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Abstract: This paper reviews the estimation of spectral reflectance for corre-

sponding colors in XYZ color space, including both corresponding color data 

sets and chromatically adapted colorimetry. For use in color management work-

flows, the performance of an in inverse transform of the chromatically adapted 

data was evaluated using spectral estimation. The method has been extended to 

create spetral based ICCMax profiles. The Classical PCA based spectral estima-

tion method is used for simplicity and as a first evaluation step. The Calculator 

elements script programming is used to implement the spectral estimation. Two 

different types of profiles were created form RGB colorspace to Spectral space 

and XYZ colorspace to Spectral space using to different way of encoding ap-

plied onto colorimetric data point on a tiff image.. 

Keywords: Spectral estimation, principal component analysis, corresponding 

color data, chromatic adaptation transform. 

1 Introduction 

Increasing use is now being made of spectral data in color reproduction workflows. 

Spectral source data is available through measurement or from multispectral and hy-

perspectral cameras, and there is also an increasing need for output that is spectral 

(reflectance, emission or even bi-spectral, in the case of fluorescence). Such data may 

be required for the final output, or may be used in an intermediate processing step 

prior to calculation of final output values. With the introduction of ICCMAX in color 

management it is now possible to connect spectral data, using a spectral Profile Con-

nection Space or transforming to or from colorimetric representations [1]. Spectral 

data is also closely related to material property. ICCMAX can be used to exploit this 

relationship and adjust for material properties.  

Another application of spectral output is data hiding using spectral reflectance.  

Bala et. al have encoded watermark by using metameric matches that can be detected 

using narrow band illumination but goes visually undetected under wide band illumi-

nation [2].  

Spectral data is extensively used in color science and the color reproduction indus-

tries. In a color reproduction workflow, it is common to perform a chromatic adapta-
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tion step to ensure the appearance is correct in the intended viewing condition, or in 

the PCS. Chromatic adaptation transforms are defined for colorimetric data, via a 

transform in a 3-dimensional cone space, but when this is done there is no spectral 

representation of the adapted colorimetry.  

Another sensor adjustment transform is based on material equivalency. Derhak devel-

oped a normalization method that transforms sensor excitation to material equivalent 

representation described by the Wpt (Waypoint) color space. Such Wpt based materi-

al adjustment transform reduces the difference introduced by observer and illuminant 

[3]. In this paper, we review the use of spectral estimation using PCA for various 

corresponding color datasets and evaluate its performance.    

 

This paper is also extended to implement spectral based icc profiles using iccMAX. 

iccMax PCS supports transforms from LAB to to XYX, XYZ to LAB just as in V4 

and also from reflectance, transmission, emission and fluorescence to LAB/XYZ. But 

from colorimetry PCS to spectral PCS transform has not been implemented although 

the provision is there. Max Derhak has implemented iccMAX profiles that can esti-

mate reflectance from colorimetric data such as RGB/XYZ using his method called 

waypoint (Wpt) based spectral estimation. We implement spectral ICC profiles using 

iccMAX using spectral estimation method described in this paper for the correspond-

ing color data.   

  

 

1.1 Spectral Estimation 

The colorimetric value of an object defined as three co-ordinate representation is easi-

ly available. But this colorimetric value is not a signature attribute of the object but 

rather depends on the viewing conditions such as illuminant and observer function.  

Tristimulus colorimetry is computed from the spectral reflectance of the object, with 

the illuminant and colorimetric observer as input [4]. For cases where the spectral 

reflectance is not known, a number of methods have been described for the estimation 

or reconstruction of spectral reflectance from colorimetry. We will further discuss the 

reconstruction of spectral reflectance from tristimulus values in the next section. 

1.2 Training datasets 

For spectral estimation one of the most important steps is to decide and create a da-

tabase of spectral reflectances. This database is used to provide spectral reflectance 

information and nature with respect to its colorimetric response and to obtain a trans-

formation matrix for estimation.   

The training data should be selected based on the test data properties and it is im-

portant to have a large number of measured spectral reflectances that is spread over a 

range of colors distinguishable under various lighting conditions and preferably under 

the test conditions. We will establish this importance of training data selection with 
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respect to test data later in the results section. We are using the following spectral 

reflectances for training: 

 
DATASET NO. OF SAMPLES SPECIFICATION 

FOGRA51[5] 1617 380nm – 730nm at10nm  

CC240 240 380nm – 1080nm at 2nm 

MUNSELL GLOSSY 

CORRECTED [6] 

1600 380nm – 780nm at 5nm 

MUNSELL MATT [7] 1269 380nm – 780nm at 1nm 

ISO 17321[8] 24 380nm – 830nm at 5nm 

Table 1. Description of training datasets used. 

The FOGRA51 spectral reflectance dataset represents characterization data for 

printing by offset litho on premium coated paper [5]. It was extrapolated to 780 nm by 

repeating the spectral reflectance value at 730 nm over the range 735-780 nm. The 

CC240 dataset are measurements of 240 Macbeth Color Checker samples obtained 

using a hyperspectral camera. The above datasets are divided into two sets of training 

spectral reflectances, the first training dataset comprises 1563 spectral reflectances of 

FOGRA51 and the remainder of the 54 spectral reflectances are reserved as the 

ground truth for the testing phase. The second training set comprises of the CC240, 

Munsell Glossy corrected, Munsell Matt and ISO17321 spectral reflectances for a 

total of 3135 spectral reflectances. All the spectral reflectances are converted to 380-

780 nm range in steps of 10 nm for spectral estimation. 

2 Spectral Estimation Methods 

In this section, we discuss the methods used for spectral estimation of corresponding 

color data i.e. reconstruction of spectral reflectance from tristimulus values.  Tristimu-

lus values are defined as the product of surface spectral reflectance, spectral distribu-

tion of illuminant and observer color matching functions. One of the simplest methods 

is the pseudo inverse method that uses minimization of least square errors to obtain 

the estimated spectral reflectance [9]. This method uses a set of training spectral re-

flectances multiplied to the Moore-Penrose pseudo inverse of their tristimulus values 

under a given viewing condition to generate the transformation matrix [10]. This ma-

trix can then reconstruct spectral reflectance given a tristimulus value. Another widely 

used method is principal component analysis (PCA), described by Fairman and Brill 

[11]. “The K eigenvectors having the highest associated eigenvalues will be the first 

K principal components of the spectral reflectances.”, as stated by Fairman and Brill 

suggest to choose a number of eigenvectors as principal components that store the 

highest variance of mean centered training spectral reflectances. To find the suitable 

number of principal components, the percentage of variance can be calculated. In our 

case, the percentage of variance for three principal components for the 3135 spectral 

reflectance i.e. the second training dataset in the range of 380nm-780nm at an interval 

of 10 nm is 96.74% and for six principal components it is 99.44%. While for 1563 
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spectral reflectances of the FOGRA51 dataset in the same wavelength range a 99.53% 

of variance information is obtained with just three principal components. Therefore, if 

the training dataset is large and comprises spectral reflectance of varied type of meas-

ured samples then it is recommended to increase the number of components to allow 

more variance information. The percentage of variance obtained by Fairman and Brill 

using 3534 spectral reflectances in the wavelength range of 400nm to 700nm at 10nm 

interval for the first three principal components is 98.9% and for the first six principal 

components is 99.8%. This suggest that apart from the amount of training spectral 

reflectances, the range of wavelength also affects the percentage of variance stored in 

the principal components. From a mathematical point of view, we know that the prin-

cipal components of a certain data set let us obtain the least number of dimensions by 

which to effectively describe the data and its internal variability. Therefore, it would 

indeed be prudent to perform more analysis and experiment on this type of data where 

variance information is lower than expected within the first three principal compo-

nents. We are discussing the number of principal components in multiples of three 

because the PCA method described by Fairman and Brill can be used with only in 

multiples of three as discussed later. In this paper we will consider PCA based meth-

ods. We refer to the simple PCA method proposed by Fairman and Brill as classical 

PCA, and a variant of this method proposed by Agahian et. Al. known as weighted 

PCA. They are described below. 

 

2.1 Spectral Estimation using classical PCA 

Let E be a 41x3 matrix that contains the first three principal components column-

wise of the training spectral reflectance set Q (41xn) where n is the number of spectral 

reflectances in the training set. For the second training dataset n is 3135. Eo is a 41x1 

matrix that contains the mean spectral reflectance of matrix Q given by: 

 Eo = (∑rQ)/n 

where ∑r is row-wise summation applied on matrix Q. 

 

For a spectral reflectance R with dimensions 41x1, the co-ordinates C (3x1) of the 

principal components will have the following desired relationship according to Fair-

man and Brill: 

 EC = R-Eo. (1) 

 or  R = Eo +EC (2) 

            

Let, A(41x3) be the weight set for tristimulus integration, R is the spectrum which 

is being integrated. Therefore, the relationship between the tristimulus value T (3x1) 

and spectral reflectance R (41x1)is: 

 T = ATR (3) 
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Matrix A is of the form Aiλ where i changes from 1to 3 and λ changes from 380nm to 

780nm at an interval of 10 nm and it is given by:  

 A1λ = k(∑Sλ x̄λ ) , A2λ = k(∑Sλ ȳλ ) and A3λ = k(∑Sλ z̄λ) 

Where S is the spectral power distribution of the illuminant and x̄, ȳ and z̄ are the 

color matching functions stored column-wise in the same wavelength range 380nm to 

780nm at an interval of 10nm. Scalar k is used for normalization and is given by: 

 k = 1/(∑Sλ ȳλ)   

Using equations (2) and (3) a relationship between the co-ordinates and the tristim-

ulus values can be drawn as below: 

 T = ATEo + (A)T EC  

 or  C = (AT E)-1(T - ATEo)  (4) 

Equation 4 is now a relationship between the principal components co-ordinates 

and the tristimulus values, hence, they are called the tristimulus-constrained principal 

component co-ordinates. These co-ordinates can be used with the PCA method to 

estimate spectral reflectance as in equation 2. Therefore, we can rewrite the equation 

2 using the tristimulus constrained principal component co-ordinates as below: 

 R = Eo + E((AT E)-1(T - ATEo)) (5) 

As can be seen the term ATEo is the tristimulus value of the mean spectral reflec-

tance of the training data. This equation can be modified to use more principal com-

ponents in multiples of three and for each increase in the set of principal components, 

we will also need to include a new illuminant with observer function and a corre-

sponding tristimulus value computed under the new illuminant, more information can 

be found in [11]. This limitation arises because the principal component co-ordinates 

are constrained by the tristimulus values which are three dimensional. Moreover, to 

obtain the corresponding tristimulus values with the new illuminant we have to use a 

regression method. Therefore, for simplicity, we will use this method with three com-

ponents considering the trade-off in variance percentage is reasonable. By improving 

the selection of the training spectral reflectances, the variance percentage for three 

principal components can be increased. 

2.2 Spectral Estimation using weighted PCA 

Agahian, et. al. proposed a weighted PCA where the training spectral reflectances 

are assigned weights computed as the inverse of colorimetric difference d between the 

tristimulus values computed using the training spectral reflectances and the test tri-

stimulus value. The smaller the difference, higher will be the weight. These weights 

form an nxn diagonal matrix which are multiplied by the training spectral reflectance 

matrix Q, and then PCA is applied as above. To avoid division by zero, Agahian et. 

al. adds a small value s = 0.01 to the colorimetric difference d. This method allows the 
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mean reflectance to have a shape according to the test tristimulus value’s closeness to 

the training spectral reflectance when tristimulus is computed from them using the 

test illuminant and observer function.  Therefore, the reconstructed spectral reflec-

tance should be closer to the original spectral reflectance compared to the reconstruct-

ed spectra obtained by classical PCA [12].   

We used both classical PCA and weighted PCA to estimate spectral reflectance and 

compare the results.    

3 Uses of Spectral Estimation on Corresponding Colors 

A corresponding color transform allows an observer adapted to an illuminant to 

change a stimulus under it to match visually to the original stimulus viewed under a 

reference illuminant. This change in the stimulus is usually applied to the colorimetric 

data, but the implication is that there is no corresponding spectral reflectance. Here 

we show how spectral estimation can be used to estimate a spectral reflectance from a 

corresponding color. The two spectral estimation methods discussed above are ap-

plied on various datasets and scenarios. 

3.1 Testing the method on known spectral reflectances  

First, we apply the methods to tristimulus values for which we know the measured 

spectral reflectances in order to test their accuracy. We used spectral reflectances 

from a characterization data set provided by Fogra [5]. It should be noted that this 

data was obtained not from single measurements, but from many measurements of a 

test chart printed according to a specific printing condition. After averaging, further 

manipulation was performed to ensure the data set had certain desired properties in-

cluding smoothness and consistency in single-channel tone steps. Such steps are be-

lieved to improve the model accuracy in color management [13]. 

 
DATASET NO. OF 

SAMPLES 

REFERENCE 

ILLUMINANT 

TEST 

ILLUMINANT 

METHOD 

HELSON 59 C A Memory 

LAM & RIGG 58 D65 A Memory 

KUO& LUO 

(A) 

40 D65 A Magnitude 

LUTCHI (A) 43 D65 A Magnitude 

LUTCHI (D50) 44 D65 D50 Magnitude 

Table 2. Description of corresponding color datasets used. 

3.2 Spectral Estimation of Corresponding Color datasets 

Both classical PCA and weighted PCA were applied on the reference tristimulus 

values and visually matched corresponding tristimulus values of each corresponding 

color dataset using training set 2. The standard two-degree observer color matching 
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function was used for all the cases while the illuminant for spectral estimation is the 

illuminant under which the XYZ value is calculated. The estimated spectral reflec-

tances would help in analyzing how well PCA based spectral estimation can convert 

tristimulus values to their respective spectral reflectance. They would also help in 

finding the similarity between the estimated spectra of the reference XYZ and its 

corresponding XYZ and if these spectra can be used for chromatic adaptation in the 

spectral domain. Since we don’t have the measured spectral reflectances for the corre-

sponding datasets we can only make approximations based on reasonable assump-

tions.      

 

3.3 Spectral Estimation of Chromatically Adapted Data  

A CAT is optimized to predict corresponding color data [14]. By estimating spec-

tra of chromatically adapted tristimulus values it is possible to observe the changes in 

the stimulus in the spectral domain. To calculate chromatically adapted tristimulus 

values from the reference corresponding color in XYZ color space, we used three 

CATs, namely, Bradford, CAT02 and CAT16. 

The reference XYZ values of a corresponding color dataset are taken and different 

CATs are applied to obtain the chromatically adapted XYZ values under the test illu-

minant of that corresponding color dataset. CAT02 and CAT16 have been imple-

mented using the two-step transform with equi-energy illuminant transform as an 

intermediate step proposed by Li et. al. [15]. We then apply classical PCA and 

weighted PCA on these various chromatically adapted XYZ values using second 

training dataset. Second training dataset has been used because it consists of a large 

number of spectral reflectances for a variety of natural and synthetic objects to predict 

a match for corresponding datasets. The characteristics of the estimated spectra for 

these adapted tristimulus values are discussed in the results section. 

3.4 Spectral Estimation of Inverse of Chromatically Adapted data 

In color management it is important to be able to invert a transform, for example in 

order to obtain a preview of a color on a different medium from the intended target. 

To understand how well this inverse can be accomplished, the inverse transform was 

implemented on the chromatically adapted tristimulus values and spectral reflectance 

was estimated for these back transformed tristimulus values. When the inverse CAT is 

applied, we only obtain the original reference color value if a linear CAT such as 

linear Bradford is used. For the inverse CAT estimation, we have used Bradford CAT 

and CAT16. The spectral estimation of these inverse CAT tristimulus values for each 

corresponding color dataset were performed using the two PCA methods. 

4 Results and Discussion of Spectral Estimation 

In order to visualize the performance of the spectral estimation on the data set, we 

select the spectra which correspond to the 5th, 50th and 95th percentile RMS errors. 

The results are discussed in the following sections. 
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4.1 Spectral Estimation of FOGRA51 Data 

Spectral estimation of fifty-four FOGRA51 samples whose XYZ values were com-

puted using D65 illuminant and D50 illuminant respectively were performed using 

two sets of training data. The first training set comprises of 1563 FOGRA51 spectral 

reflectances and the second training set comprises of 3135 spectral reflectances. The 

results using the first and the second training sets with classical PCA method applied 

on tristimulus values of FOGRA51 dataset are shown in fig. 1. and fig. 2. respective-

ly.

 

Fig. 1. Estimated reflectances of FOGRA51 using classical PCA and FOGRA51 training set: 

5th, 50th and 95th percentile RMS errors. 

In Fig. 1, the estimated spectra are very similar to their respective measured spectra 

while the estimated spectra in Fig. 2 are not as accurate. This demonstrates the degree 

to which the training set used influences the outcome. The same effect can be seen in 

Fig. 3 and Fig. 4 where the FOGRA 51 samples were estimated using weighted PCA 

for the two training sets 1563 FOGRA51and 3135 spectral reflectances respectively. 

To improve accuracy, we need to choose training data whose surface properties are as 

similar to the test data as possible. 

If we compare Fig. 1 and Fig. 3 where the training set is the same but the spectral 

estimation method differs, we see that weighted PCA results are closest to the meas-

ured spectra. In this, the mean RMSE between measured spectra and estimated spec-

tra of D65 XYZ values is 0.0153 and the mean RMSE between measured spectra and 

estimated spectra of D50 XYZ values is 0.0104, which are the lowest. Now, if we 

compare the two estimated spectra obtained from D65 XYZ and D50 XYZ values, an 

opposite behaviour can be seen where the two estimated spectra using classical PCA 

are similar while the dissimilarity between them increases when weighted PCA is 

used. This is because in classical PCA every training spectral reflectance equally in-

fluences the test tristimulus value and the Vo matrix is global, while in weighted PCA 

the influence of every spectral reflectance increases as its colorimetric similarity un-

der an illuminant increases with the test tristimulus value, and in this case the Vo 
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matrix is locally calculated. Although small the mean RMSE is higher for weighted 

PCA than classical PCA. 

 

Fig. 2. Estimated reflectances of FOGRA51 using classical PCA and 3135 training set: 5th, 50th 

and 95th percentile RMS errors 

 

Fig. 3. Estimated reflectances of FOGRA51 using weighted PCA and 1563 FOGRA51 training 

set: 5th, 50th and 95th percentile RMS errors. 
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Fig. 4. Estimated reflectances of FOGRA51 using weighted PCA and 3135 training set: 5th, 50th 

and 95th percentile RMS errors. 

  MEAN ∆E00 DIFFERENCE MAX ∆E00 DIFFERENCE 

 D65/D50 D65/C D65/A D65/D50 D65/C D65/A 

C-PCA D65  0.5504 0.1867 1.9604 4.4409 1.9676 12.5713 

C-PCA D50 0.5804 0.1731 0.9053 5.9405 2.5142 4.5225 

W-PCA D65  0.2619 0.0993 0.9460 4.6212 1.5358 13.8484 

W-PCA D50 0.1839 0.0659 0.3586 0.8470 0.3354 1.4914 

Table 3. Metamerism Index for estimated reference and test spectra using classical PCA and 

weighted PCA methods with reference illuminant D65 and three test illuminants D50, A and C.  

The metamerism index suggests that the spectra estimated are acceptable for D50, 

C and A illuminant according to mean ∆E00 difference.  However, for cases using D65 

as source illuminant with PCA, the color difference is high for some spectra with test 

illuminant A. 

It can be seen from the result above that if we wish to estimate spectra that are 

closer to the original spectra then weighted PCA with carefully chosen training data 

will perform best. But if we require the estimated spectra of XYZ values measured 

under different illuminants to be closer to each other while being a good approxima-

tion of the original spectra then classical PCA will perform better. When XYZ is re-

calculated using the estimated spectral reflectance, the CIELAB difference is close to 

zero, differing only at the fourteenth decimal place when calculated against the actual 

XYZ. As our aim in this paper is to estimate the spectral reflectance of corresponding 

color datasets which are measured under different illuminants and compare them with 

other CAT estimates, getting estimated spectral reflectances of reference XYZ values 

that are similar to the estimated spectral reflectances of corresponding color XYZ 

values will be more useful. Therefore, in the rest of the paper we will only discuss 

results obtained with classical PCA. 

 

4.2 Spectral Estimation of Corresponding Color Dataset 

For the Helson, Lam & Rigg, Kuo & Luo (A), Lutchi (A) and Lutchi (D50) corre-

sponding color datasets, spectral reflectances were estimated using classical PCA for 
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both reference and test XYZ values using the second training dataset with 3135 spec-

tral reflectances. The results of three samples chosen with 5th, 50th and 95th RMS dif-

ference for Lutchi (A) and Lutchi (D50) are shown in Fig. 5 and Fig. 6. We need to 

note here that in the corresponding color datasets the reference and test white points 

do not exactly match the white points of standard illuminants, but as we need to use 

the illuminant spectral power distribution in calculating the matrix [S.O], we use the 

standard illuminant for this purpose which introduces a small error. For this reason, 

estimated spectral reflectances will not be as accurate an estimate of the original spec-

tral reflectance as in the case of calculated XYZ values of FOGRA51 dataset. Moreo-

ver, as the corresponding color XYZ data are chromatically adapted data, they differ 

slightly from the calculated corresponding XYZ values under respective illuminants. 

Hence, we can see that the difference between the two estimated spectra are higher 

than in the case of FOGRA 51 data under the two illuminants. Nonetheless, the esti-

mated spectral reflectances have similar shape. The mean RMS difference is given in 

table 3. 

Due to this the obtained estimated spectral reflectances will not be as accurate an 

interpretation of the original spectral reflectance as in the case of calculated colori-

metric values of FOGRA51 dataset. Hence, we can see that the difference between the 

two estimated spectra are higher than in the case of FOGRA51 data under the two 

illuminants. But nonetheless, the estimated spectral reflectances have similar shape. 

The mean RMS difference is given in Table 3. The Lutchi D50 data has the smallest 

mean RMS difference and max RMS difference. 

 

Fig.5. Estimated reflectances of Lutchi (A) using classical PCA:5th, 50th and 95th percentile 

RMS difference. 
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Fig.6. Estimated reflectances of Lutchi (D50) using classical PCA: 5th, 50th and 95th percentile 

RMS difference 

  WEIGHTED MEAN RMSD WEIGHTED MAX RMSD 

CCD 0.0028 0.0079 

Table 4. Weighted mean RMS difference and weighted max RMS difference between the esti-

mated reference reflectance and estimated test reflectance. 

 

  

WEIGHTED MEAN ∆E00 

DIFFERENCE 

WEIGHTED MAX ∆E00 

DIFFERENCE 

 D65/D50 D65/A D65/C D65/D50 D65/A D65/C 

CCD 0.0617 0.5410 0.0593 0.8243 0.1713 0.7750 

Table 5. Color accuracy for the estimated reference and test spectra using reference illuminant 

D65 and three test illuminants D50, A and C 

The above table shows the metamerism index for the estimated spectra. Illuminant 

D65 has been considered as reference light and illuminant D50, A and C as the test 

lights. The mean ∆E00 difference was below 1.0 for every dataset under different test 

illuminants and only the Lutchi D50 with test illuminant A has a mean ∆E00 differ-

ence greater than 0.5. For all datasets test illuminant, A has the highest mean ∆E00 

difference. This is expected because the difference between D65 which is bluish light 

and illuminant A which is reddish light is high. Also, when the reference spectra are 

estimated using D65 or C it adds an error i.e. biased towards bluish light, similarly, 

for the test spectra the test illuminant adds an error.  

As expected, when making a corresponding color match under a test illuminant 

that is less blue than the reference illuminant, both the corresponding color colorime-

try and estimated spectral reflectance are also less blue. 

4.3 Spectral Estimation of Chromatically Adapted Data 

Below are the plots for estimated spectral reflectance for each of the reference 

XYZ values of the corresponding color dataset and estimated spectral reflectance of 
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its respective chromatically adapted XYZ values using the four transforms namely 

Bradford CAT, CAT02 and CAT16. From the visual plots we can see that the esti-

mated spectral reflectances of the chromatically adapted XYZ values are quite similar 

in shape to the estimated spectral reflectance of the reference XYZ values. The 

CAT02 (blue) and CAT16 (green) estimated spectral reflectance have similar charac-

teristics. Bradford CAT spectra had the lowest mean RMS difference for every dataset 

except Lutchi D50 where CAT02 slightly performs better. CAT16 spectra have the 

highest mean RMS difference for every dataset.  The larger RMS differences indicate 

a larger change in colorimetry (and therefore in the spectral reflectance estimated) in 

the transform. 

 

 

Fig. 7. Estimated reflectances of reference Lutchi(A) and reference data chromatically adapted 

to ill. A using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 95th percentile 

RMS difference. 

Spectra estimation was also done for Wpt MAT adapted XYZ values and were 

closest to the spectral estimation of reference corresponding color XYZ values. As 

Wpt MAT has been developed to maintain sameness of material property and since 

spectral reflectance is an intrinsic property of a material, therefore, we should recover 

a very similar spectral reflectance. This topic will be further investigated in the future. 
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Fig. 8. Estimated reflectances of reference Lutchi (D50) and reference data chromatically 

adapted to ill. D50 using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 95th 

percentile RMS difference. 
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 WEIGHTED MEAN RMSD WEIGHTED MAX RMSD 

 Bradford CAT16 CAT02 Bradford CAT16 CAT02 

CCD 0.0225 0.0428 0.0278 0.0746 0.1455 0.0802 

Table 6. Weighted mean RMS difference and weighted max RMS difference between the esti-

mated reflectance of reference corresponding color data vs estimated reflectance of chromati-

cally adapted data.   

DATASETS NO. OF 

SAMPLES 

BRADFORD CAT16 CAT02 

WEIGHTED 

MEAN 

560 6.51 6.94 6.48 

Table 7. Weighted mean of CIELAB difference of each of the corresponding color datasets to 

its chromatically adapted data. 

 Additionally, we have also calculated the weighted mean of CIELAB difference 

for 11 corresponding color datasets and their respective chromatically adapted data 

using Bradford, CAT02 and CAT16 as shown in table 7. This is to check the CAT 

performance with respect to other known experimental data.   

4.4 Spectral Estimation of Inverse of Chromatically Adapted Data 

Selected results of spectral estimates for the inverse of chromatically adapted ref-

erence XYZ of every corresponding color dataset are plotted against its respective 

estimated spectral reflectance of reference XYZ values. The inverse transform has 

been performed only for Bradford CAT and CAT16. Again, spectra obtained for the 

back transformed XYZ values are very similar in shape to the spectral reflectance 

obtained for the reference XYZ values. The mean RMS difference and mean ∆E00 are 

low overall and lowest for the Bradford CAT. This demonstrates that the inverse 

transform can successfully be used in a color management workflow.  
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Fig.9. Estimated reflectances of reference Lutchi (A) and inverse of chromatically adapted 

reference XYZ to ill. A using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 

95th percentile RMS difference. 

 

Fig.10. Estimated reflectances of reference Lutchi (D50), inverse of chromatically adapted 

reference XYZ to ill. D50 using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 

95th percentile RMS difference. 

 WEIGHTED MEAN 

RMSD 

WEIGHTED MAX 

RMSD 

WEIGHTED MEAN 

∆E00 

  Bradford  CAT16  Bradford CAT16  Bradford CAT16 

CCD 0.0050 0.0107 0.0196 0.0382 0.1661 0.2804 

Table 8. Weighted mean RMS difference and weighted max RMS difference of estimated 

spectra inverse of chromatically adapted XYZ and its respective reference XYZ reflectance. 

5 iccMAX Profiles 
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All the spectral data used here are in the range of 400nm to 700nm in steps of 10nm 

i.e. 31 values per reflectance. The Profile Device Class tag is set to spac i.e. it is a 

color space profile. The Data Color Space tag is set to RGB/XYZ. Spectral PCS tag is 

set to rs001f where rs is the signature identifier for reflectance with 001f in hexcode 

as the signature for channels to specify 31 channels and spectral range is set to 400-

700 and steps set to 31. The multiprocess Element type tag is used to encode the mul-

tiprocess elements and create the spectral profile with tag signature set to D2B3. 

D2B3 defines a color space transform from a device to spectral PCS transform with 

absolute rendering. The Calculator Elements tag is also part of the multiprocess ele-

ments tag and the stack based scripting is written inside this tag. Since the main focus 

of this paper is to create colorimetric to spectrally based PCS profile the B2D color 

transform is not discussed. 

 

For RGB/XYZ to reflectance profiles the steps are as follows :  

1. Add source data RGB/XYZ in to the stack (skip this step if data is XYZ values). 

2. Apply respective gamma value to the input values on the stack to linearize the RGB 

data. 

3. Use appropriate matrix to convert the linearized RGB on the stack to XYZ w.r.t to 

a chosen white reference. 

4. Subtract the mean training tristimulus (ATEo) from XYZ data. 

5. Multiply the zero mean XYZ on the stack with the (31x3) spectral PCA matrix ob-

tained from the three principal components E multiplied to the inverse of (ATE) and 

now these 3 to 31 transformed values are on the stack. 

6. Add the mean reflectance Eo to the values on the stack to get the final estimated 

reflectance. 

 

In this paper since we deal with corresponding colors in XYZ space we will create 

profiles for only for XYZ to reflectance data. Four different types of XYZ to spectral 

PCS profiles are created. The observer function is set to 1931 2-degree observer func-

tion for all profiles. The profiles are created for XYZ data under D65, D50, illuminant 

A and illuminant C. 

 These profiles were applied to XYZ of corresponding color datasets namely Hel-

son and LUTCHID50 datasets. The corresponding color datasets were divided accord-

ing to the white reference of the data, therefore, for HELSON dataset we get two parts 

HELSON A and HELSON C, while for LUTCHID50 we get LUTCHI D50 and 

LUTCHI D65 data. The appropriate ICC profiles were then applied to each of these 

separated data. The estimated reflectance obtained were exactly same as the results 

obtained in the earlier. These profiles were also tested on images creating an image 

tiff file with pixel values as reflectance data. Further, investigation is being done to 

create sliced tiff files per wavelength to make them easily readable with appropriate 

bit depth like 8-bit and 16-bit. 
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This concludes that the implementation of colorimetric PCS to Spectral PCS profiles 

were successful without and can be a way forward to develop chromatic adaptation 

transformation using reflectance.  

6 Conclusion 

Spectral estimation of corresponding color data has been performed to find the in-

trinsic relationship between original stimuli and chromatically adapted colorimetric 

data. We showed that for a recovery to be performed well we have to select training 

data which has similar characteristics to the test data.  

Classical PCA has successfully estimated spectra for the reference XYZ and corre-

sponding XYZ of corresponding color datasets and have shown to have a similar 

spectral shape. The estimated spectral reflectances of the chromatically adapted XYZ 

values show that spectra estimated from Bradford CAT adapted XYZ values are clos-

est to the reference XYZ values of corresponding color dataset. This can also be seen 

in the inverse transform, where the Bradford CAT had a lower mean RMS difference 

compared to CAT16. If the source white point in the forward transform is same as the 

destination white point in the inverse transform, then the inverse transform will be 

complete and we should recover same spectra as the spectra obtained from the refer-

ence XYZ values. The low values of RMS difference suggest that the classical PCA 

on the respective chromatically adapted XYZ values has been consistent in estimating 

spectral reflectance.  

The results demonstrate that, by using appropriate methods such as classical PCA, 

it is possible to obtain good spectral estimates of corresponding colors, and therefore 

that spectral estimation can be used in conjunction with chromatic adaptation in a 

color managed workflow.  

Spectral estimation of corresponding colors has also been implemented within the 

ICCMAX color management architecture. Further, a chromatic adaptation transform 

can be encoded either in matrix form (preferably), or as a multidimensional look-up 

table with PCS XYZ input and adapted spectral reflectances as output. 
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