
OFM: An Online Fisher Market for Cloud Computing
Abhinandan S. Prasad∗, Mayutan Arumaithurai∗, David Koll∗‡, Yuming Jiang†, Xiaoming Fu∗

∗University of Goettingen, Germany
{asridha,mayutan.arumaithurai,koll,fu}@cs.uni-goettingen.de

†Norwegian University of Science and Technology (NTNU), Norway
ymjiang@ieee.org

‡Continental AG, Germany
david.koll@conti.de

Abstract—Currently, cloud computing is a primary enabler of new
paradigms such as edge and fog computing. One open issue is the pricing
of services or resources. Current pricing schemes are usually oligopolistic
and not fair. In this work, we propose OFM, an online learning based
marketplace that dynamically determines the price for arbitrary resource
types based on supply and demand existing at that period. Unlike state
of the art solutions, OFM can handle an arbitrary number of customers
and resource types at every instance of time. It further performs integral
allocation of resources and thereby avoids the unbounded integrality gap.
We evaluate OFM with both real and synthetic datasets to reflect varying
buying interests, the number of resources sold and market volatility to
demonstrate the feasibility of our solution for several realistic scenarios.
We observe that (i) OFM achieves about 95% of optimal prices and
maximizes the Nash social welfare (NSW); (ii) OFM converges faster
and works with different data distributions; and (iii) OFM scales for
a large number of resources and buyers and computational time is in
the order of microseconds, making it applicable for real-time use cases
especially in edge markets.

I. INTRODUCTION

Cloud computing is a widely popular paradigm of offering services
over the Internet. Currently, most often these services are virtualized
to capitalize on the inherent scaling flexibility of virtualization.
Hence, cloud computing has become a significant enabler for new
paradigms such as edge computing and network function virtual-
ization (NFV). Cloud service or resource pricing1 is one of the
critical challenges for any cloud service provider as pricing affects
profit and customer experience simultaneously. Moreover, cloud
customer demands are online and hence require online pricing [1].
Consequently, resource pricing has captured much attention from both
academia and industry [2].

Currently, “pay-as-you-go” or fixed pricing model is popular
among cloud service providers where resource prices are computed
based on the usage (e.g., hourly billing). This pricing strategy
maximizes revenue only if the customer behavior is well defined
(e.g., more spending on weekends) and their arrivals are temporally
invariant [3]. However, both customer demands and arrivals in the
Cloud are ad-hoc [1]. Moreover, the default fixed pricing favors cloud
service providers contractually [4]. Hence, fixed pricing approach
neither maximizes the revenue of cloud service provider nor is fair
towards the customers.

The cloud computing community is exploring alternative online
pricing schemes such as posted pricing or leave-it-or-take-it and
dynamic pricing [5]–[7] to address above-mentioned fixed pricing
limitations. In posted pricing, the seller publishes prices. Customers

1In this work we use the terms services and resources interchangeably.

procure resources only if the prices are acceptable. However, prices
do not necessarily reflect resources’ supply and demand or market
demand. Hence, it cannot guarantee a complete allocation [8].

Conversely, dynamic pricing leads to efficient resource utilization
and satisfaction of user demands [1]. Furthermore, prices reflect the
market demand. There are some efforts from the industry towards
dynamic pricing such as spot pricing. In spot pricing, a user can
specify the maximum prices he/she is willing to pay, and the instances
are allocated until the spot instance prices are within the maximum
price. However, these prices do not reflect the market demand [7].
Auctions are another popular form of dynamic pricing. However,
auctions are not fair since resources are allocated only to the
winner [9].

Generally, fixed prices are profit driven. However, profit-driven
approach will lead to customer attrition due to higher prices. Hence,
cloud computing community is exploring social welfare maximiza-
tion. In cloud computing, maximizing social welfare improves not
only the overall system efficiency but also assures a superior user
experience [1]. Furthermore, maximizing social welfare is apt for
both public and private clouds [10]. Therefore, maximizing social
welfare is beneficial for both the cloud service providers and users.

In the literature, there are three types of social welfare, namely util-
itarian (maximizing sum of utility), egalitarian or max-min fair (max-
imizing minimum utility), and Nash social welfare (NSW)(geometric
mean of utility) [8]. In utilitarian, the allocation maximizes the overall
utility of customers. In egalitarian, the allocation maximizes the
minimum utility of the customers, rewarding customers with lower
utility. NSW is the Pareto outcome between utilitarian and egalitarian
approaches [11]. In other words, NSW achieves a balance between
efficiency and fairness.

In the area of cloud computing, most of the current dynamic pricing
works [7] are utilitarian. Interestingly, the Fisher or Eisenberg-Gale
market is widely prevalent in algorithmic game theory for computing
prices that maximize NSW [12]–[16]. The online variants of Fisher
markets are proposed as well [17], [18]. However, these solutions
cannot be applied in the current cloud context due to the following
challenges:
C1: The online algorithms are analyzed using adversarial models

(input behavior models). The state-of-the-art solutions are either
fully adversarial or stochastic. These adversarial models fail to
capture the application-specific behavior of the input [19].

C2: Customer valuations are not independent and identically dis-
tributed [20] and can vary dynamically. Hence, the pricing
decisions often need to be time-critical and online [1].

C3: Cloud resources are usually virtualized and therefore rendered
intangible [5]. The state-of-the-art solutions, which, when deal-
ing with integer allocation, typically round fractional alloca-
tions to the nearest integer solution, but the resulting rounding
difference, also called as integrality gap, is unbounded for a
market, i.e., the difference grows exponentially with the number
of buyers [21]. In other words, fairness drops exponentially with
the number of buyers.

We believe that there exists no solution that solves the above
challenges together. To fill this gap, we introduce OFM, an online
learning based Fisher market that supports online pricing and allo-
cation. Furthermore, OFM adapts and integrates several techniques,
making itself a novel online Fisher market solution for the Cloud
and addresses the above-mentioned challenges: (i) OFM random
permutation model addresses challenge C1 by modeling application-
specific behavior; (ii) OFM updates are in closed-form expressions
and hence computationally efficient so that OFM can be scaled for a
large number of buyers or customers. Hence, addresses challenge C2;
and (iii) OFM tackles challenge C3 by ensuring integer allocation.

We extend the stochastic dataset based on Google AdX data used
by Bateni et al. [18] for evaluation. We evaluate OFM is in two
scenarios, namely a fixed and varying resources. For fixed scenario,
we extend the dataset by distributing buyer utilities normally and
uniformly. The experimental results clearly show the convergence of
OFM with a prediction accuracy of about 95% of optimal prices on
datasets namely AdX, normal and uniformly distributed data.

For varying resource scenario, we generate the number of resources
offered at each instant by randomly sampling CPU demand without
replacement from the Google cluster data trace [22]. We employ
prediction schemes to predict the resources offered at the current
instant. We use time series models, mean of the previous resource
offered and resource offered in the previous instant. Our evaluation
shows the superiority of the ARIMA (Auto-Regressive Integrated and
Moving Average) model over others regarding prediction accuracy.
However, merely using information of last offered resources can
reduce computational time without significantly affecting the overall
performance.

Further, we perform experiments to determine the impact of buyers
on OFM. The results clearly show that OFM computation time is in
the order of microseconds for a large number of buyers. Hence, OFM
is a candidate for the edge computing market where there is a need
for quick and irrevocable price computations.

The remainder of this paper is structured as follows. We review
related work in Section II. In Section III, we formally describe the
OFM problem and the adversarial model. We introduce the OFM
algorithm in Sections IV. In Section V, we evaluate OFM and
conclude the paper in Section VI.

II. RELATED WORK

Cloud resource allocation is naturally an online decision-making
problem [1], [23]. There are several works on cloud online pricing.
Zhang et al. [24] propose an online auction mechanism for VMs
based on the primal-dual framework. Zhang et al. [1] compute posted
prices for cloud resources by designing exponential pricing function
based on the primal-dual framework for 0-1 Knapsack problem. Zhou
et al. [25] design an online auction-based the primal-dual framework
for cloud jobs with deadlines.

Xilouris et al. [26] propose T-Nova, a marketplace for offering
VNF (virtual network function) to customers as-a-Service. D’Oro et
al. [27] implement service chain composition based on a marketplace
approach. The servers behave as buyers and network request brokers

act as customers to perform service composition at a minimum price.
Zhang et al. [28] propose an online auction-based marketplace for
VNF service chains. A deterministic fraction program is derived from
the online stochastic social welfare and allocation is performed using
the primal-dual method. Further, prices are learned based on historical
bids and arrival and departure of bidders. It is assumed that bidders
are strategic. However, these approaches are utility maximizing and
hence not fair as they are biased towards the customers with higher
utility. All these works compute prices based on the current arrival.
In contrast, OFM computes prices before the data or utilities are
revealed.

Additional works have investigated online algorithms for market
clearing prices. Angelopulos et al. [29] propose deterministic and
randomized algorithms for finding an approximate market equilibrium
for a linear fisher market in an online setting. Blum et al. [30] propose
a market clearing algorithm for customer bids. The auctioneer has
to decide whether to accept or decline a bid without knowledge of
future bids. Bateni et al. [18] perform multiobjective optimization
to dynamically allocate goods appearing online to budgeted buyers
of a Fisher market. Azar et al. [17] design a primal-dual convex
programming based algorithm for an online Fisher market where
goods appear in each round with irrevocable decision. In OFM, the
buyers and goods change every round unlike [29], and its random
permutation model is stronger than the stochastic model used in [18].
Finally, unlike [17], [18], OFM guarantees integer allocation.

III. PROBLEM STATEMENT

A. Scenario

The cloud users arrive at the cloud service providers with de-
mand vectors based on the resource types. For instance, in case of
infrastructure resources, the demand vectors are CPU and memory
requirements. We assume that these demand vectors are mapped
to appropriate instances trivially. We illustrate this mapping with a
hypothetical numerical example. Let us assume that the customer
arrives with a demand vector < 2, 7.5 > of CPU and memory
requirements. If Amazon EC2 instances are offered, then the de-
mand vector is mapped to an m3.large instance. This procedure
can be extended for services as well. We assume that the cloud
provider offers end-to-end service to the user which is common
in real scenarios. For instance, Amazon and Google offer complex
services such as an analytical engine to the users which are entirely
built from their infrastructure. Market-based pricing with end-to-end
granularity offers the following advantages: (i) Since infrastructure
and application instances are priced differently, the current cloud
market is complex [31]. If the service providers offer an end-to-end
service consisting of all the components, this has the potential to
reduce the cloud market complexity; (ii) In the Cloud, maximizing
social welfare improves not only the overall system efficiency but
also assures better user experience [1]. Additionally, as discussed
before, in the context of cloud computing, NSW achieves a balance
between efficiency and fairness [11]. Further, NSW is scale-free —
optimal allocation is independent of the scale of each customer’s
utility. Consequently, there is no incentive to inflate or deflate utility.

The goal of this work is to build an online market that maximizes
NSW. In this section, we formalize the OFM problem and corre-
sponding adversarial model.

B. Definitions

Let N = {1, 2, . . . , n} be a set of n buyers indexed by i, i.e.,
i represents the ith buyer. Let R = {1, 2, . . . ,m} be the set of
resources indexed by j, i.e., j represents the jth resource. Let xij

be the fraction of allocation of the jth resource to the ith buyer.
Let uij be the utility derived by an ith buyer for jth resource and
ui =

∑m
j=1 uij · xij be the total utility derived by the ith buyer.

Also, let bi be the budget of the ith buyer,i.e., total endowment or
money of the buyer i. We assume consistent with [14]: (i) The supply
of resources are limited; (ii) There is at least one buyer for all the
resources, i.e., uij > 0,∀j ∈ G. The prices are determined such
that all instances are sold as long as there are enough buyers, i.e.,
if required, prices are fixed in such a way that even buyers with
less money are satisfied if there is no other buyer with more money
available for a resource.

OFM considers resources to be indivisible to address the challenge
C3 which implies that the allocation of a resource is either 0 or 1.
If we take the logarithm, then the maximization of NSW reduces to
an Eisenberg-Gale or Fisher market [12]. The convex program is as
follows:

Maximize
n∑
i=1

bi log ui

s.t ui =
m∑
j=1

uij · xij

n∑
i=1

m∑
j=1

xij ≤ 1

xij ∈ {0, 1}, ∀i ∈ N , j ∈ R.

(1)

To address the challenge C2, we need to design an online algorithm.
The online convex optimization algorithms require Lipschitz continu-
ous (the rate of change of the function is constant) objective function.
However, the objective function of Eq. (1) is not only non-Lipschitz
continuous but also non-convex. Even if we circumvent non-Lipschitz
continuity by shifting the valuations to a range {1, · · · ,K+1}, where
a number K > 0 then we will end up as a linear factor in regret
bound leading to low performance (around less 20%) [32]. Further,
the above formulation does not guarantee integer allocation.

Cole et al. [16] provide an alternative convex program equivalent
to Eq. (1) as follows:

Maximize
n∑
i=1

m∑
j=1

(xij log uij − pj log pj)

s.t ∀j,
n∑
i=1

xij = pj

∀i,
m∑
j=1

xij = bi

∀i, j, pj ≤ 1, xij ∈ {0, pj}.

(2)

In the above formulation, pj is the price associated with resource
type j. Also, xij is the amount paid by the buyer i for the jth

resource. The first constraint implies that the total amount paid for a
resource by all buyers never exceeds the resource price. The second
constraint guarantees that the total amount paid by the buyer is within
his overall budget bi. The third constraint implies that the buyer will
either pay the full price or nothing. The constraint xij ∈ {0, pj}
and

∑n
i=1 xij = pj implies that there can be only one buyer among

others with xij = pj , while for the rest of buyers i′ 6= i, xi′j = 0.
Substituting, we get,

∑m
j=1 xij log uij−xij log xij and the following

convex program:

Maximize
n∑
i=1

m∑
j=1

(xij log uij − xij log xij)

s.t ∀i,
m∑
j=1

xij = bi

(3)

The objective function of the above convex program guarantee
integer allocation. However, it is not only non-Lipschitz continuous
and but also concave. We perform following steps before applying
online convex optimization methods: (i) As we know, a concave
function can be converted to convex function by flipping the sign of
the function. i.e., max g(x) and min−g(x) are equivalent. Hence,
the goal is modified to minimization. Informally, we perform opti-
mization in the opposite direction of the objective. (ii) In a Fisher
market, equilibrium prices form a unit simplex, i.e., the sum of
normalized prices of all goods is equal to 1 [15]. Furthermore, the
unit simplex not only reduces computational complexity but also
implicitly enforces the constraint of Eq. (3) without affecting the
optimality. Hence, we address the non-Lipschitz continuous nature of
the program by restricting the input set to a unit simplex. Finally, the
convex program for OFM is as follows:

Minimize
n∑
i=1

m∑
j=1

(xij log xij − xij log uij)

s.t ∀i,
m∑
j=1

xij = bi

∀i ∈ N , j ∈ R, xij ≥ 0.

(4)

The above formulation is the minimization of the Kullback-Leiber
(KL) divergence [33] between price and the buyer’s utility [16].
In summary, Eq. (4) addresses challenges C2 and C3 described in
section I. In the subsequent subsection, we develop an adversarial
model for tackling challenge C1.

C. OFM Adversarial Model

In literature, adversarial models are proposed to analyze the
performance of an online algorithm. In other words, an adversarial
model describes the nature of input for the algorithm. Most of the
proposed online algorithms are pessimistically designed towards a
fully adversary model where the input data is provided for the worst
case. For instance, the fully adversarial model would provide already
sorted numbers to an online quicksort algorithm. Further, the fully
adversarial model is application agnostic.

In real scenarios, inputs are not adversary always [19], [34].
Moreover, generally, input posses application-specific features and
are ignored by fully adversarial models [19]. Random permutation
model is widely used to model application-specific features. For
instance, the random permutation model captures the tail behavior
in sponsored search auction. In this model, an adversary picks the
input randomly. Finally, the permutated input is present uniformly to
the algorithm. Further, the random permutation model is sampling
without replacement, while independent and identically distributed
(i.i.d) data with known and unknown distributions are sampling with
replacement [34]. In the former case, samples drawn are independent
of each other while they are dependent in the latter. Hence, the
random permutation model is more generic compared to (i.i.d).
Importantly, any algorithm that works on a random permutation
model will work for i.i.d. models [35] and provide better performance
for arbitrary input [36]. Finally, it enables us to model customers and
resource dynamics over a period. Additionally, it is more generic

compared to stochastic models and simultaneously less pessimistic
compared to fully adversarial models. Hence, we use the random
permutation adversarial model for online fisher market proposed
in [36] to address the challenge C1.

Formally, we define our random permutation model as follows [36]:
The adversary picks an input consisting of n = |N |, m = |R|,
mi,∀i ∈ N and dij∀i ∈ N , j ∈ R. A permutation π of G is
chosen uniformly at random. In round t, the buyer’s utility inputs are
utij = diπ(j) and the budget of the buyer i is bi = eπ(i).

Hazan et al. [37] define regret as the difference between the total
cost of the current decision and the best single decision with the
benefit of hindsight. Informally, regret is the performance measure
between an online player and a static player with hindsight informa-
tion. Let `t be the instance of Eq. (4) at instant t or in other words
the value of the loss function at instant t. Formally, We denote the
cumulative regret of the objective function as follows [38]:

Ro =

T∑
t=1

`t(xt)−min
x
`t(xt) (5)

In summary, the goal of OFM is to find prices pj , ∀j ∈ R at
every time instance t for varying buyers and resources that not only
maximize Nash social welfare but also Minimize regret Ro.

IV. OFM ALGORITHM

The goal of OFM is to find market-clearing or equilibrium prices.
Generally, the computation of equilibrium prices for an offline Fisher
market using convex optimization solvers is not scalable [39]. Even
finding approximate equilibrium prices is non-trivial [13], [40] and
especially true in online scenarios with the one-time decision and
varying demand and supply as well. Thus, achieving the OFM goal
is non-trivial and very challenging.

At every time instant t, OFM offers resources that are either fixed
or varying. In a fixed resource set, the number of offered resources
are constant while it is varying every time instance t in varying
resource set. In a fixed resource set, the prices depend solely on the
buyer utility at that time instant t. In this case, a closed expression
(formulae) based algorithm is not only computationally efficient but
also scales with the number of buyers. We can obtain a closed-form
expression for the OFM objective in this scenario for finding market
equilibrium prices.

Theorem IV.1. The closed form expression for computing prices
of the OFM objective function with m fixed resources is given by
xij =

biuij∑m
j=1 uij

.

Proof. Let αi be the dual variable associated with each constraint
in equation (4). Now we derive the closed form expression for xij
which minimizes the Eq. (4)

L(x, α) =

n∑
i=1

m∑
j=1

xij log xij − xij log uij

+

n∑
i=1

αi
(
bi −

m∑
j=1

xij
)

Let g(α) = supx∈∆ L(x, α) be the dual function. Let µij =
log uij + αi. At optimality, ∇xL(x, α) = 0, substituting and
eliminating x, we have the dual of (3):

Maximize
n∑
i=1

biαi −
n∑
i=1

m∑
j=1

uije
µij−1

s.t ∀i ∈ N , j ∈ R, µij − log uij ≤ αi,
∀i ∈ N , αi ≥ 0.

(6)

At optimality,i.e., xij =
biuij∑m
j=1 uij

then αi = 1. The value of xij is
same for the maximization of Eq. (2) and readers can see at [16].

The closed form expression of Theorem IV.1 can be used to com-
pute prices for fixed resource set. Conversely, the varying resource
set is not only more generic but also challenging compared to the
fixed set scenario. Cloud subletting is a use case for the varying
set of resources. In cloud subletting, the users can monetize their
allocated resources by subletting to other users [41]. Usually, the
service provider acts as a broker. At every instant, interested users can
submit their allocated resources to the service provider for subletting
for a specified period. Hence, in cloud subletting, the resources
offered vary every time instance.

In OFM, the input is revealed only after the current prices are
computed. However, OFM has access to the past data, and there will
be patterns and trends in supply and demand, e.g., periodical changes
from low to high demand and vice versa. Time series analysis is
widely used to prediction in such scenarios [42]. OFM updates the
time series model based on the input data and performs a prediction of
the number of resources offered in the next time instance. Here, OFM
can employ different prediction models such as ARIMA, but also
more straightforward approaches such as simple moving averages,
immediate past values, etc. Once OFM has predicted the number of
resources, then the scenario is similar to a fixed resource set and OFM
finds the new prices near to the previous instance optimal prices. In
this way, OFM achieves its goal.

We introduce the notation and definitions used by the OFM
algorithm. As we know previously, the equilibrium prices form a
unit simplex [15]. Let ∆t be the unit simplex constructed from the
set X at time t. Formally, ∆t = {x|

∑n
i=1

∑m
j=1 xij = 1}. The

cardinality of ∆t changes only when there is a change in the number
of resources offered during previous instant i.e., |∆t| 6= |∆t−1| if
mt 6= mt−1. Let ∆ be the set of all unit simplex till instant T .
Formally, ∆ = {∆t|t ≤ T}.

Let xt be the price matrix (column vector of size m × n)
which is the price buyers pay for the resources at round t, i.e.,
xt = (xtij , ∀xij ∈ ∆t). Let mt be the number of resources
offered at time t and assume that k past values are available, i.e.,
mt−k,mt−k−1, . . . ,mt.

A. OFM Algorithm

Online mirror descent (OMD) is one of the widely used algorithms
for online convex optimization [43]–[45]. The basic idea of OMD
is to perform an update on the dual space of the regularizing
function and to project on the convex decision set using appropriate
distance generating functions iteratively. The regularization function
not only improves the stability but also lowers the regret bounds [43].
OMD with appropriate distance generating function achieves nearly
optimal regret for any convex online learning problem with a full
adversarial input model. Hence, OMD is considered as universal [45].
Further, OMD is a first order method (involves only the slope of a
function). Hence, most often updates are not only simple but also
computationally efficient.

To apply OMD, we require a distance generating function based on
the geometry of the objective function. The Bregman divergence [46]
is one of the widely used distance generating functions, and it is the
distance between the function and its first order Taylor expansion
(tangent). Formally, let h : Ω × relint(Ω) be a continuously
differentiable convex function and let p and q be the two points

on h with gradient ∇p and ∇q respectively. Then, the Bregman
divergence is defined as follows:

Bh(p, q) = h(p)− h(q)− 〈∇q,p− q〉 (7)

For a Fisher market, an unnormalized negative entropy function is
used as the regularization function [47]. Hence, OFM uses unnormal-
ized entropy as the regularization function, i.e., , h(x) = x log x−x
and the corresponding Bregman divergence expression can be found
in Appendix VI-A. The pseudocode of OFM is presented in Algo-
rithm 1. OFM works in two stages. The prices are predicted in the
first stage and the objective function is updated in the later stage. Let
m0 be the resources offered at time t = 0. Initially, OFM determines
the number of resources randomly and the corresponding unit simplex
and prices for all resources are initialized to 1

m0
to satisfy the unit

simplex property of equilibrium prices (
∑m0
j=1 pj = 1).

For every instant t, Initially, OFM predicts the number of resources
(line 5). If the number of resources offered is not the same as in
the previous instant t − 1, then either new resources are added or
some existing resources are removed. The removal of a resource
is straightforward and involves only updating the length of the set
∆ (line 12). Moreover, it does not violate budgets. Let δ be the
difference between the number of resources predicted during t and
the actual number of resources offered in t−1, i.e., δ = m′t−mt−1.
Let σt−1 be the sum of all prices at instance t − 1. OFM performs
the following during the addition of new resources (δ > 0):

• Compute the new prices for mt using OMD update. These
resources are old resources.

• Compute the difference between the sum of the current prices
of old resources and σt−1. The new prices are initialized with

the value
∑mt−1

j=1 xj−σt−1

δ·t and if new resources are introduced
later, then they should be initialized with low prices to satisfy
the unit simplex property in both the scenarios. Otherwise, will
lead to a budget violation. Therefore, it is necessary to penalize
the offering of new resources at a later instant.

OFM computes the difference and updates the length of the current
price vector xt(line 6). The prices are predicted before the input is
revealed (line 13) using Algorithm 2. Once prices are predicted, the
function `t along with the input parameters m,n and uij are revealed
to OFM. These parameters are used to update the online mirror
descent of the OFM algorithm. In addition, we compute the optimal
prices for the current time instant using the closed-form expression
provided in Theorem IV.1(line 15).

The pseudocode for online price prediction is presented in Al-
gorithm 2. The main function of the Algorithm 2 is to predict the
current prices based on the previous time instant t. In OMD, the price
prediction is done in two stages. They are:

• In a first stage, the update is performed on the regularization
function h(x). Let yt be the update for h at instance t. In OFM,
the update rule is given by ∇h(yt+1) = ∇h(xt)− η∇t, where
∇t is the gradient of `t.

• Once yt+1 is calculated, then the prediction at time t + 1,
i.e., , xt+1 is the projection on ∆ which minimizes Bregman
divergence between points in ∆ and yt+1 on the function h.
Formally, this can be written as the following optimization
problem:

min
x∈∆

Bh(x, yt+1) (8)

Eq. (8) is minimized if ∇Bh(x, yt+1) = 0. This implies that
xt+1 = yt+1. The proof can be found in section VI-A.

Algorithm 1 OFM algorithm
Require: `t,mt, nt

1: m0 ← random()
2: ∀j ∈ m0, x0 = 1

m0

3: ∆ = ∆m0

4: for t← 1, T do
5: m′t ← predictResources(predict, t)
6: if m′t 6= mt−1 then
7: δ ← m′t −mt−1

8: if δ > 0 then
9: ∀k ∈ δ, xt[k]←

∑mt−1
j=1 xj−σt−1

δ·t
10: Set |xt| ← max{mt−1,m

′
t}

11: else
12: Set |xt| ← min{mt−1,m

′
t}

13: xt ← OFM −MD(predict, t)
14: Observe `t
15: xt ← arg `t(x

∗)
16: if mt−1 6= mt then ∆← ∆ ∪ {∆mt}
17: onlinePrice(update, `t, xt)
18: predictResources(update,mt)

Algorithm 2 onlinePrice algorithm
1: procedure ONLINEPRICE(state, f ′, x′)
2: x0 ← 1

e

3: for t← 1, T do
4: if state == predict then return xt

5: if state == update then
6: `t ← `′

7: xt ← x′

8: ∇t = ∇`t(xt)
9: xt+1 = e(log xt−η∇t)

The structure of OFM objective function f is time invariant. Hence,
we get a closed-form expression for updates and can be used to
predict the prices for the next instance instantly as soon as the input
is revealed in Algorithm 2(line= 5). The details can be found in the
Section VI-B.

In summary, OFM performs the computation of market equilibrium
prices for the resources and prediction of resources offered at every
instant. The computation of optimal prices can be done in m·n steps.
Also, the minimum prices can be found in n steps. Computing the
slope using previous prices and current price prediction require n
steps each. Hence, the time complexity for every round is O(m ·n).
The total time complexity for T instants is given by O(T · (m · n))
where m = maxmt, t < T and n = maxnt, t < T .

Theorem IV.2. The regret bound of OFM is Ro ≤ 2
√

2T logn.

Proof. In OFM, ∆ is a simplex and the sum of offline optimal
prices (equilibrium prices) never exceeds 1 [15]. Hence, the slope
of OFM is bounded even though it is logarithmic. Let ‖∇t‖ be
the dual norm of the slope at instant t and for ∆, ‖∇t‖ ≤ 1. Let
n = maxnt, t < T be the maximum number of resources offered
in OFM. By substituting these values in [43, section 5.4], we get the
regret bound Ro ≤ 2

√
2T logn.

V. OFM EVALUATION

A. Experimental setup

Resource pricing is of strategic importance for any service provider.
Hence, the internal pricing mechanisms are not made public. We
believe that there is no openly available cloud pricing data of
service providers. Balserio et al. [48] generate stochastic dataset
based on Google AdX real data to evaluate their AdX placement
algorithms. Bateni et al. [18] extend this dataset by augmenting
volatile information to model the sensitivity of shocks due to social
and news trends such as negative publicity in the news about the
resources.

Each dataset consists of varying advertisers (6 to 101) and impres-
sion types (7 to 406). The number of advertisers, impressions and
advertisers’ utilities are different in each dataset. Arrivals are assumed
to be an Ornstein-Uhlenbeck process. An Ornstein-Uhlenbeck is a
diffusion process for modeling the velocity of a particle in Brownian
motion and used extensively in mathematical finance to model market
prices and volatility. The authors estimate the parameters for the
dataset presented in [48] and generate synthetic arrival data without
affecting the statistical properties of the real dataset. The estimation
methodology can be found in [18]. We evaluate both fixed and varying
set of resources. We measure the regret of OFM, i.e., the distance
between our OFM online algorithm objective without hindsight and
an optimal algorithm with hindsight.

1) Fixed resource set: It is evident from the Theorem IV.1 that the
prices depend only on utility and budget of buyers. However, buyer
utilities in modified AdX dataset [18] are limited to an Ornstein-
Uhlenbeck process. Hence, we perform the following steps on [18]
dataset for evaluating OFM: (i) Let Λtj be the Ornstein-Uhlenbeck
arrival rate of the resource j at time interval t. We treat mean values of
impression type j and advertiser i as a base utility u∗ij and generate
a new utility uij for a resource and a buyer at every instant as a
product of base utility and Ornstein-Uhlenbeck arrival rate of the
resource, i.e., utij = u∗ijΛ

t
j . In this way, we ensure that the volatility

of buyer utilities in every instant t. In the OFM random permutation
model, the expectation of the data varies at each time interval. Hence,
maintaining volatility captures the random permutation scenario in
the evaluation; (ii) In a real marketplace, buyers arrive with different
budgets and it is part of our formulation. We calculate the budget
along the similar lines of [18]. In our case the budget of buyer i is cal-
culate as bi =

∑
j uij

|{j:uij>0}| ; (iii) The challenge C2 implies customers
with varying utility distribution. Hence, we use different distributions
for generating utilities, namely uniform and normal distributions. A
uniform distribution is a simple and widely used distribution, and the
utility is generated in the interval [0, 1] uniformly. According to the
central limit theorem, non-heavy tailed distribution over a period will
converge to a normal distribution [49]. Hence, evaluation on a normal
distribution guarantees similar behavior as in other non-heavy-tailed
distributions. In summary, the AdX dataset is modified to evaluate
OFM for buyers with different probability distributions for a fixed
set of resources scenario.

2) Varying resource set: In the case of varying resource set, the
OFM solution set is also modified frequently. The current input
for OFM is revealed after the price prediction. Hence, evaluating
varying resource set is non-trivial. As we discussed before, the
varying resource set scenario is typical in cloud subletting. The
AdX dataset [18] is not suitable due to fixed buyers and resources.
Therefore, we perform the trace-based simulation for OFM evaluation
in this scenario.

We use a Google cluster data trace [22] of around 12.5k machines
for 29 days in a Google data center. Each job has different CPU
requirement and hence, different VMs are allocated which eventually
leads to different CPU usage, and CPU demand. In other words, the
CPU demand is not uniform for all time intervals and depends on
the demands of the incoming jobs. We use this demand information
to simulate the demand behavior of OFM resources. We generate
the number of resources offered at each time instance by randomly
sampling CPU demand without replacement from the 41GB data
set as random permutation model is a sampling without replacement.
Furthermore, we assume that service providers introduce more re-
sources during high demand time periods. We perform time series
analysis and use Box Jenkin’s method to build an ARIMA model to
predict the CPU usage for future prediction. OFM uses this prediction
information to set the prices for the current time instance. The
results of OFM evaluation for both the scenarios are presented in
the subsequent subsection.

B. Results

1) Predicting the number of offered resources: We used three time
series models namely AR (auto-regressive), MA (moving-average)
and ARIMA (auto-regressive moving average). In the AR model, the
output is regressed from the previous values. Similarly, MR model
regress output from the residual of the previous values. ARIMA
combines both AR and MR. In other words, ARIMA forecasts
the current output by taking previous values and residuals into
account. Apart from time series models, we perform alternative
prediction schemes which are computationally straightforward. In the
first method, the current prediction is the mean of all the previous
values. In the second method, the current prediction is the immediate
past value. We call this approach as immediate previous. The result
of time series modeling and additional approaches of the randomly
sampled CPU demand is presented in the figure 1. We tested the series
for non-stationary of CPU usage using Dickey-Fuller test (test for
finding stochastic process affecting time series statistical properties).
The sampled series is stationary with 99% confidence level. We
determined the order (number of past data in time series) and moving
average statistically using autocorrelation plots. The mean absolute
errors of the prediction approaches are presented in the Table I.

It is evident from the Table I that ARIMA outperforms other
approaches. However, the immediate previous approach is not only
computationally simpler than the rest of the approaches but also closer
to ARIMA forecast. For time-sensitive applications, the immediate
previous approach is an ideal candidate for predicting the number of
offered resources.

2) Fixed Resource set: The experiment is performed for a total
instant T = 500 on both AdX dataset (Ornstein-Uhlenbeck process),
and AdX augmented with both uniform and normally distributed
utilities. We performed normal distribution fit on the collected CPU
demand trace, and the estimated parameters are used to generate
normally distributed utility. The regret for AdX dataset can be
found in figure 2a, while Figure 2b and 2c represent regret for
uniformly distributed and normally distributed data respectively. The
convergence of OFM over a period is easily evident from all the
figures. Hence, the regret is reduced with time. The prediction is
about 95% of optimal prices on all three datasets AdX, normal and
uniformly distributed data.

There are some cases (for instance in Figure 2a AdX 4) where the
regret is negative. In such cases, the value of the predicted objective of
OFM is greater than the optimal objection due to constraint violation
of Eq. (4). In other words, the predicted prices would result in a

0 25 50 75 100 125 150 175 200
Time period

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sc
al

ed
 C

PU
 d

em
an

d

Actual and ARIMA models of CPU demand

Actual
MA(0,0,1)

Mean
Previous

AR(1,0,0)
ARIMA(1,0,1)

Fig. 1: Comparison of prediction based on ARIMA, mean and
previous values of sampled CPU usage of Google cluster trace

Approach MAE

ARIMA(1,0,1) 0.038524
AR(1,0) 0.038602
MA(0,1) 0.044700

Mean of previous 0.053589
Immediate previous 0.039389

TABLE I: Mean absolute error (MAE) for ARIMA, mean and
previous values of sampled CPU usage of Google cluster trace.

0.0

0.5

Re
gr

et

AdX1 AdX2 AdX3

0 200 400
0.0

0.2

0.4

0.6

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(a) Real Adx Dataset

0.00

0.25

0.50

0.75

Re
gr

et

AdX1 AdX2 AdX3

0 200 400
0.0

0.1

0.2

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(b) Uniformly distributed

0.00

0.25

0.50

0.75

Re
gr

et

AdX1 AdX2 AdX3

0 200 400
0.00

0.05

0.10

0.15

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(c) Normally distributed

Fig. 2: Regret for fixed resource set

budget violation. As soon as the input is revealed, OFM corrects
itself in the next instant as evident in the figures due to the absence
of successive violations. The number of violations is negligible on
both AdX data set and the normally distributed set. The maximum
number of violations observed is 7.8% for the uniformly distributed
data. In the uniform distribution, all kind of input data (best case,
average case, worst case) appear with equal probability. Hence, we
find the higher violation when the data is uniformly distributed.

3) Varying Resource set: The Figure 3 shows the regret for
uniform and normally distributed data for three prediction approaches
namely ARIMA, immediate previous and mean. In this scenario,
regret is not smooth and vary unlike the fixed set of resources. This
is due to the difference between the actual and predicted resource
offered. We see a sudden decrease in regret, when the actual values
are decreased suddenly, i.e, a smaller value in an increasing sequence.

4) Buyer Scalability: We evaluate the OFM scalability to handle
a large number of buyers. We measure the time taken by OFM to
compute prices using the timeit function in Matlab. timeit calls a
function multiple times and return the median of actual time taken.
As we know, most of the functions are vectorized for performance
improvement. Hence, we fix the number of resources offered to large
number 1000 for the entire period. Initially, we start with 1000 buyers
and at every period, we increase the buyers by 1000. At the end of
the period t = 50, the number of buyers is 50000. We repeat the
experiment for resources 2000, 3000, 4000, and 5000. The Figure 4
shows the time required by OFM to compute price. It is evident from
the figure that the computational time is in the order of microseconds
which implies that OFM is an apt candidate for real-time deployment.

VI. CONCLUSION

In this work, we proposed OFM for computing prices for Fisher
marketplace with integer allocation for varying buyers and resources

at every time instance. OFM is an online algorithm and based on
stricter adversarial model compared to state of the art solutions. In
other words, the prices once computed cannot be altered. Further,
prices for next time instant is predicted even before all the inputs are
revealed. The experimental evaluation on both real world and emu-
lated dataset demonstrate the low regret bound and faster convergence
over the period achieving around 95% of optimal prices. The updates
in OFM are closed-form expressions and are computationally efficient
as demonstrated in our evaluations. OFM computation time is in the
order of microseconds even for a large number of buyers. Hence,
OFM could be an ideal choice for deploying online marketplace for
cloud resources, especially in edge computing.

APPENDIX

A. Bregman divergence

In our case, h(x) = x log x − x. Hence, ∇h(y) = log y.
Bregman divergence Bh(x, y) is given by Bh(x, y) = h(x) −
h(y)−〈∇h(y), x− y〉. The Bregman divergence is minimized when
∇Bh(x, y) = 0 i.e., ∇Bh(x, y) = 1 + log x − log y − 1 = 0
which implies x = y. Therefore, Bregman divergence Bh(x, y) of
unnormalized entropy function h(x) = x log x − x is minimized
when x = y.

B. Online Mirror Descent(OMD)

Let h(x) = x log x − x be the regularization function. We have,
∇xijf(x) = 1 + log xij − log uij and ∇xijh(x) = log xij . In
online mirrored descent method, the update is first performed on h(x)
and projected back such that projected point minimizes Bregman
divergence between objective and regularization function [43]. First
we have to find the initial point x1 such that x1 = argminBh(x, y1)
where ∇h(y1) = 0. If y1 = 1

e
, then ∇h(y1) = 0. Hence,

x1 = y1 = 1. As per [43], agile version of OMD update is given by
∇h(yt+1) = ∇h(xt)− η∇ft .

0.0

0.5
Re

gr
et

0 100 200
0.0

0.1

0.2

Re
gr

et

0 100 200
Time period

0 100 200

Mean ARIMA Previous

(a) Uniformly distributed

0.0

0.5

Re
gr

et

0 100 200
0.00

0.05

0.10

0.15

Re
gr

et

0 100 200
Time period

0 100 200

Mean ARIMA Previous

(b) Normally distributed

Fig. 3: Regret for varying resources for ARIMA, immediate previous and mean model

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 1 AdX 2 AdX 3

20000 40000

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 4

20000 40000
Buyers

AdX 5

20000 40000

AdX 6

1000 resources 2000 resources 3000 resources 4000 resources 5000 resources

(a) Uniformly distributed

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 1 AdX 2 AdX 3

20000 40000

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 4

20000 40000
Buyers

AdX 5

20000 40000

AdX 6

1000 resources 2000 resources 3000 resources 4000 resources 5000 resources

(b) Normally distributed

Fig. 4: Measured time for varying buyers for fixed resources

ACKNOWLEDGMENT

The research leading to these results has received funding from
the EU FP7 Marie Curie Actions by the EC Seventh Framework
Programme (FP7/2007-2013) Grant Agreement No. 607584 (the
Cleansky project). The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the CleanSky project or the European Commission.

REFERENCES

[1] Z. Zhang, Z. Li, and C. Wu, “Optimal Posted Prices for Online Cloud
Resource Allocation,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems , vol. 1, no. 1, pp. 23:1–23:26, Jun.
2017.

[2] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource Man-
agement in Cloud Networking Using Economic Analysis and Pricing
Models: A Survey,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 2, pp. 954–1001, 2017.

[3] S. Jagannathan and K. C. Almeroth, “Price Issues in Delivering E-
content On-demand,” ACM SIGecom Exchanges, vol. 3, no. 2, pp. 18–27,
Mar. 2002.

[4] F. Ridder and A. Bona, “Four Risky Issues When
Contracting for Cloud Services,” 2011. [Online]. Avail-
able: https://www.gartner.com/doc/1543314/risky-issues-contracting-
cloud-services

[5] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. M. Lau, “Dynamic
Pricing and Profit Maximization for the Cloud with Geo-distributed Data
Centers,” in IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, Apr. 2014, pp. 118–126.

[6] A. S. Prasad and S. Rao, “A Mechanism Design Approach to Resource

Procurement in Cloud Computing,” IEEE Transactions on Computers,
vol. 63, no. 1, pp. 17–30, Jan. 2014.

[7] H. Xu and B. Li, “Dynamic Cloud Pricing for Revenue Maximization,”
IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 158–171, Jul.
2013.

[8] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. Oxford University Press, 1995.

[9] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based Resource
Allocation for Edge Computing: A Market Equilibrium Approach,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2018.

[10] I. Menache, A. Ozdaglar, and N. Shimkin, “Socially Optimal Pricing of
Cloud Computing Resources,” in Proceedings of the 5th International
ICST Conference on Performance Evaluation Methodologies and Tools.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), May 2011, pp. 322–331.

[11] H. Moulin, Fair Division and Collective Welfare . The MIT Press, Jan.
2003.

[12] K. Jain and V. V. Vazirani, “Eisenberg–Gale markets: Algorithms and
game-theoretic properties,” Games and Economic Behavior, vol. 70,
no. 1, pp. 84–106, Sep. 2010.

[13] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani, “Mar-
ket Equilibrium via a Primal–Dual Algorithm for a Convex Program,”
Journal of the ACM, vol. 55, no. 5, pp. 22:1–22:18, Nov. 2008.

[14] G. Goel and V. V. Vazirani, “A Perfect Price Discrimination Market
Model with Production, and a Rational Convex Program for It,” Mathe-
matics of Operations Research, vol. 36, no. 4, pp. 762–782, Nov. 2011.

[15] V. I. Shmyrev, “An Algorithm for Finding Equilibrium in the Linear
Exchange Model with Fixed Budgets,” Journal of Applied and Industrial
Mathematics, vol. 3, no. 4, pp. 505–518, Dec. 2009.

[16] R. Cole, N. Devanur, V. Gkatzelis, K. Jain, T. Mai, V. V. Vazirani,
and S. Yazdanbod, “Convex Program Duality, Fisher Markets, and
Nash Social Welfare,” in Proceedings of the 2017 ACM Conference on
Economics and Computation. ACM, Jun. 2017, pp. 459–460.

[17] Y. Azar, N. Buchbinder, and K. Jain, “How to Allocate Goods in an
Online Market?” Algorithmica, vol. 74, no. 2, pp. 589–601, Feb. 2016.

[18] M. H. Bateni, Y. Chen, D. F. Ciocan, and V. Mirrokni, “Fair Resource
Allocation in A Volatile Marketplace,” in Proceedings of the 2016 ACM
Conference on Economics and Computation. ACM Press, Jul. 2016,
pp. 819–819.

[19] Gupta, R. and Roughgarden, T., “A PAC Approach to Application-
Specific Algorithm Selection,” SIAM Journal on Computing, vol. 46,
no. 3, pp. 992–1017, 2017.

[20] A. N. Toosi, K. Vanmechelen, F. Khodadadi, and R. Buyya, “An Auction
Mechanism for Cloud Spot Markets,” ACM Transactions on Autonomous
and Adaptive Systems, vol. 11, no. 1, pp. 2:1–2:33, Feb. 2016.

[21] R. Cole and V. Gkatzelis, “Approximating the Nash Social Welfare with
Indivisible Items,” in Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing, Jun. 2015, pp. 371–380.

[22] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, posted at http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.

[23] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “An Online Auction
Framework for Dynamic Resource Provisioning in Cloud Computing,”
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2060–2073,
Aug. 2016.

[24] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online Auctions
in IaaS Clouds: Welfare and Profit Maximization With Server Costs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1034–1047,
Apr. 2017.

[25] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud Market
Mechanism for Computing Jobs With Soft Deadlines,” IEEE/ACM
Transactions on Networking, vol. 25, no. 2, pp. 793–805, Apr. 2017.

[26] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. J.
McGrath, G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi,
and A. Kourtis, “T-NOVA: A Marketplace for Virtualized Network Func-
tions,” in 2014 European Conference on Networks and Communications
(EuCNC). IEEE, Jun. 2014, pp. 1–5.

[27] S. D’Oro, S. Palazzo, and G. Schembra, “Orchestrating Softwarized
Networks with a Marketplace Approach,” Procedia Computer Science,
vol. 110, pp. 352–360, 2017.

[28] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online Stochastic
Buy-Sell Mechanism for VNF Chains in the NFV Market,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 2, pp. 392–406, Feb.
2017.

[29] S. Angelopoulos, A. D. Sarma, A. Magen, and A. Viglas, “On-Line
Algorithms for Market Equilibria,” in 11th Annual International Con-
ference Computing and Combinatorics (COCOON). Springer Berlin
Heidelberg, Aug. 2005, pp. 596–607.

[30] A. Blum, T. Sandholm, and M. Zinkevich, “Online Algorithms for
Market Clearing,” Journal of the ACM, vol. 53, no. 5, pp. 845–879,
Sep. 2006.

[31] J. Anselmi, D. Ardagna, J. C. S. Lui, A. Wierman, Y. Xu, and Z. Yang,
“The Economics of the Cloud,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 2, no. 4, pp. 18:1–
18:23, Aug. 2017.

[32] R. Freeman, S. M. Zahedi, and V. Conitzer, “Fair and Efficient Social
Choice in Dynamic Settings,” in Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence. AAAI Press, Aug.
2017, pp. 4580–4587.

[33] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[34] N. R. Devenur and T. P. Hayes, “The Adwords Problem: Online Keyword
Matching with Budgeted Bidders Under Random Permutations,” in
Proceedings of the 10th ACM Conference on Electronic Commerce.
ACM, Jul. 2009, pp. 71–78.

[35] S. Agrawal and N. R. Devanur, “Fast Algorithms for Online Stochastic
Convex Programming,” in Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, Jan. 2015,
pp. 1405–1424.

[36] N. R. Devanur, “Online Algorithms with Stochastic Input,” ACM SIGe-
com Exchanges, vol. 10, no. 2, pp. 40–49, Jun. 2011.

[37] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic Regret Algorithms for
Online Convex Optimization,” Machine Learning, vol. 69, no. 2-3, pp.
169–192, Dec. 2007.

[38] H. Wang and A. Banerjee, “Online alternating direction method (longer
version),” CoRR, vol. abs/1306.3721, 2013.

[39] B. Codenotti, B. Mccune, S. Pemmaraju, R. Raman, and K. Varadarajan,
“An Experimental Study of Different Approaches to Solve the Market
Equilibrium Problem,” Journal of Experimental Algorithmics, vol. 12,
pp. 3.3:1–3.3:21, Aug. 2008.

[40] J. B. Orlin, “Improved Algorithms for Computing Fisher’s Market Clear-
ing Prices: Computing Fisher’s Market Clearing Prices,” in Proceedings
of the Forty-second ACM Symposium on Theory of Computing, Jun.
2010, pp. 291–300.

[41] Y. Zhu, S. Fu, J. Liu, and Y. Cui, “Truthful Online Auction for Cloud
Instance Subletting,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, Jun. 2017, pp. 2466–
2471.

[42] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control (Revised Edition). Holden-Day, 1976.

[43] E. Hazan, “Introduction to Online Convex Optimization,” Foundations
and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, Aug. 2016.

[44] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,”
Foundations and Trends® in Machine Learning, vol. 4, no. 2, pp. 107–
194, Feb. 2011.

[45] N. Srebro, K. Sridharan, and A. Tewari, “On the Universality of Online
Mirror Descent,” in Proceedings of the 24th International Conference on
Neural Information Processing Systems. Neural Information Processing
Systems Foundation, Dec. 2011, pp. 2645–2653.

[46] L. Bregman, “The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex
programming,” USSR Computational Mathematics and Mathematical
Physics, vol. 7, no. 3, pp. 200–217, 1967.

[47] B. Birnbaum, N. R. Devanur, and L. Xiao, “Distributed Algorithms via
Gradient Descent for Fisher Markets,” in Proceedings of the 12th ACM
Conference on Electronic Commerce. ACM, Jun. 2011, pp. 127–136.

[48] S. R. Balseiro, J. Feldman, V. Mirrokni, and S. Muthukrishnan, “Yield
Optimization of Display Advertising with Ad Exchange,” Management
Science, vol. 60, no. 12, pp. 2886–2907, Oct. 2014.

[49] C. Bandi, D. Bertsimas, and N. Youssef, “Robust Queueing Theory,”
Operations Research, vol. 63, no. 3, pp. 676–700, Apr. 2015.

