing the spread of one type of chromatin state to the 

other. This action accounts for some of the differences observed in the expression patterns of 

different cell types and also the differences between cells in different states. The overall low 

levels of CTCF coverage in these regions may be indicative of the open chromatin state 

lending credence to the view that these regions are actual receptor binding regions. High 

levels of CTCF coverage would have however supported the DNA-looping of intermediate 

DNA between distal regulatory regions and their target promoters as such a role has been 

attributed to CTCF as well (13, 93). 

The analysis was not performed for sequences from the Heikkinen dataset as region 

information for Cohesin (the Smc3 subunit) in the cell line from which the data was derived 

that is comparable with that used for the Ramagopalan dataset was unavailable.  
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Table 19 Overlap of sequences in VDR-positive, VDR-negative and VDR-like collections with 

regions of Cohesin and CTCF binding obtained from ChIP-Seq. Cohesin and CTCF region 

datasets processed with BEDtools to obtain intersecting regions and exclusive regions 

Region combination 

% of sequences with coverage in collection 

Classic VDR 

(n=192) 
VDR-like (n=1618) 

VDR-negative 

(n=966) 

Cohesin
-
/CTCF

-
 78.5 54.9 58.3 

Cohesin
-
/CTCF 6.2 10.9 11.3 

Cohesin/CTCF 10.4 19.4 18.8 

Cohesin/CTCF
-
 4.7 14.6 11.5 

Cohesin and CTCF negative regions (Cohesin-/CTCF-), only CTCF-positive (Cohesin-/CTCF), 

Cohesin and CTCF positive (Cohesin/CTCF) and only Cohesin-positive (Cohesin/CTCF-) 

 

3.9. VDR ChIP-Seq regions not enriched for direct interaction partners 

TF’s interacting in a combinatorial manner is said to be crucial for the expression of genes in 

a temporo-spatial and tissue and/or cell specific manner (73). From the preponderance of TF 

motifs indicated as enriched in the sequences, it was hypothesised that there could be in this 

collection, a set of motifs for interacting partners for the VDR, which together with it may 

form CRMs or even serve as anchors to which the VDR binds as described for the VDR 

interacting repressor. 

Using data from (73) where  an atlas of interacting transcription factor proteins in mouse and 

man was created,  a list of 17 TFs was identified as potential candidates based on a criteria of 

physical interaction observed in the study (Table 20). 

Table 20 List of genes for TFs with which VDR is suggested or shown to interact with 

Gene 1 ID Gene 1 Symbol Gene 2 ID Gene 2 Symbol 

1387 CREBBP 7421 VDR 

2959 GTF2B 7421 VDR 

5927 JARID1A 7421 VDR 

3725 JUN 7421 VDR 

5469 PPARBP 7421 VDR 

6256 RXRA 7421 VDR 

6258 RXRG 7421 VDR 

4088 SMAD3 7421 VDR 

6772 STAT1 7421 VDR 

7421 VDR 7421 VDR 

7421 VDR 7704 ZBTB16 

7421 VDR 8202 NCOA3 

7421 VDR 8648 NCOA1 

7421 VDR 10499 NCOA2 

7421 VDR 22938 SNW1 

7421 VDR 8805 TRIM24 
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7421 VDR 55806 HR 

7421 VDR 23054 NCOA6 
 

Comparing this list to the collection of enriched motifs common to both datasets resulted in 

nought as the motifs for these interacting partners were not enriched in both datasets. Of note 

though was the fact that CREB (cyclic AMP-responsive element-binding protein), a TF 

which is bound by CREBBP (CREB binding protein) was quite enriched in both datasets with 

a high occurrence in both datasets’ sequences (56.4% and 37.2% in Heikkinen and 

Ramagopalan datasets respectively). This overrepresentation was however stronger in VDR 

and VDR-like motif-containing sequences than in the motif-negative ones. CREB and 

CREBBP can therefore not be considered as TFs to which VDR binds to in the absence of its 

known response element. There was also the presence of members of the MED-1 co-activator 

complex (Esrrb, HNF4A, NR2F1 and NR4A2) of which the VDR forms a part. 

 

3.10. Identification of putative CRMs modulating VDR action 

Cis regulatory modules as mentioned previously play a vital role in the spatiotemporal 

regulation of genes. The enrichment of several TFBS in the two analysis datasets necessitates 

finding out if there is an overrepresentation of motif pairs in sequences without an observable 

VDR motif. Supporting this need was the fact that there was an enrichment of DNAse 

hypersensitivity and H3K9ac marks in regions without the classic DR3-type VDR motif. 

These marks are known to be associated with CRMs (97). 

In the VDR-negative set of sequences particularly, it would have been thought that these 

clusters of TFs forming putative CRMs may contain interacting partners for VDR which 

would obviate the need for VDREs. This was however not the case and thus motifs which 

were enriched in the dataset as well as in the negative sequence set as compared to the 

positive formed the basis for identifying CRMs. The ModuleSearcher program on module 

discovery in the negative sequence set reported several modules with different combinations 

of TF motifs. Of interest in these motifs was the fact that the Ets-1 motif was present in 

majority of modules identified in the Ramagopalan dataset. This was not the case for the 

Heikkinen dataset as this motif was not overrepresented in it. Ets-1 has been reported to act 

as an activator of some nuclear receptors including VDR in the absence of ligand (98) but it 

does appear that this occurred in the presence of a VDRE. It was also difficult to generate 
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modules based on interaction partners for the enriched motifs in MotifLab as the module 

collection came back empty anytime the procedure was performed. 

Interestingly; there was a difference in results between the two datasets with regard to the 

CRM-suggestive H3K9ac marks. Comparing the MEME-derived binding sites and the 

JASPAR core motif sites to the VDR-like (NR4A2) sites in the Ramagopalan dataset showed 

a significant enrichment  (p-value=e
-12

 and e
-9

 respectively) of the H3K9ac marks in the 

VDR-like sites. This was not the case in the Heikkinen dataset and this can be attributed to 

the fact that there were only a small fraction of DR3-type VDREs in this dataset. This 

observation however serves to support the view that there is some subtle difference in binding 

mechanisms employed in these two cases; where there is the classic DR3 element and where 

it is absent. 

 

3.11. Motif position distribution 

Regulation of transcription is a process that involves several regulatory factors working in 

concert. These factors may or may not be in close proximity to each other. However factors 

that are involved in specific pathways of transcription tend to be located some average 

distance away from other interacting partners. The proximity of other binding sites which 

may not be interacting partners can also give useful information especially when they are 

factors that are known to contribute positively or negatively to transcription factor binding. 

Establishing how these different transcription factor sites are distributed in relation to each 

other or to a specified locus also helps to identify those that may be involved in the same 

process.  

Analysis of the Ramagopalan data showed that sequences with the MEME-derived motif had 

the largest number of other motifs within the 200bp region upstream of the identified binding 

sites (n=122) whereas only 82 motifs were within the same region for the VDR-like sites. 

Figure 19 below shows the amount of overlap between the classic VDRE (MEME-derived 

and Jaspar_Core motif) and VDR-like sites. 
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Figure 19 Overlap of enriched motifs within the 200bp upstream regions of identified VDR and 

VDR-like binding sites 

The 5 motifs that were uniquely present in Ramagopalan regions with NR4A2 binding as 

compared to the MEME identified sites however, were spread out over average distances 

between 44 and 188 base pairs from the NR4A2 sites. In addition, all but one had more than 

400 sites in the collection of 1741 sequences representing those with the NR4A2 sites. 

Furthermore, this motif for the hunchback factor (Hb), a Drosophila melanogaster protein, 

had no similarity to any of the VDR-like motifs (Average log-likelihood ratio score < -

5.460). A similar observation was made for the 20 motifs unique to NR4A2 binding sites 

compared to the Jaspar_Core-derived VDR sites. 

In the case of the Heikkinen dataset, it was interesting to note that there was a preponderance 

of members of the nuclear receptor family within 200bp upstream region of the NR4A2 sites 

(Table 21). These were the closest to the NR4A2 sites and also enriched in the Ramagopalan 

dataset. The value of 200bp was chosen to approximate the size of a nucleosome and its 

linker regions (146bp DNA wrapped around the histone octamer) (100). Figure 20 shows the 

positional distribution of these factors over the length of sequences in which they are found. 

Table 21 Enriched motifs 200bp from NR4A2 sites and their average distance upstream from 

the NR4A2 site 

ID Short Name Classification Average Distance 

MA0141 Esrrb 2.1.1.5 87.4 

MA0159 RXR-RAR_DR5 2.1.2 171.6 

MA0065 PPARG-RXRA 2.1.2 171.9 

MA0017 NR2F1 2.1.2.16 180.7 

MA0018 CREB1 1.1.2 181.2 

MA0074 RXRA-VDR 2.1.2 182.3 

MA0114 HNF4A 2.1.2.11 191.4 
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MA0043 HLF 1.1.4.0 198.0 
  

 

Figure 20 Positional distribution analysis of motifs enriched in the Heikkinen dataset showing 

how these motifs are distributed along the lengths of the sequences in which they are found. All 

sequences included in the analysis are are centred with respect to each other. 

Extending the region around the observed VDR and VDR-like binding sites in the 

Ramagopalan dataset by 20 bases and scanning for any motifs reported as overrepresented in 

the positive set showed the estrogen related receptor beta (Esrrb) as being predominant in this 

region (p= 1.57e
-8

, Figure 21). This is consistent with observations made by Tuoresmaki, 

Vaisanen (101) where  they observed ESSRB as one of the most enriched motifs in the 

±100bp region of VDR DR3-positive peaks. This motif bears similarity with the RXR-half 

site and is one of the closest to the NR4A2 motif, one of the VDR-like motifs (Figure 21). The 

similarity between the two half-sites of the classic RXR-VDR could mean an alternative albeit 

weaker form of binding using motifs with similarity to these half-sites which are in close 

proximity. This motif was seen to be enriched in the VDR-positive collection as compared to 

the negative as well (Appendix A.3). Another point of note about these motifs is that the 

profile TGACC and its reverse complement seem to be common among them. Whether these 

motifs can serve as half-sites or alternative binding sites for the VDR may be a possibility but 

their number of sites present and distances to the VDR-like NR4A2 motif makes this 

speculative. 

 

Figure 21 Enrichment of Esrrb in VDR-positive sequences in 20bp region surrounding binding 

sites 
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Having observed Sp1 as being overrepresented in the VDR-like, as well as VDR-negative 

sequence collections in the Ramagopalan dataset, the relative distances of other motifs from 

Sp1 were calculated and it was noted that the two VDR motifs (RXR-VDR and NR4A2) were 

in close proximity with average distances of 92, 176 bases respectively, supporting the view 

that its role in recruiting chromatin remodelling factors may play a part in weaker VDR 

binding. It was also expected that VDR-related and or VDR interaction partners would be 

found in the region of Sp1 in the negative set of sequences as well. This was however not the 

case as these factors were absent from the set of binding sites that were overrepresented in the 

VDR-negative sequence set.  

Another interesting observation that was made in both datasets used for the analysis related to 

the lengths of sequences in the different clusters. It was noted that sequences which were 

positive for either VDR or any of the VDR-like motifs tended to be longer than their 

counterparts without any of these motifs particularly in the Heikkinen dataset. This was 

analysed by plotting the base count of the sequences in each cluster against the number of 

sequences with the same base count as shown in Figure 22 below. With the binding sites of 

TFs in these sequences not centrally enriched, this observation raises the question of whether 

these VDR-negative sequences are representative of the actual binding sites in vivo as some 

information may have been lost in the processing steps after sequencing. Results from the 

earlier analyses are however firmly indicative of these sites being real binding regions. 
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Figure 22 Distribution of sequence lengths in VDR- positive and negative clusters in analysis 

datasets showing positive sequences as being predominantly longer than the negative 

counterparts. (A) represents the distribution in the Ramagopalan dataset and (B) the 

distribution in the Heikkinen dataset. X-axis represents the length of sequences and the Y-axis 

represents the fraction of sequences with the corresponding length. Value range divided into 

200 bins 

B 

A 
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4. Conclusion 

By the computational analysis of motif-negative binding using ChIP-Seq datasets for the 

Vitamin D receptor, there has been observed, differences in the enrichment of features 

between motif-positive regions and their motif-negative counterparts suggesting the existence 

of some influencing mechanisms for motifless binding. In terms of DNAse hypersensitivity 

sites, FAIRE-Seq regions, regions of coding genes (CCDS), Ensembl genes and CpG islands, 

no differences were observed between the two regions. These features are known indicators 

of regulatory regions and this lack of difference thus minimizes the possibility of the motif-

negative regions being spurious regions included in the ChIP-Seq data as a result of errors in 

processing or other factors that influence the ChIP-Seq process. It was also shown that there 

was an enrichment of motifs for factors that matched one of the half-sites for the RXR-VDR 

heterodimer motif however no other motifs were found in proximity to these to suggest a 

potential heterodimerization partner for the VDR. Indeed, de novo motif discovery using 

prior information yielded no consensus motif and even when no prior information was 

utilized to guide the process, only a motif with close similarity to the Sp1 motif was 

identified. Seeing as the Sp1 motif was enriched in both datasets and it has been documented 

to play a role in motif-negative binding of other nuclear receptors, it is quite probable that it 

may play a role in the binding of VDR in these motif-negative regions. In addition, despite 

the observation that majority of the VDR peaks corresponded to what has been termed HOT 

regions, regions where motif-negative interactions have been reported, no singular motif or 

collection of motifs were shown to be enriched in the VDR motif negative regions to support 

the suggestion of VDR binding via interaction with a factor whose motif is present either as a 

dimer or cis regulatory module. 

In conclusion, although several mechanisms have been suggested as explanation for the 

interaction of VDR with motif-negative sequences, none is able to encompass all the motif-

negative regions. 

 

4.1. MotifLab as a workbench for regulatory region analysis 

The utility of MotifLab as a workbench for this analysis cannot be over emphasised. From the 

get go, the graphical interface provided an aesthetically pleasing appeal without a lot of 

clutter. The labels given to tools were intuitive allowing one to easily guess what operation 

can be performed with the tool. This was further enhanced by balloons which provided brief 
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descriptions of operations. This was applicable to the parameters for each operation as well 

and thus made it easy to know what inputs were allowed for the specific operation. In the 

dialog for each operation was a help button which provided detailed information of the 

operation and its parameters. This functionality was however dependent on being connected 

to the internet although most operations were easily performed without the internet. The 

exception to this was when data from the UCSC browser or other web-based sources had to 

be loaded. One important feature of MotifLab that proved invaluable was the ability to record 

all the analysis steps in a protocol script that could be saved and easily loaded again to 

perform the same analysis on a different dataset. The whole session could also be saved and 

loaded to continue the analysis at a later date. A note of caution however is that the protocol 

script must be saved prior to saving the session as any unsaved changes in the script do not 

show up when the saved session is next loaded. While working on a session, it was also 

possible to load and execute different saved or previously prepared protocol scripts. I found 

this handy as it was possible to create scripts for different analyses which were loaded and 

executed as and when it was required without losing any data from any previous analysis 

carried out. The results from analysis could also be visualised within MotifLab and also 

exported in different formats for further analysis or for use in a write-up. 

The downside to MotifLab in my case was the memory requirement as I found out that 

anything less than 1GB was quite insufficient and resulted in operations taking exceedingly 

long times to complete. Running a full protocol script on large dataset (>2000 sequences on 

2GB RAM) was unadvisable. This challenge seems to have been foreseen by the developer 

and thus portions instead of the whole script can be executed. A click on the memory usage 

indicator in MotifLab also seems to free up some space. In addition, MotifLab allows the user 

to specify the amount of RAM to allocate to the application before it starts in the standalone 

version. Although full documentation of all the procedures was not available at the time of 

use, most commonly used procedures are catered for on the MotifLab website and there are 

also tutorial videos for performing several types of analyses. 

 

4.2. Suggestions for future work 

For future work, I would first suggest a time series ChIP-Seq experiment in the same cell line 

to ascertain if VDR binding to the classic VDRE is time-dependent and also determine the 

proportion of peaks which are positive for the motif over the time course. Additionally, the 

application of liquid chromatography followed by mass spectrometry of the wash after pull 
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down and reversal of crosslinks during ChIP may be informational with regard to which other 

proteins are pulled down with VDR. To carry on from this analysis, a comparison of motif-

positive ChIP-Seq peaks of TFs for which motifs have been identified as being enriched in 

both datasets and the motif-negative VDR peaks may indicate putative factors with which 

VDR may act combinatorially either by direct interactions or through a shared interaction 

partner or complex. Finally, it has been suggested that non-B DNA associates with TFs to 

regulate transcription (102) and this could be an interesting line of analysis to explain the 

phenomenon of motifless binding. 
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Appendix 

A.1 Region Comparison (Ramagopalan dataset) 

 

 

 

 

 

 



 

 

  

 

 



A.2 Motifs enriched from background (Ramagopalan dataset) 
 

Analysis performed with motifs from Jaspar_Core and sites from TFBS_observed on 2776 sequences. Expected motif frequencies 

from Frequencies_expected. 

Statistical significance evaluated using a binomial test with p-value threshold=0.05 (Bonferroni-corrected 

threshold=1.0893246187363835E-4 considering all 459 motifs tested) 

 
ID Name Class Total Sequences % Expected p-value 

MA0106 TP53 4.3.1.1 2 1 0% 0.000 0.0 

MA0415 YAP1 1.1.1 3 3 0% 0.000 0.0 

MA0435 YPR015C 2.3 4 4 0% 0.000 0.0 

MA0138 REST 2.3.2.2 1 1 0% 0.000 0.0 

MA0045 HMG-IY 0.2.1 2402 860 30% 563.800 0.0 

MA0120 id1 2.3 4685 1444 52% 1921.000 0.0 

MA0079 SP1 2.3.1.0 4557 1617 58% 2091.600 0.0 

MA0074 RXRA-VDR 2.1.2 198 192 6% 12.800 2.3434895490765235E-157 

MA0039 Klf4 2.3.2.2 2280 1232 44% 1369.200 3.079933178976263E-112 

MA0050 IRF1 3.5.3.0 658 546 19% 238.200 1.3636400510714893E-110 

MA0123 ABI4 0.5.2.0 2713 1135 40% 1900.400 2.0693969912503605E-69 

MA0033 FOXL1 3.3 9541 2038 73% 7974.400 4.4533182913969824E-66 

MA0013 br_Z4 2.3 3176 1356 48% 2309.600 5.071725049932308E-66 

MA0049 hb 2.3.2.2 6984 1487 53% 5679.400 9.953923860198008E-64 

MA0139 CTCF 2.3 96 70 2% 9.000 5.033585985968533E-63 

MA0324 LEU3 2.4.1.0 1193 659 23% 714.400 1.6767440605364938E-60 

MA0062 GABPA 3.5.2 622 467 16% 304.800 1.891425682401901E-57 

MA0453 nub 2.3 305 266 9% 104.400 2.9396150448336844E-57 

MA0443 btd 2.3 1796 1001 36% 1219.400 2.2677242938111066E-54 

MA0146 Zfx 2.3 876 642 23% 509.400 1.2168006087784364E-49 

MA0010 br_Z1 2.3 929 657 23% 553.000 1.286753816779391E-48 

MA0057 MZF1_5-13 2.3.2.2 4000 1825 65% 3168.800 1.2303443333859162E-46 

MA0041 FOXD3 3.3 1478 821 29% 1003.400 3.317115661652411E-45 

MA0404 TBS1 2.4.1 380 187 6% 168.200 6.14271439917845E-45 

MA0015 Cf2_II 2.3.2.2 784 324 11% 463.000 1.6934239114326363E-42 

MA0277 AZF1 2.3 2650 1352 48% 2015.200 2.516066263630848E-42 

MA0082 Squamosa 4.4 837 621 22% 507.200 1.8973859656707396E-41 

MA0018 CREB1 1.1.2 1490 1032 37% 1034.000 4.267971837114263E-41 

MA0060 NFYA 4.8.1.0 273 213 7% 107.400 4.923166603010312E-41 

MA0012 br_Z3 2.3 2347 1211 43% 1762.400 6.309548406452107E-41 

MA0055 Myf 1.2.2.0 1219 743 26% 813.200 9.51405283287063E-41 

MA0388 SPT23 unknown 6336 2055 74% 5350.400 2.7942716155625338E-40 

MA0205 Trl 2.3 3129 1432 51% 2453.000 4.496944111727066E-40 

MA0002 RUNX1 4.11 1291 958 34% 880.000 4.501015306198561E-39 

MA0073 RREB1 2.3 92 68 2% 19.600 1.9070313290549962E-32 

MA0431 YML081W 2.3 6884 2076 74% 5971.200 5.968580130337641E-32 

MA0160 NR4A2 2.1.2.17 3268 1741 62% 2658.200 3.440692616764698E-31 

MA0042 FOXI1 3.3 1160 768 27% 824.600 6.257027140314789E-29 

MA0076 ELK4 3.5.2.0 405 314 11% 222.400 1.4719883273600494E-28 

MA0458 slp1 3.3 1521 1002 36% 1135.800 2.4446546657481015E-28 

MA0003 TFAP2A 1.6.1 10959 2206 79% 9873.400 3.186534054259598E-28 

MA0425 YGR067C 2.3 7256 2091 75% 6388.200 1.3192811794258485E-27 



ID Name Class Total Sequences % Expected p-value 

MA0317 HCM1 3.3 4840 1792 64% 4197.000 2.3028075257520702E-23 

MA0303 GCN4 1.1.1.5 218 141 5% 103.800 5.953811988462878E-23 

MA0081 SPIB 3.5.2.0 7274 2376 85% 6493.400 1.0799826304123732E-22 

MA0242 run-Bgb 4.11 607 522 18% 399.600 1.1773887104392253E-22 

MA0052 MEF2A 4.4.1.1 383 323 11% 225.600 4.26262308855483E-22 

MA0148 FOXA1 3.3 892 674 24% 641.000 1.3254650215193485E-21 

MA0375 RSC30 2.4.1 3872 749 26% 3335.400 9.508304098144944E-21 

MA0043 HLF 1.1.4.0 384 328 11% 234.400 9.089087224407455E-20 

MA0141 Esrrb 2.1.1.5 428 383 13% 273.400 1.311201268585701E-18 

MA0088 Znf143 2.3 96 85 3% 34.000 1.8171925476401625E-18 

MA0417 YAP5 1.1.1 14830 2541 91% 13852.800 1.179286814756397E-16 

MA0285 CRZ1 2.3 8417 2308 83% 7683.800 1.186197905512155E-16 

MA0446 fkh 3.3 1142 779 28% 888.600 2.7068379335026756E-16 

MA0445 D 4.7 974 710 25% 742.600 2.9424937702270633E-16 

MA0346 NHP6B 4.7 106 78 2% 43.600 1.0618828468809963E-15 

MA0449 h 1.2.5.1 278 130 4% 167.600 4.243909391532719E-15 

MA0173 CG11617 3.1 1122 763 27% 884.000 8.492075151666313E-15 

MA0084 SRY 4.7.1.0 3574 1570 56% 3141.800 2.3415634526575686E-14 

MA0369 RLM1 4.4 54 40 1% 15.800 4.444284713177931E-14 

MA0268 ADR1 2.3 12338 2523 90% 11540.200 9.877732891740435E-14 

MA0047 FOXA2 3.3 486 412 14% 344.400 3.8773050442959175E-13 

MA0274 ARR1 1.1.1.5 8122 2211 79% 7498.800 6.106991188654272E-13 

MA0345 NHP6A 4.7 66 46 1% 23.600 6.511210398978284E-13 

MA0096 bZIP910 1.1 391 318 11% 268.400 1.4375004412994859E-12 

MA0286 CST6 1.1.2 381 294 10% 260.200 1.4572919269120048E-12 

MA0162 Egr1 2.3.2.1 453 377 13% 321.000 2.2959476503181608E-12 

MA0156 FEV 3.5.2 2190 1381 49% 1883.400 3.004262469050961E-12 

MA0314 HAP3 4.8.1.0 128 108 3% 65.200 4.205054067085168E-12 

MA0133 BRCA1 unknown 7159 2343 84% 6597.800 4.6866804227648936E-12 

MA0399 SUT1 2.4.1 8200 1580 56% 7628.000 4.8356078498424366E-11 

MA0107 RELA 4.1.1.0 578 413 14% 438.600 1.2283850183772545E-10 

MA0373 RPN4 2.3 2612 1400 50% 2305.800 2.216390899214843E-10 

MA0201 Ptx1 3.1 927 689 24% 750.200 2.600154033374409E-10 

MA0368 RIM101 2.3 1646 1132 40% 1409.800 4.707053812327895E-10 

MA0244 slbo 2.3 4780 1877 67% 4376.400 9.34357616365718E-10 

MA0315 HAP4 4.8.1.0 239 191 6% 158.200 1.3696501731635083E-9 

MA0102 CEBPA 1.1.3.0 2057 1185 42% 1799.400 1.5175344729461606E-9 

MA0261 lin-14 unknown 6973 2392 86% 6501.600 3.777000276822062E-9 

MA0283 CHA4 2.4 2546 1099 39% 2265.600 3.9582867600982674E-9 

MA0357 PHO4 1.2.5.3 1618 633 22% 1397.600 4.664260643775308E-9 

MA0386 TBP 4.6.1 19 15 0% 3.600 1.0148759873384451E-8 

MA0028 ELK1 3.5.2.0 2224 1329 47% 1971.400 1.2892154226518568E-8 

MA0361 RDS1 2.4 5595 1142 41% 5200.600 3.316271826754662E-8 

MA0124 NKX3-1 3.1.1.15 1921 1042 37% 1694.200 3.58247127672331E-8 

MA0260 che-1 2.3 4860 2069 74% 4499.000 5.4685940719606957E-8 

MA0114 HNF4A 2.1.2.11 195 185 6% 130.000 6.481166469563176E-8 

MA0316 HAP5 4.8.1.0 104 91 3% 59.000 7.665394107650297E-8 



ID Name Class Total Sequences % Expected p-value 

MA0356 PHO2 3.1 34209 2387 85% 33255.400 8.800634148901488E-8 

MA0058 MAX 1.3.2.2 782 507 18% 647.000 1.4833845191378971E-7 

MA0213 brk unknown 2449 1109 39% 2205.400 1.786429999280868E-7 

MA0459 tll 2.1.2.15 283 253 9% 207.200 3.4251065627891277E-7 

MA0197 Oct 3.1 4313 1609 57% 4005.200 7.918114244728617E-7 

MA0051 IRF2 3.5.3.0 30 30 1% 10.600 8.134144894266692E-7 

MA0011 br_Z2 2.3 3703 1603 57% 3418.800 8.260630010421168E-7 

MA0117 Mafb 1.1.1.3 5219 2137 76% 4886.000 1.2421749954710365E-6 

MA0086 sna 2.3.2.2 3907 1860 67% 3630.200 2.8926622222903902E-6 

MA0297 FKH2 3 688 548 19% 576.400 3.449841524529358E-6 

MA0157 FOXO3 3.3 2542 1396 50% 2326.000 5.253525003972314E-6 

MA0340 MOT3 2.3.3.0 7217 2334 84% 6849.800 5.473649361961844E-6 

MA0398 SUM1 unknown 3873 1332 47% 3606.400 5.858108955629919E-6 

MA0040 FOXQ1 3.3 440 378 13% 356.200 9.985927929375357E-6 

MA0149 EWSR1-FLI1 unknown 8 5 0% 1.000 1.024914513996682E-5 

MA0065 PPARG-RXRA 2.1.2 86 84 3% 52.600 1.4764344039704628E-5 

MA0333 MET31 2.3 2615 1510 54% 2407.200 1.5153792177712381E-5 

MA0289 DAL80 2.2.1.2 838 649 23% 723.000 1.597232191473978E-5 

MA0165 Abd-B 3.1.1.1 7046 1978 71% 6705.600 1.8801684283217625E-5 

MA0419 YAP7 1.1.1 223 201 7% 167.200 2.243471794803681E-5 

MA0336 MGA1 3.3.3.4 29 29 1% 12.000 2.2615612982104616E-5 

MA0017 NR2F1 2.1.2.16 192 180 6% 141.000 2.6257235509838956E-5 

MA0059 MYC-MAX 1.3.2 191 148 5% 141.000 3.621793464775598E-5 

MA0048 NHLH1 1.2 503 309 11% 419.400 4.0428737096361676E-5 

MA0332 MET28 1.1 2477 1462 52% 2291.600 6.762559044892259E-5 

MA0300 GAT1 2.2.1.2 662 534 19% 570.000 9.079213892947535E-5 

MA0239 prd 3.1.1.9 2714 1504 54% 2524.800 1.0183106431865824E-4 

MA0126 ovo 2.3.2.2 2714 1504 54% 2524.800 1.0183106431865824E-4 

 

 

A.3 Motif overrepresentation comparison between VDR motif-positive (control) and motif-

negative (target) sequence collections (Ramagopalan dataset) 

Motif occurrence comparison for "VDR_negative" vs "VDR_positive" 

Statistical significance evaluated using a binomial test with p-value threshold=0.05 

(Bonferroni-corrected threshold=3.703703703703704E-4 considering all 135 motifs tested) 

 

Motifs present only in 

target 

Motifs overrepresented in 

target 

Same 

rate 

Motifs overrepresented in 

control 

Motifs present only in 

control 

Motifs not 

present 

1 33 
42 

55 4 
0 

34 59 

 

ID Name Class Target Control p-value target p-value control 

MA0138 REST 2.3.2.2 1 0 0 1 

MA0280 CAT8 2.4 4485 6810 5.54E-284 1 

MA0399 SUT1 2.4.1 3399 4801 8.48E-266 1 



MA0361 RDS1 2.4 2431 3164 2.22E-234 1 

MA0375 RSC30 2.4.1 1711 2161 9.52E-178 1 

MA0003 TFAP2A 1.6.1 3866 7093 4.62E-122 1 

MA0341 MSN2 2.3.3.0 6272 12902 3.25E-104 1 

MA0123 ABI4 0.5.2.0 1092 1621 3.08E-76 1 

MA0283 CHA4 2.4 1034 1512 3.23E-75 1 

MA0213 brk unknown 935 1514 4.26E-50 1 

MA0425 YGR067C 2.3 2412 4844 1.95E-49 1 

MA0324 LEU3 2.4.1.0 513 680 2.33E-49 1 

MA0404 TBS1 2.4.1 200 180 1.22E-40 1 

MA0079 SP1 2.3.1.0 1558 2999 1.48E-40 1 

MA0431 YML081W 2.3 2253 4631 9.43E-40 1 

MA0285 CRZ1 2.3 2664 5753 2.63E-33 1 

MA0443 btd 2.3 666 1130 3.90E-31 1 

MA0268 ADR1 2.3 3740 8598 2.12E-26 1 

MA0373 RPN4 2.3 894 1718 2.62E-24 1 

MA0028 ELK1 3.5.2.0 772 1452 1.10E-23 1 

MA0062 GABPA 3.5.2 258 364 1.98E-22 1 

MA0362 RDS2 2.4 674 1248 2.76E-22 1 

MA0076 ELK4 3.5.2.0 179 226 1.39E-20 1 

MA0039 Klf4 2.3.2.2 773 1507 4.47E-20 1 

MA0006 Arnt-Ahr 1.2.6 832 1692 1.59E-16 1 

MA0162 Egr1 2.3.2.1 176 277 8.87E-12 1 

MA0449 h 1.2.5.1 116 162 3.95E-11 1 

MA0260 che-1 2.3 1471 3389 7.22E-11 1 

MA0146 Zfx 2.3 291 585 2.21E-07 1 

MA0088 Znf143 2.3 44 52 5.49E-07 1 

MA0117 Mafb 1.1.1.3 1510 3709 0.00002 1 

MA0057 MZF1_5-13 2.3.2.2 1163 2837 0.00005 1 

MA0156 FEV 3.5.2 652 1538 0.0001 1 

MA0096 bZIP910 1.1 132 259 0.00016 1 

MA0160 NR4A2 2.1.2.17 0 3268 1 0 

MA0074 RXRA-VDR 2.1.2 0 198 1 0 

MA0435 YPR015C 2.3 0 4 1 0 

MA0106 TP53 4.3.1.1 0 2 1 0 

MA0356 PHO2 3.1 7637 26572 1 2.87626E-313 

MA0033 FOXL1 3.3 2104 7437 1 8.51E-100 

MA0141 Esrrb 2.1.1.5 42 386 1 2.04E-87 

MA0165 Abd-B 3.1.1.1 1563 5483 1 1.54E-70 

MA0182 CG4328 3.1 2295 7681 1 3.58E-66 

MA0231 lbe 3.1 2361 7816 1 5.30E-61 

MA0063 Nkx2-5 3.1.1.15 2129 7040 1 2.44E-54 

MA0219 ems 3.1.1.6 1813 6062 1 2.45E-52 

MA0274 ARR1 1.1.1.5 1880 6242 1 3.70E-50 

MA0398 SUM1 unknown 842 3031 1 1.18E-47 

MA0195 Lim3 3.1 1690 5600 1 1.17E-44 

MA0197 Oct 3.1 956 3357 1 2.27E-44 

MA0417 YAP5 1.1.1 3602 11228 1 6.76E-43 

MA0049 hb 2.3.2.2 1619 5365 1 2.83E-42 

MA0013 br_Z4 2.3 700 2476 1 9.12E-35 

MA0132 Pdx1 3.1 1232 4051 1 6.85E-31 

MA0244 slbo 2.3 1117 3663 1 3.39E-27 

MA0075 Prrx2 3.1 940 3125 1 3.90E-27 

MA0317 HCM1 3.3 1138 3702 1 2.26E-25 

MA0215 btn 3.1 693 2339 1 1.38E-23 

MA0201 Ptx1 3.1 188 739 1 3.11E-21 

MA0045 HMG-IY 0.2.1 544 1858 1 2.38E-20 

MA0084 SRY 4.7.1.0 843 2731 1 1.52E-18 

MA0209 ap 3.1 664 2187 1 4.56E-18 

MA0388 SPT23 unknown 1547 4789 1 6.46E-18 

MA0120 id1 2.3 1125 3560 1 8.20E-18 

MA0082 Squamosa 4.4 172 665 1 1.33E-17 

MA0041 FOXD3 3.3 329 1149 1 2.28E-15 

MA0086 sna 2.3.2.2 937 2970 1 2.72E-15 



MA0313 HAP2 4.8.1.0 3249 9610 1 1.67E-14 

MA0458 slp1 3.3 344 1177 0.99999 1.48E-13 

MA0037 GATA3 2.2.1.1 2173 6504 0.99999 5.23E-13 

MA0340 MOT3 2.3.3.0 1796 5421 0.99999 6.10E-13 

MA0173 CG11617 3.1 249 873 0.99998 1.22E-12 

MA0446 fkh 3.3 254 888 0.99997 2.11E-12 

MA0102 CEBPA 1.1.3.0 481 1576 0.99997 3.10E-12 

MA0064 PBF 2.2 3022 8879 0.99997 1.25E-11 

MA0042 FOXI1 3.3 262 898 0.99991 7.60E-11 

MA0148 FOXA1 3.3 197 695 0.99989 1.09E-10 

MA0011 br_Z2 2.3 904 2799 0.99992 1.11E-10 

MA0015 Cf2_II 2.3.2.2 172 612 0.99984 3.60E-10 

MA0157 FOXO3 3.3 611 1931 0.99986 4.40E-10 

MA0012 br_Z3 2.3 563 1784 0.99978 1.49E-09 

MA0040 FOXQ1 3.3 92 348 0.99949 7.25E-09 

MA0017 NR2F1 2.1.2.16 35 157 0.99934 8.09E-09 

MA0047 FOXA2 3.3 103 383 0.99947 8.73E-09 

MA0346 NHP6B 4.7 17 89 0.9988 2.83E-08 

MA0018 CREB1 1.1.2 352 1138 0.99935 2.83E-08 

MA0124 NKX3-1 3.1.1.15 461 1460 0.99936 2.93E-08 

MA0297 FKH2 3 157 531 0.9972 1.37E-06 

MA0445 D 4.7 231 743 0.99385 0.00001 

MA0368 RIM101 2.3 403 1243 0.99299 0.00002 

MA0277 AZF1 2.3 661 1989 0.99289 0.00002 

MA0314 HAP3 4.8.1.0 25 103 0.9872 0.00007 

MA0114 HNF4A 2.1.2.11 41 154 0.9848 0.00012 

MA0002 RUNX1 4.11 343 948 0.56084 0.41558 

MA0010 br_Z1 2.3 242 687 0.70156 0.20237 

MA0043 HLF 1.1.4.0 100 284 0.64598 0.29159 

MA0048 NHLH1 1.2 150 353 0.035 0.9986 

MA0050 IRF1 3.5.3.0 195 463 0.02529 0.99935 

MA0051 IRF2 3.5.3.0 9 21 0.35523 0.80325 

MA0052 MEF2A 4.4.1.1 105 278 0.37244 0.72887 

MA0055 Myf 1.2.2.0 360 859 0.00491 0.99999 

MA0058 MAX 1.3.2.2 216 566 0.26082 0.86533 

MA0059 MYC-MAX 1.3.2 45 146 0.88603 0.02606 

MA0060 NFYA 4.8.1.0 66 207 0.87053 0.03426 

MA0065 PPARG-RXRA 2.1.2 18 68 0.93312 0.00722 

MA0073 RREB1 2.3 30 62 0.07432 0.99236 

MA0081 SPIB 3.5.2.0 2010 5264 0.02427 0.99944 

MA0098 ETS1 3.5.2 7864 20817 0.00167 1 

MA0107 RELA 4.1.1.0 177 401 0.0074 0.99996 

MA0126 ovo 2.3.2.2 692 2022 0.95678 0.00225 

MA0133 BRCA1 unknown 1956 5203 0.10301 0.98211 

MA0139 CTCF 2.3 28 68 0.2772 0.8653 

MA0149 EWSR1-FLI1 unknown 3 5 0.27351 0.91445 

MA0199 Optix 3.1 774 2195 0.8475 0.04651 

MA0205 Trl 2.3 890 2239 0.00577 0.99998 

MA0239 prd 3.1.1.9 692 2022 0.95678 0.00225 

MA0242 run-Bgb 4.11 169 438 0.24354 0.88454 

MA0261 lin-14 unknown 1918 5055 0.05159 0.99649 

MA0286 CST6 1.1.2 117 264 0.0224 0.99949 

MA0289 DAL80 2.2.1.2 207 631 0.94477 0.00419 

MA0300 GAT1 2.2.1.2 167 495 0.85494 0.04308 

MA0303 GCN4 1.1.1.5 53 165 0.8273 0.06733 

MA0315 HAP4 4.8.1.0 57 182 0.8851 0.02604 

MA0316 HAP5 4.8.1.0 22 82 0.94205 0.00488 

MA0332 MET28 1.1 632 1845 0.95123 0.00306 

MA0333 MET31 2.3 761 1854 0.00075 1 

MA0336 MGA1 3.3.3.4 11 18 0.06823 0.99382 

MA0345 NHP6A 4.7 15 51 0.82209 0.08152 

MA0357 PHO4 1.2.5.3 452 1166 0.10577 0.98136 

MA0369 RLM1 4.4 19 35 0.05888 0.9954 

MA0386 TBP 4.6.1 8 11 0.05038 0.99659 



MA0415 YAP1 1.1.1 1 2 0.51586 0.76153 

MA0419 YAP7 1.1.1 60 163 0.48654 0.56085 

MA0453 nub 2.3 74 231 0.87855 0.0294 

MA0459 tll 2.1.2.15 71 212 0.77837 0.11531 

 

 

Motif occurrence comparison for "NR4A2_positive" vs "JSVDR_positive" 

Statistical significance evaluated using a binomial test with p-value threshold=0.05 

(Bonferroni-corrected threshold=3.703703703703704E-4 considering all 135 motifs tested) 

Motifs present only in 

target 

Motifs overrepresented in 

target 

Same 

rate 

Motifs overrepresented in 

control 

Motifs present only in 

control 

Motifs not 

present 

4 44 
78 

8 0 
1 

48 8 

 
ID Name Class Target Control p-value target p-value control 

MA0149 EWSR1-FLI1 unknown 5 0 0 1 

MA0435 YPR015C 2.3 4 0 0 1 

MA0106 TP53 4.3.1.1 2 0 0 1 

MA0415 YAP1 1.1.1 2 0 0 1 

MA0340 MOT3 2.3.3.0 5290 460 -? 0.4647 

MA0399 SUT1 2.4.1 4697 254 7.64191E-197 1 

MA0375 RSC30 2.4.1 2111 91 2.3302E-181 1 

MA0341 MSN2 2.3.3.0 12596 843 3.24402E-170 1 

MA0361 RDS1 2.4 3094 163 5.47919E-144 1 

MA0280 CAT8 2.4 6665 422 6.81734E-131 1 

MA0425 YGR067C 2.3 4750 293 1.55898E-107 1 

MA0079 SP1 2.3.1.0 2936 165 9.02275E-106 1 

MA0431 YML081W 2.3 4540 280 7.08658E-104 1 

MA0283 CHA4 2.4 1482 73 5.57458E-88 1 

MA0003 TFAP2A 1.6.1 6932 473 3.10568E-81 1 

MA0123 ABI4 0.5.2.0 1584 82 1.82602E-79 1 

MA0449 h 1.2.5.1 160 2 3.76671E-77 0.99999 

MA0268 ADR1 2.3 8400 602 5.58197E-64 1 

MA0443 btd 2.3 1103 57 2.05394E-56 0.99999 

MA0006 Arnt-Ahr 1.2.6 1650 95 6.41733E-55 0.99999 

MA0039 Klf4 2.3.2.2 1471 85 3.37849E-48 0.99997 

MA0324 LEU3 2.4.1.0 672 33 1.67112E-41 0.99986 

MA0285 CRZ1 2.3 5620 410 2.50879E-36 0.99981 

MA0213 brk unknown 1475 92 1.73401E-33 0.9996 

MA0062 GABPA 3.5.2 358 16 7.71044E-30 0.99882 

MA0404 TBS1 2.4.1 177 6 1.6646E-27 0.99775 

MA0160 NR4A2 2.1.2.17 3268 235 1.20449E-25 0.99837 

MA0076 ELK4 3.5.2.0 224 9 8.9237E-25 0.99691 

MA0028 ELK1 3.5.2.0 1422 95 1.56324E-21 0.99605 

MA0146 Zfx 2.3 577 33 4.21482E-21 0.99527 

MA0057 MZF1_5-13 2.3.2.2 2766 200 6.91653E-21 0.99566 

MA0058 MAX 1.3.2.2 556 33 1.33116E-17 0.99085 



ID Name Class Target Control p-value target p-value control 

MA0162 Egr1 2.3.2.1 272 14 2.22604E-15 0.98631 

MA0357 PHO4 1.2.5.3 1140 78 1.44998E-14 0.98575 

MA0002 RUNX1 4.11 931 64 9.78311E-12 0.97396 

MA0362 RDS2 2.4 1218 87 4.91792E-11 0.97001 

MA0059 MYC-MAX 1.3.2 145 7 1.00006E-10 0.96598 

MA0073 RREB1 2.3 60 2 1.40868E-10 0.9649 

MA0260 che-1 2.3 3308 256 1.4385E-10 0.96733 

MA0315 HAP4 4.8.1.0 180 10 2.14222E-8 0.94566 

MA0369 RLM1 4.4 34 1 7.16866E-8 0.94666 

MA0333 MET31 2.3 1808 138 1.09107E-7 0.93613 

MA0316 HAP5 4.8.1.0 82 4 1.44057E-6 0.92211 

MA0242 run-Bgb 4.11 433 30 4.77502E-6 0.90641 

MA0052 MEF2A 4.4.1.1 273 18 0.00001 0.89961 

MA0060 NFYA 4.8.1.0 203 13 0.00003 0.88886 

MA0373 RPN4 2.3 1668 131 0.00005 0.8757 

MA0117 Mafb 1.1.1.3 3613 294 0.00015 0.85874 

MA0074 RXRA-VDR 2.1.2 127 198 1 6.15473E-170 

MA0033 FOXL1 3.3 7203 780 1 7.29218E-10 

MA0356 PHO2 3.1 25772 2516 1 1.35188E-9 

MA0417 YAP5 1.1.1 10888 1084 1 3.26111E-6 

MA0182 CG4328 3.1 7423 749 1 0.00002 

MA0120 id1 2.3 3457 369 1 0.00005 

MA0231 lbe 3.1 7550 756 1 0.00005 

MA0173 CG11617 3.1 838 107 1 0.00009 

MA0010 br_Z1 2.3 665 64 0.99795 0.20811 

MA0011 br_Z2 2.3 2708 253 0.99998 0.11652 

MA0012 br_Z3 2.3 1723 153 0.87496 0.3782 

MA0013 br_Z4 2.3 2390 254 1 0.00076 

MA0015 Cf2_II 2.3.2.2 591 72 1 0.00331 

MA0017 NR2F1 2.1.2.16 154 14 0.75029 0.45914 

MA0018 CREB1 1.1.2 1120 100 0.86079 0.38819 

MA0037 GATA3 2.2.1.1 6313 601 1 0.01096 

MA0040 FOXQ1 3.3 339 35 0.99966 0.16697 

MA0041 FOXD3 3.3 1116 100 0.89348 0.37001 

MA0042 FOXI1 3.3 878 77 0.67868 0.46202 

MA0043 HLF 1.1.4.0 277 21 0.01768 0.75268 

MA0045 HMG-IY 0.2.1 1806 182 1 0.02168 

MA0047 FOXA2 3.3 373 44 1 0.0278 

MA0048 NHLH1 1.2 339 33 0.98823 0.26929 

MA0049 hb 2.3.2.2 5217 489 1 0.03949 

MA0050 IRF1 3.5.3.0 444 60 1 0.00073 

MA0051 IRF2 3.5.3.0 20 3 0.99744 0.24917 

MA0055 Myf 1.2.2.0 837 76 0.92923 0.34685 

MA0063 Nkx2-5 3.1.1.15 6844 599 0.83416 0.39312 

MA0064 PBF 2.2 8629 795 1 0.04176 

MA0065 PPARG-RXRA 2.1.2 64 9 0.99999 0.10757 

MA0075 Prrx2 3.1 3032 274 0.99168 0.24586 



ID Name Class Target Control p-value target p-value control 

MA0081 SPIB 3.5.2.0 5120 469 0.99998 0.11261 

MA0082 Squamosa 4.4 647 60 0.96851 0.30655 

MA0084 SRY 4.7.1.0 2629 263 1 0.01099 

MA0086 sna 2.3.2.2 2896 248 0.28926 0.57384 

MA0088 Znf143 2.3 51 3 0.00597 0.81412 

MA0096 bZIP910 1.1 253 22 0.54111 0.51873 

MA0098 ETS1 3.5.2 20289 1720 0.00173 0.80678 

MA0102 CEBPA 1.1.3.0 1531 157 1 0.02002 

MA0107 RELA 4.1.1.0 385 36 0.94321 0.34079 

MA0114 HNF4A 2.1.2.11 147 16 0.9984 0.20988 

MA0124 NKX3-1 3.1.1.15 1408 132 0.99892 0.18878 

MA0126 ovo 2.3.2.2 1967 173 0.77972 0.42082 

MA0132 Pdx1 3.1 3915 378 1 0.01898 

MA0133 BRCA1 unknown 5064 458 0.9993 0.17622 

MA0139 CTCF 2.3 64 6 0.7656 0.47375 

MA0141 Esrrb 2.1.1.5 381 33 0.52852 0.51678 

MA0148 FOXA1 3.3 677 70 1 0.078 

MA0156 FEV 3.5.2 1502 139 0.99615 0.22316 

MA0157 FOXO3 3.3 1867 193 1 0.00857 

MA0165 Abd-B 3.1.1.1 5311 510 1 0.0106 

MA0195 Lim3 3.1 5419 528 1 0.00382 

MA0197 Oct 3.1 3243 319 1 0.01275 

MA0199 Optix 3.1 2141 206 1 0.07098 

MA0201 Ptx1 3.1 716 75 1 0.05858 

MA0205 Trl 2.3 2182 226 1 0.0044 

MA0209 ap 3.1 2111 220 1 0.00394 

MA0215 btn 3.1 2256 241 1 0.00084 

MA0219 ems 3.1.1.6 5869 567 1 0.00508 

MA0239 prd 3.1.1.9 1967 173 0.77972 0.42082 

MA0244 slbo 2.3 3569 344 1 0.02509 

MA0261 lin-14 unknown 4909 475 1 0.00874 

MA0274 ARR1 1.1.1.5 6084 552 0.99992 0.13466 

MA0277 AZF1 2.3 1927 190 1 0.04014 

MA0286 CST6 1.1.2 260 23 0.65253 0.48407 

MA0289 DAL80 2.2.1.2 620 49 0.01377 0.75481 

MA0297 FKH2 3 517 53 0.99997 0.12393 

MA0300 GAT1 2.2.1.2 488 41 0.26742 0.59408 

MA0303 GCN4 1.1.1.5 162 18 0.99968 0.16941 

MA0313 HAP2 4.8.1.0 9384 829 0.97642 0.28322 

MA0314 HAP3 4.8.1.0 102 10 0.91146 0.38648 

MA0317 HCM1 3.3 3588 335 1 0.08582 

MA0332 MET28 1.1 1815 150 0.02634 0.72409 

MA0336 MGA1 3.3.3.4 17 1 0.08154 0.76872 

MA0345 NHP6A 4.7 48 5 0.92045 0.39733 

MA0346 NHP6B 4.7 87 8 0.74216 0.47468 

MA0368 RIM101 2.3 1207 110 0.96682 0.30506 

MA0386 TBP 4.6.1 11 1 0.61071 0.61225 



ID Name Class Target Control p-value target p-value control 

MA0388 SPT23 unknown 4662 450 1 0.01146 

MA0398 SUM1 unknown 2959 284 1 0.04346 

MA0419 YAP7 1.1.1 159 14 0.60477 0.5075 

MA0445 D 4.7 713 79 1 0.01854 

MA0446 fkh 3.3 859 90 1 0.04122 

MA0453 nub 2.3 223 17 0.03559 0.72773 

MA0458 slp1 3.3 1142 113 1 0.08405 

MA0459 tll 2.1.2.15 203 26 1 0.03476 

MA0138 REST 2.3.2.2 0 0 1 1 

 

 

A.4 De Novo motif discovery in motif-negative set of sequences and comparison to Jaspar_Core 

profiles using TOMTOM 

 

A. Sequence logo and weight matrix from de novo motif discovery using ChIPMunk in MotifLab 

 

 

B. Motif comparison using TOMTOM pulls out 23 motifs from Jaspar_Core with similarity to the de 

novo motif 



 

C. Sp1 motif shows highest similarity to motif from de novo motif discovery 

 

 

A.5 Comparison of enrichment of different chromatin marks between sequence collections in 

Ramagopalan dataset 

 

 

 



 

 

 

 

Motif enrichment in region 20 bases from VDR binding sites  

 

 

A.6 Enriched motifs common to Ramagopalan and Heikkinen analysis datasets 

ID Short Name Classification  ID Short Name Classification 

MA0096 bZIP910 1.1  MA0417 YAP5 1.1.1 

MA0332 MET28 1.1  MA0117 Mafb 1.1.1.3 

MA0120 id1 2.3  MA0274 ARR1 1.1.1.5 

MA0013 br_Z4 2.3  MA0303 GCN4 1.1.1.5 

MA0146 Zfx 2.3  MA0018 CREB1 1.1.2 

MA0010 br_Z1 2.3  MA0286 CST6 1.1.2 

MA0073 RREB1 2.3  MA0102 CEBPA 1.1.3.0 

MA0277 AZF1 2.3  MA0043 HLF 1.1.4.0 

MA0012 br_Z3 2.3  MA0055 Myf 1.2.2.0 

MA0431 YML081W 2.3  MA0449 h 1.2.5.1 

MA0205 Trl 2.3  MA0357 PHO4 1.2.5.3 

MA0425 YGR067C 2.3  MA0003 TFAP2A 1.6.1 

…
 



MA0443 btd 2.3  MA0141 Esrrb 2.1.1.5 

MA0285 CRZ1 2.3  MA0074 RXRA-VDR 2.1.2 

MA0139 CTCF 2.3  MA0065 PPARG-RXRA 2.1.2 

MA0268 ADR1 2.3  MA0114 HNF4A 2.1.2.11 

MA0244 slbo 2.3  MA0459 tll 2.1.2.15 

MA0453 nub 2.3  MA0017 NR2F1 2.1.2.16 

MA0373 RPN4 2.3  MA0160 NR4A2 2.1.2.17 

MA0260 che-1 2.3  MA0300 GAT1 2.2.1.2 

MA0368 RIM101 2.3  MA0289 DAL80 2.2.1.2 

MA0333 MET31 2.3  MA0079 SP1 2.3.1.0 

MA0011 br_Z2 2.3  MA0162 Egr1 2.3.2.1 

MA0088 Znf143 2.3  MA0015 Cf2_II 2.3.2.2 

MA0362 RDS2 2.4  MA0039 Klf4 2.3.2.2 

MA0280 CAT8 2.4  MA0057 MZF1_5-13 2.3.2.2 

MA0361 RDS1 2.4  MA0049 hb 2.3.2.2 

MA0283 CHA4 2.4  MA0341 MSN2 2.3.3.0 

MA0297 FKH2 3  MA0340 MOT3 2.3.3.0 

MA0199 Optix 3.1  MA0404 TBS1 2.4.1 

MA0201 Ptx1 3.1  MA0375 RSC30 2.4.1 

MA0356 PHO2 3.1  MA0399 SUT1 2.4.1 

MA0173 CG11617 3.1  MA0324 LEU3 2.4.1.0 

MA0197 Oct 3.1  MA0165 Abd-B 3.1.1.1 

MA0033 FOXL1 3.3  MA0124 NKX3-1 3.1.1.15 

MA0041 FOXD3 3.3  MA0062 GABPA 3.5.2 

MA0042 FOXI1 3.3  MA0081 SPIB 3.5.2.0 

MA0458 slp1 3.3  MA0076 ELK4 3.5.2.0 

MA0317 HCM1 3.3  MA0028 ELK1 3.5.2.0 

MA0148 FOXA1 3.3  MA0050 IRF1 3.5.3.0 

MA0446 fkh 3.3  MA0052 MEF2A 4.4.1.1 

MA0047 FOXA2 3.3  MA0386 TBP 4.6.1 

MA0040 FOXQ1 3.3  MA0084 SRY 4.7.1.0 

MA0157 FOXO3 3.3  MA0060 NFYA 4.8.1.0 

MA0002 RUNX1 4.11  MA0314 HAP3 4.8.1.0 

MA0242 run-Bgb 4.11  MA0315 HAP4 4.8.1.0 

MA0082 Squamosa 4.4  MA0316 HAP5 4.8.1.0 

MA0346 NHP6B 4.7  MA0149 EWSR1-FLI1 unknown 

MA0345 NHP6A 4.7  MA0388 SPT23 unknown 

MA0445 D 4.7  MA0398 SUM1 unknown 

MA0045 HMG-IY 0.2.1  MA0213 brk unknown 

MA0123 ABI4 0.5.2.0  MA0261 lin-14 unknown 

   
 MA0133 BRCA1 unknown 

   
    

 

A.7 Region enrichment in Heikkinen dataset 



Feature 
Percent overlap of binding sites from motif scanning (PPV) 

MEME de novo  MA0074.1 (RXR-VDR) VDR-like (NR4A2) 

DNAse HotSpots 86.3 94.9 89.3 

TFBS_ChIPSeq 57.4 60.6 60.1 

H3K27ac 43.5 32.7 44.9 

H3K4me1 53 45.8 53.8 

H3K4me3 39.9 30.4 39.5 

H3K9ac 42.8 31 43.2 

H3K27me3 36.4 53 35.5 

FAIRE-Seq 48.1 53.8 50.6 

RepeatMasker327 37.1 26 30.3 

CpG islands 8.3 7.1 9.3 

CCDS 41.2 31.5 41.9 

Ensembl Genes 61.8 47.6 63.1 

*Significant difference in region overrepresentation between MEME de novo and VDR-like, 

**Significant difference in region overrepresentation between classic VDR and VDR-like. These 

features were similar in MEME-motif sequences and the classic VDR sequences. 

 

A.8 Distance of repeat MIRb relative to binding sites of motifs of interest 

 

 

A.9 Proteins that interact or are involved in the formation of complexes with VDR retrieved 

from BioGrid 3.2 and visualised in Cytoscape 3.0.2 

 



A.10 Region analysis using segmentation data derived using ChromHMM and a combination 

track derived from a combination of data derived using ChromHMM and Segway on analysis 

datasets 

 

A. Region occurrence in Heikkinen dataset using chromatin segmentation data derived using the 

ChromHMM showing the enrichment of TSS and TSS flanking regions  

 



C. Region occurrence in Ramagopalan dataset using chromatin segmentation data derived using the 

ChromHMM showing the enrichment of TSS regions 

 

A.11 GC Content analysis of sequences in negative and positive sequence sets 

Heikkinen: 

 

Ramagopalan: 

 

 

A.12 GC content analysis of motifs enriched in negative and positive sequence sets 

(Ramagopalan) 

 

 

 



A.13 Motif pairs identified by ModuleSearcher in the Ramagopalan dataset 
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