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Abstract

Simultaneous input and state estimation algorithms are studied as particular limits of Kalman filtering problems. This admits interpretation
of the algorithm properties and critical analysis of their claims to being partly model-free and to providing unbiased estimates. A disturbance
model, white noise of unbounded variance, is provided and the bias feature is shown to be a geometric projection property rather than
probabilistic in nature. As a consequence of this analysis, the algorithm is connected, in the stationary case, to Algebraic Riccati equation
computations for the gains, estimate covariances and filter frequency response.
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1 Introduction

The SISE algorithm has been the subject of considerable
research interest since its inception [1–4] as an input recon-
struction method suited to signal recovery in environmen-
tal and geophysical linear array analysis. Kitanidis [3] is
generally credited with the formulation which seeks also to
generate reliable state estimates. More recent works [5–8]
have developed the algorithm per se for systems with di-
rect feedthrough and for nonlinear problems, again with the
emphasis on environmental estimation when an application
is developed. The genesis of the algorithm is clearly based
on least-squares linear estimation but invokes a number of
properties to motivate and guide its derivation. These focus
on the absence of two features: any statistical signal model
for the input signal and any ‘bias’ in the state or input es-
timates. Part of our aim in this paper is re-derive and then
extend the SISE algorithm by providing a specific input sig-
nal model (curiously suggested and then abandoned by both
[1] and [3]) and applying standard Kalman filtering ideas.
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The contribution of the paper is fourfold.

(i) demonstrating that SISE is a standard Kalman filtering
algorithm with a specific disturbance model,

(ii) providing a Riccati equation approach to design SISE,
(iii) decomposing SISE as projections,
(iv) critiquing the model of absence of model.

2 The SISE algorithm

Consider the linear time-invariant system without direct
feedthrough and with zero known control input,

xt+1 = Axt +Gdt + wt, (1)
yt = Cxt + vt, (2)

[We take the time-invariant and zero-control system (1-
2) solely for clarity in exposition. The time-varying and
control-inclusive versions are direct and available in the
cited references.] Make the following assumptions.

Assumption 1 (i) xt, wt ∈ R
n, ut ∈ R

q, dt ∈ R
m,

vt, yt ∈ R
p.

(ii) these signals are mutually independent Gaussian white
noises, wt ∼ N (0, Q), vt ∼ N (0, R) and initial con-
dition x0 ∼ N (x̂0|0, P0),

(iii) Rt > 0,
(iv) rankCG = rankG = m.
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Then the simultaneous input and state estimation (SISE)
algorithm, developed by [3] and summarized, refined and
analyzed by [5], is as follows. At time t with current state
estimate x̂SISE

t|t with covariance Pt and measurement yt+1,

Xt+1 = APtA
T +Q, (3)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (4)

Mt+1 = [GTCT (CXt+1C
T +R)−1CG]−1

×GTCT (CXt+1C
T +R)−1, (5)

Pt+1 = (I −Kt+1C) [(I −GMt+1C)Xt+1

×(I −GMt+1C)T +GMt+1RMT
t+1G

T
]

+Kt+1RMT
t+1G

T , (6)

d̂SISE
t|t+1

= Mt+1(yt+1 − CAx̂SISE
t|t ), (7)

x̂SISE
t+1|t+1

= Ax̂SISE
t|t +Gd̂SISE

t|t+1
+Kt+1

× (yt+1 − CAx̂SISE
t|t − CGd̂SISE

t|t+1
). (8)

cov(xt+1|Y
t+1) = Pt+1, (9)

The purpose of this algorithm is to take the measurement
sequence, Yt+1 , {yt+1, yt, . . . , y1}, and the current state
estimate, x̂SISE

t|t , and covariance, Pt, and to produce estimates,

d̂SISE
t|t+1

and x̂SISE
t+1|t+1

respectively, of the input and the state
signals. The properties claimed of these estimates are as
follows.

(1) No model whatsoever is provided for the evolution of
the disturbance sequence {dt}, including presumably
that it might depend on xt+τ or anything else.

(2) The estimates d̂SISE
t−1|t and x̂SISE

t|t are ‘unbiased,’ viz.

E(d̂SISE
t−1|t|Y

t) = dt−1 and E(x̂SISE
t|t |Yt) = xt, regard-

less of the values taken by {dt} and with expectations
taken over σ{x0, wk, vk : k = 0, 1, . . . , t}.

(3) Subject to possession of the above properties, the esti-
mates are least mean squares [9], minimizing the cri-
terion

J = trace cov
(

xt|Y
t
)

. (10)

Our aim is to demonstrate that the SISE algorithm can be
derived from a standard Kalman filtering problem and the
non-properties of no model and unbiasedness can be linked
to assumed signal properties. To achieve this, we provide a
model for the {dt} sequence and for its relationship with
the {xt} sequence; we assume that dt is a Gaussian white
noise sequence independent from other signals, with finite
mean, d, but variance, D, tending to infinity. By doing so, we
are able to provide a genealogy for the SISE algorithm and
to show: that the algorithm’s properties of convergence and
stability in the time-invariant case, established by [7], follow
naturally; that there are aspects of the algorithm preserved
for finite D; and that the algorithm might be derived in a
standard way by selecting a specific augmenting disturbance
model.

3 Kalman filtering formulation

Make the following assumptions regarding the signals

Assumption 2 The disturbance signal dt ∼ N (d, D) and
is white and independent from x0, wτ , vτ for all t and τ .

Theorem 1 Given system (1-2) subject to Assumptions 1
and 2, the Kalman filtering solution to input and state esti-
mation is given as follows, from x̂t|t and Pt.

Xt+1 = APtA
T +GDGT +Q, (11)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (12)

Mt+1 = DGTCT (CXt+1C
T +R)−1. (13)

Pt+1 = Xt+1 −Xt+1C
T (CXt+1C

T +R)−1CXt+1,

= (I −Kt+1C)Xt+1, (14)

x̂t+1|t+1 = E
[

xt+1|Y
t+1
]

= Ax̂t|t +Gd

+Kt+1(yt+1 − CAx̂t|t − CGd), (15)

d̂t|t+1 = E
[

dt|Y
t+1
]

= d+Mt+1(yt+1 − CAx̂t|t − CGd). (16)

The criterion minimized is altered from (10), which deals
with dt − d̂t|t+1 via the ‘unbiasedness’ condition, to

J = trace cov
(

dt−1|Y
t
)

+ trace cov
(

xt|Y
t
)

, (17)

and these covariances are given by

cov
(

xt+1|Y
t+1
)

= Pt+1,

cov
(

dt|Y
t+1
)

= D −DGTCT (CXt+1C
T +R)−1CGD,

(18)

= (I −Mt+1CG)D , Dt. (19)

The proof, included in the Appendix, differs from those
sketched by [1] and alluded to by [3]. Part of our aim is to
establish, in Theorem 2 below, that as D−1 → 0 the two
algorithms coincide. This is more algebraic in nature than
probabilistic. We achieve this via eight linking identities.

4 Identities for finite D

From the earlier definitions of matrices: Xt+1,Mt+1,Xt+1,
Kt+1, Kt+1, for finite values of D, we have the following
set of sequential identities linking quantities in the Kalman
filtering formulation to SISE.

Identity 1 (divisors)

CXt+1C
T +R = (Ip − CGMt+1)(CXt+1C

T +R).
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Identity 2 (innovations)

yt+1 − CAx̂t|t − CGd̂t|t+1

= (Ip − CGMt+1)(yt+1 − CAx̂t|t − CGd).

Identity 3 (state update gains)

Kt+1 = GMt+1 +Kt+1(Ip − CGMt+1),

I −Kt+1C = (I −Kt+1C)(I −GMt+1C).

Identity 4 (state updates)

x̂t+1|t+1 = Ax̂t|t +Gd+Kt+1(yt+1 − CAx̂t|t − CGd),

= Ax̂t|t +Gd̂t|t+1

+Kt+1(yt+1 − CAx̂t|t −Gd̂t|t+1).

Identity 4 establishes that the filtered state estimate updates
for the finite-D Kalman filter and for SISE starting from
the same values of x̂t|t and Pt coincide when d̂t|t+1 is the
same. Since the matrices Mt+1 and Mt+1 are not identical
for finite D, the algorithms will differ in the d̂t−1|t update,
which is addressed by the next finite-D identity.

Identity 5 (disturbance update gain)

Mt+1 =
[

D−1 +GTCT (CXt+1C
T +R)−1CG

]−1

×GTCT (CXt+1C
T +R)−1.

Identity 6 (disturbance update)

d̂t|t+1 = (Im −Mt+1CG)d+Mt+1(yt+1 − CAx̂t|t).

Identity 7 (disturbance estimation error covariance)
The covariance of d̂t|t+1, Dt, satisfies

Dt =
[

D−1 +GTCT (CXt+1C
T +R)−1CG

]−1
.

Identity 8 (covariances)

Pt+1 = (I −Kt+1C)
{

(I −GMt+1C)Xt+1 +GDtG
T
}

.

5 Properties when D−1 → 0: KF→SISE

Identities 1-8 lead to 9, following, which in turn permits the
identification of SISE as the limit of a Kalman filter.

Identity 9 (disturbance and filter update gains)

As D−1 → 0,

Mt → Mt, Kt → GMt +Kt(Ip − CGMt).

Lemma 1 For Mt+1 given by (5), Mt+1CG = Im.
Whence, the matrices

Mt+1CG ∈ R
m×m, CGMt+1 ∈ R

p×p, GMt+1C ∈ R
n×n,

are rank m projections on R
m, Rp, Rn respectively. The

range spaces are given by

Ra (Mt+1CG) = R
m,

Ra (CGMt+1) = Ra (CG) ⊆ R
p,

Ra (GMt+1C) = Ra(G) ⊆ R
n.

Theorem 2 In the limit that D−1 → 0, the Kalman filtering
algorithm (11-16) coincides with the SISE algorithm (4-8).

d̂t|t+1 = d̂SISE
t|t+1

, x̂t+1|t+1 = x̂SISE
t+1|t+1

,

with cov
(

xt+1|Y
t+1
)

= Pt+1 = Pt+1 and

cov
(

dt|Y
t+1
)

=
[

GTCT (CAPt+1A
TCT + CQCT +R)−1CG

]−1
.

We may next combine: Theorem 2, Lemma 1, (14) and Iden-
tity 8, to yield an interpretation of the SISE algorithm.

Corollary 1 For the SISE algorithm, define the signals

x̂SISE
t+1|t , (I −GMt+1C)

(

Ax̂SISE
t|t +Gd

)

,

x̂SISE

t+1|t+
1

2

, x̂SISE
t+1|t +GMt+1yt+1.

Then

x̂SISE
t+1|t+1

= (I −Kt+1C) x̂SISE

t+1|t+
1

2

+Kt+1yt+1.

Corollary 1 decomposes SISE into three steps.

(i) A time update projected onto the null space of G.
(ii) An update in the range space of G.

(iii) A Kalman-filter-like measurement update.

This sequence decodes the SISE covariance formula (6). Fur-
ther, but consistent, reinterpretation of SISE unbiasedness as
prioritizing the input signal estimate over state estimation is
examined in Section 7 following.

6 Riccati-based steady-state SISE gains, performance
and design

An evident and troubling absence from SISE is the Riccati
difference equation associated with recursive linear least-
squares optimal estimation. While, for the stationary case,
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the existence of and convergence to stationary values for the
SISE gains and covariances has been established by [7] and
others, the computation of these values is problematic with-
out an algebraic Riccati equation connection. The algorithm
performance, and hence design in terms of Q, R and per-
haps D, is evaluated from these error covariances. By the
same token, appreciation of the noise amplification proper-
ties of the algorithm is wanting in earlier works. A numeri-
cal example from a three-bus power system was computed
but omitted due to imposed space restrictions. The steady-
state SISE gain was computed by iterating for 500 steps and
seen to equal the ARE solution.

For the steady-state Kalman filter version of SISE, KF-SISE,
we solve the following ARE in MATLAB.

Sig = dare(A’,C’,Q+G*D*G’,R);
KF = Sig*C’/(C*Sig*C’+R);
MKF = D*G’*C’/(C*Sig*C’+R);
P = (eye(n)-KF*C)*Sig;
Dd = (eye(m)-MKF*C*G)*D;

The ARE solution, Sig here, is the steady-state prediction
error covariance X∞ from (11). Variables KF, MKF, P, Dd
are the Kalman filter gain K∞ from (12), the disturbance
gain M∞ from (13), the filtered state error covariance P∞

from (14) and the smoothed disturbance error covariance
D∞ from the proof of Identity 7, which follows, in turn,
from the proof of Theorem 1. The systems from dt → yt
and from yt → d̂t−1|t may be computed as follows.

fwdsysd = ss(A,G,C,0,1)
deconsys = ...

ss((eye(n)-KF*C)*A,KF,-MKF*C*A,MKF,1)

Thus, their frequency responses can be plotted to reveal that
SISE implements a system inversion. This yields accessi-
bility of standard linear systems design tools for the KF-
SISE algorithm via the application of the ARE to derive the
steady-state gain and covariance values.

7 Non-models, unbiasedness and input estimation

It is usually attributed to John von Neumann or to Stanislaw
Ulam that the study of non-equilibrium thermodynamics in
Physics is akin to the study of non-elephants in Zoology.
By the same token, the study of model-free estimation is
an unhelpful even meaningless description in this domain.
Theorem 2 establishes that the SISE algorithm does indeed
correspond to a particular model for the disturbance input
process {dt} and thereby admits access to standard tools of
linear least-squares estimation. The SISE concept that esti-
mates are independent is replaced by the sounder hypothesis
that in the signal model the disturbance input is independent
from early values of the state.

Unbiasedness of the estimates, used in a probabilistically
non-standard (but at least consistent) fashion in SISE since

[3], refers to the property that, no matter the specific value
taken by the disturbance, dt, the conditional expected value,
x̂t|t = E (xt|Yt) = xt. This is not so much a statistical
property as a geometric one captured by the projection oper-
ations of Corollary 1. The juxtaposition of probabilistic sig-
nal properties with non-models and absence of assumptions
concerning the disturbance leads to fundamental questions
regarding the nature of filtrations over which one is meant
to take the expected values. By assuming a model, albeit
a singular one, we are able to clarify these statements and
to prove that they disguise a deterministic projection prop-
erty. This might better be interpreted as a prioritization of
the estimation of the input signal over that of the state, with
the constraint E(d̂t|t+1) = dt, trumping the subsequent op-
timization of (10). The formulation developed in this paper
can then be seen as a penalty function approach to this same
constrained optimization.

8 Conclusion

We have derived from an algebraic perspective the SISE al-
gorithms as Kalman filters of a specific type, suggested by
Mendel [4] in his seismic deconvolution work. The input
signal model is white noise, which, if its variance tends to
infinity, yields a Kalman filter coinciding with SISE. As we
mention, this was hinted at earlier but not carried through.
Equipped with a fuller understanding of the connections, we
were able to present new interpretations and to connect the
approach to algebraic Riccati equation computational meth-
ods. Further, we were able to clarify – the uncharitable might
say debunk – the ideas of model-free state estimation and
estimate unbiasedness, showing that the methods necessar-
ily involve projections induced by the large variances.

Appendix – proofs

Proof of Theorem 1

From Assumption 2, (1-2) and x̂t|t, Pt, write the joint con-
ditional density
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Then appeal to the standard Gaussian conditional density
calculation to yield

E

([

xt+1

dt

]∣

∣

∣

∣

∣

Y
t+1

)

=

[

Ax̂t|t +Gd

d

]

+

[

Xt+1C
T

DGTCT

]

× (CXt+1C
T +R)−1(yt+1 − CAx̂t|t − CGd),

or,

x̂t+1|t+1 = E
(

xt+1|Y
t+1
)

,

= Ax̂t|t +Gd+ Xt+1C
T (CXt+1C

T +R)−1

× (yt+1 − CAx̂t|t − CGd),

and

d̂t|t+1 = E
(

dt|Y
t+1
)

,

= d+DGTCT (CXt+1C
T +R)−1

× (yt+1 − CAx̂t|t − CGd).

These are (15) and (16), respectively in Theorem 1.

The covariance calculation follows similarly.

cov

([

xt+1

dt

]∣

∣

∣

∣

∣

Y
t+1

)

=

=

[

Xt+1 GD

DGT D

]

−

[

Xt+1C
T

DGTCT

]

(CXt+1C
T +R)−1

[

CXt+1 CGD

]

.

The (1,1)-block-element gives (14) for Pt+1 and the (2,2)-
block-element gives (18) for Dt.. ✷

Proof of Identity 5

Using Identity 1 and denoting Yt+1 = CXt+1C
T +R,

Mt+1 = DGTCT (CXt+1C
T +R)−1,

= DGTCT (CXt+1C
T +R)−1(I − CGMt+1),

= DGTCTY −1

t+1 −DGTCTY −1

t+1CGMt+1,

[

I +DGTCTY −1

t+1CG
]

Mt+1 = DGTCTY −1

t+1,
[

D−1 +GTCTY −1

t+1CG
]

Mt+1 = GTCTY −1

t+1,

Mt+1 =
[

D−1 +GTCTY −1

t+1CG
]−1

GTCTY −1

t+1. ✷

Proof of Identity 7

From (18),

Dt = D −DGTCT (CXt+1C
T +R)−1CGD,

= (I −Mt+1CG)D,

Now, using Identity 5 and continuing the notation Yt+1 =
CXt+1C

T +R,

Mt+1CG =
[

D−1 +GTCTY −1

t+1CG
]−1

GTCTY −1

t+1CG,

=
[

D−1 +GTCTY −1

t+1CG
]−1

×
[

−D−1 +D−1 +GTCTY −1

t+1CG
]

,

= I −
[

D−1 +GTCTY −1

t+1CG
]−1

D−1.

So,

Dt =
[

D−1 +GTCTY −1

t+1CG
]−1

,

=
[

D−1 +GTCT (CXt+1C
T +R)−1CG

]−1
.

✷

Proof of Identity 8

Substitute for Kt+1 from Identity 3 into (14), drop the time
indices, and pay attention to the dimensions and typefaces,

Pt+1 = (Ip −Kt+1C)Xt+1,

= (I −KC)(I −GMC)X ,

= (I −KC)(I −GMC)(X +GDGT ),

= (I −KC)
[

(I −GMC)X + (I −GMC)GDGT
]

,

= (I −KC)
[

(I −GMC)X +G(I −MCG)DGT
]

.

Now, denoting (as above) Yt+1 = CXt+1C
T +R, and using

Identity 5,

I −MCG = (D−1 +GTCTY −1CG)−1

×
{

D−1 +GTCTY −1CG−GTCTY −1CG
}

,

= (D−1 +GTCTY −1CG)−1D−1,

= DtD
−1.

Whence, substituting this above,

Pt+1 = (I −Kt+1C)
{

(I −GMC)Xt+1 +GDtG
T
}

. ✷

Proof of Theorem 2

Identity 9 establishes the convergence of Mt+1 and Kt+1.
With the convergence of Mt+1 and Mt+1CG = I, from
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Lemma 1, we see that (7) and (16) are identical updates re-
gardless of the value of d. Substituting the limiting value for
Kt+1 in (15) shows that this update and (8) also are iden-
tical. Thus, SISE and KF-SISE yield identical estimates at
this t from the same starting data and, hence, the estimates
remain identical. Since Pt+1 is the conditional error covari-
ance of xt+1 for KF-SISE and Pt+1 is shown in [5] to be
the conditional covariance of the SISE estimate, these co-
variances must also be identical. ✷

Proof of Corollary 1

Applying Identity 4 to (8) and then Identities 3 and 9,

x̂SISE
t+1|t+1

= Ax̂SISE
t|t +Gd+Kt+1(yt+1 − CAx̂SISE

t|t − CGd),

= (I −Kt+1C)Ax̂SISE
t|t + (I −Kt+1C)Gd+Kt+1yt+1,

= (I −Kt+1C) (I −GMt+1C)
(

Ax̂SISE
t|t +Gd

)

+Kt+1yt+1,

= (I −Kt+1C) x̂SISE
t+1|t +Kt+1yt+1,

= (I −Kt+1C) x̂SISE
t+1|t +GMt+1yt+1

+Kt+1(I − CGMt+1)yt+1,

= (I −Kt+1C) x̂SISE
t+1|t

+ (I −Kt+1C)GMt+1yt+1 +Kt+1yt+1,

= (I −Kt+1C)
(

x̂SISE
t+1|t +GMt+1yt+1

)

+Kt+1yt+1,

= (I −Kt+1C) x̂SISE

t+1|t+
1

2

+Kt+1yt+1. ✷
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