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Abstract. We consider the initial-value problem for the bidirectional Whitham equation, a system which combines
the full two-way dispersion relation from the incompressible Euler equations with a canonical shallow-water nonlinear-
ity. We prove local well-posedness in classical Sobolev spaces, using a square-root type transformation to symmetrise
the system.

1. Introduction and main results

We consider the bidirectional Whitham equation

∂tη = −K∂xu− ∂x(ηu)

∂tu = −∂xη − u∂xu,
(1.1)

formally derived in [1, 17] from the incompressible Euler equations to model fully dispersive shallow water waves
whose propagation is allowed to be both left- and rightward. Here, η denotes the surface elevation, u is the
rightward velocity at the surface, and the Fourier multiplier operator K is defined by

K̂v(ξ) =
tanh(ξ)

ξ
v̂(ξ), (1.2)

for all v in the Schwartz space S(R). By duality, the operator K is well-defined on the space of tempered
distributions, S ′(R). The model (1.1) is the two-way equivalent of the Whitham equation

ut +K
1
2ux + uux = 0, (1.3)

a nonlocal shallow water equation that in its simple form still captures several interesting mathematical features

that are present also in the full water-wave problem. The operator K
1
2 is the square root of the operator K defined

in (1.2), most easily defined by considering the action of these operators in Fourier space. The features of (1.3)
include local well-posedness [7], travelling waves [3, 8, 10], a heighest, cusped wave [12] and wave breaking [13].

The bidirectional Whitham equation (1.1) is mathematically interesting because of its weak dispersion, and
contains a logarithmically cusped wave of greatest height [9] and solitary waves [18]. Experiments and numerical
results indicate surprisingly good modelling properties for this model, as well as for several other ’Whitham-like’
equations and systems, see [4, 5, 19]. Still, we regard our result as a mathematical one: the system (1.1) is
well-posed, but the set of initial-data for which we can control the life-span is bounded away from a zero surface
deflection.1

It should be emphasized that (1.1)-(1.2) evolves quite delicately as η perturbs around 0: locally well-posed
for η strictly positive, ill-posed if η becomes negative (see the observations in [15]), and possibly unstable for η
non-negative. This indicates the significance of studying (1.1)-(1.2) mathematically besides its role as a model for
water waves. In this paper we consider the well-posedness of (1.1)-(1.2) with a rigorous proof.

The weak dispersion of (1.1) clearly suggests to view it as a perturbation of a hyperbolic system. One could
symmetrise the system in many ways, for example by using matrices with diagonals (1, η) or (1/η, 1). In this paper,
we adopt the transformation η 7→ √η, sometimes used in physical settings as a sound speed transformation and
in the blow-up analysis in fluid mechanics (cf. [6]), to transfer the system (1.1) into a canonical form which may
be divided two parts: the usual hyperbolic part (can be treated as [16]) and a new nonlocal part (will be mainly
focused on). We also refer to [11] for the full details2. Recently, surface tension was taken into account in (1.1) in

[14] so that K̂v(ξ) = (1+βξ2) tanh(ξ)
ξ v̂(ξ), β > 0, and local well-posedness was proved by the modified energy method;

however, this method does not apply to our case (β = 0) as the authors pointed out in [14, Remark 1.2]. Finally,
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1It is an interesting question how this aligns with the experimental data in [4], apparently not displaying this shortcoming. One

possibility is that classical Sobolev spaces are too large for (1.1). We hope to make the reader aware of these facts.
2This manuscript [11] on arXiv aims to provide readers with more details and will not be published elsewhere.
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we view our result within a broader framework, a program to investigate the interplay between dispersive and
nonlinear effects in nonlocal equations, and aim to continue to investigate what solutions and properties similar
equations allow for.

Our main result is then as follows.

Theorem 1.1. Let (η0, u0) be initial data such that inf η0 > 0 and

(
√
η0 −

√
η̄, u0) ∈ HN (R) (1.4)

for some positive constant η̄. Then the equation (1.1) is locally well-posed. There exist a positive time T > 0 and
a classical solution (η, u)tr of (1.1) with (η, u)|t=0 = (η0, u0) that is unique among solutions satisfying

(
√
η −
√
η̄, u) ∈ C

(
[0, T ];HN (R)

)
∩ C1

(
[0, T ];HN−1(R)

)
.

The solution depends continuously on (η0, u0) with respect to the same metric.

It should be noted that in the statement of Theorem 1.1 the constant η̄ is fixed, whence the metric is fixed, too.
The proof of Theorem 1.1 is presented throughout Sections 2–3. Section 2 contains the statement and reformulation
of the problem, as well as necessary preliminaries. In Subsection 3.1 we obtain a short-time existence result for the
linearised and regularised problem. Subsection 3.2 is devoted to the study of solvability of the linearised problem.
We finally give the proof of the main theorem in Subsection 3.3.

2. Preliminaries and setup of the problem

Let Lp(R), p ∈ [1,∞], be the standard Lebesgue spaces. Similarly, let Hs(R) = (1 − ∂2
x)−s/2L2(R) be the

Bessel-potential spaces with norm

‖ · ‖Hs(R) = ‖
(
1− ∂2

x

)s/2 · ‖L2(R), s ∈ R,

and we denote by (·, ·)2 the usual product for L2 spaces. For any Banach space Y, let Ck
(
[0, T ];Y

)
be the space

of functions u : [0, T ]→ Y with bounded and continuous derivatives up to kth order, normed by

‖f‖
Ck
(

[0,T ];Y
) =

k∑
j=0

sup
t∈[0,T ]

∥∥∂jt f(t, ·)
∥∥
Y.

We write f . g when f ≤ cg for some constant c > 0, and f h g when f . g . f . Finally, for a given positive
constant η̄ and any function η, let

λ̄ = λ(η̄) and ζ = 2(λ(η)− λ̄),

where λ =
√
· is a shorthand to ease notation. Then (1.1) may be expressed as

∂tζ + u∂xζ +
ζ + 2λ̄

2
∂xu+

2

ζ + 2λ̄
K∂xu = 0,

∂tu+ u∂xu+
ζ + 2λ̄

2
∂xζ = 0,

or, with

U =

(
ζ
u

)
, A(U) =

(
u ζ+2λ̄

2
ζ+2λ̄

2 u

)
and B(U) =

0
2

ζ + 2λ̄
0 0

 ,

as

∂tU +A(U)∂xU +B(U)K∂xU = 0. (2.1)

The system (2.1) is hyperbolic with a nonlocal dispersive perturbation and we shall look for solutions in Sobolev
spaces embedded into L∞(R). One notes that the initial data ζ0 = 2(λ(η0) − λ̄) satisfies ζ0 + 2λ̄ ≥ 2

√
inf η0 > 0

and may thus pick a positive constant µ such that λ̄ ≤ µ−1 and

2µ ≤ ζ0 + 2λ̄ ≤ (2µ)−1, (2.2)

that we will use below. The initial data U(0, x) for our problem shall be denoted by

U0 = (ζ0, u0)tr, (2.3)
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where tr denotes the transpose of a matrix. Finally, let U (k) = (∂kxζ, ∂
k
xu)tr, and define the partial and total energy

functionals as

E(k)(t, U) =
∥∥U (k)(t, ·)

∥∥2

L2 =
∥∥ζ(k)(t, ·)

∥∥2

L2 +
∥∥u(k)(t, ·)

∥∥2

L2

EN (t, U) =
N∑
k=0

E(k)(t, U),

respectively. We will assume the integer N ≥ 2 and sometimes write simply EN (t), and use EN (U0) for EN (0, U0).

3. Proof of the main theorem

3.1. The regularised and linearised problem. For 0 < ε � 1, let Jε be a standard mollifier based on some
smooth and compactly supported function % on R. Denote by N0 the set of non-negative integers. We consider
first the regularised problem

∂tUε + Jε
[
Jε(A(V ))∂x(JεUε)

]
+ Jε

[
Jε(B(V ))K∂x(JεUε)

]
= 0, (3.1)

with initial data Uε(0, x) = U0(x). Here, for any positive number T1, it is assumed that

V = (ϕ, v)tr ∈ C
(
[0, T1];HN (R)

)
∩ C1

(
[0, T1];HN−1(R)

)
satisfies

EN (t, V ) ≤ 2EN (U0),

µ ≤ ϕ+ 2λ̄ ≤ µ−1,
(3.2)

for all (t, x) ∈ [0, T1]× R. We will make repeated use of the following standard estimates [16].

Lemma 3.1. Mollification is continuous L∞ → BUC, and for k, l ∈ N0,

‖Jεf‖Hk+l . ε−l‖f‖Hk ,

‖(Jε − Jε′)f‖Hk . |ε− ε′|‖∂xf‖Hk .

Proposition 3.2. For any 0 < ε � 1, N ≥ 2 and T1 > 0 as in (3.2) the regularised problem (3.1) has a unique
solution Uε ∈ C1

(
[0, T1];HN (R)

)
.

Proof. We express (3.1) as an ODE in the Hilbert space HN (R):

∂tUε = F (Uε), Uε(0, x) = U0(x), (3.3)

with

F (Uε) = −Jε
[
Jε(A(V ))∂x(JεUε)

]
− Jε

[
Jε(B(V ))K∂x(JεUε)

]
=: F1(Uε) + F2(Uε).

To use Picard’s theorem to prove the existence of a positive time Tε and a unique solution Uε ∈ C1
(
[0, Tε];H

N (R)
)

of the regularised problem (3.3), one needs to verify:
(i) the map F is bounded from HN (R) to HN (R);
(ii) F is locally Lipschitz continuous on any open set in HN (R).

Since the term F1(Uε) comes from the usual hyperbolic part, we only focus on F2(Uε) involving the nonlocal
operator K. First notice that since tanh(|ξ|) ≤ 1, it holds that

‖K∂xf‖2Hs =

∫
R

ξ2 tanh2(ξ)

ξ2
(1 + ξ2)s|f̂(ξ)|2 dξ ≤ ‖f‖2Hs . (3.4)

To annihilate the constant term appearing in ϕ + 2λ̄ in B(V ) for estimates in Sobolev spaces, we then shall use
the following homogeneous estimates (cf. [16])

‖∂kx(fg)‖L2 . ‖f‖L∞‖∂kxg‖L2 + ‖g‖L∞‖∂kxf‖L2 , k ∈ N0, (3.5)

and assumption (3.2) and Lemma 3.1 to obtain

‖∂N+1
x

(
Jε(B(V ))K∂x(JεUε)

)
‖L2 . ‖B(V )‖L∞‖∂N+1

x K∂x(JεUε)‖L2 + ‖K∂xUε‖L∞‖∂N+1
x Jε(B(V ))‖L2 . (3.6)

On the other hand, one has

‖Jε(B(V ))K∂x(JεUε)‖L2 . ‖B(V )‖L∞‖K∂x(JεUε)‖L2 . (3.7)
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Thus, by Gagliardo–Nirenberg interpolation, we use (3.2), (3.4) and (3.6)-(3.7) to estimate

‖F2(Uε)‖HN .
N∑
i=0

‖Jε(B(V ))K∂x(JεUε)‖
1− i

N+1

L2 ‖∂N+1
x

(
Jε(B(V ))K∂x(JεUε)

)
‖

i
N+1

L2

. ‖B(V )‖L∞‖K∂x(JεUε)‖HN+1 + ‖K∂xUε‖L∞‖∂N+1
x Jε(B(V ))‖L2

. (µε)−1‖Uε‖HN + (µε)−N−1‖Uε‖H1

N∑
i=0

EN (t, V )
i
2

. (µε)−N−1‖Uε‖HN .

(3.8)

The local Lipschitz continuity of F on any open set of HN (R) results from its linear dependence in U and similar
estimates as above:

‖F (U1
ε )− F (U2

ε )‖HN . (µε)−N−1‖U1
ε − U2

ε ‖HN .

�

3.2. Solvability of the linearised problem. In this subsection we develop a priori estimates enabling us to
take a limit in the regularised equation (3.1), thereby solving the linearised problem

∂tU +A(V )∂xU +B(V )K∂xU = 0, (3.9)

with U(0, x) = U0(x). The main estimates appear in the proof of the following result.

Proposition 3.3. For any N ≥ 2 and any µ as in (2.2) and (3.2) there exist a positive number T2 and a unique
solution U ∈ C

(
[0, T2];HN (R)

)
∩ C1

(
[0, T2];HN−1(R)

)
of (3.9) that satisfies

max
0≤t≤T2

EN (t, U) ≤ 2EN (U0), (3.10)

where the above norms of U for a fixed N depend only on µ and EN (U0).

Proof. Uniform bound. We apply ∂kx , 0 ≤ k ≤ N to (3.1) and integrate by parts to get

1

2

d

dt
E(k)(t, Uε) = −

k∑
l=0

C lk
(
Jε(A(V (l)))∂x(JεU (k−l)

ε ),JεU (k)
ε

)
2

−
k∑
l=0

C lk
(
Jε(B(l)(V ))K∂x(JεU (k−l)

ε ),JεU (k)
ε

)
2
.

(3.11)

For the same reason as before, we only focus on the term involving the nonlocal operator K. Observe first that(
Jε(B(l)(V ))K∂x(JεU (k−l)

ε ),JεU (k)
ε

)
2

= 2

∫
R
Jε
(

1

ϕ+ 2λ̄

)(l)

K∂x(Jεu(k−l)
ε )Jεζ(k)

ε dx.

The case l = 0 is straightforward, as∫
R
Jε
(

1

ϕ+ 2λ̄

)
K∂x(Jεu(k)

ε )Jεζ(k)
ε dx . µ−1‖K∂xu(k)

ε ‖L2‖ζ(k)
ε ‖L2 . µ−1‖u(k)

ε ‖L2(R)‖ζ(k)
ε ‖L2 .

On the other hand, when 1 ≤ l ≤ k, Leibniz’s rule and the assumptions (3.2) on V yield that∥∥∥∥Jε(( 1

ϕ+ 2λ̄
)(l)
)∥∥∥∥
L2

. µ−(l+1)
(
‖ϕ(l)‖L2 + · · ·+ ‖∂xϕ‖L2‖∂xϕ‖l−1

L∞
)
. µ−(l+1)

N∑
i=1

(
2EN (U0)

) i
2 .

For the same range of l, we thus deduce that∫
R
Jε
(

1

ϕ+ 2λ̄

)(l)

K∂x(Jεu(k−l)
ε )Jεζ(k)

ε dx .
N∑
i=1

(
2EN (U0)

) i
2 ‖K∂xu(k−l)

ε ‖L∞‖ζ(k)
ε ‖L2

.
N∑
i=1

(
2EN (U0)

) i
2 ‖u(k−l)

ε ‖H1‖ζ(k)
ε ‖L2 .
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We then insert the above three estimates into (3.11) and conclude that

d

dt
EN (t, Uε) .

(
1 +

N∑
i=1

(
2EN (U0)

) i
2

)
EN (t, Uε),

and Grönwall’s inequality now guarantees the existence of

T2 h min

T1,
ln 2

1 +
∑N

i=1

(
2EN (U0)

) i
2


such that

max
0≤t≤T2

EN (t, Uε) ≤ 2EN (U0). (3.12)

The family {Uε}ε is therefore uniformly bounded in C
(
[0, T2];HN (R)

)
.

Convergence. We shall now prove that a subsequence of the family {Uε}ε defines a Cauchy sequence in
C
(
[0, T2];L2(R)

)
. By (3.1), the difference Uε − Uε′ of two solutions of the regularised problem satisfies

1

2

d

dt
‖Uε − Uε′‖2L2 = −

(
Jε[Jε(A(V ))∂x(JεUε)]− Jε′ [Jε′(A(V ))∂x(Jε′Uε′)], Uε − Uε′

)
2

−
(
Jε[Jε(B(V ))K∂x(JεUε)]− Jε′ [Jε′(B(V ))K∂x(Jε′Uε′)], Uε − Uε′

)
2

=: I + J.

Again we only estimate J , for this, we split it as follows:

J = −
(
Jε[Jε(B(V ))K∂x(Jε(Uε − Uε′))], Uε − Uε′)2 − (Jε[Jε(B(V ))K∂x((Jε − Jε′)Uε′)], Uε − Uε′

)
2

−
(
Jε[(Jε − Jε′)(B(V ))K∂x(Jε′Uε′)], Uε − Uε′)2 − ((Jε − Jε′)[Jε′(B(V ))K∂x(Jε′Uε′)], Uε − Uε′

)
2

=: J1 + J2 + J3 + J4.

It follows from Lemma 3.1 that

J1 . ‖B(V )‖L∞‖Uε − Uε′‖2L2 . µ−1‖Uε − Uε′‖2L2 ,

J2 . |ε− ε′|‖B(V )‖L∞‖Uε′‖H1‖Uε − Uε′‖L2 . |ε− ε′|µ−1EN (U0)
1
2 ‖Uε − Uε′‖L2 .

Similarly, by the assumption (3.2) on V , we obtain

‖(Jε − Jε′)(B(V ))‖L∞ . µ−2‖(Jε − Jε′)ϕ‖L∞ ,

which via Lemma 3.1 leads to

‖(Jε − Jε′)(B(V ))‖L∞ . |ε− ε′|µ−2EN (U0)
1
2 .

One thus obtains

J3 . ‖(Jε − Jε′)(B(V ))‖L∞‖Uε′‖L2‖Uε − Uε′‖L2 . |ε− ε′|µ−2EN (U0)‖Uε − Uε′‖L2 .

and

J4 . ‖(Jε − Jε′)[Jε′(B(V ))K∂x(Jε′Uε′)]‖L2‖Uε − Uε′‖L2

. |ε− ε′|
(
‖B(V )‖L∞‖K∂2

xUε′‖L2 + ‖K∂xUε‖L∞‖∂xB(V )‖2
)
‖Uε − Uε′‖L2

. |ε− ε′|(EN (U0)
1
2 + µ−1)µ−1EN (U0)

1
2 ‖Uε − Uε′‖L2 .

We conclude that
d

dt
‖Uε − Uε′‖L2 .µ,EN (U0) ‖Uε − Uε′‖L2 + |ε− ε′|,

which by Grönwall’s inequality gives that

max
0≤t≤T2

‖Uε − Uε′‖L2 . |ε− ε′|. (3.13)

The remaining part is a standard procedure based on (3.12) and (3.13) to complete the proof of Proposition
3.3. �
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3.3. Proof of Theorem 1.1. In this subsection we give the proof of the main result. We note first the following
lemma, which is immediate from the uniform bound (3.10) in Proposition 3.3.

Lemma 3.4. There exists T3 ∈ (0, T2], depending only on N and µ, such that if the initial data U0 satisfies (2.2),
then the assumption (3.2) holds with V replaced by U on [0, T3]×R, where U solves the linearised equation (3.9).

We have now come to the proof of the main result.

Proof of Theorem 1.1. We consider the following series of linearised problems for m ∈ N0.

∂tUm+1 +A(Um)∂xUm+1 +B(Um)K∂xUm+1 = 0,

Um+1(0, ·) = U0.
(3.14)

Note that u0 satisfies (1.4), and that the positive constant µ ≤ λ̄ is chosen so that (2.2) holds. By induction
on m and using Proposition 3.3 and Lemma 3.4, for each m, there exists a solution Um ∈ C

(
[0, T3];HN (R)

)
∩

C1
(
[0, T3];HN−1(R)

)
of (3.14) satisfying the assumption (3.2) on V in (3.9). Therefore, for any 1 ≤ l ≤ N ,∥∥∥( 1

ζm(t, ·) + 2λ̄

)(l)∥∥∥
L2
.µ

N∑
i=1

EN (t, Um)
i
2 .

We suppress now the dependence on µ−1, since it is a fixed and bounded number. Similar to (3.2), we now have

d

dt
EN (t, Um+1) .

(
1 +

N∑
i=1

EN (t, Um)
i
2

)
EN (t, Um+1),

where the estimate is independent of m. By induction on m, one has

max
0≤t≤T3

EN (t, Um) ≤ 2EN (U0) for all m ∈ N0.

The family {Um} is thus uniformly bounded in C
(
[0, T3];HN (R)

)
.

We shall now prove that {Um}m forms a Cauchy sequence in C([0, T3];L2(R)). For each m ≥ 1, let Wm+1 =
Um+1 − Um. It then follows from (3.14) that

1
2

d
dt‖Wm+1‖2L2 = −

(
A(Um)∂xWm+1,Wm+1

)
2
−
(
B(Um)K∂xWm+1,Wm+1

)
2

−
(
(A(Um)−A(Um−1))∂xUm,Wm+1

)
2
−
(
(B(Um)−B(Um−1))K∂xUm,Wm+1

)
2
.

It is straightforward to estimate

−
(
B(Um)K∂xWm+1,Wm+1

)
2
. ‖Wm+1‖2L2 ,

and

−
(
(B(Um)−B(Um−1))∂xUm,Wm+1

)
2
. EN (U0)

1
2 ‖Wm‖L2‖Wm+1‖L2 .

We may thus conclude that
d
dt‖Wm+1‖L2 .µ,EN (U0) ‖Wm+1‖L2 + ‖Wm‖L2 .

By Grönwall’s inequality,

max
0≤t≤T

‖Wm+1‖L2 .µ,EN (U0) T exp(cµ,EN (U0)T ) max
0≤t≤T

‖Wm‖L2 ,

and we may choose T ≤ T3 such that

‖Wm+1‖C
(

[0,T ];L2(R)
) ≤ 1

2‖Wm‖C
(

[0,T ];L2(R)
).

This immediately implies that {Um}m is a Cauchy sequence in the same space, and there thus exists a pair (ζ, u)
such that

‖ζm − ζ‖C
(

[0,T ];L2(R)
) + ‖um − u‖C

(
[0,T ];L2(R)

) → 0, (3.15)

as m → ∞. In view of (3.15), one can show that U is a unique classical solution of (2.1) in the sense of
C
(
[0, T ];HN (R)

)
∩C1

(
[0, T ];HN−1(R)

)
. That the solution U depends continuously on the initial data U0 follows

from a Bona–Smith type argument [2]. �
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