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Abstract— The problem of estimating velocity from a monoc-
ular camera and calibrated IMU measurements is revisited.
For the presented setup, it is assumed that normalized velocity
measurement is available from the camera. By applying results
from nonlinear observer theory we are able to present a
velocity estimation with proven global stability, with defined
conditions for convergence, and without the need of observing
features for several camera frames. Several nonlinear methods
are compared to each other, also against an extended Kalman
filter (EKF), where the robustness of the nonlinear methods
compared to the EKF are demonstrated in simulations and
experiments.

Index Terms— Nonlinear observer, course measurement,
bearing, simultaneous localization and mapping, ego-motion
estimation, sensor fusion

I. INTRODUCTION

Vision-based navigation is an important topic in robotics.
With the reduced size, weight, power and money cost of
modern digital cameras, they are a key navigation component
in many robotics systems. In the literature the techniques are
often refereed to as real-time structure from motion (SFM),
visual odometry (VO) or visual/bearing only simultaneous
localization and mapping (SLAM). Several methods have
been developed over the years, and the methods are often
divided into graph SLAM and SLAM filters, where the
graph SLAM methods are based on nonlinear optimization
[1]–[3] also called bundle adjustment (BA). The most effi-
cient approaches store key-frames, making the optimization
problem sparse, and hence they are solvable in real time.
The SLAM filters are often based on EKF [4], where the
estimates are stored in the states and the co-variance, making
the computational load grow quadratic with regards to the
number of features. A further discussion of the pros and
cons between the methods can be seen in [5].

However, an inherit problem when using monocular cam-
era is that the metric scale of the world is not observable. The
scale is either given during the initialization through stereo
vision, laser scanner, IMU information or by having known
features or tags at the initialization, or it is just neglected. For
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some applications, especially long time navigation, scale drift
can be a limiting factor. There are also several Visual-Inertial
Odometry (VIO) methods that are able to estimate the scale
with the IMU information [6], [7]. Methods for estimating
scale from a camera world to the real world has also been
presented in [8], [9], where an EKF setup estimates the scale
by comparing the pose measurements from a camera system
to IMU data. These methods then needs the scale estimate
to be close to the real scale at the initialization to guarantee
convergence.

Initialization procedures has also been presented, with
different kind of assumptions available, such as in [10]–
[13]. In [10] a throw and go procedure was demonstrated,
however as the scale is estimated through an EKF scheme
there is no guarantee of convergence, and the scale is
therefore initialized close to the true scale. In [11] a similar
procedure was demonstrated for SVO+MSF, where the scale
is acquired from an altimeter. In [12] and [13], closed form
and optimization schemes are developed, that can initialize
the scale and gravity from IMU and bearing measurements.
This however relies on features being detected for several
time steps or in the case of [12], that the monocular SLAM is
initialized. They also lack any condition that could guarantee
good initialization.

In [14] an ego-motion estimation using a continuous
homography scheme was presented, where estimation of
metric velocity was preformed with a calibrated IMU and
pitch roll estimates. This work differentiates itself from the
most common implementations from visual navigation in
two ways. As it relies on the homography transform, it only
requires matching of features between two images. Thus the
requirement of observing features for consecutive images
is no longer necessary. The other benefit of the system
[14] is inherited from its application of nonlinear observer
techniques presented in [15], [16]. Thus the observer acquire
global convergence under a defined persistent of excitation
(PE) condition. In addition, the system with predefined
trajectory can also be tuned similarly to a second order
differential equation so that convergence rate and frequency
response can be defined for the observer.

However the main drawback for the setup [14], is the
necessity of observing a flat surface in order to utilize the
homography transformation, which is a assumption that is
violated for many applications.

This has given the motivation of developing an observer
which only relies on normalized velocity. Thus it would
no longer be necessary to observe a flat surface. In fact,
this enables the ego motion estimation to be applicable to



any VO, Visual SLAM or SFM method able to provide
a normalized camera velocity. Methods includes two view
methods such as, essential matrix [17], two point [3], three
point [18] or homography [14], or a combination of these as
shown in [2], where homography and the 5 point algorithm
is used in parallel. Or VO methods such as SVO [1] and
SLAM [2]. Such a method could either be used to initialize
the scale of these methods, work in parallel as scale estimator
to ensure drift free scale or it could work as a velocity
measurement in itself.

A. Contribution

An observer able to estimate velocity with similar sensor
setup as in [14], was presented in [19]. The only difference
was that a normalized velocity was assumed to come from
the camera instead of a homography transform. Thus globally
stable velocity estimation with defined PE condition, and
without the need of observing features for several images
is possible without the need of observing a flat surface. This
article builds on the article [19], where we compare the novel
observer to other similar observers, and how they preform
when used for the ego-motion estimation.

There are several observer able to preform this estimation,
since the ego-motion estimation with normalized velocity
measurement is mathematically identical to the problem of
estimating the distance to a landmark assuming velocity
and bearing measurements are available. This implies that
the ego motion estimation assuming normalized velocity
measurements can be preformed by several observers, but
whom originally was designed for the later problem [19]–
[22]. In addition, the observers will keep the same stability
results. In fact all the nonlinear observers have the same
persistence of excitation condition; that the the velocity and
acceleration of the vehicle is not parallel. Thus globally
stable velocity observers with defined PE conditions guar-
anteeing convergence is possible without any initialized VO
method, observable plane or the need of observing features
for several images.

The different observers are compared qualitatively, in
simulations and on experimental data. It is also shown how
the novel observer presented in [19], can tune its convergence
rate. They are also compared to an EKF and the homography
based observer [14]. The observers are able to estimate
the velocity accurately, where the observer [19] has the
best performance in simulations and on experiments. It is
also shown how the nonlinear observers have more robust
behavior than the EKF.

II. NOTATION AND PRELIMINARIES

A. Notation

Scalars are in lower case a, x, ω; vectors are lower case
bold a,x,ω; sets are upper case A,X,Ω; matrices are bold
upper case A,X,Ω. The 0 denotes the scalar zero, while 0
is the matrix zero where dimensions are implicitly given by
the context. The matrix I is the identity matrix, and size is
given by context. The accents •̂, •̃, •̇, •̄, •̄, denotes estimate,
estimate error, time derivative, upper bound and lower bound

respectively. Some common mathematical expressions which
will be used are: The Euclidean norm for vectors and
Frobenius norm for matrices, ‖ • ‖, absolute value, | • | and
the transpose, •>. The representation of index sets will be
done with {1, ..., n} = {x ∈ Z|x ≤ n}.
A vector is said to be on the unit sphere u• ∈ S3 = {u• ∈
R3| ‖u•‖ = 1}. A vector can be represented in differ-
ent coordinate systems, the representation is denoted with
the superscripts •b, •c, •n which represents the body-fixed,
camera-fixed and earth-fixed (inertial) coordinate systems,
and will be called body-frame, camera-frame and inertial
frame. Lowercase will denote the indices of a landmark,
vector or matrix •i and •ij .

B. Rotation representation

Rotation is the attitude change between two coordinate
systems, and a rotation from coordinate system b to n is
denoted with subscript •nb. This can be represented with a
rotation matrix
Rnb ∈ {R3×3| RnbR>nb = I, det(Rnb) = 1}
which means Rnb ∈ SO(3). The rotational vector transfor-
mation is calculated with the rotation matrix xn = Rnbx

b.
The cross product is presented in matrix form S(x)y =
x× y, where S(•) is a skew-symmetric matrix

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


which gives S(•) = −S(•)>,x>S(•)x = 0, x>S(x) =
0, ∀x, S(x)y = −S(y)x. Moreover the cross-product gives
the difference in angle-axis between two vectors

S(x)y = ‖x‖‖y‖ sin(θ)u (1)

where θ is the angle between the vectors, and u is the axis
of the rotation with direction following the right hand rule of
the cross product, making it orthogonal to the two vectors.
Let the rotation matrix Rnb denote the rotation from the
body frame to the earth-fixed frame. The dynamics of the of
the rotation matrix is described by

Ṙnb = RnbS(ω) (2)

where ω = ωbnb is the angular velocity of the frame b relative
to n decomposed in b.

For discrete propagation, the Rodriguez formula can be
applied as in [23]

ω̆ =

t+∆t∫
t

ω(s)ds, ω̄ = ‖ω̆‖, uω =
ω̆

‖ω̆‖
(3)

Rnb(t+ ∆t) = RnbR(ω̆) (4)

R(ω̆) = (I + sin(ω̄)S(uω) + (1− cos(ω̄))S(uω)2) (5)

where ω̆ is the attitude increment.
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Fig. 1: Vector dynamics in inertial-frame

C. Unit Vector dynamics
As mentioned, directional measurements of a vector x can

be represented as a unit vector ux = x
‖x‖ . These vectors can

either be measured in the inertial-frame unx or body frame
ubx. The vector corresponding to the directional measurement
will have a magnitude, and a time derivative in the inertial-
frame

z = ‖xn‖ ẋn = wn
x (6)

By combining (2) and (6) we can get the time derivatives
of the vector magnitude and unit vector in inertial- and body-
frame, visualized in Figure 1,

z2 = (x)>x

2zż = 2(x)>ẋ

ż = (unx)>wn
x = (ubx)>wb

x (7)

These results are then used for deriving the time derivative
of the unit vector

u̇nx =
ẋn

z
− x

n

z2
ż

=
wn
x

z
− u

n
x

z
(unx)>wn

x

=
1

z
(I − unx(unx)>)wn

x

u̇nx = −1

z
S(unx)2wn

x

where it is clear that the unit vector will be maintained on
the unit sphere since (unx)>u̇nx = 0. For the dynamics of the
unit vector in body-frame we need to take into account the
rotation of the body-frame frame

xb = (Rnb)
>xn

⇓
ẋb = −S(ω)xb +wb

x

which gives the unit vector dynamics

u̇bx =
ẋb

z
− x

b

z2
ż

=
−S(ω)xb +wb

x

z
− x

b

z2
(ubx)>wb

x

= −S(ω)ubx +
1

z
(I − ubx(ubx)>)wb

x

= −S(ω)ubx −
1

z
S(ubx)2wb

x (8)

This unit vector is also maintained on the unit sphere by the
same argument. The inverted magnitude d = 1

z will have the
dynamic

ḋ = −(
1

z
)2ż

= −d2(unx)>wn
x = −d2(ubx)>wb

x (9)

where (7) is used.

D. Unit vector error and propagation

First, we reorganize the unit vector dynamic (8) into

u̇bx = −S(ω)ubx − diS(S(ubx)vb)ubx (10)

= −S(ω + diS(S(ubx)vb)ubx (11)

We then see that we also can use Rodriguez formula (5) to
propagate the unit vector, by integrating

ω̆ =

t+∆t∫
t

(ω + diS(S(ubx)vb) dt (12)

ubx(t+ ∆t) = R(ω̆)>ubx(t) (13)

It was also seen from the (1), that the cross-product contains
the angle information between two vectors. In fact the matrix
rotating a unit vector ûbx to ubx can be found by the closed
form formula, derived from the Rodriguez formula

ubx = R̃ûbx (14)

ũbx = S(ubx)ûbx, ǔ
b = (ûbx)>ubx (15)

R̃ = I + S(ũbx) +
1

1 + ǔb
S(ũbx)2 (16)

where we see that the first term in the Taylor expansion of
this rotation with respect to ũbx is

ubx ≈ (I + S(ũbx))ûbx (17)

III. EQUIVALENCE BETWEEN BEARING ONLY POSITION
ESTIMATION AND VELOCITY ESTIMATION USING

NORMALIZED VELOCITY

We first represent the ego-motion estimation similar to
what was presented in [14], where the goal is to estimate
the velocity of a vehicle provided that a camera and a
tactical IMU with roll and pitch estimates are available.
We then show that this mathematical system is identical to
the problem of filtering velocity and bearing measurements
to estimate the distance to a landmark, and thus we can
conclude that observers designed for one of the problems
is applicable to the other.

To build an observer based on normalized velocity mea-
surements, we need to examine the unit vector kinematics of
the normalized velocity. A vehicle has a position pn in the
inertial frame, and moves with a velocity

ṗn = vn (18)

and also has the acceleration

p̈n = v̇n = an



For simplicity, we assume that the IMU measurements are
transformed to the camera frame, thus the acceleration can
be measured by an IMU in camera frame, provided that it
has an internal gravity estimate gc from filtering

ac = R>ncan = f c − gc

In addition, we assume that the camera provides a normalized
velocity in the camera coordinates

ucv = R>ncunv = R>nc
vn

‖vn‖
and we introduce the inverted velocity magnitude dv = 1

‖vn‖
which will have similar time derivative as (9)

ḋv = −d2
v(u

n
v )>an = −d2

v(u
c
v)
>ac

If we then look at the time derivative of ucv we get

u̇cv = Ṙ>nbvndv + R>ncv̇ndv + R>ncvnḋv
= −S(ωc)R>nbvndv + R>ncandv −R>ncvnd2

v(u
c
v)
>ac

= −S(ωc)ucv + acdv − vcd2
v(u

c
v)
>ac

= −S(ωc)ucv + dv(I − ucv(ucv)>)ac

= −S(ωc)ucv − dvS(ucv)
2ac

Which means that we end up with the system

u̇cv = −S(ωc)ucv − dvS(ucv)
2ac (19)

ḋv = −d2
v(u

c
v)
>ac (20)

where we assume that we can measure ucv , ac, and ωc,
and we want to estimate the velocity magnitude ‖vc‖ = 1

dv
.

We then want to compare this to the system with bearing
and velocity measurements. The bearing measurement from
a landmark are as follows

ucδ = R>nc
δni
‖δni ‖

= R>nc
pni − pn

‖pni − pn‖
which is related to the velocity by

δ̇n = ṗni − ṗn = −vn

where we use (18) and ṗni = 0. We see that δni is the distance
vector between the vehicle and the landmark. By repeating
the steps done above, the time derivatives of ucδ and dδ =

1
‖δni ‖

can be calculated to be

u̇cδ = −S(ωc)ucδ + dδS(ucδ)
2vc (21)

ḋδ = d2
δ(u

c
δ)
>vc (22)

where we have the measurements ucδ , ω
c and vc, and we

want to estimate the distance to the landmark ‖δni ‖ = 1
dδ

We see that the systems (19)-(20) and (21)-(22) are mathe-
matically identical except a sign difference, since v̇n = an

and δ̇n = −vn.
If we then want to design an observer for the ego motion

estimation (19)-(20) we can use observers that are originally
designed for system (21)-(22), where range to a landmark
is estimated. This is an extensively studied system in the
literature, and several observers have been designed. In the
next section we will present the observers that have proven
global stability and apply them to the ego motion estimation.

IV. VELOCITY OBSERVERS

As stated, several observers exist to estimate the distance
to a landmark provided a bearing and gyro rate and velocity
measurements. However, in this section we apply them to
the camera velocity estimation. Where the velocity can be
estimated provided normalized velocity, acceleration and
gyro rate measurement.

What the nonlinear observers tested have in common is
that they have similar measurements and have proof of
global or semi-global stability. Even though the observers are
structured differently, with PE condition differently defined,
they all have in common that they rely on the unit vector
measurement to be non stationary in the inertial frame. For
the ego motion estimation, this means that the PE conditions
are fulfilled when the acceleration and velocity are not co lin-
ear. In addition we compare the observers to an EKF inspired
by the states used in robust visual inertial odometery [7]. A
qualitative comparison between the observers is presented in
Table I. In the rest of this section we present the sensor setup
for the ego motion estimation and present the observers that
will be compared.

A. Sensor setup

The IMU or AHRS is assumed to be of high quality
with an internal filter available to calculate gravity estimates
and biases. In addition a camera is available, providing
a information about the velocity direction(vehicle course).
The camera is calibrated, and the transformation between
the camera and the IMU is found through calibration. The
following measurements and known values are then:
• Constant transformations pccb and Rcb between the IMU

and and the camera.
• ωc = Rcbω

b, The gyro rate from the IMU in camera
frame

• ucv , normalized camera velocity in the camera frame
• âc = Rcb(f

b+gb)+S(ωc)pccb, perceived acceleration
provided by the IMU from the specific force and gravity
estimates together with the lever arm effect.

The terms related to jerk ω̇ is neglected and assumed to
be zero for this setup, as done for the sensor setup in [14].

As the observers will be able to estimate velocity from
only normalized velocity, the observers can be used either
for initializing visual SLAM or VO methods, with the setup
shown in Figure 3. The normalized velocity can then come
from a scheme as described in [2], where a normalized
velocity can be acquired from two-view algorithms such as
homography or the 5 point algorithm [17], thus not requiring
any initialization. Or in parallel with a visual SLAM or VO
as in Figure 2, acquiring the normalized velocity and fusing
it with the IMU data and return the metric velocity which
can be used for a drift free scale estimate.

B. Robust Extended Kalman Filter

Inspired by the work in [7], we use the robust EKF
for comparison. Where the distance estimate is inverted,
and the bearing and inverted range states are separated. As
we assume there are no biases in the IMU, and gravity is
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Fig. 2: Block diagram of a possible setup between the velocity estimation
and a SLAM/VO, where the VEL observer gets normalized velocity from
the SLAM/VO method, and fuses it with the IMU information which then
can be used to maintain a drift free scale for the visual SLAM/VO.
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Fig. 3: Block diagram a possible initialization setup, where a two-view
algorithms as explained in [2], that can provide a normalized velocity
without any initialization. The velocity observer can thus combine the
normalized velocity with IMU data and initialize the scale of a visual
SLAM/VO method, or provide velocity measurements.

assumed to be known. The states are xEKF = [(ucv)
>, dv]

>,
where dv = 1

‖vc‖ is the inverse metric speed, where the
dynamics are (19)-(20).

Conversely to the other observers, we show the discrete
time implementation for the EKF, and we use the euler
method to discretize the system, however we apply the
Rodriguez formula (5) as in section II-D for propagating the
unit vector

ωcu[k] = ωc[k] + dv[k|k]S(âc[k])ucv[k|k]

ucv[k + 1|k] = R(∆tωcu[k])>ucv[k|k]

≈ I −∆t(S(ωc[k])ucv[k|k]− dv[k|k]S(ucv[k|k])2âc[k])
(23)

dv[k + 1|k] = dv[k|k]−∆td2
v[k|k](ucv[k|k])>âc[k]

where k ∈ N denotes the kth iteration step, and •[k|l]
is the estimate of the state at time-step kth given the lth
measurement. In addition, ωc[k] and âc[k]) are the averaged
sensor values between tk and tk+1. When calculating the
Jacobi matrices we utilize (23)

F ekf =

[
∂ucv [k+1|k]
∂ucv[k|k]

∂ucv [k+1|k]
∂dv [k|k]

∂dv [k+1|k]
∂ucv[k|k]

∂dv[k+1|k]
∂dv [k|k]

]
(24)

∂ucv[k + 1]

∂ucv[k]
= I −∆t(S(ωc[k] + dv[k]S(âc[k])ucv[k])

− d[k]S(ucv[k])S(âc[k]))

∂ucv[k + 1]

∂dv[k]
= −∆tS(ucv[k])2âc[k]

∂dv[k + 1]

∂ucv[k]
= −∆td2

v[k](âc[k])>

∂dv[k + 1]

∂dv[k]
= I −∆t2dv[k](âc[k])>ucv[k]

The covariance matrix is then propagated according to

P [k + 1|k] = F ekfP [k|k]F>ekf +Rekf

where Rekf are approximated through linearization

Rekf = V

[
cov(ωc[k]) 0

0 cov(âc[k])

]
V > +Rreg (25)

where Rreg is a regularization matrix and

V =

[
∂ucv [k+1|k]
∂ωc[k]

∂ucv [k+1|k]
∂âc[k]

∂dv [k+1|k]
∂ωc[k]

∂âc[k]
∂dv[k|k]

]

∂ucv[k + 1|k]

∂ωc[k]
= ∆tS(ucv[k|k])

∂ucv[k + 1|k]

∂âc[k]
= −dv[k|k]S(ucv[k|k])2

∂dv[k + 1|k]

∂ωc[k]
= 0

∂âc[k]

∂dv[k|k]
= ∆td2

v[k|k](ucv[k|k])>

where the cov(ωc[k]) and cov(âc[k]) can be calculated
from the data sheet from the IMU, or found empirically.
The most challenging task is to find cov(âc[k]), as it is both
the combination of the gravity estimate and the specific force
measurement. The unit zekf = ucv(tk+1) velocity vector is
measured at time tk+1, the jacobian of the measurement is
thus trivial

Jekf =
[
I 03×1

]
The Kalman gain is then calculated using

Kekf = P [k|k]J>ekf (JekfP [k|k]J>ekf + cov(zekf ))−1

(26)

The the estimate update is as follows

xEKF [k + 1|k + 1] =

[
ucv[k + 1|k + 1]
dv[k + 1|k + 1]

]
(27)

=

[
ucv[k + 1|k]
dv[k + 1|k]

]
+Kekf (zekf − ucv[k + 1|k]) (28)

P [k + 1|k + 1] = (I −KekfJekf )P [k + 1|k] (29)



As the magnitude parameter dv is inverted, the observer is
said to be able to be initialized without any special procedure
[7]. However as the filter is based on the EKF, there are no
guarantees of convergence, and the requirements for having
the observer converge is not clear. Never the less we use this
observer as the state of the art that we would like to compare
the nonlinear observers with global stability when they have
their PE condition satisfied.

C. Sensor-centric observer - KF

The sensor-centric bearing-only SLAM is presented in
[20]. By augmenting the states, and transforming the outputs,
they are able to formulate the bearing only SLAM problem as
a linear system. This means it can be solved with a Kalman
filter using the Riccati equation and we, therefore, give it
the abbreviation KF . For a single bearing measurement
the states to be estimated are xKF = [vc, s]>, the input
wKF = âc. Where vc is the metric velocity of the camera,
and s is the speed; the resulting system dynamics are thus

ẋKF = AKF (t)xKF + BKF (t)wKF (30)
yKF = CKF (t)xKF (31)

where the time varying system matrices are partially built
up by sensor data. The matrices are then

AKF (t) =

[
−S(ωc(t)) 0

0 0

]
BKF (t) =

[
I

ucv(t)
>

]
(32)

CKF (t) =
[
I −ucv(t)

]
(33)

where the virtual measurement yKF = 0 works as a
constraint on the system. The system is proved to be Uni-
formly Completely Observable (UCO) if there exist a time
when ‖u̇nv‖ > 0, implying that the KF can be designed to
be globally exponentially stable (GES) [24]. However, as
the set-up will provide noise that is not Gaussian because
of the unit vector parametrization gives a banana shaped
distribution, the optimality of the Kalman filter can not be
expected. In addition the system state space model is clearly
not minimal, and the noise is state dependent. This may
compromise the performance of this observer for more noisy
measurements.

D. Position Observer - PO

The position observers presented in [22] and [25] have
measurements rotated in the inertial frame. However since
the comparison between the observers is made in the body-
frame, we transform the observers to work with measure-
ments in the body-frame. As the transformation from inertial
to body-frame can be regarded as a similarity transforma-
tion and hence preserves the observability properties of the
system, the observer in body-frame will have the same
properties as the observer in the inertial frame, which for
both observers are GES.

In [22] a similar framework as described in IV-C is
presented. However, the range is not explicitly estimated,
but implicitly estimated in the relative position estimate. It
is also shown how velocity bias estimation is possible. For

one landmark with estimate xPO = vc in camera-frame,
and without velocity bias estimation wPO = âc, the system
matrices are

APO(t) =
[
−S(ωc)

]
BPO =

[
I
]

(34)

CPO(t) =
[
S(ucv(t))

2
]

(35)

where the measurements are yPO = 0. The observer will
have the same pros and cons as the observer presented above,
although it can be argued that the states of the system are
minimal. A similar fixed gain version was presented in [25],
which is also able to estimate velocity bias. The simple
observer with one landmark measurement and without bias
estimation, in body-frame, is then

˙̂vcPO = −S(ωc)v̂cPO + âc − kPOS(ucv)
2v̂cPO (36)

In addition, as it is argued in [26], the difference between
finding gains through the Riccatti solution compared to using
fixed gains are just a matter of tuning. And as it is noted in
[22], by designing the Kalman filter with certain covariance
matrices, the observer (36) is recovered. Hence we will use
the fixed gain observer when we compare this setup to the
other observers. The observer is also proven to have GES,
assuming that a PE condition is satisfied. For a system with
one bearing measurement the PE condition is similar to the
KF above; there exist a time when ‖u̇nv‖ > 0.

E. Magnitude Observer - MO

The last observer was originally presented in [19], with
proof of semi-global asymptotically and locally exponen-
tially stability. The observer utilizes the dynamic of a unit
direction vector and how it relates to the magnitude of the
vector corresponding to the unit vector measurement. From
this, the inverse magnitude of the vector is estimated, leading
to vcMO = [

ucx
dv

]. Thus the state representation is identical to
the robust EKF in section IV-B. The nonlinear observer is
driven by the input âc and ωc, and is as follows

˙̂ubx = −S(ωc − kMOũ
c)ûcv + d̂vS(ûcv)S(ucv)â

c (37)
˙̂
dv = projd(d̂

2
v(u

c
v)
>âc − γMO(âc)>S(ucv)

2S(ûcv)ũ
b
x)
(38)

ũc = S(ucv)û
c
v (39)

the system is proven to have global stability when a
projection operator is applied in the estimation, and ‖u̇nx‖ >
0. This means that there also is a upper bound of what value
the estimate d̂v can take to guarantee convergence for the
system. It is then natural to think that a similar bound should
be set on the EKF as well to increase the robustness. Another
aspect with the MO observer is that it has the skew-symetric
structure similar to what is discussed in [15]. This means that
the observer can be tuned similarly to a second order system
by using the gains kMO = 2

√
αλ and γMO = α

‖Bu‖ , where
Bu = (âc)>S(ubx)2S(ûbx). Where the convergence rate will



increase linearly with α, and λ is the damping ratio of the
observer.

Remark 1: The PE condition discussed in this section are
a bit different, however they all depend on some excitation
of the normalized velocity in the inertia frame ‖unv‖ > 0 at
some time. However when uncertainty and noise is added to
the system, the requirement for the PE becomes larger result-
ing in that the normalized velocity measurement ‖unv‖ > 0
should be exited regularly to get good convergence.

V. SIMULATION RESULTS

The scenario presented in this section is a vehicle trav-
elling in a circle in 3D-space at constant velocity vb =
[0.5, 0, 0][m/s]. The trajectory of the vehicle can be seen in
Figure 4, which is the same trajectory used in the experiment.
The simulator is implemented using Euler integration, having
step length h = 0.025[s].

When comparing different observers, how they perform is
often related to the tuning of the observers. In this section, we
will also compare how easy it is to change the convergence
rate of the observers when the observers are implemented on
a continuous system without noise. We will also try to find
the tuning parameters that give the lowest root mean square
error (RMSE) for the selected trajectory and noise parameters
presented. We will regard this tuning as optimal, and the
mean and variance of the RMSE of consecutive Monte Carlo
(MC) simulations is a metric of how well the observers are
performing.

The choice of circular trajectory was also made so that
the system matrices would be close to constant, making it
easier to find what we call the optimal tuning, and thus the
comparison was made simpler.

In addition to the observers presented in section IV, we
introduce a velocity observer, where the direction measure-
ments are first filtered in the MO observer and later used as
measurements for the sensor-centric KF, the MO and KF are
thus in cascade and we named the filter XKF as it is inspired
by [27]. The motivation for this was to reduce the apparent
noise sensitivity of the sensor-centric KF which was seen in
the results of [28], where also the semi-global stability of
this setup is proven.

A. Simmulation without noise

To verify that the observers had the exponential stability
claimed by the authors, simulations were performed without
noise. In addition it was investigated how the convergence
rate could be tuned for the different observers. For the MO
observer, we were able to change the convergence rate of
the observer by utilizing the tuning presented in section
IV-E, which was confirmed through simulations. For the
PO observer with a single gain, the convergence rate was
related to the gain kPO (36), however, there seemed to be a
minimum value of the convergence rate, and choosing a gain
for faster convergence resulted in oscillations without faster
convergence. It was tested if the numerical implementation
played a role in the oscillations, however reducing the step
length of the discretization did not affect the oscillations. As
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Fig. 4: The figure shows the trajectory of the vehicle flying in a circle over
a plane with a camera pointing downwards. The green arrow represents
the normalized velocity measurement; red arrows represent the bearing
measurements from features that can be used for velocity estimation using
for instance homography
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Fig. 5: Logplot of the velocity magnitude estimation error. The observers
except of the MO was tuned to be as fast as possible. The XKF can not be
seen as it lies behind the KF line.

for the sensor-centric observer KF, the observer was tuned
by changing the diagonal entries for the measurement and
process noise covariance matrices. However, changing these
did not affect the rate of convergence of the observer. The
EKF was tuned with a combination of diagonal matrices and
changing the values of cov(ωc) and cov(âc) in (25). The
results can be seen in Figure 5, where the MO observer can
be tuned to have arbitrary fast convergence, the PO observer
has approximately similar convergence rate as the KF and
XKF, when not oscillating. And the KF and EKF did not
change convergence rate by changing the diagonal entries of
the covariance matrix. In [29], the notion of tuneability and
how it is connected to observability is presented. Whether
an observability analysis can explain the lack of tunable
convergence rate for the sensor-centric KF, XKF and PO
observers needs to be investigated further. The notion of
tunable convergence rate becomes increasingly important
when the observer is working with a controller. As it allows
the control designer to design the state feedback controller
to meet transient response specification and/or constraint by
increasing the convergence rate of the observer.



TABLE I: Qualitative comparisons of the observers presented

Observers States Observer Innovation Tuning parameters Stability PE condition

EKF [ucv , dv ] ỹ = ucv − ûcv QEKF , REKF Unknown Unknown

KF [vc, %] ỹ = 0− v̂c − ŝuc QKF , RKF GES u̇n > 0

PO vc ỹ = 0+ S(uc)2v̂c kPO GES
t+T∫
t

S(un(τ))2dτ > µI, ‖vc‖ > 0

MO [ucv , dv ] ỹ = S(uc)ûc kMO, γMO USGAS LES u̇n > µ, ‖vc‖ > cδ

B. Noisy simulation and tuning

For the noisy simulations, realistic values of the sensor
noise were chosen. The IMU measurements were corrupted
by white noise with standard deviation σω = 0.02I [rad/s]
and σf = 0.02I [m/s2], which is meant to resemble a
low cost MEMS IMU. The white noise in the bearing
measurements was σu = 0.00314I [rad], resembling a pixel
error for a camera with 90o field of view and 500 pixels
image height/width; the AHRS white noise was σR =
0.0116I [rad] giving a 3σ value of 2o; the velocity direction
had a white noise of σv = 0.1060I [rad], which is the
mean error from a homography with the presented setup
[14]. The bearing noise is orthogonal to the bearing un =
S(unx)wu, in which the noise wu is a white noise vector
wu = N (0,σu), and the same is applied to the noise of the
normalized velocity. As the unknown for the observers is the
magnitude of the velocity, we utilize the velocity magnitude
estimation error to compare the observers, and its RMSE as
a performance metric.

The four observers and the EKF we are comparing have
different tuning parameters. The MO observer has two pa-
rameters kMO and γMO; the PO has one kPO, this can
also be expanded to a matrix KPO ∈ R3×3 although
this expansion did not lead to improved performance. The
sensor-centric KF has two matrices, corresponding to the
process and measurement noise covariance noise matrices,
QKF ∈ R4×4 andRKF ∈ R3×3. As the XKF is a cascade of
the MO filter and the KF the tuning parameters are inherited
from the MO observer and the KF observer, and the EKF
has the tuning covariance matrices QEKF and REKF .

The observers were tuned using Monte Carlo (MC) simu-
lations, where the tuning parameters were chosen randomly.
For the candidate MO and PO observers, as there were few
parameters to choose from, choosing the pool of possible
tuning parameters was straightforward. The results from
these MC simulations can be seen in Figure 6 and 7. From
these simulations, it is evident that the MO observer is able to
estimate the velocity from a large set of tuning parameters
(yellow area), and the PO observer also seems to have an
optimal tuning.

To investigate how the sensor-centric KF and XKF ob-
server could be tuned properly, the covariance matrix of the
process noise and innovation was found empirically. This
was done by simulating the system in parallel with and
without noise, and the covariances were estimated from the
difference between these two simulations. As the observer
was implemented by Euler discretization, the covariance

estimate was of the discrete system, where ∆x = hf(x,u)

Q̂ = cov(∆x−∆xm)

= h2cov((AKF (tk)−AKF (tk)m)x

+ BKF (tk)u(tk)−BKF (tk)mu(tk)m)

where h is the discretization interval, and the tk is the
discrete time and AKF (tk) is the system matrix from (33)
with true sensor input, while AKF (tk)m has noisy input, the
same applies to BKF (tk) and u(tk) and their corresponding
noisy version. For estimating the measurement noise the
covariance was estimated from

R̂ = cov(y − ym)

= cov(0− CKF (tk)mx)

The covariance was estimated by running 10000 simula-
tions and averaging the covariance estimates from these runs.
The matrices were then tested by calculating the normalized
error (NE)

NEQ(tk) =

1

N

∑
[∆x(tk)−∆x(tk)m]>i Q̂

−1[∆x(tk)−∆x(tk)m]i

where [∆x(tk)−∆x(tk)m]i is the discrete process noise of
the ith MC simulation at time tk. From this test we could
verify that the covariance found was right by verifying that
E[NEQ(t)] ≈ 4 , as dim(Q̂) = 4.

Theses covariance matrices where then used as starting
point for the tuning of the KF and XKF. It was tried to add
a diagonal regularization matrix to these, witch worked for
the sensor-centric XKF. For the KF the tuning variant giving
the best results was multiplying the covariance matrices by
a gains QKF = qgQ̂KF and RKF = rgR̂KF . The results
of the KF simulations can be seen in figure 8. The initial
covariance P (0) was initialized with its true value.

For the sensor-centric observers the KF achieves good
results when the covariance matrix is found empirically,
conversely, the XKF version has better results when the
tuning covariance matrices had larger diagonal entries. In
Figure 9 we see how the tuning parameters of the MO part
of the XKF affect the observer. Both the tuning parameters
of the MO and KF are varied, however, the most significant
parameter for the performance of the XKF seems to be the
kMO. The authors believe this is related to the sensitivity of
the KF part of the cascade has to noisy measurements, and
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how noisy the measurement the KF gets, is highly related to
the parameter kMO. Hence from the figure, we see that the
gain of the MO observer should be kMO = 0.5, and thus the
MO observer will work as a low-pass filter for the bearing
measurements. When this was the case, the XKF seemed to
have a much larger set of tunings parameters that gave good
results compared to the KF.

In Figure 8 we see the result from the MC simulations
for the sensor-centric KF, where the best result with lowest
RMSE was was qg = 0.22 and rg = 4. Why the empirical
covariance did not perform the best is probably because the
noise is state dependent and the empirical noise was found
for actual state estimates.

The EKF was similarly tuned, where the covariance of
both âc and ucv were found through 10000 MC simulations,
and later a tuning parameter rEKF and qEKF are used so
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to diag([0.01, 0.02, 0.02])

that

QEKF = V cov([ωc; âc])V > + IqEKF

REKF = cov(ucv)rEKF

where the best values were found to be qEKF = 2.6 · 10−3

and rEKF = 3.6, by several MC simulations.
From the MC simulations, we thus found what we re-

garded as the best tuning. To test how the observers per-
formed with the chosen tuning, 10000 MC simulations were
run. The mean and variance of the RMSE can be seen
in Table II, where we see that the observers performing
best is the MO observer followed by the XKF. As these
observers have the combination of low mean and variance



TABLE II: Table of the resulted mean and variance of the RMSE for 10000
MC simulations for the selected tuning of the observers. The columns with
B ending is for normal noise described in section V-B, while the C ending
is from the high noise scenario described in section V-C

Observer Mean RMSE B VAR RMSE B Mean RMSE C VAR RMSE C
(MO) 0.046 1.47 · 10−4 0.192 5.7·10−3

(PO) 0.076 4.49 · 10−4 0.324 1.8 · 10−3

(KF) 0.061 0.030 0.638 6.6·10−4

(XKF) 0.051 1.349 · 10−4 0.414 0.015
(EKF) 0.067 2.473 · 10−4 2.592∗ 4.74∗
∗ As 45% of the EKF had problems converging and ended up with an
RMSE that was saturated to 5. None of the other observers had similar
problems.

of their RMSE. We see that the variance of the sensor-
centric KF is significantly larger than the other observers,
and by examining the histogram of the RMSE values from
the MC simulation we see that for about 0.61% of the runs
the KF fails to converge properly. The relationship between
the noise and the estimate can also explain why this filter
fails to converge for certain runs. For the XKF this problem
was not seen, possibly because the noise was significantly
reduced by the MO filter.

C. High Noise simulation

To see how robust the methods are to noisy measurements,
a MC simulation was run where the variance of all the noise
parameters are increased by three times. The tuning was
kept at similar to the previous simulation to see how the
observers would react to the change. The results can be seen
in Table II in columns Mean RMSE C and VAR RMSE
C, where it is seen how the different observers react to the
higher noise. The PO, KF and XKF gets a substantial bias
because of the noise with varying variance. The MO also
gets substantial worse results however it is also has the best
performance for this simulation. The EKF fails on almost
half of the simulations which can be seen in Figure 10. The
biggest surprise was the degeneration of the XKF, as this
has previous shown resilience toward noise. However, a re-
tuning of the observer would make it preform better, which
is expected to be true for all the observers, especially the
EKF.

VI. EXPERIMENTAL VERIFICATION

A. Experimental setup

The experimental verification was carried out by using
an Octocopter flying in a circle with an autopilot for 150
seconds. The data set was recorded from a payload consisting
of SenTiStack, which is built up of a SenTiBoard, a uBlox
GNSS receiver and a STIM300 tactical grade IMU [30].
The SenTiBoard was also connected to the flash signal of
a uEye UI-3140CP camera, time stamping the flash from
the camera so that accurate timing from the images where
available. The sensor data and images where stored using
an Odroid UX4. Before the flight, an IMU, camera and
temporal calibration was performed using the Kalibr toolbox
[31], [32], finding IMU biases, as well as the time delay
and coordinate transformation between the camera and the
IMU. In the data set presented in this article, the image

Fig. 10: The velocity magnitude estimate of 50 trajectories of the MO vs
EKF in the high noise scenario described in section V-C. The upper plot
shows the estimates from the EKF while the lower shows the MO estimates.
The 50 trajectories were chosen randomly from the 10000 MC trajectories

time delay estimated was less than 3 ms, and as the timing
of the image was related to the flash signal hence it was
independent of the kernel load and thus assumed to be
constant. As the IMU was tactical grade, the acceleromter
and gyro biases were assumed constant for the duration of
the experiment and respectively ba = [0.03, 0.005, 0.085]>

[m/s2] and bω = [0.007, −0.0002, 0.0017]> [rad/s]. The
gravity vector was also estimated using this scheme and was
propagated using the gyro for the rest of the flight and used
as a gravity measurement, which was possible as the gyro-
bias was stable for the time frame recorded. The data set
used, hence consists of synchronized and calibrated IMU and
camera measurements, in addition, gravity direction estimate
in body is correctly initialized; GNSS is also available as
navigation reference.

We also wanted to verify the velocity observers to the
homography observer presented in [14]. The nonlinear ho-
mography observer will be denoted HOM. As we wanted
to compare the observers to the one based on homography,
we flew over a flat field, so that we could use homogra-
phy transformation between two images to get the camera
velocity we needed. For more detail on how this is done
see [14]. Although we emphasize that for the observers
using normalized velocity, the camera velocity can come
from many other computer vision algorithms. For feature
extraction we used the Kanade-Lucas-Tomasi feature tracker
[33], the homography matrix was found with a 4-point direct
linear transformation (DLT) [34] and outlier rejection was
done using RANSAC. The velocity was extracted from the
Homography using techniques based on [35]. As discussed
in [14], the homography can be a limitation for several
scenarios, nevertheless, our experience is that the method is
superior to the other methods based on epi-polar geometry
when the features are observed on a close to planar surface
[36]. We therefore also chose to use the homography to
acquire the camera velocity, and this velocity was then nor-
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Fig. 11: The figure shows the trajectory of the vehicle for the experimental
verification. The green arrow represents the normalized velocity measure-
ment; the red arrows represent the bearing measurements from the camera.

malized to fit into the unit vector framework. Alternatively
we could also apply the two-view framework in [2], where
homography and the 5 point algorithm is used in parallel and
the velocity is chosen through a weighting scheme. This also
shows the flexibility of the unit velocity framework, by how
easily the unit velocity measurement is acquired from either
the homography or essential matrix.

The velocity reference magnitude in Figure 12 was the
ublox GNSS velocity. For the reference velocity in Figure
13 a RTK and camera aided inertial navigation system
(INS) was utilized; based on the unit quaternion and a
multiplicative extended Kalman filter (MEKF) [37].

B. Experimental Results

The scenario presented in this section is a vehicle travel-
ling in a circular pattern in 3D-space, with a camera looking
downwards. The trajectory of the vehicle can be seen in
Figure 11, where the GNSS measurements, velocity and
bearing measurements at the last frame are shown.

For the experimental data set, the MO and PO observers
were tuned similarly to the simulations. The XKF, KF and
EKF had to be re-tuned, which was done as in the simulations
using MC simulations.

The continues-time observers were also discretized using
forward Euler at every image time stamp, where the mea-
surements from the IMU were integrated between the images.
The observers were tested on the data with two different ini-
tial condition, and the results can be seen in Table III. From
Figure 12, we see how the different observers perform on
the recorded data set when the velocity was initialized with
magnitude ‖v̂c‖ = 3m/s. The MO observer has comparable
results to the HOM observer, and preforms superior to the
other unit vector observers, with fast convergence and low
RMSE error. The EKF starts out with a poor transient, that
was not seen when the observer was initialized closer to the
true value. However the EKF is able to get satisfactory results
with a bit more error than the MO and HOM. The PO, KF
and XKF filter are able to stabilize their estimates, though
with varying error. The PO has slow convergence, though, it
gets good accuracy after convergence. The benefit of filtering
the unit vector with the MO observer is also apparent as the

sensor-centric XKF preforms better than the sensor-centric
KF also on the experimental data. In Figure 13, we see
the estimated velocities compared to the estimated velocity
from the GNSS and camera aided INS, and especially MO,
HOM and eventually PO are able to provide accurate velocity
estimates for the experimental setup.
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Fig. 12: The upper plot shows the velocity magnitude estimate combined
with the norm of the GNSS velocity, while the bottom plot shows the
velocity error
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Fig. 13: The figure show the estimates of the velocity of the camera
compared to the reference velocity.

As some of the observers use the inverted velocity magni-
tude as state, it is natural to examine what happens when the
inverted estimate gets to large. The observers was therefore
initialized with a small velocity. For a velocity smaller
than ‖v̂c‖ ≤ 0.11m/s the EKF had problems converging.
A test was therefore preformed just above this limit with
initial value ‖v̂c‖ = 0.115m/s where the result can be
seen in Figure 14. We see that all the nonlinear observers
are able to converge nicely, even the MO which relies on
inverted magnitude estimate had no problem, even without
the projection activated. The EKF however seems to get
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Fig. 14: The upper plot shows the velocity magnitude estimate combined
with the norm of the GNSS velocity, while the bottom plot shows the
velocity error.

TABLE III: RMS error from the experimental results in Figure 12

MO PO XKF KF EKF HOM
1:70 ≤ t ≤ 110 0.308 0.585 0.270 0.294 0.381 0.215
110 ≤ t ≤ 150 0.0542 0.0599 0.307 0.477 0.107 0.0820
2:70 ≤ t ≤ 110 0.346 0.205 0.336 0.260 47.7 0.281
110 ≤ t ≤ 150 0.0543 0.0762 0.282 0.244 0.107 0.0855

trouble when the inverted estimate becomes small enough,
and it overshoots the estimates and uses tens of seconds to
converge. Once they converged all have similar accuracy as
the previous run, as expected.

C. Error in Gravity

A possibly optimistic assumption for the presented setup
is that an accurate gravity estimate is available through
rotation of the gravity vector in NED/ENU coordinates using
AHRS measurements. However, there exist several industrial
AHRSs with sub degree error in pitch and roll. To evaluate
how an error in gravity could affect the observers, the data
set was ran with an time-varying error of the gravity direction
oscillating between 0.2o-0.4o. The resulting performance can
be seen in Figure 15,with the corresponding RMS errors
presented in Table IV. The velocity estimates were initialized
at ‖v̂c‖ = 0.115m/s.

TABLE IV: RMSE error from the experimental results in Figure 15 with
the error in gravity oscilationg from 0.2o−0.4o

MO PO XKF KF EKF HOM
70 ≤ t ≤ 110 0.324 0.297 0.348 0.300 NaN 0.212
110 ≤ t ≤ 150 0.192 0.277 0.173 0.463 NaN 0.101

We see that the nonlinear observers are not destabilized,
and are variably affected by the error introduced. Though
the EKF diverged in this scenario the initial estimate d̂v
was too large. Of the nonlinear observers, the worst affected
is the PO observer, which has large oscillations, while the
least affected is the HOM observer that has almost the same
RMSE, but in this scenario the error is oscillating. The MO
observer is also affected by the error, but less than the PO,
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Fig. 15: The upper plot shows the velocity magnitude estimate combined
with the norm of the GNSS velocity, while the bottom plot shows the
velocity error, for the data set run with an error in gravity oscilationg from
0.2o−0.4o

this can be due to the slow convergence of the PO observer.
A surprising result was that the XKF in this scenario had
actually better results than without the error. Why that was
was the case is uncertain, but it could maybe be because
the velocity estimates of the XKF were shifted upwards as
a result of the added gravity error, which can be seen by
comparing Figure 12 and 15.

From the experimental results, we thus see that the setup
presented is able to estimate the velocity of the vehicle, with
global convergence of the velocity estimate, by only having
calibrated IMU/AHRS and camera measurements. This also
shows that the ego-motion estimation can be performed by
the observers presented. The setup presented does not need
the camera to observe a plane nor observe features over sev-
eral images. As it uses normalized velocity as measurement,
it can get its camera velocity estimate from VO or visual
SLAM methods. It can also be used to scale a converged
visual SLAM solution, if a sufficiently accurate IMU is
present. It was also shown how the nonlinear observers
had more robust behavior than the equivalent robust EKF
implementation.

It was also seen how the fixed gain observers were easier
to tune, and could reuse their tuning on the experimental data
set. The proposed setup can either be used for initializing a
VO or VIO algorithms if a calibrated IMU/AHRS is available
or it can provide globally stable velocity estimated in-itself
for globally stable bearing-only navigation methods such
as [20], [25], [38], paving the way for a globally stable
SLAM solution with calibrated IMU, camera and AHRS
measurements.

VII. CONCLUSION

We presented a comparative study of globally stable
observers applied to the ego motion estimation. The solutions
give globally stable velocity estimates provided that camera,
IMU and AHRS measurements are available. The compari-



son was shown both in simulations and on experimental data,
with varying results for the different observers. The tuning
of the different observers was discussed and performed using
Monte Carlo simulations and by estimating the measurement
and process noise of some of the observers. In simulations
the MO observer performed the best, followed by the XKF
observer, where it was also shown how the MO observer
could work as a low-pass filter for unit vector measurements.
Also on experimental data, the MO observer was shown to
have the best overall performance of the velocity direction
observers, with fast convergence and small RMSE for steady
state results. The nonlinear observers were also compared to
an EKF, and the observers were shown to have a more robust
performance than the EKF.

Nevertheless, the results of this article confirms that ego-
motion estimation with camera is possible with global con-
vergence of the velocity estimate, provided that an IMU,
AHRS and camera is available, which becomes a more
realistic setup as IMU and AHRS sensors improve their
performance in the future.
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