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Abstract

Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based
PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer
protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic
responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via c-butyric acid (GABA)
transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse
side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were
constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the
native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into
the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the
putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open
homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3
and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in
outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target
specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be
used to reduce ALA-induced pain.
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Introduction

Photodynamic therapy (PDT) is an innovative treatment

modality for cancer that involves systemic or topical administra-

tion of a photosensitizer pro-drug, or the photosensitizer itself, and

activation of the photosensitizer by light of appropriate wave-

lengths, resulting in generation of reactive oxygen species (ROS)

and toxic responses [1–3].

One commonly used PDT pro-drug is 5-aminolevulinic acid

(ALA). Topical (dermal) administration of ALA or the ALA methyl

ester (MAL) (ALA-based PDT) is approved for treatment of non-

melanoma skin cancers including superficial basal cell carcinoma

(BCC), actinic keratosis (AK), Bowen’s disease (BD), and squamous

cell carcinoma in situ (SCC) in many countries [2]. In these

cancers, ALA-based PDT may also be used in replacement or to

reduce the extent of surgery [4]. Furthermore, the use of ALA-

based PDT for the treatment of other types of cancer, e.g. in the

brain, stomach and bladder, are currently being evaluated in

clinical trials [3]. ALA-based PDT may also be used for the

treatment of acne, psoriasis, scleroderma, viral warts, photoaging

and cutaneous lymphoma [2].

ALA is an endogenous precursor of the potent photosensitizer

protoporphyrin IX (PpIX), which is synthesized in the heme

biosynthetic pathway of nucleated cells [5]. By administration of

exogenous ALA the first rate-limiting step of the heme biosynthetic

pathway, which is regulated by negative feedback of heme, is

bypassed [6,7]. Studies have furthermore indicated that PpIX

accumulates in greater amounts in tumor cells than in normal cells

following the administration of exogenous ALA [5]. The main

reasons for the selective accumulation in cancer cells are the

changes in the activity of two enzymes of the heme biosynthesis

pathway, namely increased activity of porphoblinogen deaminase,

which catalyzes an early step of the heme biosynthetic pathway,

and decreased activity of ferrochelatase, catalyzing the conversion

of PpIX to heme in the last step of the biosynthetic pathway [6].

MAL was developed to increase the hydrophobicity and hence

skin penetration of the pro-drug. Once inside the cell, intracellular

esterases catalyze the cleavage of the ALA esters to ALA, which

then enters the heme biosynthetic pathway [7].

Due to the selective accumulation of PpIX in cancer cells, ALA-

based PDT does not cause the serious adverse side effects often
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seen with conventional chemotherapy. The main limiting factor

for successful clinical ALA-based PDT is pain, which in some cases

is so severe that the treatment is discontinued [8,9]. Although the

mechanism of pain has not fully been elucidated, several studies

have suggested that it may be due to nerve stimulation and tissue

damage induced by ROS [10,11]. Interestingly, clinical studies

have shown that MAL may induce less pain than ALA [9,12,13].

Studies by our group and others have indicated that active

cellular uptake of ALA is via c-aminobutyric acid (GABA)

transporters (GATs) [14–18], of which four human subtypes,

GAT-1, GAT-2, GAT-3 and BGT-1 (betaine-GABA transporter-

1), have been identified [19-22]. The uptake of MAL, however,

seems to be cell type dependent [15–17]. In adenocarcinoma

WiDr and LM3 cells, studies have indicated that MAL is

transported via non-polar amino acid transporters rather than

GAT [15,18]. MAL uptake was also recently suggested to be via

GATs and other amino acid transporters in rat peripheral DRG

sensory neurons [16] and in human A431 and CCD skin cells [17].

The GATs belong to the neurotransmitter/sodium symporter

(NSS) transporter family [23] of the solute carrier 6 (SLC6)

superfamily [24]. The NSS family members mediate Na+-

dependent uptake of a wide array of substrates, including

dopamine (DAT), serotonin (SERT), noradrenaline (NET), glycine

(GlyT) and GABA (GATs) [23], using an alternate access

mechanism [25,26]. During transport, the substrate binding site,

which has a central location midway between the extracellular

environment and the cytoplasm, is sequentially exposed to either

side of the membrane through permeation pathways [25,26].

Substrate transport thus involves cycling between outward-open,

outward-occluded and inward-open conformational states of the

transporters.

Only one member of the NSS family, namely the prokaryotic

Aquifex aeolicus leucine transporter (LeuT), has so far been

crystallized. In support of the alternate-access hypothesis, howev-

er, the LeuT crystal structures are available in outward-open,

outward-occluded and inward-open conformations [27–29]. Co-

crystallized with substrates the transporter is stabilized in an

outward-occluded state [29]. In contrast, the crystal structure of

LeuT in complex with the competitive inhibitor tryptophan (Trp)

shows that Trp stabilizes LeuT in an outward-open conformation

[29]. The LeuT crystal structures hence suggest that in order for

transport to occur, the substrates must be able to induce a

conformational change in the transporter from outward-open to

outward-occluded.

In this study, homology models of the four human

transporters in outward-occluded, outward- and inward-open

conformations were constructed using three x-ray crystal

structures of LeuT as templates [27–29]. To investigate the

binding of GABA, ALA and MAL, the compounds were docked

into in the central putative substrate binding sites in the

outward-occluded GAT models. Furthermore, the electrostatic

potentials (ESPs) of the putative translocation pathways leading

from the extracellular environment to the central substrate

binding site (termed the ‘entry’ pathway) and from the central

substrate binding site to the cytoplasm (termed the ‘exit’

pathway) were calculated in the outward- and inward-open

homology models, respectively. Our results suggest that whereas

ALA most likely is a substrate of all four GAT subtypes, MAL

may only be a substrate of GAT-2, GAT-3 and BGT-1.

Furthermore, the results suggest that the major differences

between the transporter subtypes most likely are located to the

entry pathway. This region may hence be the most interesting

to study with the aim of obtaining subtype-selective GAT

inhibitors.

Methods

Homology Modeling
The amino acid sequences of GAT-1, GAT-2, GAT-3 and

BGT-1 (UniProt accession numbers P30531, Q9NSD5, P48066

and P48065, respectively) [30] were aligned with LeuT using the

Internal Coordinate Mechanics (ICM) version 3.7 software [31].

The alignment was adjusted according to the comprehensive

alignment of prokaryotic and eukaryotic NSS transporter

sequences published by Beuming et al. [32] (Figure S1).

Based on the alignment, outward-open GAT models were

constructed using the 3F3A LeuT x-ray crystal structure [29] as

template, while the outward-occluded and inward-open GAT

models were generated based on the 2A65 [27] and 3TT3 [28]

crystal structures, respectively. The ICM BuildModel macro was

used to construct the models [31]. This macro uses a rigid body

approach to transfer the conformation of the structurally

conserved regions from the template to the target and constructs

the non-conserved loop regions either by ab initio modeling (,

seven amino acids) or by PDB loop searching (. seven amino

acids) [31]. The final models consisted of the twelve TMs and the

connecting intra- and extracellular loops, but did not include the

N- and C-termini and parts of EL2.

The Na1 and Na2 sodium ions were copied into the outward-

open and outward-occluded GAT models from their correspond-

ing LeuT templates as the amino acids coordinating the two

sodium ions are highly conserved [32]. Although Rud et al. [14]

have suggested that three sodium ions are needed for the

transmembrane transport of ALA, a Na+: Cl- stoichiometry of

Figure 1. Outward-occluded GAT-2 model. Membrane view of the
outward-occluded GAT-2 homology model (grey ribbon representa-
tion). Orange wire: the putative substrate binding site detected by ICM
PocketFinder; blue spheres: Na1 and Na2 sodium ions; green sphere:
chloride ion; dotted line: missing EL2 residues.
doi:10.1371/journal.pone.0065200.g001

Homology Modelling of GABA Transporters
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2:1 was applied in this study due to the lack of positional

knowledge of the putative third sodium ion. In addition, a chloride

ion was placed in the position corresponding to the carboxylate

carbon of LeuT amino acid E290 in the outward-open and

outward-occluded models [33,34].

Energy Refinement
The ICM RefineModel macro (default settings) [35] was used to

remove possible close contacts between amino acids in the models

and to relax the structures. The macro performs 1) side chain

sampling using the program module Montecarlo-fast [35], 2)

iterative annealing with tethers, and 3) a second side chain

sampling. Iterations of Montecarlo-fast consist of a random move

followed by local energy minimization and the iteration is either

accepted or rejected based on the energy [35].

Structure Quality Check
The programs PROCHECK, ERRAT and VERIFY-3D,

available through the Structural Analysis and Verification Server

(SAVES, http://nihserver.mbi.ucla.edu/SAVES/), were used to

perform structure quality checks of the models before and after the

refinement step.

Evaluation of the Outward-occluded Models by Docking
To evaluate whether the outward-occluded GAT models could

separate binders from decoys, an evaluation test set containing 17

binders and 170 decoys was established (Figure S2; S3). The 170

decoys were selected using ICM Molcart [31] based on their

structural similarities with the binders (Figure S3). The compounds

were charge labeled using default ECEPP/3 partial charges [36]

before docking.

The ICM PocketFinder macro (default settings) [37] was used to

define the central putative substrate binding site of the outward-

occluded GAT homology models into which the evaluation test set

was docked. The PocketFinder algorithm uses the 3D protein

structure to detect possible ligand binding pockets and does not

require knowledge about potential ligands [37].

The test set database was docked using the ICM batch docking

method and a semi-flexible docking approach in which the

transporter, represented as 3D grid potential maps accounting for

van der Waals (vdw), electrostatics, hydrophobic and hydrogen

bonding interactions, was kept rigid while the ligands were fully

Table 1. Central substrate binding site.

GAT-1 GAT-2 GAT-3 BGT-1 Position

Y60 E48 E66 E52 1.42

A61 I49 I67 I53 1.43

I62 I I I 1.44

G63 G51 G69 G55 1.45

L64 L52 L70 L56 1.46

G65 G53 G71 G57 1.47

N66 N54 N N 1.48

L136 L125 L143 L129 3.46

Y140 Y129 Y147 Y133 3.50

F294 F288 F308 F293 6.53

S295 S289 S309 S294 6.54

G297 A291 A311 A296 6.56

L300 L294 L314 Q299 6.59

S396 S390 S410 S395 8.60

Q397 Q Q Q 8.61

C399 V393 V413 V 8.63

T400 C394 C414 C399 8.64

172.2 145.2 161.1 118.6 Volume (Å3)

156 140.4 150.3 121.4 Area (Å2)

Amino acids detected by ICM PocketFinder in the outward-occluded GAT
models; in italics: amino acids not detected in the respective models.
doi:10.1371/journal.pone.0065200.t001

Figure 2. Evaluation docking results. ROC curves obtained from docking of 17 binders and 170 decoys into the central putative substrate
binding sites of detected in the outward-occluded GAT models.
doi:10.1371/journal.pone.0065200.g002

Homology Modelling of GABA Transporters
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flexible. ICM uses a Monte Carlo global energy optimization

algorithm to dock the ligands [31]. Due to the stochastic nature of

the docking procedure three parallel docking runs were per-

formed.

The ICM VLS scoring function was used to score the resulting

ligand-protein complexes. The scoring function uses steric,

entropic, hydrogen bonding, hydrophobic and electrostatic terms

to calculate the score and also include a correction term

proportional to the number of atoms in the ligand to avoid bias

towards larger ligands [38].

Following docking, receiver operating characteristic (ROC)

curves for each GAT model were generated using the best scored

orientation of each ligand from the three parallel docking

simulations, and the normalized ‘area under curve’ (noAUC)

value for each transporter was calculated.

Full-atom Docking Refinement of ALA, MAL and GABA
Following semi-flexible docking of ALA, MAL and GABA, full-

atom refinement of the complexes was performed. During the

refinement, energy minimization and sampling of the side chain

torsional angles of the amino acids within 5 Å of the ligands using

ICM biased probability Monte Carlo (BPMC) [31] was per-

formed. To score the complexes following the full-atom refine-

ment, the ICM scanScoreExtrenal macro was used [35].

Electrostatic Potentials (ESPs)
ICM PocketFinder [35] was used to detect the substrate

translocation pathways in the outward-open and inward-open

GAT models (Table S3; S4). The identified amino acids were

selected and the ESPs of the amino acids were calculated using the

ICM Rapid Exact-Boundary Electrostatics (REBEL) algorithm

with a potential scale value of 5 kcal/e.u. charge units (default

values) [31]. The Na1 and Na2 ions (with a charge of +1) were

included in the ESP calculations in the outward-open homology

model. The ESP of GABA, ALA and MAL were also calculated

using the ICM-REBEL [31].

Indexing of Residues
To facilitate comparison of amino acid positions between the

four GAT subtypes, a generic numbering scheme developed for

the NSS transporters [32,39] is used in this paper. The most

conserved residue in each of the twelve TM segments is given the

number 50, and the other residues are numbered according to its

position relative to this most conserved residue. Hence, a residue

with a generic position number lower or higher than 50 indicates

that it is located N- or C-terminal to the most conserved residue in

the TM helix, respectively. The reference GAT-1 residues are as

follows: W681.50, P962.50, Y1403.50, T2174.50, P2475.50, Q2916.50,

F3397.50, F3868.50, Y4329.50, Y45310.50, P50511.50, and P54912.50

(Table S1).

Figure 3. Orientations of GABA, ALA and MAL in the central
substrate binding pocket. a) GABA in all four GAT models, b) GABA
and ALA in GAT-2, and c) GABA and MAL in GAT-2. Amino acids in
positions 1.47 (G), 3.50 (Y) and 6.53 (F) are conserved among the GAT
subtypes, whereas the amino acids in positions 1.42 (Y in GAT-1; E in the
others) and 6.59 (Q in BGT-1, L in the others) are non-conserved.
Intermolecular hydrogen bonds are shown as dotted lines; the
thickness of the lines representing the energy of the interaction. Amino
acid side chains are shown in wire representation, ligands in yellow
xstick representation, and Na1 sodium ion as blue sphere. Color coding
of atoms: blue: nitrogen; red: oxygen.
doi:10.1371/journal.pone.0065200.g003

Table 2. Docking scores (kcal/mol) of GABA, ALA and MAL.

Ligand GAT-1 GAT-2 GAT-3 BGT-1

GABA 230.12 228.37 220.51 236.14

ALA 232.10 223.40 227.62 235.77

MAL 7.11 219.10 219.72 219.00

doi:10.1371/journal.pone.0065200.t002

Homology Modelling of GABA Transporters
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Results

Homology Modeling
In this study, homology models of the four human GATs were

constructed in outward-open, outward-occluded and inward-open

conformations based on LeuT x-ray crystal structures (PDB id

3F3A, 2A65 and 3TT3, respectively). The stereochemical quality

of the homology models both before and after energy refinements

were evaluated using the PROCHECK [40], ERRAT [41] and

VERIFY 3D [42,43] programs and compared with LeuT template

structures (Table S2). The ERRAT scores revealed that some

atoms in the unrefined models had overlapping van der Waals

surfaces, and these models were hence discarded. For the refined

models, the ERRAT scores were similar to that of their

corresponding templates and Ramachandran plots provided by

the PROCHECK were found to be satisfactory (Table S2). The

VERIFY 3D scores were lower for the refined structures than the

corresponding LeuT, but acceptable (Table S2). The structure of

the outward-occluded GAT-2 homology model is shown in

Figure 1.

Evaluation of the Outward-occluded Models by Docking
To further evaluate the outward-occluded models, an evalua-

tion test set containing 17 binders and 170 decoys was docked into

the central substrate binding site detected by ICM PocketFinder

[35] (Table S3; S4). The compounds included as binders were

either substrates or presumed substrates (i.e. compounds that only

have been tested in some of the GATs but likely interact with all

four transporter subtypes) and small-size inhibitors that presum-

ably bind in the central substrate binding site (Figure S2). The

decoys were selected based on their structural similarities with the

binders (Figure S3). Specifically, all decoys contained at least one –

COO- or –SO3
- moiety.

The putative substrate binding site was formed by amino acids

in TM 1, 3, 6, and 8 and the majority of the amino acids were

conserved among the four GAT subtypes (Table 1). Some

interesting differences were also seen between the transporters.

For instance, GAT-2, GAT-3 and BGT-1 contained a negatively

charged glutamate in position 1.42 which in GAT-1 was an

aromatic tyrosine (Table 1). The GAT-1 pocket was identified as

the largest of the four (Table 1). With the exception of L3006.59, all

the identified amino acids have previously been shown by site-

directed mutagenesis studies to play roles in the GABA binding

and/or transport in GAT-1 [44,45]. The localization of the

Figure 4. Entry pathway ESPs. ESPs of the entry pathways detected in the outward-open GAT models (grey ribbon representation). a) GAT-1, b)
GAT-2, c) GAT-3, and d) BGT-1. Blue spheres: Na1 and Na2 sodium ions. Color coding: red: negative ESP; blue: positive ESP; grey: neutral ESP.
doi:10.1371/journal.pone.0065200.g004

Homology Modelling of GABA Transporters
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putative GAT substrate binding site furthermore corresponded

well to the position of the substrate binding site seen in the LeuT

crystal structures and also with the results of Dodd and Christie

[45]. Dodd and Christie showed that substitutions of the amino

acids in positions 1.42, 3.46, 6.56 and 8.64 of the creatine

transporter (CRT) to the corresponding GAT-1 amino acids

results in the loss of creatine and gain of GABA transport activity

[45].

Following docking, ROC curves and noAUC values of each

model were obtained (Figure 2). A noAUC value of 100 represents

a perfect separation between binders and decoys. The results

showed that the GAT-1 model was the least specific with a

noAUC value of 68.8, whereas the noAUC values for other three

subtypes were excellent (noAUC values of 95.7, 94.0 and 90.4 for

GAT-2, GAT-3 and BGT-1, respectively) (Figure 2). Analysis of

the docking results in GAT-1 showed that the lower noAUC value

obtained for this transporter was due to more decoys rather than

fewer substrates being selected. This was not surprising as the

GAT-1 model had the largest binding pocket of the four models

(Table 1). The evaluation docking hence suggested that the models

were acceptable for docking of substrates.

Docking of GABA, ALA and MAL
To study the interaction of PDT pro-drugs ALA and MAL and

the native substrate GABA in the GAT models, the ligands were

docked into the central putative substrate binding site of the

outward-occluded GAT models using a regular semi-flexible

docking approach, followed by refinement of the GAT substrate

binding site amino acids within 5 Å of the three ligands. The

results showed that GABA, ALA and MAL had favorable (i.e.

negative) docking scores in all four GATs, except MAL in GAT-1

(Table 2). The orientations of GABA, ALA and MAL in the

central substrate binding site can be seen in Figure 3.

The docking results showed that the carboxyl group of GABA

coordinated the Na1 ion and formed hydrogen bonds to the side

chain hydroxyl group of Y3.50 and to the main chain nitrogen

atom of G1.47 in all four GAT subtypes (Figure 3). The amine

moiety of GABA formed a hydrogen bond to the main chain

oxygen of F6.53 in GAT-1, GAT-2 and GAT-3, whereas it in

BGT-1 was involved in a hydrogen bond to the side chain oxygen

of Q6.59, which is a leucine residue in the other GATs (Table 1).

The GABA orientations are in accordance with the results of

docking of GABA in GAT-1, GAT-2 and GAT-3 published by

other groups, in which the orientation of the carboxyl moiety of

GABA was very similar to the present orientation whereas the

localization of the amine moiety was more variable [46–49]. This

was not surprising as the same template was used for homology

modeling in all studies, and comparison of GABA in the GAT

models and Leu in the template structure showed that GABA

occupied the same regions of the binding pocket as Leu in the

template structure [27] (results not shown).

The carboxyl moiety of ALA had a similar orientation as that of

GABA, interacting with Na1, Y3.50 and G1.47 (Figure 3).

Furthermore, like GABA, the amine moiety in ALA was found

in two localizations in the transporter models: in GAT-1 and

GAT-2 the amine moiety interacted with the backbone oxygen

Figure 5. GAT-1 exit pathway ESPs. GAT-1 in grey ribbon
representation. Color coding of ESPs as in Figure 4.
doi:10.1371/journal.pone.0065200.g005

Figure 6. GABA (a), ALA (b) and MAL (c) ESPs. Color coding of
ESPs as in Figure 4.
doi:10.1371/journal.pone.0065200.g006

Homology Modelling of GABA Transporters
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atom of F6.53, whereas it in GAT-3 and BGT-1 the moiety formed

an ionic interaction with the side chain of E1.42 (which is a tyrosine

in GAT-1) (Figure 3).

MAL occupied the same region as GABA and ALA in the

GATs (Figure 3). However, as MAL contains an ester moiety

whereas GABA and ALA have a carboxylate moiety, MAL was

not able to coordinate the Na1 ion (Figure 3). In GAT-1, a

hydrogen bond was formed between the ester and amine moieties

of the ligand and to the backbone oxygen atom of F6.53 (results not

shown). In GAT-2, GAT-3 and BGT-1, hydrogen bonds were

present between the ester and amine moieties of MAL and

between the ester moiety and the side chain hydroxyl of Y3.50

(Figure 3). Furthermore, in the latter transporters, the amine

moiety of MAL in addition formed ionic interactions with E1.42

(Figure 3), while the corresponding amino acid in GAT-1 was

tyrosine (Table 1). The ionic interaction with E1.42 probably

accounted for the relatively high scoring of MAL in GAT-2, GAT-

3 and BGT-1 (Table 2).

Electrostatic Potentials (ESP) of Outward- and Inward-
open Homology Models

The ESPs of the funnel-shaped entry pathway extending from

the extracellular environment to the central substrate binding

pocket in the outward-open homology models varied considerably

(Figure 4). Whereas the GAT-1 entry pathway and central

putative substrate binding site was highly positive in nature, the

corresponding areas in GAT-2, GAT-3 and BGT-1 consisted of

positive, negative and hydrophobic sub-regions (Figure 4). The

major differences between the GAT subtypes in the entry pathway

were the amino acids in position 1.42, 6.59 and 8.64, located in

the central substrate binding site region, and the amino acids in

positions 1.54, EL4 and 10.45, located in the vestibule leading

from the extracellular environment to the central substrate binding

site (Table S3; S4). In contrast, only minor differences in the ESPs

of the exit pathway reaching from the central substrate binding site

to the cytoplasm in the inward-open GAT models were observed,

and this region was highly negative in all four GAT subtypes

(Figure 5). The ligand ESPs indicated that the surface of MAL is

more positively charged than that of GABA and ALA which had

zwitterionic charge distribution (Figure 6).

Discussion

Whereas studies have suggested that the PDT pro-drug ALA is

a GAT substrate [16,17], studies regarding MAL are more

ambiguous as this compound seemingly is transported via GAT in

some cell types but not in others [15,17]. Molecular insight into

the binding interactions of GABA, ALA and MAL in the central

substrate binding site of the four GAT subtypes may help shed

light on this question.

GABA is the primary inhibitory neurotransmitter in the central

nervous system (CNS) and a native substrate for the GATs. The

GATs play an essential role in regulating neurotransmitter

signaling and homeostasis by mediating uptake of released GABA

from the extracellular space into neurons and glial cells. Abnormal

levels of GABA can result in inappropriate neural signaling and

underlie CNS disorders such as epilepsy, depression, schizophre-

nia, drug addiction, and acute and chronic pain [50–54]. GAT-1

for instance plays an important role in the treatment of epilepsy

being targeted by the antiepileptic tiagabine [55]. The GATs may,

however, also play important roles in non-CNS and non-neuronal

diseases. In contrast to GAT-1, which is exclusively expressed in

the CNS, GAT-2 and BGT-1 are also expressed in the peripheral

nervous system (PNS), and has been found in several other tissues,

including the kidneys, liver, heart, lungs, and testis [21,22,27,56].

GAT-3 was also recently shown to be expressed in human skin

cells [17]. Molecular insight into the structure and function of the

GATs is important for an increased understanding of GABAergic

neurotransmission and may be important for drug development in

several therapeutic areas.

In the present study, the outward-occluded GAT models, in

which the central substrate binding site is closed from either side of

the membrane, were chosen for docking of the native substrate

GABA and the putative substrates ALA and MAL as x-ray crystal

structures show that LeuT in the presence of substrates adopts this

conformation [29]. Based on the orientations of GABA, ALA and

MAL in the substrate binding site, as well as the docking scores,

our results suggest that ALA may be a substrate in all four GATs

whereas MAL may be a substrate in GAT-2, GAT-3 and BGT-1.

However, whether a compound is transported or not via GAT is

also dependent on other factors than the ability to bind to and

induce the outward-occluded conformation of the transporter.

Dodd and Christie have for instance shown that though the

creatine transporter activity can be changed from creatine to

GABA by substitution of a few amino acids in the central substrate

binding site, the substitutions alone are not sufficient for efficient

GABA transport [45]. Hence, though the obtained docking

orientations and scores suggested that ALA and MAL may be

substrates of all or some GAT subtypes, further studies are needed

to verify these findings.

The ESPs of the translocation pathways may reveal electrostatic

forces involved in substrate binding and translocation and

highlight differences between the four GAT subtypes. The ESPs

of the putative entry and exit permeation pathways in the

outward- and inward-open GAT homology models, respectively,

were hence calculated (Figure 4; 5). The x-ray structure of LeuT in

complex with the competitive inhibitor tryptophan (Trp) [29]

shows that Trp prevents the extracellular gate from closing, hence

stabilizing the transporter in a conformation in which the central

substrate binding site is accessible from the extracellular environ-

ment [29]. The outward-open GAT models constructed based on

this LeuT structure were hence used to illustrate the entry

pathways. The inward-open LeuT crystal structure was used as a

template for modeling the GAT subtypes used to calculate the

ESPs of the exit pathway extending from the central substrate

binding site to the cytoplasm. In this structure, the extracellular

gate has closed, an intracellular vestibule has opened and the Na1

and Na2 sodium binding sites seen in the outward-open and

outward-occluded structures have been disrupted [28]. These

changes has occurred due to large conformational changes,

including reorientation of TMs 1, 2, 5, 6 and 7, hinge bending

of the intracellular half of TM1 and occlusion of the extracellular

vestibule by EL4 [28].

The ESP calculations indicated that the major differences

between the GAT subtypes were located in the outward-open

models, hence in the entry pathway region of the transporters

(Figure 4). The ligand ESPs also showed that GABA and ALA had

a zwitterionic charge distribution, whereas the MAL charge

distribution was cationic in nature due to the replacement of the

carboxyl moiety found in GABA and ALA with an ester group

(Figure 6). The ESPs hence support the notion that MAL may not

be a GAT-1 substrate, as the results suggest that the entry pathway

of this GAT subtype is highly positive in nature (Figure 4).

The amino acids in the entry region are the first to come in

contact with the substrates and hence play crucial roles in ligand

recognition and binding. The finding that the major differences

between the GAT subtypes are located in this region may be of

clinical importance as it has been suggested that the pain often

Homology Modelling of GABA Transporters

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e65200



observed during ALA-based PDT may result from uptake of ALA

via GAT-2 and BGT-1 into the mitochondria-rich sensory

neurons and hence high-level accumulation of PpIX [11,57].

Current pain-reducing strategies include interrupted illumination,

cooling of the affected area and local anesthesia [58,59]; however,

in some cases the pain is severe and the treatment is discontinued

[8,9]. Exploitation of the differences in the entry pathways to

develop inhibitors that can be used to selectively inhibit the uptake

of ALA into the sensory neurons may hence be used clinically to

reduce ALA-induced pain.

In summary, this study pioneers in structure-based character-

ization of ALA and MAL transports via the four GABA

transporters using the homology modeling approach. Although

ALA-based PDT has been used successfully for the treatment of a

variety of skin cancers, pain is a limiting factor. ALA-based PDT

in combination with selective inhibitors of the GAT may be an

attractive approach to develop pain-reduce strategy and improve

the PDT efficacy in the future.
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